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Abstract High-resolution water vapour measurements made by the Atmospheric

Radiation Measurement (ARM) Raman lidar operated at the Southern Great Plains Climate

Research Facility site near Lamont, Oklahoma, U.S.A. are presented. Using a 2-h measure-

ment period for the convective boundary layer (CBL) on 13 September 2005, with temporal

and spatial resolutions of 10 s and 75 m, respectively, spectral and autocovariance analyses of

water vapour mixing ratio time series are performed. It is demonstrated that the major part of

the inertial subrange was detected and that the integral scale was significantly larger than the

time resolution. Consequently, the major part of the turbulent fluctuations was resolved. Dif-

ferent methods to retrieve noise error profiles yield consistent results and compare well with

noise profiles estimated using Poisson statistics of the Raman lidar signals. Integral scale,

mixing-ratio variance, skewness, and kurtosis profiles were determined including error bars

with respect to statistical and sampling errors. The integral scale ranges between 70 and 130 s

at the top of the CBL. Within the CBL, up to the third order, noise errors are significantly

smaller than sampling errors and the absolute values of turbulent variables, respectively. The

mixing-ratio variance profile rises monotonically from ≈0.07 to ≈3.7 g2 kg−2 in the entrain-

ment zone. The skewness is nearly zero up to 0.6 z/zi , becomes −1 around 0.7–0.8 z/zi ,

crosses zero at about 0.95 z/zi , and reaches about 1.7 at 1.1 z/zi (here, z is the height and

zi is the CBL depth). The noise errors are too large to derive fourth-order moments with

sufficient accuracy. Consequently, to the best of our knowledge, the ARM Raman lidar is the

first water vapour Raman lidar with demonstrated capability to retrieve profiles of turbulent

variables up to the third order during daytime throughout the atmospheric CBL.
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1 Introduction

Water vapour is a key meteorological variable and plays an important role in governing

the thermodynamic state of the atmosphere in various regimes starting from very small

scales to the synoptic scale. The distribution of water vapour in the atmosphere influ-

ences various processes, e.g., radiative transfer, evapotranspiration, the stability of the

lower troposphere, entrainment, convection initiation, and cloud formation (Browning and

Gurney 1999; Weckwerth et al. 1999; Weckwerth 2000; Wulfmeyer et al. 2008). Conse-

quently, studies dealing with both vertical and horizontal water vapour transport processes

in the lower troposphere are of the utmost importance for improvements of land-surface

and atmospheric numerical models. Measurements of higher-order moments of moisture

variability yield unique estimates of turbulence in the convective boundary layer (CBL).

Water vapour variance is used as a key parameter in many turbulence, convection, and

cloud parameterizations (e.g., Tompkins 2002; Berg and Stull 2005; Gustafson and Berg

2007).

The water vapour mixing ratio is a conserved variable (in the absence of condensation and

evaporation), and thus it is a good tracer of atmospheric motion. The variance profile can also

be used to identify the mean CBL height. Vertical distributions of water vapour skewness

and kurtosis change their patterns during different phases of the CBL evolution depending

on the interaction among various convective scales. Particularly, entrainment processes at

the top of the CBL control the vertical transport of humidity in the free troposphere, which

depends on the strength of the temperature inversion as well as the wind shear profile and

the presence of gravity waves (Mahrt 1991; Sorbjan 1996; Sullivan et al. 1998).

During the last two decades, there have been many efforts to study turbulent transport

processes in the atmosphere using different methodologies and instruments. In-situ turbu-

lence measurements have been used for many years to study the turbulent structure of the

CBL (e.g., Lenschow and Kristensen 1985). However, remote sensing techniques such as

lidar and radar systems have reached the resolution and accuracy to enable profiles of tur-

bulent variables to be measured through the lower troposphere (e.g., Kropfli 1986; Eberhard

et al. 1989; Angevine et al. 1993; Cohn 1995; Frehlich and Cornman 2002; Hogan et al.

2009). The major advantage in the application of these remote sensing techniques lies in the

simultaneous investigation of turbulence properties from the surface layer to and through

the entrainment zone. In particular, the entrainment zone of the CBL is generally much

higher than can be sampled with meteorological towers, and sampling of entrainment by

soundings and aircraft in-situ measurements is very difficult and expensive. Furthermore,

remote sensing approaches allow for more regular and routine sampling of the CBL struc-

ture. Therefore, there is large interest in CBL studies using ground-based remote sensing

systems.

Accurate, low-noise, high-resolution remote sensing measurements of water vapour mix-

ing ratio can be used to investigate turbulence in the CBL. To date, only differential absorption

lidar (DIAL) has demonstrated the resolution and accuracy required for turbulence measure-

ments (Senff et al. 1994; Kiemle et al. 1997; Wulfmeyer 1998, 1999a,b; Wulfmeyer and

Bösenberg 1998; Giez et al. 1999; Kiemle et al. 2007). Recently, high-resolution lidar mea-

surements have also been applied to comparisons with large-eddy simulation (LES) of the

CBL (Wulfmeyer 1999b; Couvreux et al. 2005). In the future, active remote sensing systems

may even be able to determine three-dimensional water vapour fields (Wulfmeyer and Walther

2001a,b).

Previously, a scanning, solar-blind Raman lidar system operating at 248 nm (Eichinger

et al. 1999) was used for daytime turbulence measurements in the surface layer (e.g., Eichinger
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Water Vapour Raman Lidar Resolve Profiles 255

et al. 2000, 2006; Cooper et al. 2003). However, due to the limited range of this system (a

few 100 m) caused by ozone absorption in this wavelength range, measurements up to the

CBL top are not possible resulting in very limited information about entrainment processes.

In contrast, Raman lidar systems operating at 355 nm are capable of water vapour measure-

ments up to the middle troposphere even during daytime. Mecikalski et al. (2006) used 1- min

Raman lidar mixing ratio data to investigate coherent structures such as horizontal rolls in

the boundary layer; however, high-resolution measurements for turbulence profiling have not

been analyzed to date.

A major advancement in the study of CBL turbulence based on lidar measurements came

through the pioneering work of Lenschow et al. (2000) (LE2000 in the following). They

introduced a straightforward approach to measuring higher-order moments in noisy data

based on a detailed error analysis. The methodology was applied to high-resolution water

vapour DIAL and Doppler lidar vertical velocity measurements. Following this procedure,

Wulfmeyer and Janjić (2005) successfully derived the profiles of higher-order moments of

vertical velocity fluctuations obtained from ship-borne Doppler lidar in the tropical Pacific

Ocean during a full diurnal cycle of the marine CBL.

Raman lidar systems also have the capability of measuring water vapour mixing ratio

at high temporal and spatial resolutions (e.g., Turner and Goldsmith 1999; Whiteman et al.

2006; Ferrare et al. 2006). However, the following question arises: is the accuracy and reso-

lution of state-of-the-art water vapour Raman lidar systems sufficient to derive higher-order

moments of turbulence in the boundary layer?

The data used in the present study were obtained at the Atmospheric Radiation Mea-

surement (ARM) Southern Great Plains (SGP) Climate Research Facility (ACRF) site near

Lamont, Oklahoma, U.S.A. with its Climate Research Facility (CRF) water vapour Raman

lidar CARL (see Goldsmith et al. 1998 for a detailed description of the lidar). This study

is timely, as near-range measurements of CARL were recently improved by the incorpora-

tion of advanced detection electronics that combine analogue-to-digital and photon counting

into a single package (Newsom et al. 2009). CARL is an operational water vapour remote

sensing system, operating for 90% of the time following an electronics upgrade in Septem-

ber 2004; therefore, if turbulence profiles can be retrieved with acceptable accuracy, routine

measurements of the turbulent properties of the atmospheric boundary layer (ABL) become

possible.

Our goal is to provide a detailed characterization of CARL measurements to determine

if indeed turbulence profiles can be observed in the CBL. For this purpose, we apply

the methodology of LE2000 to CARL mixing ratio measurements. We derive vertical

profiles of the higher-order moments of water vapour mixing ratio m up to the fourth order

together with the detailed error estimations. We also determine higher-order moments of

system noise, which give further insight into the quality of CARL mixing-ratio measure-

ments.

