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ABSTRACT

As two important operations in data cleaning, similarity join
and similarity search have attracted much attention recently.
Existing methods to support similarity join usually adopt
a prefix-filtering-based framework. They select a prefix of
each object and prune object pairs whose prefixes have no
overlap. We have an observation that prefix lengths have sig-
nificant effect on the performance. Different prefix lengths
lead to significantly different performance, and prefix filter-
ing does not always achieve high performance. To address
this problem, in this paper we propose an adaptive frame-
work to support similarity join. We propose a cost model to
judiciously select an appropriate prefix for each object. To
efficiently select prefixes, we devise effective indexes. We ex-
tend our method to support similarity search. Experimental
results show that our framework beats the prefix-filtering-
based framework and achieves high efficiency.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems—Textual Databases; H.3.3 [Infor-
mation Storage and Retrieval]: Information Search and
Retrieval—Search Process

General Terms: Algorithms, Experimentation, Perfor-
mance

Keywords: Prefix Filtering, Similarity Search, Similarity
Join, Adaptive Framework, Cost Model

1. INTRODUCTION
As two important operations in data cleaning, similarity

join and similarity search have attracted significant atten-
tion from the database community recently. Given two col-
lections of objects, similarity join returns all similar object
pairs. Similarity join has many real applications in data
cleaning and near duplicate object detection and elimina-
tion. For example, an insurance company has two sets of
customer records from two data sources. An insurance clerk
wants to eliminate the duplicates from the two sets. As the
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two customer records may have different representations, the
clerk needs to use similarity join to correlate the two sets.

Similarity search, given a collection of objects and a query
object, finds all objects similar to the query object. Simi-
larity search also has many applications in information re-
trieval and natural language processing. For example, as
many queries issued to a search engine contain typos, search
engines can use similarity search to suggest relevant queries.

To quantify similarity between objects, many similarity
functions have been proposed, such as jaccard similarity, co-
sine similarity, dice similarity, overlap similarity, edit simi-
larity. Given two objects, a similarity function takes as input
the two objects and returns the similarity of the two objects.
If the similarity is not smaller than a given threshold, the
objects are taken to be similar.

Existing methods to support similarity join employ a filter-
and-verification framework [4]. The basic idea is to first use
an efficient filter to prune those object pairs that cannot be
similar and then verify the survived object pairs by comput-
ing their real similarity. In the filter step, the prefix filtering
is a dominant technique and many existing methods employ
a prefix-filtering-based framework [2,4]. The prefix filtering
first transforms each object to a set of elements (see Sec-
tion 2.2.1). Then it sorts the elements of each object based
on a global ordering, and selects a prefix set for each object
based on a given similarity threshold (see Section 2.2.2). It
proves that if two objects are similar, the prefix sets of the
two objects must have overlap. Finally, it utilizes an in-
verted index to prune those object pairs whose prefix sets
have no overlap (see Section 2.2.3).

We have an observation that prefix lengths have much
effect on the performance. Different prefix lengths lead to
significantly different performance, and the prefix filtering
nearly always gets the worst performance (see Section 3).
Intuitively, longer prefix lengths have larger pruning power,
but involve more filtering time. On the contrary, shorter
prefix lengths achieve higher filtering performance, but lead
to longer verification time.

It calls for a method to adaptively select an appropriate
prefix length for each object. To this end, we propose an
adaptive framework to address this problem. We propose
a cost model to judiciously select an appropriate prefix for
each object. To efficiently select prefixes, we devise effective
index structures. We develop effective pruning techniques
to improve the performance. We also extend our method to
support similarity search. Moreover, our method can sup-
port all of the above similarity functions. To summarize, we
make the following contributions.
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R

r1 { vldb, sigmod, icde, 2011, jagadish }

r2 { jagadish, koudas, vldb, edbt, icde }

r3 { koudas, divesh, jagadish, edbt, icde }

r4 { vldb, icde, koudas, jagadish, divesh }

r5 { 2011, divesh, edbt, vldb, sigmod }

S

s1 { nick, koudas, 2011, vldb, sigmod }

s2 { nick, vldb, icde, sigmod, edbt }

s3 { koudas, divesh, sigmod, icde, edbt }

s4 { icde, sigmod, 2011, jagadish, divesh }

s5 { 2011, vldb, edbt, icde, jagadish }

Figure 1: Two collections of objects.

• We propose an adaptive framework to support both
similarity join and similarity search.

• We develop a cost model to judiciously select an ap-
propriate prefix for each object.

• We extend our method to support similarity search
and develop effective pruning techniques.

• We have implemented our method. Experimental re-
sults on real data sets show that our framework beats
the prefix filtering and achieves high performance for
both similarity join and similarity search.

The rest of this paper is organized as follows. We first give
the problem formulation and introduce the prefix filtering in
Section 2, and then analyze the prefix-filtering-based frame-
work theoretically and experimentally in Section 3. Our
adaptive framework is proposed in Section 4. We extend our
framework to support similarity search in Section 5. Experi-
mental studies are conducted in Section 6. We review related
work in Section 7 and conclude the paper in Section 8.

2. PRELIMINARIES

2.1 Problem Formulation
A similarity function is used to quantify the similarity of

two objects. Given two objects r and s, a similarity func-
tion, denoted by sim(r, s), returns a value to represent their
similarity. The larger the value, the more similar the two
objects. Generally, users specify a similarity threshold θ,
and two objects are similar if their similarity is not smaller
than the threshold, i.e. sim(r, s) ≥ θ.

In our paper, we focus on two types of objects, sets and
strings, which are widely used in many real applications.
If the objects are sets, we consider the following similarity
functions to quantify their similarity.

Definition 1. Let r and s be two sets.

• Overlap similarity: simo(r, s) = |r ∩ s|.
• Dice similarity: simd(r, s) =

2·|r∩s|
|r|+|s| .

• Cosine similarity: simc(r, s) =
|r∩s|√
|r|·|s|

.

• Jaccard similarity: simj(r, s) =
|r∩s|

|r|+|s|−|r∩s| .

where |r|(|s|) denotes the size of set r(s).

For example, consider r = {sigmod, icde, vldb} and s =
{sigmod, icde}. |r ∩ s| = 2, |r| = 3, and |s| = 2. Their
overlap similarity is simo(r, s) = 2, their dice similarity is
simd(r, s) =

4
5
, their cosine similarity is simc(r, s) =

2√
6
and

their jaccard similarity is simj(r, s) =
2
3
.

If the objects are strings, we use edit distance to quantify
their similarity.

A global ordering

e1 jagadish
e2 koudas
e3 nick
e4 divesh
e5 2011
e6 vldb
e7 edbt
e8 icde
e9 sigmod

R

r1 {e1, e5, e6, e8, e9}
r2 {e1, e2, e6, e7, e8}
r3 {e1, e2, e4, e7, e8}
r4 {e1, e2, e4, e6, e8}
r5 {e4, e5, e6, e7, e9}

S

s1 {e2, e3, e5, e6, e9}
s2 {e3, e6, e7, e8, e9}
s3 {e2, e4, e7, e8, e9}
s4 {e1, e4, e5, e8, e9}
s5 {e1, e5, e6, e7, e8}

Figure 2: Two collections of objects in Figure 1 after
sorting elements in each object based on a global
ordering.

Definition 2. Let r and s be two strings. The edit dis-
tance ed(r, s) between r and s is defined as the minimum
number of single-character edit operations (insertions, dele-
tions and insertions) to transform r to s. The edit similarity

is defined as es(r, s) = 1− ed(r,s)
max(|r|,|s|) .

For example, ed(sigmod, sagmd) = 2 and es(sigmod,sagmd)
= 2

3
. Note that the edit distance is a distance function.

Different from a similarity function, the smaller the value
ed(r, s), the more similar the two objects. Therefore, given
an edit-distance threshold θ, two objects are similar if and
only if their edit distance is not larger than θ, ed(r, s) ≤ θ.

Next we define the SimJoin and SimSearch queries.

Definition 3 (SimJoin query). Given two collections
of object R and S, a similarity function sim, and a specified
similarity threshold θ, a SimJoin query returns all object
pairs 〈r, s〉 ∈ R×S such that sim(r, s) ≥ θ, i.e. {〈r, s〉 | 〈r, s〉 ∈
R× S , sim(r, s) ≥ θ}.

For example, given two collections of objects R and S
in Figure 1, jaccard similarity simj and θ = 2

3
, the SimJoin

query returns object pairs {〈r1, s4〉, 〈r1, s5〉, 〈r2, s5〉, 〈r3, s3〉}
since their jaccard similarity is not smaller than 2

3
, e.g.

simj(r1, s4) =
2
3
≥ 2

3
. For the other object pairs, their jac-

card similarity is smaller than 2
3
, e.g. simj(r1, s3) =

1
4
< 2

3
.

Definition 4 (SimSearch query). Given a collection
of objects S, a similarity function sim, a query object r, and
a similarity threshold θ, a SimSearch query returns all ob-
jects s ∈ S s.t. sim(r, s) ≥ θ, i.e. {s | s ∈ S , sim(r, s) ≥ θ}.

For example, given a collection of objects S in Figure 1.
Suppose r = {nick, koudas, divesh, vldb, 2011} and jac-
card similarity simj and θ = 1

2
. The SimSearch query

returns one object {s1} since simj(r, s1) = 2
3
≥ 1

2
, and for

any other object s ∈ S , the jaccard similarity between r and
s is smaller than 1

2
, e.g. simj(r, s2) =

1
4
< 1

2
.

2.2 Prefix-Filtering Framework
A brute-force method to answer SimJoin query is to first

compute the similarity of each object pair and then return
the pairs whose similarity is not smaller than θ. The time
complexity of this method is O(costv · |R| · |S|) where costv
is the average cost of computing the similarity of an object
pair. If there are a large number of objects in R and S ,
the method becomes quite expensive. In this section, we
introduce the state-of-the-art framework, namely prefix fil-
tering [4], which can address this problem efficiently. Its
basic idea is to first use an efficient filter to prune those
object pairs that cannot be similar and then verify the sur-
vived object pairs by computing their real similarity. Since
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the number of survived object pairs is much smaller than
|R| · |S|, even in several orders of magnitude, the algorithms
based on this framework outperform the brute-force method
significantly.

2.2.1 Mapping Object to Set

The prefix-filtering framework first maps objects to sets.
Then we can transform various similarity functions to the
overlap similarity function on the sets. That is given a sim-
ilarity function sim, a threshold θ, and two objects r, s, if
sim(r, s) ≥ θ, then the overlap similarity of the sets must be
no smaller than a threshold t. Next we discuss how to map
objects to the sets and how to compute the threshold t.

First, consider the set similarity functions in Definition 1.
We can simply map each object to itself and the overlap
threshold t can be deduced as follows.

• If simo(r, s) ≥ θ, then |r ∩ s| ≥ θ, thus t = ⌈θ⌉.

• If simd(r, s) ≥ θ, then |r∩s| ≥ θ
2−θ

· |r|, thus t = ⌈ θ
2−θ

· |r|⌉.

• If simc(r, s) ≥ θ, then |r ∩ s| ≥ θ2 · |r|, thus t = ⌈θ2 · |r|⌉.

• If simj(r, s) ≥ θ, then |r ∩ s| ≥ θ · |r|, thus t = ⌈θ · |r|⌉.

Second, for the edit distance and the edit similarity in
Definition 2, we map each object to its q-gram set. The q-
gram set of a string r, denoted by Qq(r), consists of all the
substrings of r with length q. For example, Q2(sigmod) =
{si, ig, gm, mo, od}. Using q-gram sets, we can deduce the
overlap threshold t as follows.

• If ed(r, s) ≤ θ, then |Qq(r) ∩Qq(s)| ≥ |r|+ 1− (θ + 1) · q,
thus t = ⌈|r|+ 1− (θ + 1) · q⌉.

• If es(r, s) ≥ θ, then |Qq(r)∩Qq(s)| ≥ |r|+1−( 1−θ
θ

·|r|+1)·q,

thus t = ⌈|r|+ 1− ( 1−θ
θ

· |r|+ 1) · q⌉.

Obviously the object pairs whose mapped sets share smaller
than t common elements can be pruned. For example, con-
sider two collections of objects in Figure 1. Suppose the
jaccard-similarity threshold is θ = 0.8. For the object r1,
the overlap threshold is t = ⌈0.8 · 5⌉ = 4. Three object pairs
〈r1, s1〉, 〈r1, s2〉, and 〈r1, s3〉 can be pruned since |r1 ∩ s1| =
3 < 4, |r1 ∩ s2| = 3 < 4, and |r1 ∩ s3| = 2 < 4.

Note that these methods may result in duplicated ele-
ments in a mapped set, to avoid multi-set intersection, we
append each element with an ordinary number to distinguish
duplicated elements [4].

2.2.2 Prefix Filtering

Existing methods utilize a prefix-filtering technique to fil-
ter the object pairs which share smaller than t common el-
ements. Firstly, it fixes a global ordering on the elements
of all the objects. Then it sorts the elements of each object
based on the global ordering. Let Prefix(r) be the prefix
set of r that consists of the first |r|−t+1 elements. It proves
that if |r ∩ s| ≥ t, their prefix sets must have overlap, i.e.
Prefix(r1) ∩ Prefix(s1) 6= φ. Therefore, it can filter the
object pairs whose prefix sets have no overlap [4].

For example, the table on the left of Figure 2 shows a
global ordering on the elements of all the objects in Figure 1.
We use ei to denote the element in the i-th position of the
global ordering. Consider r1 = { vldb, sigmod, icde, 2011,
jagadish} in Figure 1. The corresponding positions of the
elements in the global ordering are e6 = vldb, e9 = sigmod,

e8 = icde, e5 = 2011, e1 = jagadish. After sorting the
elements according to the global ordering, we obtain r1 =
{e1, e5, e6, e8, e9}. Similarly, we can obtain the other sorted
objects as shown on the right of Figure 2. Suppose t =
4. Then Prefix(r1) = {e1, e5} and Prefix(s1) = {e2, e3}.
We can filter the pair 〈r1, s1〉 based on prefix filtering since
Prefix(r1) ∩ Prefix(s1) = φ.

2.2.3 Inverted Index

Note that we do not need to enumerate each object pair
〈r, s〉 ∈ R×S to verify whether Prefix(r)∩Prefix(s) = φ
holds. Instead we use an inverted index to find the object
pairs 〈r, s〉 ∈ R × S such that Prefix(r) ∩ Prefix(s) 6= φ
efficiently. An inverted index maps an element to a list of
objects that contain the element. Such a list of objects
is called an inverted list. We first build an inverted in-
dex on the prefix-set set of objects in a collection, e.g., S ,
and then enumerate objects in another collection R. For
each r ∈ R, to obtain object s ∈ S such that Prefix(r) ∩
Prefix(s) 6= φ, we only need to merge the inverted lists
of elements in Prefix(r). For example, suppose t = 4.
The table on the top of Figure 3(a) shows the prefix-set set
{Prefix(s) | s ∈ S}. Below is the corresponding inverted
index. Consider Prefix(r1) = {e1, e5}. We merge inverted
lists e1 → {s4, s5} and e5 → {s5} to obtain objects s4 and
s5 whose prefix sets have overlap with Prefix(r1).

3. FIXED-LENGTH PREFIX SCHEME
Many similarity-join algorithms [2,4,19,22,25–27] have been

developed based on the prefix-filtering framework. They ne-
glect the fact that prefix lengths have significant effect on
the performance. In this section, we provide a deep analysis
of the prefix-filtering framework theoretically and experi-
mentally. We conclude that the prefix-filtering framework is
not effective enough and can be improved to achieve higher
performance.

For ease of presentation, we first introduce some notations.
Suppose the elements of each object are sorted based on a
global ordering. Let Pℓ denote ℓ-prefix scheme. Pℓ(s) is
defined as the ℓ-prefix set of s consisting of the first |s|−t+ℓ
elements of s (1 ≤ ℓ ≤ t). Let Pℓ(S) = {Pℓ(s) | s ∈ S}
denote the collection of ℓ-prefix sets of S . Let IS

ℓ denote the
inverted index built on Pℓ(S), and IS

ℓ (e) denote the inverted
list of element e which consists of the objects in S whose ℓ-
prefix sets contain e. For simplicity, if the context is clear,
IS
ℓ and IS

ℓ (e) are abbreviated as Iℓ and Iℓ(e) respectively.
Figure 3 shows four inverted indexes Iℓ built on Pℓ(S) for
1 ≤ ℓ ≤ 4.

Recall Section 2.2.2, since Prefix(r) consists of the first
|r| − t + 1 elements of r, the prefix-filtering framework es-
sentially utilizes 1-prefix scheme (i.e. P1) for filtering object
pairs. Next we study filter conditions using other prefix
schemes. Consider two objects r and s. Suppose |r ∩ s| ≥ t.
For t-prefix scheme, since r = Pt(r) and s = Pt(s), we have
|Pt(r) ∩ Pt(s)| ≥ t. For (t − 1)-prefix scheme, as Pt−1(r)
and Pt−1(s) are respectively obtained by removing the last
elements from r and s, we have |Pt−1(r)∩ Pt−1(s)| ≥ t− 1.
Iteratively, for ℓ-prefix scheme, we have |Pℓ(r) ∩ Pℓ(s)| ≥ ℓ.
We can prune the object pairs 〈r, s〉 if |Pℓ(r) ∩ Pℓ(s)| < ℓ.
The correctness is formalized in Lemma 1.