The paper is organized in seven sections: an overview of the experiment with a brief

description of the measurement site and of CARL is given in Sect. 2. The meteorological

conditions during the measurement selected for turbulence analyses are discussed in Sect. 3.

After the presentation of time-height cross-sections of aerosol scattering ratio and mixing

ratio during the measurement period of interest in Sect. 4, Sect. 5 discusses the methodology

for turbulence analyses and the resulting profiles of higher-order moments of mixing ratio

including a thorough error analysis. In Sect. 6, the structures of the turbulent profiles and

their relation to turbulent transport and exchange processes are discussed. The conclusions

and an outlook are given in Sect. 7.
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2 CARL System

CARL is a fully autonomous Raman lidar system that is capable of measuring profiles of

water vapour mixing ratio, aerosols, and clouds throughout the diurnal cycle for the ARM pro-

gram (Goldsmith et al. 1998). It is located at the ARM CRF site close to Lamont, Oklahoma

(36.6◦N, 97.5◦W). The environment is characterized by flat terrain and rather heterogeneous

land-surface properties.

CARL transmits pulses of linearly polarized 355-nm radiation into the atmosphere at

30 Hz, and collects the backscattered energy with a 0.61-m telescope. The incoming light is

split into two different fields-of-view (FOV) with 2 and 0.3 mrad FOV angles, respectively.

Both FOVs together provide good sensitivity both in the near- and far-ranges. In each FOV, the

light is separated into signals associated with the Raman scattering of water vapour (408 nm)

and nitrogen (387 nm) as well as the elastic return at the laser wavelength. The narrow FOV

elastic return is separated into both the co- and cross-polarization components with respect

to the polarization of the outgoing laser beam. The original system configuration utilized

photon-counting electronics in these seven channels, with a maximum resolution of 1 min

and 39 m.

Automated routines were developed to process these backscatter signals to derive profiles

of water vapour mixing ratio, relative humidity, aerosol backscatter coefficient and extinction

coefficient, as well as the linear depolarization ratio (Turner et al. 2002). The water vapour

mixing ratio is determined from the ratio of two Raman backscatter signals, the water vapour

Raman channel at 408 nm and the nitrogen Raman channel at 387 nm. This ratio is multiplied

by several height-dependent correction factors resulting in a signal that is proportional to

mixing ratio (e.g., Whiteman et al. 1992; Turner and Goldsmith 1999). These height-depen-

dent correction factors include accounting for the differential transmission due to molecules

and aerosols in the water vapour (408 nm) and nitrogen (387 nm) channels, and an “over-

lap correction” that accounts for the slight misalignment of the telescope with the outgoing

laser beam. The overlap correction, which becomes negligible at some height above the tele-

scope, is a static correction and in general does not change with time; thus any errors in the

specification of this correction translate into a small bias in the derived water vapour profile.

The final step in the processing of the water vapour mixing ratio is the application of a

height-independent calibration factor to the ratio of the backscattered profiles. In theory, this

factor could be derived from first principles (e.g., Sherlock et al. 1999). However, due to the

uncertainty in the Raman cross-sections and the transmission of the optics in CARL, the ARM

program calibrates the lidar such that the integrated water vapour agrees with that retrieved

from a two-channel microwave radiometer (Turner and Goldsmith 1999). Using these tech-

niques, comparisons with other water vapour sensors have demonstrated high accuracy with

water vapour Raman lidar measurements in the field (Behrendt et al. 2007a,b). Furthermore, if

the overall bias is time independent, it does not influence the accuracy of profiles of turbulent

moments.

In September 2004, the detection electronics were replaced with new electronics that

incorporate both photon counting and analogue-to-digital detection into the same package

(Turner and Goldsmith 2005). A key component of the processing is the ‘merging’ of the

photon-counting and analogue-to-digital data from a given channel into a signal profile for that

channel that is then used in the subsequent processing into geophysical variables (Newsom

et al. 2009). These new electronics greatly improved the signal-to-noise ratio (SNR) in the

various channels by increasing the dynamic range of the instrument, thereby allowing some

neutral density attenuating filters, which were needed to prevent the system from saturating

the original photon counting electronics, to be removed. The increase in SNR improved both
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the maximum range and the accuracy of the derived products (Ferrare et al. 2006). These

new electronics improved the maximum resolution of the data to 10 s and 7.5 m. More impor-

tantly, the new electronics allowed the elimination of the separate daytime and nighttime

modes that were used previously (Turner and Goldsmith 1999), and thus the same calibra-

tion could be used for the entire diurnal cycle. This has resulted in the daytime and nighttime

differences in water vapour mixing ratio with calibrated radiosondes to be smaller than 1%

(Newsom et al. 2009).

3 Meteorological Conditions

For our study, we selected a dataset from 2000 to 2200 UTC, 13 September 2005, and stud-

ied the meteorological conditions using the analyses of the European Centre for Medium-

Range Weather Forecasting (ECMWF). During this day, a long-wave trough dominated

the large-scale synoptic situation over the northern central USA and south-central Canada.

(Another striking feature was hurricane Ophelia, which was located near the east coast of

the US.) Embedded in the long-wave trough, a short-wave trough over Nevada and Idaho

guided two jet streaks at 300 hPa with a north-westerly wind direction over Canada and

a south-westerly wind direction over the central US, respectively, which merged in the

Great Lakes region (not shown). The short-wave trough was associated with a pool of

colder air in the middle troposphere that was located around Wyoming during the time of

interest.

In contrast, Mexico and the southern USA were influenced by a large high pressure system.

Consequently, Oklahoma with its ACRF SGP site was located in a transition zone between

these large-scale synoptic features. This transition zone, which separated dryer and colder

air over the western USA from moist air transported from Mexico over Texas into south-

eastern Oklahoma, was visible in the humidity field as well as in the wind field from the

500-hPa level down to the ground. Because the humidity gradient and the region of wind

rotation were relatively sharp, we can identify this transition as a cold front or dryline. For

instance, Fig. 1 presents analyses of the 850-hPa geopotential (white lines), the specific

humidity, and the horizontal wind vector at 1800 UTC and 2400 UTC. Clearly, the location

of the front stretching from south-west to north-east over the Oklahoma panhandle can be

identified.

For our studies, the development of the frontal zone from ground to a height of about

3.5 km was of particular interest. Figure 1 demonstrates that the dryline was more or less

stationary from 1800 to 2400 UTC so that the ACRF SGP site remained on the moist side of

the dryline. Only a slight change in wind direction from south-west to south, and some moist-

ening of the lower troposphere from 10 to 13 g kg−1 due to pockets of moist air embedded

in the flow, were expected. At the surface, a similar picture existed. The dewpoint difference

clearly identified that the dryline was located slightly east of the Oklahoma panhandle and

remained nearly stationary. A similar change in wind direction from south-west to south at

850 hPa was analyzed without a considerable change in surface moisture (not shown). Thus,

during the time of the measurement, the synoptic influence on the meteorological conditions

at the site remained weak. During daytime, a well-mixed convective boundary layer devel-

oped, which was barely influenced by mesoscale features. This makes the determination and

interpretation of the first Raman lidar turbulence measurements easier, and were the main

reasons for selecting this dataset.

Figure 2 presents the observed meteorological conditions at the measurement site. Meteo-

rological mean values such as mixing ratio at 2 and 60 m, precipitable water vapour, and wind
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direction did not change significantly during this day indicating weak advection. Latent and

sensible heat fluxes were measured at the site using the eddy-correlation technique with a

sonic anemometer (Gill Solent Windmaster Pro) in combination with an infrared gas analyser

(Licor Inc. LI-7500). The sensible heat flux confirmed the development of a CBL starting

at about 1300 UTC; from 1600 to 2200 UTC, the sensible heat flux remained positive and

reached a maximum of about 300 W m−2 around 1800 UTC. The latent heat flux was rather

small and barely reached 100 W m−2 at 1800 UTC, indicating a low amount of soil moisture,

consistent with local soil moisture measurements.