Lemma 1. For any object pair 〈r, s〉 ∈ R× S, if |Pℓ(r)∩
Pℓ(s)| < ℓ, then |r ∩ s| < t.

87



{e2 ,e3}

{e3 ,e6}
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s1

e6
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s2

s5

s4
s5

s3

e8

s2
s3

s1

s5 s4

e9

s2
s3
s4

s1

s5

Inverted Index I1 Inverted Index I2 Inverted Index I3 Inverted Index I4

(a) 1-prefix scheme (b) 2-prefix scheme (c) 3-prefix scheme (d) 4-prefix scheme

Figure 3: Inverted Indexes built on P1(S), P2(S), P3(S), P4(S) (t = 4)

Next we develop a framework, called FixPrefixScheme,
which can use any fixed-length prefix scheme to prune object
pairs based on Lemma 1. For simplicity, suppose we use
the overlap similarity. Initially, FixPrefixScheme sorts the
elements in each object of R and S based on the global
element ordering. Then the framework builds an inverted
index Iℓ on Pℓ(S) and utilizes the index to filter pairs 〈r, s〉
such that |Pℓ(r) ∩ Pℓ(s)| < ℓ. To achieve this goal, for each
r ∈ R, it considers the elements e in Pℓ(r) and retrieves their
corresponding inverted lists Iℓ(e). For any object s ∈ Iℓ(e),
its ℓ-prefix set, Pℓ(s), must contain element e. As e ∈ Pℓ(r),
Pℓ(r) and Pℓ(s) share the common element e. And since
there is no duplicated element in each object (Section 2.2.1),
|Pℓ(r) ∩ Pℓ(s)| is exactly the number of inverted lists Iℓ(e)
for e ∈ Pℓ(r) that contain the object s. We scan the inverted
lists one by one and use a hash map H[s] to maintain the
number of inverted lists that contain the object s. IfH[s] ≥ ℓ
holds, we take s as a candidate of r. After scanning all
inverted lists, we verify the candidates by computing the
real similarity.

Example 1. Consider two collections of objects, R and
S in Figure 2. Given an overlap threshold t = 4 and 2-
prefix scheme P2, we show how FixPrefixScheme utilizes
P2 to find 〈r, s〉 ∈ R × S s.t. |r ∩ s| ≥ 4. Firstly, we build
an inverted index I2 on P2(S) (See Figure 3(b)). Then we
enumerate each r ∈ R and find its similar objects in S.
Consider r1 = {e1, e5, e6, e8, e9} ∈ R. To obtain similar
objects of r1, we consider its 2-prefix set P2(r1) = {e1, e5, e6}
that consists of the first |r1| − t + ℓ = 3 elements of r1.
We retrieve the inverted lists from I2, I2(e1) = {s4, s5},
I2(e5) = {s1, s4, s5}, I2(e6) = {s2, s5}, corresponding to the
elements in P2(r1). Since s4 appears in I2(e1) and I2(e5),
we have H[s4] = 2. As H[s4] ≥ ℓ = 2 holds, s4 is a candidate
of r1. Similarly, we can compute H[s5] = 3, H[s1] = 1, and
H[s2] = 1, thus s5 is also a candidate. Next we verify the
candidates by computing |r1∩s4| and |r1∩s5|, and comparing
them with the threshold t = 4. As |r1∩s4| ≥ 4 and |r1∩s5| ≥
4, s4 and s5 are similar objects of r1.

Obviously the prefix-filtering framework (ℓ = 1) is a spe-
cial case of FixPrefixScheme framework. Next we prove
that the prefix-filtering framework cannot always have good
performance theoretically and experimentally.

Theoretical Analysis. We analyze the time cost of Fix-
PrefixScheme framework using different prefix schemes.
The framework mainly includes the following two steps 1.

1
We ignore the cost of sorting elements in each object and building

an inverted index since the former remains the same for any prefix
scheme and the latter is much smaller than other steps.

• Filter. For each object r ∈ R, FixPrefixScheme
needs to scan the inverted list of each elements e ∈
Pℓ(r), the total filter cost is

∑
r∈R

∑
e∈Pℓ(r)

|Iℓ(e)|.

• Verification. Let Cℓ(r) denote the candidate set of r
which consists of the objects that appear in at least
ℓ inverted lists of the elements in Pℓ(r) and costv(r)
denote the average cost of verifying a candidate r.
For all objects r ∈ R, the total verification cost is∑

r∈R costv(r) · |Cℓ(r)|.

By adding the two cost2, we obtain the total cost of Fix-
PrefixScheme using ℓ-prefix scheme, i.e.

Θℓ =
( ∑

r∈R

∑

e∈Pℓ(r)

|Iℓ(e)|
)
+

( ∑

r∈R
costv(r) · |Cℓ(r)|

)
. (1)

Obviously, Θ1 is the cost of prefix filtering. For the cost of
longer prefix schemes, i.e. Θℓ (ℓ > 1), the filter cost increases
since both Pℓ(r) and Iℓ(e) increase, while the verification
cost decreases since Pℓ has a more powerful filter condition
than P1 which can lead to fewer candidates (as proved in
Lemma 2). Therefore, Θℓ (ℓ > 1) may involve smaller costs
than Θ1.

Lemma 2. For any r ∈ R, C1(r) ⊇ C2(r) ⊇ · · · ⊇ Ct(r).

Experimental Analysis. We also conduct an experiment
on DBLP-Set data set (The data set description is in Sec-
tion 6) to compare the running time of FixPrefixScheme
using different prefix schemes. Figure 4 reports the results.
The x-axis denotes the overlap threshold which is varied
from 8 to 13. We can see that 1-prefix scheme (prefix-
filtering) performs the worst among all prefix schemes. For
example, when the overlap threshold is t = 8, FixPre-
fixScheme with 1-prefix scheme consumed 10882s while
FixPrefixScheme with other prefix schemes took less than
3000s. Another observation is that prefix schemes have a
great effect on the performance of FixPrefixScheme. For
instance, for threshold t = 10, the performance of FixPre-
fixScheme with different prefix schemes varies from 373s
(3-prefix scheme) to 4563s (1-prefix scheme).

From the experiments and the theoretical analysis, we
have a conclusion that a fixed prefix scheme may not al-
ways achieve the highest performance. To achieve the high-
est performance, we need to dynamically select the prefix
length. More importantly, we do not need to fix the prefix
length for all objects. Instead we can select different pre-
fix lengths for different objects. To this end, we propose

2
We suppose all operations have the same unit cost for ease of pre-

sentation.
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Figure 4: Running time of FixPrefixScheme using
different prefix schemes on DBLP-Set data set.

an adaptive framework to judiciously select variable-length
prefix schemes for different objects in Section 4.

4. ADAPTIVE FRAMEWORK FORSimJoin

In this section, we first present a variable-length prefix
scheme in Section 4.1. Then in Section 4.2, we propose
an adaptive framework to select appropriate prefixes, and
give two challenges that arise in our framework. Finally, we
present effective methods in Sections 4.3 and 4.4 to address
these two problems respectively.

4.1 Variable-Length Prefix Scheme
Instead of fixing the same prefix scheme for all objects,

we adaptively select a variable-length prefix scheme for each
object r ∈ R. We call this method AdaptPrefixScheme.
Suppose we use the ℓr-prefix scheme for object r. The total
cost of AdaptPrefixScheme is

Θ =
∑

r∈R
Θℓr (r) =

∑

r∈R

(
Fℓr (r) + Vℓr (r)

)
(2)

where Fℓr (r) is the filter cost

Fℓr (r) =
∑

e∈Pℓr
(r)

|Iℓr (e)|, (3)

and Vℓr (r) is the verification cost

Vℓr (r) = costv(r) · |Cℓr (r)|. (4)

As FixPrefixScheme is a special case of AdaptPre-
fixScheme,AdaptPrefixScheme performs better than Fix-
PrefixScheme. In this paper we study how to select the
best prefix scheme for each object in order to achieve the
highest performance. We use the following example to illus-
trate our basic idea.

Example 2. Consider the example in Figure 2. Given
overlap similarity and the threshold 4, for each r ∈ R, we
respectively utilize different prefix schemes to find objects s ∈
S s.t. |r ∩ s| ≥ 4, and compute the corresponding cost.

Consider the object r4 = {e1, e2, e4, e6, e8} ∈ R. If we
use 1-prefix scheme, then P1(r4) = {e1, e2}. We retrieve
I1(e1) = {s4, s5} and I1(e2) = {s1, s3} from the inverted in-
dex in Figure 3(a). We obtain F1(r4) = |I1(e1)|+ |I1(e2)| =
4. As s1, s3, s4, s5 at least appear in one inverted list, the
candidate set is C1(r4) = {s1, s3, s4, s5}. Since we need |r|+
|s| cost to verity |r ∩ s| ≥ 4, we have costv(r4) = |r4|+ |s| =
10, thus V1(r4) = costv(r4) · |C1(r4)| = 40. The total cost of
using 1-prefix scheme is Θ1(r4) = F1(r4) + V1(r4) = 44.

If we use 2-prefix scheme for r4, then P2(r4) = {e1, e2, e4}.
We retrieve I2(e1) = {s4, s5}, I2(e2) = {s1, s3} and I2(e4) =
{s3, s4} from the inverted index in Figure 3(b). We have

F2(r4) = |I2(e1)| + |I2(e2)| + |I2(e4)| = 6. As s3 and s4
appear in at least two inverted lists, the candidate set is
C2(r4) = {s3, s4}, thus V2(r4) = costv(r4) · |C2(r4)| = 20.
The cost of using 2-prefix scheme is Θ2(r4) = F2(r4) +
V2(r4) = 26. Similarly Θ3(r4) = 9 and Θ4(r4) = 13. As
Θ3(r4) is minimum, 3-prefix scheme is optimal for r4.

Table 1 shows Θℓ(r) for all objects r ∈ R. We can see
different objects have various optimal prefix schemes. For
example, it is optimal for r1 to select 1-prefix scheme while
for r2, 2-prefix scheme can lead to the minimum cost. If all
objects are required to select the same scheme, the minimum
total cost is Θ3 =

∑
r∈R Θ3(r) = 100. But if we can select

an optimal prefix scheme for each object, the minimum cost
will be Θ1(r1) + Θ2(r2) + Θ3(r3) + Θ3(r4) + Θ4(r5) = 82.

Table 1: Θℓ(r) for all objects r ∈ R.
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

Θℓ(r1) 23 27 31 36
Θℓ(r2) 44 16 20 24
Θℓ(r3) 44 26 19 23
Θℓ(r4) 44 26 9 13
Θℓ(r5) 33 27 21 15

Θℓ 188 122 100 111

4.2 Overview of Our Framework
We present an overview of ourAdaptPrefixScheme frame-

work. Figure 5 gives the pseudo-code. The framework first
builds an index on S (Line 2). Then it enumerates objects
in R (Line 3). For each r ∈ R, the framework automatically
selects an appropriate prefix scheme Pℓ for r rather than
using a fixed one (Line 4). Next it uses the selected prefix
to filter objects in S and obtain a candidate set of the sur-
vived objects (Line 5). Finally, the framework verifies the
candidates and returns similar object pairs (Line 6).

Algorithm 1: AdaptPrefixScheme (R, S , t)
Input: R,S : two collections of objects

t : an overlap threshold
Output: O : all pairs of objects 〈r, s〉 such that |r ∩ s| ≥ t

begin1

Build an index that can support variable-length prefix2

schemes on S ;
for each r ∈ R s.t. |r| ≥ t do3

Select a prefix scheme Pℓ for r;4

Utilize Pℓ to filter objects and get candidates;5

Verify the candidates and add results to O;6

end7

Figure 5: AdaptPrefixScheme framework.

In our framework, there are two challenges to select variable-
length prefix schemes for objects. The first one is how to use
the selected prefix scheme to do filtering and the other one
is how to select the prefix scheme for an object.

We first consider the first challenge. Consider two objects
ri and rj . Suppose ri selects ℓri -length prefix scheme and
rj selects ℓrj -length prefix scheme. Then ri needs to use the
inverted index Iℓri

to do filtering while rj needs to use the
inverted index Iℓrj

to do filtering. To address this issue,

a naive method is to build inverted indexes for all prefix
schemes, i.e. I1, I2, · · · , It. Obviously, this method is ex-
pensive in terms of indexing time and space. In Section 4.3,
we study how to build effective indexes to support effective
filtering for variable-length prefix schemes.

Next we consider the second challenge. Given an object
r, a straightforward method enumerates each possible prefix
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scheme Pℓ(r) (ℓ ∈ [1, t]), then estimates the value of Θℓ(r),

denoted by Θ̂ℓ(r), and finally select Pℓo(r) such that Θ̂ℓo(r)

is minimum, i.e. ℓo = argmin ℓ∈[1,t] Θ̂ℓ(r). However, this
method neglects the estimation cost. Let Eℓ(r) denote the
estimation cost for estimating Θℓ(r). The total estimation
cost to select the optimal prefix scheme is

∑
ℓ∈[1,t] Eℓ(r).

If the estimation cost is expensive, it will be rather time-
consuming to estimate the cost for all prefix schemes.

In addition, to estimate Θℓ(r), we need to estimate the
candidate-set size. That is given a group of inverted lists,
we need to estimate the number of elements that appear in
at least ℓ inverted lists. The VSOL estimator [17] which is
proposed to estimate the selectivity of approximate string
queries can be applied to address this problem. The tech-
nique computes min-wise signatures for each inverted list,
and utilizes these signatures to estimate the number of el-
ements. However the cost of computing signatures is very
high. For SimJoin queries, this cost should be added to
the similarity-join cost. Therefore, it is necessary to develop
an estimation approach to avoid such expensive signature-
computation step. To address these issues, we propose an
efficient method in Section 4.4.

4.3 Delta Inverted Indexes
In this section, we propose delta inverted indexes to sup-

port effective filtering using variable-length prefix schemes.
Recall the inverted index Iℓ. Given an element e, the in-
verted list Iℓ(e) keeps the objects whose ℓ-prefix set contains
e. Similarly, Iℓ+1(e) keeps the objects whose (ℓ + 1)-prefix
set contains e. Obviously Iℓ(e) ⊆ Iℓ+1(e). To save space, we
only keep the different objects between Iℓ(e) and Iℓ+1(e).
Let △I1(e) = I1(e) and △Iℓ+1(e)(1 ≤ ℓ ≤ t − 1) denote
the delta inverted list of e between Iℓ(e) and Iℓ+1(e), that
is △Iℓ+1(e) = Iℓ+1(e)−Iℓ(e). Thus we build delta inverted
indexes △I1, · · · , △It to replace I1, · · · , It.

Then we discuss how to build the delta inverted indexes.
Initially, delta inverted indexes are empty. Then for each
object s ∈ S , we visit its elements based on the global el-
ement ordering. If the element e is in 1-prefix set of s, we
insert s into △I1(e); otherwise, we insert s into △Iℓ(e) such
that ℓ-prefix set contains e but (ℓ − 1)-prefix set does not.
Since each element in S is at most added into one delta in-
verted index, the space complexity is O(

∑
s∈S |s|). As the

time complexity of inserting an element to a list is O(1), the
time complexity is O(

∑
s∈S |s|).

Example 3. Consider the collection S in Figure 2 and
suppose t = 4. To build delta inverted indexes on S,we first
initialize four empty inverted indexes, i.e., △I1, △I2, △I3

and △I4. Then we insert s1, s2, · · · , s5 into the indexes.
Suppose s1, · · · , s4 have been inserted. Figure 6 shows the
process of inserting s5 = {e1, e5, e6, e7, e8}. Since the 1-
prefix set of s5 is {e1, e5}, we insert s5 into △I1(e1) and
△I1(e5) respectively. Since e6 is in 2-prefix set but not in
1-prefix set, we insert s5 into △I2(e6). Similarly, we insert
s5 into △I3(e7) and s5 into △I4(e8).

Next we discuss how to use delta inverted indexes to do fil-
tering. Suppose we want to find the candidates of an object r
w.r.t ℓ-prefix scheme. If we use inverted indexes, we need to
merge the inverted lists Iℓ(e) for e ∈ Pℓ(r), and find the ob-
jects that appear in at least ℓ lists. In terms of delta inverted
indexes, since Iℓ(e) is divided into △I1(e), · · · ,△Iℓ(e), we

s5 = { e1 e5 e6 e7 e8 }

e1

s4
s5

e2

s1
s3

e3

s1
s2

e4

s3
s4

e5

s5

e6

s2

e5

s1
s4

e7

s2
s3

e6

s5

e6

s1

e8

s2
s3
s4

e7

s5

e9

s2
s3
s4

s1

e8

s5

I3 I4I1 I2

Figure 6: Delta inverted indexes built on the collec-
tion S in Figure 2 (t = 4).

need to merge the delta inverted lists △Ii(e) for 1 ≤ i ≤ ℓ
and e ∈ Pℓ(r). If we use a hash-based method to merge
lists, the method using the delta inverted index has the same
time complexity with that using the inverted index Iℓ, i.e.,∑

e∈Pℓ(r)

∑
i∈[1,ℓ] |△Ii(e)| =

∑
e∈Pℓ(r)

|Iℓ(e)|.

4.4 Adaptively Selecting Prefix Scheme
To select an optimal prefix of an object, the brute-force

method which estimates all possible prefix lengths and se-
lects the best one is very expensive as discussed in Sec-
tion 4.2. To address this issue, we propose a cost-based
method to select an appropriate prefix for an object.