For the first turbulence analyses with CARL we selected a period that included cumulus

clouds in the CBL, and gave us the opportunity to investigate whether our methodology

for determining turbulence profiles can also be applied during conditions where the CBL is

topped with clouds. This is an important issue for the development of a long-term database of

turbulent variables, as an effect of clouds on turbulent exchange processes in the entrainment

zone can be expected.

We studied the presence of CBL clouds with cloud liquid and lidar backscatter measure-

ments (see Fig. 2, lower right panel). Since boundary-layer clouds affected the initial time

period when the CBL developed and reached a quasi-stationary state, the time period from

2014 to 2214 UTC was selected for the first CARL turbulence studies (marked by a grey

bar in Fig. 2). During this period, the boundary-layer depth was sufficiently constant, data

gaps were sufficiently small, and the time series was sufficiently long so that a detailed and

accurate analysis of turbulence profiles was possible.

4 Analysis of CARL Backscatter and Mixing-Ratio Measurements

4.1 Determination of Boundary-Layer Structure and Depth

Figure 3 presents the time-height cross-section of the aerosol scattering ratio (ASR) A derived

from the narrow field-of-view CARL observations on 13 September 2005 from 1200 to 2400

UTC with resolutions of 75 m and 10 s, respectively. The ASR was computed following the

procedure in Whiteman et al. (1992) using the modifications provided in Turner et al. (2002).

Data below 500 m above ground are not shown, as these were affected by systematic errors

due to incomplete overlap between transmitter and receiver. [The wide FOV would be able

to provide data in this lowest region of the atmosphere; however, the signal-to-noise ratio is

much lower than the narrow FOV. This large difference in the signal-to-noise ratio, especially

where the two FOVs were merged together, would have challenged the analysis, and thus we

used data only from the narrow FOV.] Vertical black bars are due to data gaps and white areas

indicate an overload of the detector or out of range values due to the presence of clouds. ASR

data are essential for the detection of cloud bottoms (and tops if the cloud optical thickness

is sufficiently low) and for determining the time series of the instantaneous ABL depth zi .

This is an important scaling variable for turbulence profiles (see Sect. 5).

During the whole measurement period, ASR in non-cloudy regions ranged from 1 to about

2.5. Aerosol layers were identified by larger ASR values, as pure molecular backscattering

is characterized by A = 1. During 1200–1400 UTC, the near-range data of CARL showed

a shallow boundary layer. At 1500 UTC, first indications of enhanced vertical mixing of

aerosols became visible. However, between 1500 and 1700 UTC, the expected evolution of

the CBL was disturbed by complex advective and vertical mixing processes. From 1700 UTC

on, the evolution of the CBL was evident by the development of a strong ASR gradient at

the top of the CBL with a height of about 1200 m. This gradient occurs since, generally, the
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Fig. 3 Time-height cross-section of aerosol scattering ratio during 13 September 2005 measured with reso-

lutions of 10 s and 75 m, respectively. The evolution of the CBL with imbedded clouds can be detected from

1600 to 2200 UTC. Vertical black bars indicate temporal gaps in the data. White areas show overloaded or

out-of-range values due to clouds, some black pixels above clouds are due to detector ringing

strongest sources of aerosol particles are located at the surface and these are vertically mixed

throughout the CBL. Simultaneously, the particle backscatter coefficient can be increased by

aerosol swelling if the relative humidity exceeds about 80% (Wulfmeyer and Feingold 2000;

Pahlow et al. 2006). This effect is particularly visible in Fig. 3 below clouds. Starting at about

1900 UTC, ASR values above 2.5 indicated the development of boundary-layer clouds close

to the top of the CBL.

The CBL reached a nearly constant level with low cloud coverage between 2014 and 2214

UTC, and a detailed overview of the CBL structure is presented in Fig. 4. Boundary-layer

clouds developed with bases at a height of ≈2000 m. Below these clouds, aerosol swelling

produced a strong increase in ASR of more than a factor of two. Regions of relative humidity

greater than 80% extend about 500 m below the cloud bases.

Clouds influenced the determination of zi , since sampling errors are introduced where

the algorithm was not applicable. For instance, if the signal was still evaluated inside the

clouds, the strong attenuating of the backscatter signal led to an underestimation of the cloud

top, which should be used for the instantaneous zi . If the signals cannot be analysed due to

detector overload, the omission of the determination of zi produces a sampling error also

resulting in a negative bias. We did not make an attempt to determine the resulting bias, as

this becomes only important if detailed comparisons with profiles of similarity relationships

or LES are performed, which was not the subject of this work. Nevertheless, in order to

measure zi (t), we applied the Haar wavelet analysis introduced in Davis et al. (2000), which

was also used in Cohn and Angevine (2000) and in Wulfmeyer and Janjić (2005). Details of
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Fig. 4 Time-height cross-section of aerosol scattering ratio during the period of interest. Vertical black bars

indicate small temporal gaps in the data. Swelling of aerosol particles due to increased relative humidity

below clouds is visible. As the ASR is due to elastic backscatter signals, which are easily overloaded, it is

very sensitive to the detection of boundary-layer cloud bottoms but the signals can be overloaded and prone to

systematic errors inside the clouds. The blue line indicates the determination of zi using the wavelet analysis

this technique, as well as a discussion and confirmation of its accuracy, are presented in Pal

et al. (2010). The resulting time series of zi is shown as an overlay in Fig. 4. A mean value

of z̄i ≈2320 m with a standard deviation of 190 m was determined.

4.2 Evolution of the Mixing-Ratio Field During the Observation Period

Figure 5 depicts the 12-h observation of mixing ratio, with temporal and spatial resolutions

of δt = 10 s and δz = 75 m, respectively. For this analysis, we used only the narrow FOV

data, and so the mixing-ratio data become reliable at a height > 500 m after correcting for

the overlap. Vertical black bands on the image are the times when no data were available;

other black and white areas indicate erroneous data due to low SNR that is typically caused

by attenuation by clouds.

After sunrise at around 1215 UTC, the boundary layer became unstable and a growing

CBL developed, which becomes visible in the height range covered by CARL at about 1500

UTC. During CBL growth, layers above were entrained into the CBL, which reached a depth

of 2000 m around 2000 UTC. Figure 5 shows that between 1500 and 1800 UTC a distinct

laminated dry layer at an altitude between 2.2 and 2.5 km was present with a mixing ratio

≈6.5 g kg−1. In the CBL, the mixing ratio reached values of about 18 g kg−1 at the top of the

CBL. The difference in mixing ratio between the CBL value and the free troposphere varied

from about 6 g kg−1 for the growing CBL to 13 g kg−1 for the well-developed CBL.

A high-resolution zoom in the mixing-ratio field from 2014 to 2214 UTC, our time

period for turbulence analyses, is presented in Fig. 6. The determination of mixing ratio
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Fig. 5 Time-height cross-section of water vapour mixing ratio from the narrow field-of-view during 13 Sep-

tember 2005, with resolutions of 10 s and 75 m, respectively. The same convention as in Fig. 3 is used with

respect to the visualisation of data gaps and data in the region of clouds

m is very consistent in the sense that, below clouds, m is maximal. Here cloud development

is due to moist updrafts that reach 100% relative humidity before they penetrate the CBL

top. In several cases, the condensation level is reached in the CBL and clouds form typ-

ically at a height of 2200 m. In contrast, downdrafts are characterized by the entrainment

of dryer air in the CBL. Similar to Fig. 4, the CBL top is identified by a strong humidity

gradient.

A striking difference between the m and ASR data is the number of valid data in the

region of clouds. Since the water vapour mixing-ratio determination is due to the ratio of two

Raman signals, both of which have strong blocking of the backscatter at the laser wavelength

(Goldsmith et al. 1998), the dynamic range of the signals is less than the elastic backscatter

signals used in ASR so that the danger of detector overload is reduced. Therefore, it may be

reasonable to use the humidity gradient at the top of the CBL for determining zi . We applied

the same wavelet algorithm as in Sect. 4.1 to the water vapour mixing-ratio profiles to esti-

mate the CBL top; this is overlaid in Fig. 6. We determined a mean CBL depth of 2450 m

with a standard deviation of 200 m. As pointed out above, a slight negative bias may remain

due to sampling errors in the presence of clouds. It is worth mentioning that the reduced

sensitivity to artifacts from clouds in the Raman lidar’s water vapour data may result in less

sampling errors than when using a DIAL system, as the DIAL’s retrieval is based on elastic

backscatter signals.