We have an observation that with the increase of the pre-
fix length, the overall cost (the sum of the filter cost and
verification cost) usually first increases and then decrease.
For example, in Figure 4, when the overlap threshold is 8,
the running time of FixPrefixScheme first increases with
prefix lengths from 1 to 3, and then decreases with prefix
lengths from 3 to 6. This is because with the increases of
prefix lengths, the filtering time increases and the verifica-
tion time decreases. Thus there is a tradeoff between the
filtering cost and verification cost. Based on this observa-
tion, we compare the ℓ-prefix scheme with the (ℓ+1)-prefix
scheme from ℓ = 1 to t−1. If the (ℓ+1)-prefix scheme is not
better than the ℓ-prefix scheme, we stop the algorithm and
select the ℓ-prefix scheme as r’s prefix scheme; otherwise,
we continue to compare the (ℓ + 1)-prefix scheme and the
(ℓ+ 2)-prefix scheme.

To decide which one is better between ℓ-prefix and (ℓ+1)-
prefix, we compute the total cost of selecting them as r’s
prefix scheme. If the ℓ-prefix scheme is selected, we need
to estimate Θi(r) for each i ∈ [1, ℓ + 1], thus the total cost
will be Θℓ(r) +

∑
i∈[1,ℓ+1] Ei(r). Similarly, if the (ℓ + 1)-

prefix scheme is selected, the total cost will be Θℓ+1(r) +∑
i∈[1,ℓ+2] Ei(r). Obviously, if Θℓ(r) < Θℓ+1(r) + Eℓ+2(r),

the ℓ-prefix scheme is better as it takes less cost; otherwise,
the (ℓ + 1)-prefix scheme is better. We can see if the algo-
rithm finally selects the ℓe-prefix scheme as r’s prefix scheme,
it only estimate Θi(r) for each i ∈ [1, ℓe +1] rather than for
all possible prefix schemes (i.e. i ∈ [1, t]). Next, we discuss
how to effectively estimate Θℓ(r) and give the estimation
cost Eℓ+2(r).

The cost Θℓ(r) consists of the filter cost and the verifica-
tion cost. Based on Equation 3, we can easily get the filter
cost by adding up the lengths of inverted lists of the elements
in r’s ℓ-prefix set, i.e. Fℓ(r) =

∑
e∈Pℓ(r)

|Iℓ(e)|. As we use
the delta inverted indexes, we need add up the lengths of
delta inverted lists, i.e. Fℓ(r) =

∑
e∈Pℓ(r)

∑
1≤i≤ℓ |△Ii(e)|.

For ease of presentation, we use Φℓ(r) to denote the set of
delta inverted lists to be merged for ℓ-prefix scheme in the fil-
ter step of r, i.e., Φℓ(r) = {△Ii(e) | e ∈ Pℓ(r), 1 ≤ i ≤ ℓ}. So
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the filter cost for ℓ-prefix scheme can be equivalently denoted
by Fℓ(r) =

∑
△I(e)∈Φℓ(r)

|△I(e)|. Note we do not need

to compute the filter cost for ℓ-prefix scheme from scratch,
since we have already gotten the filter cost for (ℓ− 1)-prefix
scheme, and in the filter step, the set of delta inverted
lists to be merged for ℓ-prefix scheme is a superset of the
set of those to be merged for (ℓ − 1)-prefix scheme. Let
△Φℓ(r) denote the set of additional delta inverted lists to
be merged for ℓ-prefix scheme comparing to (ℓ − 1)-prefix
scheme, i.e., △Φℓ(r) = Φℓ(r) − Φℓ−1(r). Then we have
Fℓ(r) = Fℓ−1(r) +

∑
△I(e)∈△Φℓ(r)

|△I(e)|. Therefore, we

can obtain Fℓ(r) by only computing
∑

△I(e)∈△Φℓ(r)
|△I(e)|

with |△Φℓ(r)| cost.
In order to get the verification cost w.r.t an object r, we

need to estimate the average cost to verify a candidate and
the candidate-set size, i.e., costv(r) and |Cℓ(r)|. To estimate
costv(r), consider a candidate s and overlap similarity. Since
the elements in each object have been sorted based on the
global ordering, we can use Merge-Join algorithm to com-
pute |r∩ s|, thus the cost of verifying a candidate is |r|+ |s|,
which is only related to the length of a candidate. So we
compute the cost corresponding to every possible length of
a candidate and use the average of these cost as the es-
timator of costv(r). Based on this idea, we can obtain

̂costv(r)=

∑|s|u
|s|=|s|l

(|r|+|s|)
|s|u−|s|l+1

=|r|+ |s|u+|s|l
2

for overlap similar-

ity, where |su| and |sl| are respectively the upper-bound and
the lower-bound of |s|. Using the similar idea, we can obtain
̂costv(r) for other similarity functions as shown in Table 2.

Table 2: The estimation of the average cost of ver-
ifying a candidate s w.r.t an object r for different
similarity functions. (θ∗ = ⌊θ⌋ for edit distance; oth-

erwise for edit similarity, θ∗ = ⌊ (1−θ)·|r|
θ

⌋)
SimFunc |s|l |s|u Verify 〈r, s〉 ̂costv(r)

simo(r, s) ⌈θ⌉ maxs∈S |s|

|r|+ |s| |r|+ |s|u+|s|l
2

simd(r, s) ⌈ θ
2−θ

· |r|⌉ ⌊ 2−θ
θ

· |r|⌋

simc(r, s) ⌈θ2 · |r|⌉ ⌊ |r|

θ2
⌋

simj(r, s) ⌈θ · |r|⌉ ⌊
|r|
θ

⌋

ed(r, s) ⌈|r| − θ⌉ ⌊|r| + θ⌋ (2θ∗+1) ·
min(|r|, |s|) (2θ∗+1)·

|s|2u−|s|2
l
+|r|+|s|l

2·(|s|u−|s|l+1)

3

es(r, s) ⌈θ · |r|⌉ ⌊ |r|
θ

⌋

Next we discuss how to estimate candidate-set size, |Cℓ(r)|.
We first estimate candidate-set size w.r.t 1-prefix scheme,
|C1(r)| (Section 4.4.1), then estimate candidate-set size w.r.t
2-prefix scheme |C2(r)| (Section 4.4.2). Finally we extend
our method to estimate candidate-set size w.r.t ℓ-prefix scheme
|Cℓ(r)| (ℓ > 2) (Section 4.4.3).

4.4.1 Estimating candidate-set size w.r.t 1-prefix scheme

We estimate candidate-set size w.r.t 1-prefix scheme, |C1(r)|,
to decide which one between 1-prefix scheme and 2-prefix
scheme is better. If 1-prefix scheme is better, it will be se-
lected as r’s prefix scheme. If we use 1-prefix scheme, we
need to merge the lists in Φ1(r). That is, inserting the ob-
jects of each list in Φ1(r) into a hash map and find the
objects that appear in at least one list. If 2-prefix scheme
is better, the selected prefix scheme must be longer than
1-prefix scheme. Suppose ℓe-prefix scheme is selected as r’s
prefix scheme (ℓe ≥ 2). If we use ℓe-prefix scheme, we need

3
This equation is deduced from (2θ∗ + 1) ·

∑|s|u
|s|=|s|l

min(|r|,|s|)

|s|u−|s|l+1

to merge the lists in Φℓe(r). That is, inserting the objects
of each list in Φℓe(r) into a hash map and find the objects
that appear in at least ℓe lists. Since Φ1(r) ⊆ Φℓe(r), when
comparing 1-prefix scheme and 2-prefix scheme, no matter
which prefix scheme is better, the lists in Φ1(r) must be
merged. Therefore, we can merge the lists in Φ1(r) to get
the real value of |C1(r)| before comparing 1-prefix scheme
and 2-prefix scheme. Example 4 illustrates the method to
estimate |C1(r)|.

Example 4. For example, consider r1 = {e1, e5, e6, e8, e9}
in Figure 2. To estimate |C1(r1)|, we first get Φ1(r1) =
{△I1(e1),△I1(e5)}. As shown in Figure 6, △I1(e1) =
{s4, s5} and △I1(e5) = {s5}. Based on our analysis above,
no matter which prefix scheme is selected, we need to merge
△I1(e1) and △I1(e5), therefore we can obtain C1(r1) =
{s4, s5} by merging these two lists. Then we get the real
value |C1(r1)| = 2.

4.4.2 Estimating candidate-set size w.r.t 2-prefix scheme

In this section, we focus on estimating candidate-set size
w.r.t 2-prefix scheme, |C2(r)|, which is the number of objects
that appear in at least two lists in Φ2(r). As C1(r) has been
computed (discussed in Section 4.4.1), we can utilize C1(r)
to estimate |C2(r)|. Since C1(r) ⊇ C2(r) (See Lemma 2), we
only need to check for each s ∈ C1(r) whether s ∈ C2(r)
holds. We divide C1(r) into two disjoint sets, C=

1 (r) and
C>
1 (r), where C=

1 (r) denotes the set of objects that appear
in only one list in Φ1(r), and C>

1 (r) denotes the set of objects
that appear in more than one list in Φ1(r). For each object
s ∈ C>

1 (r), since Φ1(r) ⊆ Φ2(r), s must appear in at least
two lists in Φ2(r), thus s ∈ C2(r). For each object s ∈ C=

1 (r),
if s appears in the lists in △Φ2(r), s must appear in at
least two lists in Φ2(r) = Φ1(r) + △Φ2(r), i.e. s ∈ C2(r);
otherwise, s /∈ C2(r). Therefore, as shown in Equation 5,
|C2(r)| can be computed based on C1(r).

|C2(r)| = |C>
1 (r)|+

∣∣C=
1 (r) ∩

⋃

△I(e)∈△Φ2(r)

△I(e)
∣∣. (5)

For instance, consider C1(r1) = {s4, s5} in Example 4. We
show how to compute |C2(r1)| based on C1(r1). C>

1 (r1) =
{s5} since s5 appears in more than one list in Φ1(r1), i.e.
△I1(e1) and △I1(e5). For the objects in C>

1 (r1), they must
belong to C2(r1) (i.e. s5 ∈ C2(r1)). C=

1 (r1) = {s4} since s4
appears in only one list in Φ1(r1) (i.e. △I1(e5)). For the
objects in C=

1 (r1), we need check whether they appear in the
lists in △Φ2(r1) = {△I1(e6), △I2(e1), △I2(e5), △I2(e6)}.
As s4 ∈ △I2(e5),

∣∣C=
1 (r) ∩ ⋃

△I(e)∈△Φ2(r1)
△I(e)

∣∣ = 1.

Based on Equation 5, we obtain |C2(r)| = 2.
In order to use Equation 5 to estimate |C2(r)|, there are

two issues that need to be addressed:

1. How to efficiently compute |C>
1 (r)|;

2. How to efficiently and effectively estimate
∣∣C=

1 (r) ∩⋃
△I(e)∈△Φ2(r)

△I(e)
∣∣.

The first one can be easily addressed. Recall the algorithm
of estimating |C1(r)| in Section 4.4.1. During the process
of merging the lists in Φ1(r), we maintain a hash map H
with H[s] storing the number of processed lists that contain
object s. Initially, |C>

1 (r)| = 0. When finding H[s] = 2
holds, |C>

1 (r)| = |C>
1 (r)| + 1. After processing all lists in

Φ1(r), we return |C>
1 (r)|.
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Next we study the second problem. We have an interest-
ing observation that none of lists in △Φ2(r) have overlaps.
Thus the union of △I(e) ∈ △Φ2(r) is actually equal to the
multiset union of △I(e) ∈ △Φ2(r). Lemma 3 proves the
correctness of this observation.

Lemma 3. Given a collection of S and delta inverted in-
dexes △I1, · · · ,△Iℓ+1 built on S, for any r ∈ R, we have

⋃

△I(e)∈△Φℓ+1(r)

△I(e) =
⊎

△I(e)∈△Φℓ+1(r)

△I(e)

Based on Lemma 3, we only need to estimate
∣∣C=

1 (r) ∩
⊎

△I(e)∈△Φ2(r)

△I(e)
∣∣. (6)

If the context is clear,
⊎

△I(e)∈△Φ2(r)
△I(e) is abbrevi-

ated as
⊎△I(e) for ease of notation. Given an object

s ∈ ⊎△I(e), the conditional probability of s ∈ C=
1 (r) holds

is

P

(
s ∈ C=

1 (r)
∣∣∣ s ∈

⊎
△I(e)

)
=

∣∣C=
1 (r) ∩⊎△I(e)

∣∣
∣∣ ⊎△I(e)

∣∣ . (7)

To estimate the conditional probability, consider K sampled
objects, (s1, s2, · · · , sK), which are randomly selected with
replacement from

⊎△I(e). For any si (i ∈ [1, K]), the
probability of si ∈ C=

1 (r) holds is equal to the conditional
probability in Equation 7, thus an unbiased estimator of the
conditional probability is

P̂

(
s ∈ C=

1 (r)
∣∣∣ s ∈

⊎
△I(e)

)
=

1

K

K∑

i=1

1C=
1 (r)(s

i), (8)

where 1C=
1 (r)(s

i) = 1 if si ∈ C=
1 (r) holds, and 0 otherwise.

Note that for a random object si, it is very efficient to
check whether 1C=

1 (r)(s
i) = 1 holds. This is because when

estimating |C1(r)|, we maintain a hash map H for the objects
in C1(r), and 1C=

1 (r)(s
i) = 1 (i.e. si ∈ C=

1 (r)) iff. H[si] = 1.
Based on Equations 7 and 8, an unbiased estimator of∣∣C=
1 (r) ∩⊎△I(e)

∣∣ is

1

K

K∑

i=1

1C=
1 (r)(s

i) ·
∣∣∣
⊎

△I(e)
∣∣∣. (9)

Therefore, based on Equations 5 and 9, an unbiased esti-
mator of C2(r) is

|Ĉ2(r)| = |C>
1 (r)|+ 1

K

K∑

i=1

1C=
1 (r)(s

i) ·
∣∣∣
⊎

△I(e)
∣∣∣. (10)

Next we show how to compute this equation efficiently.
We first compute

∣∣ ⊎△I(e)
∣∣ by adding up the length of each

△I(e) ∈ △Φ2(r). Then we select K random objects from⊎△I(e). To achieve this goal, consider a virtual list of ob-
jects obtained by joining all delta lists △I(e) ∈ △Φ2(r).
Given a random position in the virtual list, we can re-
turn the corresponding object with O

(
|△Φ2(r)|

)
cost. The

cost can be improved to O
(
log |△Φ2(r)|

)
by binary search

but requires an extra O
(
|△Φ2(r)|

)
initialization cost. Af-

ter getting K random objects (s1, · · · , sK), we compute the
number of random objects such that H[si] = 1 holds, i.e.,
∑K

i=1 1C=
1 (r)(s

i). Finally, we can obtain |Ĉ2(r)| based on
Equation 10. Example 5 illustrates how to estimate |C2(r)|.

r1 = { e1 e5 e6 e8 e9}
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Figure 7: An illustration of estimating |C2(r1)|.

Example 5. Consider r1 in Example 4. To estimate
|C1(r1)|, we merge the lists in Φ1(r1) = {△I1(e1),△I1(e5)},
then we can obtain C1(r1), |C>

1 (r1)| and H as shown in
Figure 7(a). To estimate |C2(r1)| based on Equation 10,

we also need to compute
∣∣ ⊎△I(e)

∣∣ and 1
K

∑K

i=1 1C=
1 (r)(s

i).
Figure 7(b) illustrates this process. Since △Φ2(r1) =
{△I2(e5),△I1(e6),△I2(e6)},

∣∣ ⊎△I(e)
∣∣ = |△I2(e5)| +

|△I1(e6)| + |△I2(e6)| = 4. Suppose K = 3 objects,
{s5, s4, s2}, are randomly selected with replacement from⊎△I(e). For the object s5, as H[s5] 6= 1, we have s5 /∈
C=
1 (r), thus 1C=

1 (r)(s5) = 0. For the object s4, as H[s4] = 1,
we have s4 ∈ C=

1 (r), thus 1C=
1 (r)(s4) = 1. For the object

s2, as H[s2] 6= 1, we have s2 /∈ C=
1 (r), thus 1C=

1 (r)(s2) = 0.

Therefore, 1
K

∑K

i=1 1C=
1 (r)(s

i) = 1
3
(0+1+0) = 1

3
. Based on

Equation 10, we obtain |Ĉ2(r1)| = 1 + 1
3
· 1 · 4 = 7

3
.