A comparison of the zi time series and its statistics are shown in Fig. 7. The mean

value was systematically higher when using m (z̄i,m = 2450 m) than when using A

(z̄i,AS R = 2320 m). This difference was mainly driven by the slightly different locations of the
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Fig. 6 Time-height cross-section of water-vapour mixing ratio from the narrow field-of-view during the same

time period as shown in Fig. 4. The same convention as in Figs. 3, 4, and 5 is used with respect to the visualisa-

tion of data gaps, of data in the region of clouds, as well as of zi determined with the Haar wavelet. Near-range

humidity up to 700 m is significantly affected by noise. The number of overloaded bins in the region of clouds

is reduced in comparison to Fig. 4

maximum values in the gradients of A and m and not by the sampling errors, since the

sampling errors only occurred in the relatively few cloudy profiles (resulting in an under-

estimation when using ASR). As the determination of CBL depth with the ASR gradient

is a well-established technique and has demonstrated good accuracy when compared to

other methods (Cohn and Angevine 2000; Pal et al. 2010), we applied z̄i,AS R for CBL

scaling.

5 Retrievals of Higher-Order Moments of Mixing Ratio and Noise

5.1 Data Processing

5.1.1 Definitions

In order to characterize the quality of mixing-ratio measurements, an accurate derivation

of error profiles is critical. Systematic errors may be due to the inadequate correction for

overlap and incorrect system calibration. However, since these can be considered time inde-

pendent (Newsom et al. 2009; Turner and Goldsmith 1999), bias and low-frequency trends

in the mixing ratio time series can be eliminated by suitable spectral filters before calculating
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Fig. 7 Upper panel time series of zi determined by Haar-wavelet analyses applied to ASR (red) and m (blue)

fields. The resulting mixing-ratio depth is systematically larger for m by about 100 m. Bottom panel corre-

sponding histograms demonstrating a slightly skewed zi if ASR is used. The standard deviation is similar in

both the ASR and m and is approximately 200 m

the mixing-ratio fluctuations. Thus, time-independent systematic errors do not influence the

accuracy of turbulence profiles.

Before noise errors and higher-order moments are calculated, the mixing-ratio time series

m(t) has to be processed carefully. We define the measured mixing ratio m as

m(t) = m(t) + m′(t) + ε(t) (1)
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where m̄(t) is a slowly varying trend of the time series. If the trend is negligible, m̄(t) =
m̄ = constant where m̄ is the mean of m(t), m′(t) is the mixing-ratio fluctuation with zero

mean, and ε(t) is the system noise.

5.1.2 Spike Removal

Spikes in the time series are mainly due to non-linear effects in the mixing-ratio retrieval

at very low SNR and in clouds. For the application presented in this study, in the range of

interest up to 3500 m, the SNR of the Raman signals was large so that spikes in the data were

mainly due to the attenuation of the laser beam in the presence of clouds. Before further pro-

cessing, these spikes have to be detected and flagged, as they negatively affect the calculation

of turbulent variables. The influence of spikes in the time series becomes more severe for the

higher moment calculations of the turbulent statistics.

The spike removal procedure is based on the technique introduced in Senff et al. (1996)

and depends on three parameters: a temporal window width, a bin width, and a gap value.

Within a gliding temporal window, a histogram is produced with the respective bin width.

If, between two populated histogram bins, gaps are found that are larger than the prescribed

gap-width variable, then all data points beyond the gap in the tail of the distribution are

identified as spikes and removed.

We investigated carefully the sensitivity of the results as a dependence of the combina-

tion of these values. The length of the window is a compromise between the minimization of

effects due to strong trends in the time series and the accuracy in the frequency distribution of

mixing ratio values. In our case, trends were low so that the results were nearly independent

of window width if the number of data points was larger than 30 (window width >300 s).

The bin width is a trade off between the resolution of the histogram and the separation

and detection of spikes. Finally, the gap value should be set so that the noise and atmospheric

variance of the time series are maintained and separated from spikes. In our algorithm, we set

window width = 410 s, bin width = 1.5 g kg−1, and gap = 5 g kg−1 at all heights. Using these

values, spikes could clearly be identified by large separations between the fluctuating time

series and its mean at all altitudes used in the analysis. Consequently, we expect remaining

systematic errors to be negligible.

5.1.3 Trend Removal

It is assumed that variations in the time series due to mesoscale and synoptic processes and

turbulence can be separated. This is reasonable as long as the scales causing turbulent fluc-

tuations are much smaller. This may not be the case if small-scale mesoscale circulations are

induced at the measurement site, which may be due to inhomogeneous land-surface prop-

erties (soil moisture, soil properties, vegetation, orography) or due to organized convection

such as horizontal rolls. Perfect separation of turbulent and large scales was not the focus of

this work; here we aim to characterize the CARL observations with respect to the determi-

nation of turbulence profiles and its dependence on system noise but not on scale separation

issues.

In our 2-h analysis period, only weak low-frequency variations were found in the CARL

time series at various heights. These were determined and removed by subtracting a lin-

ear fit to the time series at each height and subsequent high-pass filtering with a cut-

off time of 30 min. High-pass filtering was performed in frequency space by multiplying

the Fourier transform with an appropriate filter function. More details can be found in
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Senff et al. (1996) and Wulfmeyer (1999a). This resulted in a spike- and trend-corrected

time series of m′(t) + ε(t) with zero mean value at each height from 500 to 3000 m with

resolutions of 10 s and 75 m, respectively. This time series still contains flagged gaps due to

small gaps in the data record that occur at all altitudes and due to spikes starting at height

levels of 2200 m. The handling of these data gaps is discussed below.

5.2 Mixing-Ratio Noise Error Profiles

For each time period for which we wish to determine turbulent variables, noise error pro-

files have to be derived, as these noise profiles determine whether structures in the derived

turbulent profiles are significant. In the following, we assume that system noise is due to

statistical errors in the respective backscatter measurements of each channel, and that these

errors are uncorrelated both in altitude and in time. Consequently, the spectrum of noise in

each channel should be white. There are several techniques available to determine system

noise. In a Raman lidar it can be assumed that the noise is Poisson distributed, which can be

propagated using an end-to-end model into an error of mixing ratio (e.g., Eq. 6 in Whiteman

et al. 2006). Noise profiles can also be determined without application of end-to-end models.

Autocovariance analyses of the high-resolution mixing-ratio time series or analyses of mix-

ing-ratio variance spectra are performed for this purpose. These methods are explained in

detail in Senff et al. (1994), Wulfmeyer (1999a), and LE2000 so that only the major results

are summarized here.

Using the definition

M11(τ ) =
1

T

T
∫

0

(m′(t) + ε(t))(m′(t + τ) + ε(t + τ))dt (2)

where τ is time lag and T is the duration of the time series, the system noise variance ε2 can

be estimated by

ε2 = M11(0) − M11(τ → 0) ≡ M11(0) − (m′)2. (3)

M11(τ → 0) is a symbol for the extrapolation of M11 to lag zero and corresponds to the

atmospheric mixing-ratio variance (m′)2, since the system noise in the mixing-ratio time

series can be considered uncorrelated for all lags except lag zero. Obviously, Eq. 3 can be

used to determine separately atmospheric and noise variances.

It can be shown (Monin and Yaglom 1971; LE2000) that M11 can be approximated by the

structure function

M11(τ ) ∼= (m′)2 − Cτ 2/3 (4)

for τ �= 0 if the atmospheric turbulence is sufficiently resolved. C is a scaling parameter that

is related to the turbulent eddy dissipation.

Using Eqs. 3 and 4, the variance and the noise profiles can be derived simultaneously.

Determination of system noise using this method is called the autocovariance technique,

which is very convenient, since it is based on direct measurements of m. Other sources of

system noise will be included, if these exist, and which are not taken into account in pure

Poisson statistics error propagation. In other words, if noise errors determined using Poisson

statistics and the autocovariance technique are comparable, this proves that the system noise

of the respective lidar system is Poisson limited.
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There are two common ways for determining ε2. A fast and simple technique is setting

ε2 ≈ M11(δt) but this approximation disregards the shape of M11 close to lag zero, which

is generally neither linear nor constant. Consequently, this approximation can lead to an

overestimation of system noise. The most accurate approach is the extrapolation of M11 to

lag zero using Eq. 4. This can be achieved by a linear extrapolation of M11 to lag zero or by

fitting the structure function to M11 (see Eq. 3 in combination with Eq. 4).

In our work, we investigated the covariance functions over the entire height range in order

to determine the most appropriate numbers of data points for the extrapolation back to lag

zero. Many data points are beneficial for reducing the remaining noise in the regression but

if this number is chosen too large, the procedure causes a systematic underestimation of the

atmospheric variance (see Eqs. 3 and 4). It turned out that an 11-point extrapolation was

the best compromise for the linear extrapolation and the fit of the structure function, which

worked both in regions with significant turbulence as well as in regions with spikes and large

system noise.

It is important to evaluate the effect of spikes on the separation of atmospheric and noise

variances. Consider a time series with spikes that were successfully detected and removed

from the time series. Afterwards, trend correction by a spectral filter is necessary. In the

resulting time series, the data gaps are filled with zero in order to maintain a zero mean

and for calculating autocovariance functions of different orders. It is difficult to estimate

the resulting systematic effect, since this spike detection, removal, and gap filling technique

will also influence the shape of the autocovariance functions around lag zero. As we are not

focusing on a detailed comparison of higher-order moment profiles with turbulence theory

or simulations, we just provide an estimation of the systematic error. If it is assumed that the

spike values due to the attenuation of the laser beam by clouds are on average of the order of

the total variance of the time series, then the difference between the estimated variance and

the theoretical variance around lag zero can be approximated by
[∑ns

i=1 m2
i

]

/N ≈ ns

N
M11,

where ns is the number of spikes and N is the number of data points. Since in our case

ns < 100 up to the entrainment zone and N = 706, consequently the estimated relative

errors at lag zero (total variance of time series) and at lag 1 (atmospheric variance (m′)2) are

about 14%. This is of the order of the atmospheric sampling errors.

Figure 8 shows M11 at five different heights during our analysis period on September 13,

2005. The difference between the peak at zero lag to the first lag is already a first estimate

of the system noise variance. The structure of M11 at larger lags indicates whether the SNR

is large enough to resolve the structure function. At about 800 m (0.3 z/zi , not shown) up to

the entrainment zone (for this case, see panel e), the system noise level becomes low enough

for resolving the atmospheric variance. In the free troposphere, the SNR is too low to resolve

the atmospheric turbulent structure (panel f).

The spectral technique is based on the assumption that the system noise is white. By

calculating the variance spectrum of m, the spectral value close to the Nyquist frequency

Sm′(νn) can be estimated, and so

ε2 ∼= Sm′(νn)

(

νn −
1

T

)

. (5)

The spectral and the autocovariance techniques are mathematically equivalent and should

yield comparable results if the correct extrapolation of the autocovariance function to lag zero

is applied. On the one hand, the autocovariance technique has the advantage that system noise

can directly be determined without introducing additional errors by Fourier transformation

of the autocovariance function. On the other hand, the spectral analysis is an instructive way
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Fig. 8 Autocovariance function M11 of mixing ratio presented for five different height levels. a 525 m,

b 975 m, c 1500 m, d 2025 m, e 2475 m, f 2925 m. One lag corresponds to a shift of 10 s of the time series in

the autocovariance function

to observe whether the major part of the turbulent fluctuations is resolved by comparing the

high-frequency part of the spectrum with the theoretical decay in the inertial subrange.

Figure 9 presents variance spectra of m during the same observation periods and at the

same heights as in Fig. 8. The straight line shows the theoretical decrease of the respective

spectra according to the −5/3 power law in the inertial sub-range (Kolmogorov 1941). It is

clear from Fig. 9 that, from the lower CBL up to the entrainment zone, the system resolves the

atmospheric variance including the inertial subrange. This is consistent with the discussion

of Fig. 8.

Figure 10 compares the noise error profiles derived using Poisson statistics as well as the

autocovariance and spectral methods. The root-mean-square (rms) error of the determination

of the noise error by linear extrapolation to lag zero is also shown. It is very satisfying to see

that Poisson statistics determines the lower bound of system noise. All noise variance profiles
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Fig. 9 Power spectra of mixing ratio in double logarithmic scales presented for six different height levels, as

in Fig. 8. The straight line indicates the theoretical decay of spectral power in the inertial subrange

agree well quantitatively with the estimation of system noise variance using Poisson statistics

starting at heights above 1000 m. This analysis shows that, below 1000 m, the noise variance

exceeds Poisson statistics due to enhanced fluctuations in the determination of mixing ratio

by the overlap function. Otherwise, the other noise profiles deviate from Poisson statistics

mainly in the region of clouds. This is reasonable, since the variance in the mixing ratio

increases due to a higher variability of the Raman signals.

The noise variance profiles agree very well between the extrapolation of the autocovari-

ance function and the spectral method. As expected, the approximation of the noise variance

using the difference between lag zero and lag 1 of the autocovariance function results in a

slight overestimation of system noise (varnoi_lag in Fig. 10). The fit of the structure function

to M11 (varnoi_pow in Fig. 10) is considered most accurate, as this procedure considers as

best as possible the physical shape of the autocovariance function around lag zero. If the

noise levels are very high, it may be preferable to use a linear extrapolation to lag zero;

however, in our analysis, the fit of the structure function turned out to be very robust over the

entire range. Furthermore, the structure function fit showed the most reasonable behaviour

in the entrainment zone and resulted in a small reduction in magnitude of the noise variance

profiles, since more variance was attributed to atmospheric fluctuations. In the following,

the noise variance profile derived with the structure function (i.e., varnoi_pow) is used in all

further error propagation analyses.

The square root of varnoi_pow can be considered as a good estimate of the standard devi-

ation of a CARL mixing-ratio measurement using resolutions of 10 s and 75 m. Therefore,

we define this profile as the absolute rms error. The relative error of mixing-ratio measure-

ments can be estimated by dividing the rms error profile by the mean profile of mixing ratio

during the measurement period. This procedure is reasonable, as long as no strong vari-

ability in the mixing-ratio field occurs, which was the case during the time period analyzed

here.
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Fig. 10 Comparison of CARL noise variance estimation of the narrow FOV water vapour mixing ratio data

using four different techniques. Varnoi: 11-point linear extrapolation to lag zero (this line is largely cov-

ered by the other variance estimates, as it was the first line plotted), varnoi_lag: difference between lag zero

and lag 1 of M11, varnoi_pow: extrapolation of structure function to lag zero, varnoi_spec: high-frequency

section of variance spectrum, and Poisson-limited variance: the theoretical lower limit of system noise given by

photon statistics. The error of the noise variance profiles (varnoi_rms), determined by the regression analyses

statistics, is also shown, which is plotted as error bars in varnoi_pow

Both profiles (rms error and relative error) are presented in Fig. 11 including the corre-

sponding profiles derived by Poisson statistics. Again, it is seen that Poisson statistics are not

sufficient to explain the system noise up to 800 m. Here additional variance caused by overlap

effects increases the rms error considerably. The results demonstrate that CARL is capable

of measurements with an absolute error of <2 g kg−1 and a relative error of <30% up to 3 km

using resolutions of 10 s and 75 m, respectively. As the relative error with respect to system

noise of the determination of turbulent moments is nearly proportional to the square root of

the ratio of the noise and atmospheric variances (Wulfmeyer 1999a,b, and LE2000), Fig. 11

indicates that it should be possible to derive atmospheric variance profiles above 800m up to

the entrainment zone.