4.4.3 Estimating candidate-set size w.r.t ℓ-prefix
scheme (ℓ > 2)

We extend the estimation method of candidate-set size
w.r.t 2-prefix scheme to support ℓ-prefix scheme, |Cℓ(r)| (ℓ >
2), which uses H and |C=

1 (r)| to estimate |C2(r)|, where H is
obtained by merging the lists in Φ1(r). Next we show that
the corresponding H and |C=

ℓ−1(r)| can also be computed
before the estimation of |Cℓ(r)| (ℓ > 2). We use |C3(r)| as an
example to introduce our idea. |C3(r)| needs to be estimated
only when 2-prefix scheme is better than 1-prefix scheme. In
this case, 1-prefix scheme will not be selected as r’s prefix
scheme. We estimate |C3(r)| in order to decide either 2-prefix
scheme or 3-prefix scheme is better. Using a similar analysis
as Section 4.4.1, we can merge the lists in Φ2(r) in advance,
and obtain H and |C=

2 (r)| before the estimation of |C3(r)|.
Since the lists in Φ1(r) have been merged when estimating
|C2(r)|, we only need to merge the lists in △Φ2(r). Similarly,
we can also deduce that the corresponding H and |C=

ℓ−1(r)|
can be computed before the estimation of |Cℓ(r)| (ℓ > 2).
Thus an unbiased estimator of |Cℓ(r)| is

|Ĉℓ(r)| = |C>
ℓ−1(r)|+

1

K

K∑

i=1

1C=
ℓ−1

(r)(s
i)·

∣∣
⊎

△I(e)∈△Φℓ(r)

△I(e)
∣∣,

(11)
where (s1, s2, · · · , sK) are K sampled objects randomly se-
lected with replacement from

⊎
△I(e)∈△Φℓ(r)

△I(e), and

1C=
ℓ−1

(r)(s
i) = 1 if si ∈ C=

ℓ−1(r) holds and 0 otherwise.

Our estimation algorithm can obtain an unbiased estima-
tor of |Cℓ(r)| and the estimator will become more accurate
with the increase of the number of sampled objects. The
correctness is proved in Theorem 1.
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Theorem 1. Let 0 < δ < 1, ǫ > 0, K ≥ 2
ǫ2

·
log 2

δ
· 1

C∗ . Then we have (1) E(|Ĉℓ(r)|) = |Cℓ(r)|; (2)

P(

∣∣|Cℓ(r)|−|Ĉℓ(r)|
∣∣

|Cℓ(r)| ≥ ǫ) ≤ δ, where E(·) denotes the expected

value and C∗ = |Cℓ(r)| − |C>
ℓ−1(r)|.

Next we analyze the cost of estimating Θℓ(r), i.e., Eℓ(r).
Θℓ(r) consists of filter cost and verification cost. The filter
cost can be estimated with |△Φℓ(r)| cost as shown at the
beginning of Section 4.4. To estimate the verification cost,
we need to estimate candidate-set size w.r.t ℓ-prefix scheme.
Recall our estimation algorithm, selecting K random objects
needs |△Φℓ(r)|+K · log |△Φℓ(r)| cost, and checking H[si] =
ℓ − 1 for all random objects needs |K| cost. Therefore, the
total cost of estimating Θℓ(r) is Eℓ(r) = 2 · |△Φℓ(r)| + K ·
log |△Φℓ(r)|+K. Based on the definition of Φℓ(r), we have
|Φℓ(r)| = |Pℓ(r)| · ℓ = (|r| − t + ℓ) · ℓ. Thus |△Φℓ(r)| =
|Φℓ(r)|− |Φℓ−1(r)| = |r|− t+2ℓ−1 which is quite small and
increases linearly with ℓ.

5. ADAPTIVE FRAMEWORK FOR Sim-

Search

In this section, we study how to extend our adaptive
framework to support a SimSearch query. Recall SimJoin,
given R and S , our framework first builds delta inverted
indexes on S based on a specified similarity threshold, and
then utilizes the index to find similar objects for each r ∈ R
w.r.t the same specified similarity threshold. Different from
a SimJoin query, before answering a SimSearch query, we
have no idea about which threshold will be specified, so the
index built on S should be able to deal with any threshold.

A straightforward method is to build delta inverted in-
dexes for all possible thresholds. However, the number of
possible thresholds may be large, e.g. there are maxs∈S |s|
possible thresholds for a SimSearch query w.r.t overlap sim-
ilarity, so the method will incur a huge index size. In the
following, we design an index structure that has the same
size as the inverted index built on S but can support a Sim-
Search query with any threshold.

We have an observation that the objects with the same
length will have the same number of elements in their ℓ-
prefix set (i.e., |s| − t+ ℓ). In this way we can group objects

in S according to their lengths. Let S |s| denote the group
of objects with length |s|. The maximal threshold of a Sim-

Search query for S |s| is |s|. Instead of building delta in-

verted indexes on S |s| for each threshold in [1, |s|], we build
delta inverted indexes only for the maximal threshold |s|,
denoted by △I|s|

1 , △I|s|
2 , · · · , △I|s|

|s| . We can easily see the

total index size is the same as the inverted index built on
S , i.e., O(

∑
s∈S |s|). For example, consider S in Figure 2.

We show its index structure in Figure 8. Since all objects
in S has the same length, there is only one group, i.e. S5.
For this group, we use the same method as SimJoin to build
delta inverted indexes for threshold 5, i.e., △I5

1 , · · · , △I5
5 .

Consider a query object r, a threshold θ and a deduced
overlap threshold t (Section 2.2.1). To use our adaptive
framework to find candidates s ∈ S such that |r ∩ s| ≥ t,
we can use the above index structure to generate an in-
verted list Iℓ(e) which consists of objects whose ℓ-prefix

set contains e. Since △I|s|
i (e) consists of the objects with

length |s| whose i-th element is e, and ℓ-prefix set contains
|s| − t + ℓ elements, the objects with length |s| whose ℓ-
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Figure 8: An SimSearch index structure built on S
in Figure 2.

prefix set contains e can be represented by ∪|s|−t+ℓ

i=1 △I|s|
i (e).

Notice in Table 2, we have deduced the upper-bound (|s|u)
and the lower-bound (|s|l) of the length of r’s candidates.
Therefore, the inverted list Iℓ(e) can be generated by

∪|s|u
|s|=|s|l ∪

|s|−t+ℓ

i=1 △I|s|
i (e). For example, consider the index

structure in Figure 8. Given r = {e5, e6, e7, e8, e9}, θ = 4
and a deduced overlap threshold t = ⌈θ⌉ = 4, we compute
|s|l = ⌈θ⌉ = 4, |s|u = maxs∈S |s| = 5. Suppose we want
to generate I2(e5). Based on our index structure, we have

∪5
|s|=4 ∪

|s|−4+2
i=1 △I|s|

i (e5)=△I5
2 (e5) ∪△I5

3 (e5).

Position-aware Pruning. As discussed above, we can
merge some delta inverted lists in our index structure to
generate an inverted list Iℓ(e). Next we propose a technique
to prune delta inverted lists in order to further improve the

performance. Consider a delta inverted list △I|s|
i (e). For

any object s ∈ △I|s|
i (e), we have s[i] = e. Let e be the

j-th element of a query object r, i.e. r[j] = e. We show the
first punning condition on the left part of Figure 9. Since
s[i] = r[j] and the elements in s and r are sorted based on the
same global ordering, the elements before s[i] at most share
j common elements with those before r[j] and the elements
after s[i] at most share |s| − i common elements with those
after r[j], the overlap between s and r is at most j+(|s|− i).
If j + (|s| − i) < t holds, then the overlap between s and r

must smaller than t, thus we can prune △I|s|
i (e). Similarly,

we obtain another pruning condition as shown on the right
part of Figure 9. That is if i + (|r| − j) < t holds, we can

prune △I|s|
i (e). Therefore, for ∪|s|u

|s|=|s|l ∪
|s|−t+ℓ

i=1 △I|s|
i (e), we

prune △I|s|
i (e) if i > j + |s| − t or i < j − |r|+ t. Recall the

above example. We prune △I5
3 (e5) as i > j + |s| − t (i.e.,

3 > 1 + 5− 4).

e

j+(|s|-i) < t

e

j

s[i]

r[j]

|s|-i

s

r

i+(|r|-j) < t

e

i

s[i]
s

e

r[j]
|r|-j

r

If i>j+|s|-t or i<j-|r|+t

|s|
Prune ����Ii (e)

Figure 9: An illustration of position-aware pruning.

6. EXPERIMENT
We have implemented our techniques to support SimSearch

and SimJoin queries, and compared with the following state-
of-the-art methods. ppjoin and ppjoin+ [27] are prefix-filtering
based algorithms that can answer SimJoin queries for Jac-
card and Cosine similarities. They both utilize position fil-
tering to optimize their algorithms. However ppjoin+ also
employs suffix filtering to further prune candidates. Ed-
Join [25] is a prefix-filtering based algorithm that can han-
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Table 3: Dataset statistics
Data Sets Sizes avg len max len min len

QueryLog-String 1,208,844 20.94 500 1
DBLP-String 1,385,925 105.294 1626 1
DBLP-Set 1,385,925 15.74 290 1
ENRON-Set 517,431 133.57 3162 1

dle SimJoin queries for Edit distance. Trie-Join [23] is a
trie based algorithm that can support SimJoin queries for
Edit distance. ChunkGram [19] is a prefix-filtering based al-
gorithm that can answer SimJoin and SimSearch queries
for Edit distance. Flamingo4 is a data cleaning package that
includes DivideSkip [13] algorithm to answer SimSearch
queries for Jaccard similarity, Cosine similarity, and Edit
distance. We downloaded these algorithms from their re-
spective websites. Although there are some other meth-
ods, such as Part-Enum [1], Bed-Tree [29], All-Pairs [2], prior
work [19,27] has shown that they cannot outperform the
above selected algorithms.