5.3 Systematic Error Profiles

Systematic errors in the lidar water vapour mixing-ratio profiles can be due to the lidar sys-

tem, such as a time dependent bias in the calibration, overlap effects, and other systematic

error sources in the receiver. It was shown above that these effects can be neglected.

However, atmospheric effects can also cause systematic errors in the determination of

turbulence profiles even if the CARL measurements are perfect. There are two major sys-

tematic error sources: (A) sampling errors due to insufficient sampling of the ensemble of

turbulent fluctuations around the measurement site, (B) filtering of the turbulent time series

due to limited temporal and spatial resolutions.
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Fig. 11 Corresponding absolute and relative error profiles of CARL mixing-ratio measurements using the

square root of varnoi_pow in Fig. 10

These effects can be studied by estimating the integral time scale � of the moment of m

to be considered. For instance, for the mixing-ratio variance (LE2000)

� =
1

(m′)2

∞
∫

τ→0

M11(τ )dτ , (6)

where the integral time scale can be considered as a measure of the typical size of a turbulent

eddy in the temporal domain. If the Taylor hypothesis (frozen turbulence) is appropriate, the

spatial scale R of this eddy can be estimated by R ≈ U� where U is the horizontal wind

speed.

(Source A) Due to its physical meaning, atmospheric sampling error profiles for all higher-

order moments and their combinations can be calculated after estimating the profiles of

� by application of turbulence statistics based on the theory derived in Lenschow and

Kristensen (1985); Lenschow and Stankov (1986); Lenschow et al. (1994), and Mann

et al. (1995).

(Source B) Before higher-order moments of m are calculated, it is important to investigate

whether the major part of the turbulent fluctuations was resolved by the remote sensing

system. Since CARL is not a point sensor, the measurement process can be considered

as temporal-spatial filter functions to the time series of m. This distorts the turbulence

spectrum and the autocovariance function when these are compared to results achieved

with a point sensor.

A prerequisite for the resolution of the major part of the turbulent fluctuations is � ≫ δt

where δt is the temporal resolution of the time series (10 s in our analysis here). If this

condition is achieved, the major part of the turbulent eddies is sampled with acceptable

resolution so that the inertial subrange in the spectrum and/or the dissipation range in
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Fig. 12 Estimation of the integral scale of m with and without correction of the atmospheric variance profile

with respect to system noise. In the corrected profile, the noise error bars are also shown. The integral length

scale, computed assuming the frozen turbulence hypothesis and radiosonde data at 2330 UTC (i.e., after the

period of Raman lidar data analyzed here), is also shown

the autocorrelation function of the mixing ratio becomes resolved. This does not neces-

sarily imply that the inertial subrange is visible in the variance spectrum. It may still

be the case that the atmospheric variance is masked by a large noise variance (see

Fig. 9).

Figure 12 presents the profile of � during the observational period. The vertical coordinate

is the normalized boundary-layer depth, i.e., z divided by the mean CBL depth z̄i,AS R . Exper-

imental data and LES indicate that the maximum of the atmospheric variance profile should

be close to 1.0 z/zi . However, there is uncertainty associated with the actual boundary-layer

top height determination that has to be addressed if detailed comparisons with similarity

relationships or LES are performed in future analyses.

Equation 6 shows that the atmospheric variance is captured in the denominator of the

calculation of �. The black line in Fig. 12 is the profile of the integral scale when correction

for system noise in the variance profile is not performed, whereas the red line shows the

integral scale after this correction is applied (see Eqs. 3, 4, and 6). Obviously, this correction

is important and essential over the entire boundary layer. Furthermore, assuming Taylor’s

hypothesis of frozen turbulence is valid, we added the profile of the integral length scale (blue

line), which is the product �U (z) where U (z) is the horizontal wind profile from the 2330

UTC radiosonde profile. Both profiles �U (z) and U (z) were very similar in shape, as the

horizontal wind profile did not change substantially with height in the height range plotted

in Fig. 12.

The inspection of the vertical structure of � presented in Fig. 12 including the error bars

indicated a decrease of � from 150 to 80 s (1800 to 800 m for �U ). From 0.9 to 1.1 z/zi ,

� increased from 80 to 160 s (800 to 1600 m for �U ). Though the values up to 0.7 z/zi and
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above 1.1 z/zi are prone to significant errors, the condition � >> δt over the entire range

of interest from 0.3 to 1.1 z/zi suggests that CARL sampled the major part of the turbulent

fluctuations in the CBL.

A more detailed estimation of unresolved turbulence by temporal and spatial averaging

can be achieved by application of reasonable models of turbulence in combination with the

study of the effect of the filter function (for details see LE2000 and Frehlich 1997). One

critical scaling parameter is the ratio between the vertical resolution δR of the lidar system

and the horizontal length scale L = U� where U is horizontal wind speed. In our case,

δR = 75 m, U ≈ 10 m s−1, � = 80 s hence L = 800 m so that δR/L ≈ 0.1. This results in

a reduction of variance of the order of 10%, which is acceptable (Frehlich 1997). The other

scaling parameter is the ratio between the horizontal resolution δt ·U and L , which yields

δt ·U/L = δt/� ≈ 0.12. In this case, it can be shown that the deformation of the variance

spectra and the structure functions is weak. This is also seen by comparing the fits of the

−5/3 slope to the log-log representation of the variance spectra in Fig. 9 and the shape of

the structure functions in Fig. 8, in the region where the system noise was sufficiently small.

Consequently, in a well-developed, deep CBL, the temporal and spatial resolutions of CARL

are able to resolve the major part of the turbulent fluctuations of m.

5.4 Higher-Order Moments of Mixing Ratio and System Noise

Higher-order moments up to the fourth order, as well as the mixing-ratio skewness and kur-

tosis, were determined. The methodology and the noise error propagation were applied to

the equations of the higher-order moments of m based on the work introduced in LE2000.

For instance, the noise error �(m′)2 of the variance profile reads:

�(m′)2 ∼= (m′)2

√

√

√

√

4

N

ε2

(m′)2
(7)

where N is the number of data points during the observational period. Equation 7 demon-

strates the importance of low noise errors for an accurate determination of variance profiles.

It also illustrates that the relative noise error of the atmospheric variance is proportional to

the square root of the ratio of instrumental noise and atmospheric variance. Further equations

for the determination of noise errors of the integral scale �, the skewness S, and the kurtosis

K of m can be found in LE2000. In all figures presented in this work, corresponding noise

errors were derived and included in the results.

Figure 13 presents the first total and atmospheric variance profiles corrected for system

noise in a convective boundary layer up to the top of the entrainment zone determined with

a Raman lidar. The noise correction appears to work very well even down to 0.3 z/zi and in

the entrainment zone. Also noise and sampling error profiles are shown, which indicate how

well the structure of the profile can be determined. Figure 13 demonstrates that both errors

are sufficiently low for a detailed scientific analysis of the atmospheric variance profile. From

0.3 to 0.6 z/zi , the variance profile is nearly constant with a value of about 0.1 g2 kg−2, then,

the variance increased nonlinearly up to a maximum of 3.7 g2 kg−2 around 0.95 z/zi . Here,

in the entrainment zone, the variance must reach a maximum, since the variability due to

the vertical exchange by strong updrafts and downdrafts has the largest impact. The variance

decreases strongly above zi and reaches about 0.2 g2 kg−2 at 1.15 z/zi . The full width at half

maximum (FWHM) is about 0.16 z/zi . Potential applications of these results are discussed

in Sect. 6.
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Fig. 13 Vertical distribution of the mixing-ratio variance uncorrected and corrected for system noise. It is

obvious that noise correction is essential. In the corrected profile, also the noise and sampling error bars are

shown

Figure 14 shows the skewness profile for the same dataset as described above without cor-

rection for system noise (total skewness), and with noise correction (atmospheric skewness)

using the eleven-point linear extrapolation to zero lag of the third-order moment normalized

by the noise corrected atmospheric variance profiles shown in Fig. 13. Noise and sampling

errors are also shown in the corrected profile. The noise errors are large from the surface

up to 0.5 z/zi and above 1.1 z/zi making the interpretation of the skewness data difficult

in these regions. The skewness is nearly zero up to 0.6 z/zi , and in the centre of the CBL

up to 0.9 z/zi , it becomes negative and reaches values of about −1. From 0.9 to 1.15 z/zi ,

the skewness increases linearly with height, crossing zero at about 0.95 z/zi , and achieves a

maximum value of approximately 3 just above the top of the CBL (at 1.16 z/zi ).

Figure 15 presents the kurtosis profile. If the mixing-ratio fluctuations are Gaussian dis-

tributed, the kurtosis is 3. To detect deviations from the Gaussian distribution requires an

accuracy of kurtosis measurements of significantly less than 1, which is not the case here

as the system noise levels result in error bars on the derived kurtosis profile that are much

larger. Therefore, we conclude that the noise level in the Raman lidar observations is not

small enough to meaningfully derive kurtosis profiles.

Finally, we study CARL noise errors and its higher-order moments. In LE2000, equa-

tions for ε3, ε4, (m′)2ε2 were derived. Particularly, if signal and atmospheric variances are

uncorrelated, the condition

corr =
(m′)2ε2

(m′)2 ε2

∼= 1 (8)

should be fulfilled. Figure 16 presents the first attempt to apply this technique to the CARL

data showing the correlation function corr both uncorrected and corrected for system noise

based on Eq. 8. Unfortunately, the noise error bars of products of second-order moments are
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Fig. 14 Water vapour mixing ratio skewness profile without and with noise correction with two different

methods. Statistical and sampling errors are also shown

Fig. 15 Vertical profile of kurtosis with and without correction. The sampling and noise errors are also shown

large so that details in the correlation of system noise and atmospheric variance cannot be

detected. Nevertheless, within the range of noise errors, no systematic deviation was found,

so that no correlation of system noise and atmospheric variance was observed in the range

0.5 to 1.0 z/zi .
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Fig. 16 Vertical profile of correlation test function with and without a noise correction. The noise errors are

also shown

6 Discussion

In the following, we compare our results concerning the integral scale, the variance, and the

skewness profiles with other measurements and LES. We disregard effects due to a possible

negative bias in zi , since we are not performing a detailed comparison of turbulence profiles

with similarity relationships or LES. However, this uncertainty will need to be addressed if

more detailed comparisons are performed.

Other turbulence measurements were performed using in-situ sensors or DIAL, the lat-

ter being the only water vapour remote sensing technique to date that is able to meet the

stringent requirements with respect to resolution and SNR. With LES, the complex three-

dimensional exchange and transport processes in the convective or shear-driven atmospheric

boundary layer in clear or cloudy skies can be modelled (e.g., Couvreux et al. 2005, 2007)

and scaling laws derived (e.g., Moeng and Wyngaard 1984; Sorbjan 1996, 2001, 2005). In

our observations in relatively flat and homogeneous terrain, the turbulence was mainly driven

by buoyancy so we focused on LES results in similar environments.

We measured a minimum of the dimensionless ratio of �U/zi ≈ 0.34 in the centre of the

CBL (0.6–0.8 z/zi ), which increased towards the surface and the CBL top (see Fig. 12). Only

a few other measurements of the profiles of � are available. Based on aircraft in-situ measure-

ments, Lenschow and Stankov (1986) claimed that �U/zi ∝ (z/zi )
0.5; however, this could

not be verified in our case due to the decrease of � in the centre of the CBL. Kiemle et al.

(1997) studied several aircraft measurements over boreal forest and found �U/zi ≈ 1.25.

In the CBL over land, Kiemle et al. (2007) observed �U/zi ≈ 0.4–1.1. In both studies,

they found indications for a slight decrease of � from 0.4 z/zi up to the CBL top. In a

marine CBL, Wulfmeyer (1999a,b) determined �U/zi ≈ 0.7, and studying the dataset of

Wulfmeyer (1999a) in more detail, LE2000 observed an average value of �U/zi ≈ 0.8 and,

as with Kiemle et al. (1997, 2007), a slight decrease of � towards the CBL top. Previous
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measurements did not show an increase of � towards the CBL top but confirmed the slight

reduction of � from the lower CBL to the centre of the CBL. The non-linear structure of

the � profiles makes the application of simple scaling laws (polynomial and/or a power-law

dependence of z/zi ) difficult.

� profiles derived from LES data have only been provided in a few publications.

Recently, Couvreux et al. (2005) presented detailed large-eddy simulations of the CBL during

IHOP_2002 (Weckwerth et al. 2004). The qualitative agreement with our profile is striking.

They found a similar shape of the profile and explained the shape of this profile through

the existence of dry tongues of air that entrain downwards in the CBL from the free tropo-

sphere. The presence of these tongues results in different turbulence statistics in comparison

to vertical velocity, and causes a decrease of � in the CBL. A larger � around zi can occur

if the skewness of mixing ratio in this region becomes about zero, as the shape of updrafts

and downdrafts becomes more symmetric. Obviously, � and the mixing-ratio skewness are

related to each other (compare Figs. 12, 14).

The higher-order moments of water vapour (i.e., the variance and skewness) profiles pro-

vide insight into the turbulent structure of, and transport within, the CBL. Recently, both

Wulfmeyer (1999b) and Couvreux et al. (2005, 2007) investigated the skewness of the water

vapour profile in the CBL using both high-resolution lidar observations and LES model

simulations. Couvreux et al. (2005) demonstrated that the negative skewness in the CBL is

due to the entrainment of dry air pockets (‘dry tongues’) into the boundary layer. These dry

tongues gradually mix with the environmental air and mix out somewhere near the middle of

the boundary layer (Couvreux et al. 2007). This appears to be a possible explanation for the

negative skewness observed in the upper portion of the CBL in our case study (Fig. 14). The

positive skewness values above the top of the CBL are likely associated with the centre of the

convective plumes that penetrate to this height; in these “cores” the humidity also reaches

saturation and clouds form. However, Couvreux et al. (2007) also suggest that the sign of the

skewness at the top of the boundary layer has a dependence on the humidity gradient above

the CBL. The near-zero skewness values in the lowest portion of the CBL below z/zi < 0.6

in our case are probably due to the lack of a significant moisture flux from the surface (see

Fig. 2), as argued by Mahrt (1991).

Lidar studies (e.g., Kiemle et al. 1997, 2007; Wulfmeyer 1999a,b; LE2000) have con-

firmed that the water vapour variance increases with height, achieving a maximum at the top

of the CBL due to the mixing of moist air in the updrafts with the drier air from above the

CBL. The general shape of our water vapour variance profile (Fig. 13) agrees well with these

previous measurements. Furthermore, our variance profile has a higher vertical resolution,

in contrast to airborne remote sensing measurements, which makes it easier to compare the

results with similarity relationships or LES.

In our case, the magnitude of the variance at the top of the CBL is about 3.7 g2 kg−2 with a

FWHM of ≈0.16 z/zi . The maximum variance values in Wulfmeyer (1999a,b) and LE2000

were much smaller (≈0.1–0.2 g2 kg−2) and the FWHM values were larger (≈0.3–0.5 z/zi ).

Kiemle et al. (1997) found a maximum variance of 0.3–0.45 g2 kg−2 with an FWHM of

0.25–0.3 z/zi over a boreal forest and Kiemle et al. (2007) found a maximum variance of

0.7 g2 kg−2 in the CBL over land (FWHM not defined), respectively.

These results lead to the following question: what parameters or processes govern the

shape and the maximum value of the mixing-ratio variance profile? It is clear that surface

forcing should mainly determine the variance profile in the lower CBL. During our measure-

ment period, we derived the following values for the scaling variables: the convective velocity

scale, w∗ ≈ 2 m s−1, the convective humidity scale m∗ ≈ 0.01 g kg−1, and convective time

scale t∗ ≈ 1160 s, which may be used for studying the variance profile in the lower CBL
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height range. The major information content of the variance profile is given by its shape and

strength in the entrainment zone, and the vertical range and resolution of CARL allows us to

focus on this region. The main factors driving turbulence around zi are mainly the strength of

the inversion (Sorbjan 1996) and the moisture gradient (Sorbjan 2005). Wulfmeyer (1999b)

pointed out that under realistic conditions, it can also be expected that the entrainment rate

and entrainment flux are dependent on the wind shear and on the presence of gravity waves.

Furthermore, our observations contained fair weather cumulus clouds, and future work will

investigate the dependence on the magnitude of the water vapour variance on the presence

of cumulus clouds.

LES allows a deeper insight into entrainment processes, and simulations have shown that

entrainment in the CBL is often driven by top-down and bottom-up diffusion processes, with

a decaying influence of the bottom-up diffusion process with height in the CBL (Wyngaard

and Brost 1984). Moeng and Wyngaard (1984) applied this concept and proposed that the

variance profile of a scalar can be constructed by the sum of three dimensionless functions

for bottom-up, top-down, and bottom-up-top-down correlations for scaling parameters, the

ratios between the surface and entrainment fluxes and w∗ were chosen.

As in Wulfmeyer (1999b) we attempted to fit our variance profile to their top-down bot-

tom-up variance relationship up to 0.9 z/zi . Whereas the shape of the profile fits our result

reasonably well (not shown) we achieved an entrainment flux of ≈1000 W m−2, which obvi-

ously does not make sense. Consequently, as in Wulfmeyer (1999b), we conclude that the

relationship derived in Moeng and Wyngaard (1984) is not generally applicable. As scalar

fluxes at the top of the entrainment zone are dependent on the temperature and humidity

gradients, they cannot be applied as independent scaling parameters. Thus, the set of scaling

variables suggested by Moeng and Wyngaard (1984) is not appropriate in the entrainment

zone. We made attempts to fit the shape of our variance profile with symmetric distribution

functions and found the best agreement with a Lorentzian profile, whereas a Gaussian profile

was too steep in the wings of the profile. Further improvements could be achieved by allowing

a slight skewness with respect to the vertical distribution.

A very similar shape of a variance profile produced by LES was shown in Couvreux et al.

(2005), and this motivated us to study the dependence of the variance profile on similarity

parameters in more detail. A promising approach was proposed by Sorbjan (1996, 2001,

2005) based on LES in the CBL. He derived scaling laws that relate the mixing-ratio vari-

ance and the moisture-flux profiles to the temperature gradient in the inversion layer (or the

Brunt-Vaisala frequency N ), the moisture gradient g = dm/dz, and a mixing length scale

that is dependent on the vertical velocity variance w′2 and N. This scaling based on gradient

functions is called type II similarity. If we assume that turbulence in our case was mainly

driven by convection, and that other effects due to wind shear, gravity waves, advection,

subsidence, and cloud effects can be neglected, Sorbjan’s scaling laws should be applicable.

If this free-convection scaling is appropriate, the following relationships can be derived:

(1) If vertical wind and humidity fluctuations are measured simultaneously, then the entrain-

ment flux FE can be estimated by

FE
∼=

CF√
Cm

(

w′2
)0.5

E

(

m′2
)0.5

E
, (9)

where the index E indicates that the turbulence profiles have to be evaluated at z ≈ zi

in the entrainment zone. Two dimensionless parameters appear in this relationship,

which we take to be constants. CF is the ratio between the water vapour entrainment

flux and the product of the square root of vertical velocity scale and an entrainment
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humidity scale. The humidity variance is assumed to be proportional to the square of

the entrainment humidity scale with a constant of proportionality CM (Sorbjan 2001).

Obviously, CF/(CM )0.5 is the correlation coefficient of vertical velocity and humidity

fluctuations in the entrainment zone. Sorbjan (2001) also provided first estimates of CF

and Cm . However, these estimates still need to be refined by LES with higher resolution

(Z. Sorbjan, pers. comm., 2010). In order to apply Eq. 9 for determining the entrain-

ment flux, the vertical velocity variance profile must also be determined or a relationship

between w∗ and w′2 in the entrainment zone must be derived. Equation 9 can directly

be studied if collocated high-resolution Doppler lidar and water vapour lidar (DIAL or

Raman lidar) measurements are performed because this instrument combination would

also provide a direct estimate of FE using eddy correlation.

(2) If the Brunt-Vaisala frequency, N, the moisture gradient, and the moisture variance are

available

FE
∼= −

CF

Cm

(

m′2
)

E

NE
(

dm
dz

)

E

= −
CF

Cm

(

m′2
)

E

NE

gE

. (10)

Again, this equation needs to be evaluated in the entrainment zone. In our study, the

Brunt-Vaisala frequency was not measured so we keep this exciting possibility to deter-

mine the entrainment flux for future research. Remotely sensed measurements of the

Brunt-Vaisala frequency are now possible with water vapour DIAL (Behrendt et al.

2009) or Raman lidar in combination with temperature rotational Raman lidar (Radlach

et al. 2008).

(3) Moistening and drying of the CBL can be determined if a relationship between the ver-

tical velocity variance and w∗ is derived (Sorbjan 2005). In this case, the ratio between

FE and the surface flux F0 reads

V ≡
FE

F0
= C

√

m′2
E

m∗
. (11)

If V > 1, the CBL is drying, if V < 1, the CBL is moistening. The constant C is related

to the constants in the scaling relationships and can be evaluated with LES. In Sorbjan

(2005) a first estimation of C was given: C ≈0.054. In our case, we find V ≈ 10 at zi

so that drying of the CBL was expected. This is consistent with the results presented in

Figs. 2 and 6.

7 Summary and Conclusions

In September 2004, the ARM Raman lidar CARL was refurbished and upgraded, thereby

significantly improving the signal-to-noise ratio in its various data products. In this paper,

we analyzed a time series of water vapour mixing ratio observed by CARL in a well-mixed

daytime boundary layer on 13 September 2005 to characterize its capability of resolving

turbulent processes in the CBL. For this purpose, profiles of higher-order moments were

derived including noise and sampling errors.

Our analyses confirmed that this Raman lidar system is able to observe turbulent pro-

cesses present in the CBL. The noise level and resolution of the lidar’s measurements

allow the second moment (variance) and third moment (skewness) to be well-captured;

however, the fourth moment (kurtosis) has significant uncertainty due to instrument noise.
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The accuracy of the second and third moments of the turbulence measurements is mainly

limited by the sampling errors involved related to the turbulent statistics.

Accounting for the small-scale variability in water vapour (and other scalar fields) is very

important for the proper modelling of the boundary layer, since not accounting for this can

lead to biases in numerical simulations (Larson et al. 2001a). Larson et al. (2001b) have

also shown that Gaussian probability density functions (or other two-parameter parameter-

izations) do not capture the variability needed by models to simulate the boundary layer,

whereas three-parameter fits (e.g., those that capture the skewness of the distribution) per-

form much better. Water vapour variance at the top of the CBL is a key parameter in many

cloud parameterizations (e.g., Bechthold et al. 1995; Price 2001; Berg and Stull 2005). The

non-Gaussian variability of the water vapour, especially near the top of the CBL, may be

important for the simulation of cumulus clouds in numerical models (e.g., Tompkins 2002).

Thus, robust statistics of the water vapour variability in the boundary layer and its depen-

dencies on other variables, which can be determined from the multi-year dataset collected

by CARL, will be very useful to evaluate and improve boundary-layer models.

In particular, we pointed out two new analyses that can be performed using CARL data:

the combination of CARL data either with measurements of the Brunt-Vaisala frequency or

the vertical velocity variance for determining the moisture entrainment flux at the top of the

CBL, and the use of the vertical mixing-ratio variance profiles to estimate the moistening or

drying of the CBL.

Because CARL is an operational water vapour Raman lidar (operating over 90% of the

time since the upgrade in 2004), it is a suitable candidate for routine monitoring of CBL

processes including the turbulent structure of the boundary layer and its dependency on

other variables (e.g., the surface sensible and latent heat fluxes, and wind shear at the top

of the CBL), large-scale forcing, and different scaling parameters of the CBL. These clima-

tologies can be used for evaluating similar dependencies derived by LES and for studying

parameterizations of land-surface exchange and turbulent transport in the CBL.
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