We used four real data sets to evaluate our methods. 1)
DBLP-String was obtained from the DBLP Bibliography5.
Each string is a concatenation of author names and the title
of a publication. 2) QueryLog-String is a collection of query
strings that were randomly chosen from the AOL Query
Log6. 3) DBLP-Set was derived from DBLP-String by split-
ting each string into a token set based on non-alphanumeric
characters. 4) ENRON-Set was obtained from the Enron email
collection7. We split the email title and body into a token set
based on non-alphanumeric characters. We assume the ele-
ments in each data set have no weight, which is the same as
many prior work [5,13,14,19,25,27,29]. Table 3 shows more
details about the data sets.

All the algorithms were implemented in C++ and com-
piled using GCC 4.2.3 with -O3 flag. We used inverse doc-
ument frequency (IDF) to sort the elements. All the exper-
iments were run on a Ubuntu machine with an Intel Core 2
Quad X5450 3.00GHz processor and 4 GB memory.

6.1 Variable-Length Prefix Scheme
In this section, we compare variable-length prefix scheme

with fixed-length prefix scheme by computing their total
cost in the filter and verification step w.r.t overlap similar-
ity. For the variable-length prefix scheme, we specified the
prefix scheme for each object with the minimum cost. For
the fixed-length prefix scheme, we specified the same pre-
fix scheme for all objects. Figure 10 reports the results on
DBLP-Set and ENRON-Set data sets. In the X axis, “∗” refers
to the variable-length prefix scheme, and an integer refers to
the fixed-length prefix scheme and the integer value refers to
the specified prefix scheme. We see that the variable-length
prefix scheme always took less cost than the fixed-length pre-
fix scheme. For example, on the DBLP-Set data set, when
the threshold is t = 15, even if the best prefix scheme was
specified for fixed-length prefix scheme, i.e. 3-prefix scheme,
its cost (9.25 ∗ 108) was still 21% larger than that of the
variable-length prefix scheme (7.66∗108). The reason is that
different objects may have different optimal prefix schemes.
Therefore, we need to study how to adaptively selecting a
prefix scheme for an object instead of using a fixed one.

4http://flamingo.ics.uci.edu
5http://www.informatik.uni-trier.de/∼ley/db
6http://www.gregsadetsky.com/aol-data/
7http://www.cs.cmu.edu/∼enron/
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Figure 10: Comparison of variable-length prefix
scheme and fixed-length prefix scheme

6.2 Adaptive Selection of Prefix Schemes
In this section, we evaluate the quality of our adaptive

selection method. If our method could not estimate the cost
effectively, it would select a bad prefix scheme. We com-
puted the cost of performing a SimJoin query using our
method and that of the optimal method which used the pre-
fix scheme with the minimal cost, and reported the ratio of
the cost of our method to that of the optimal method, by
varying percentages of sampled objects. Figure 11 shows the
result. We can see with the increase of percentage of sam-
pled objects, the cost ratio became smaller. On the DBLP-

Set data set, when the percentage is larger than 1%, the cost
ratio was smaller than 1.015. That is, our method at most
needed 1.5% more cost than the optimal method. On the
ENRON-Set data set, we found the optimal prefix scheme was
typically longer than 30 (see Figure 10(b)), thus our method
needed to perform cost estimation more than 30 times for an
object. However even for such data set, when the percentage
is larger than 1%, our method at most needed 30% more cost
than the optimal method. These results indicated that our
estimation method was very effective. Note that increasing
the percentage of sampled objects would make the estima-
tion process more expensive, and we sampled 1% objects for
our estimation method in the following experiments.
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Next we evaluate the efficiency of our adaptive selection
method. We varied the overlap thresholds, and computed
the running time of AdaptPrefixScheme. AdaptPre-
fixScheme needed to include the selection time of prefix
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Figure 13: Comparison of adaptive similarity-join
algorithms and existing methods w.r.t set similarity.

schemes. In Figure 12, we see that the selection of pre-
fix schemes took a little time comparing to the total run-
ning time of AdaptPrefixScheme. For example, on the
ENRON-Set data set, when the threshold is t = 130, Adapt-
PrefixScheme took 8887s while only 807s was used for the
selection of prefix schemes.

6.3 SimJoin Query
In this section, we evaluate our adaptive framework for

SimJoin query by comparing with state-of-the-art methods.
For set objects, we implemented an algorithm, namely

Adapt-Join, by replacing the prefix-filtering framework of
ppjoin with our adaptive framework. We compared Adapt-
Join with ppjoin and ppjoin+ on answering SimJoin query for
Jaccard and Cosine similarities. In Figure 13, with thresh-
olds decreasing, the running time of Adapt-Join increased
slower than that of the other algorithms. This is because
Adapt-Join could adaptively select prefix schemes while ppjoin
and ppjoin+ simply used 1-prefix scheme. For small thresh-
olds, 1-prefix scheme would generate large numbers of can-
didates for verification. Our framework adaptively selected
longer prefix schemes to reduce the candidate number.

For string objects, we implemented two algorithms based
on our adaptive framework, namely Adapt-Join (gram) and
Adapt-Join (chunk+gram). They differed in the methods of
mapping a string object to a set object. The first one used a
gram-based method [5]. The second one used a gram-chunk-
based method [19]. We compared them with ChunkGram,
Ed-Join, and Trie-Join on answering a SimJoin query for
Edit Distance. In Figure 14, we can see our algorithms out-
performed ChunkGram and Ed-Join on both data sets. Es-
pecially for large edit-distance thresholds (e.g. 10), in Fig-
ure 14(b), our algorithms were 4-5 times faster. This is be-
cause ChunkGram and Ed-Join were based on prefix-filtering
framework which generated large numbers of candidates for
large thresholds. However our algorithms used an adaptive
framework which can reduce the number of candidates by
adaptively selecting prefix schemes.

On QueryLog-String data set, we see that Trie-Join con-
sumed the least time when the edit-distance threshold is
smaller than 3. This is because the QueryLog-String data
set contained a lot of short strings and Trie-Join used a
trie-based framework which was especially efficient for short
strings. However, when the threshold became larger, our al-
gorithms outperformed Trie-Join. In addition, on DBLP-Set

data set, our algorithms were several orders of magnitude
faster than Trie-Join since the data set mainly consisted of
long strings and the trie-based framework was not suitable
for such data set. Therefore, our algorithms were very ro-
bust for different data sets with different string lengths.

6.4 SimSearch Query
In this section, we compare our adaptive framework with

state-of-the-art methods for SimSearch queries.
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Figure 14: Comparison of adaptive similarity-join
algorithms and existing methods w.r.t edit distance.

For set objects, we implemented an algorithm based on
the adaptive framework in Section 5, namely Adapt-Search.
We compared Adapt-Search with Flamingo using Jaccard and
Cosine similarities. We randomly generated 10,000 queries
from each data set and compared the average running time.
In Figure 15, we can see that Adapt-Search was faster than
Flamingo by 1-2 orders of magnitude.

For string objects, we respectively used a gram-
based method and a chunk+gram based method to map
string objects to set objects, and implemented two al-
gorithms, namely Adapt-Search (gram) and Adapt-Search
(chunk+gram). We compared them with ChunkGram and
Flamingo using Edit Distance. Figure 16 shows the aver-
age time of 10,000 queries. We have four observations from
the figure. First, Adapt-Search (gram) performed the best
among all algorithms. Second, Adapt-Search (chunk+gram)
outperformed ChunkGram on both data sets since Adapt-
Search (chunk+gram) used an adaptive framework while
ChunkGram adopted the prefix-filtering framework. Third,
ChunkGram cannot perform well on the QueryLog-String

data set. Based on prefix filtering, ChunkGram can remove
some frequent grams (chunks) from a gram (chunk) set to
obtain a prefix set, however for the QueryLog-String data
set which consisted of short string objects, it can only re-
move a few grams (chunks) for each string object. Therefore,
many frequent grams (chunks) will be left in the prefix set
and ChunkGram generated large numbers of candidates for
verification. Fourth, Flamingo performed well on QueryLog-

String data set since it used an effective filtering method to
reduce a large number of candidates, but performed worse
on DBLP-String data set since this filtering method became
much expensive on the data set with long strings.

7. RELATED WORK
Similarity joins have been widely studied in [1,2,4,5,8,

16,19–29]. Existing methods usually adopted the prefix-
filtering framework. Chaudhuri et al. [4] proposed a prim-
itive operator based on prefix filtering to address the
similarity-join problem. Bayardo et al. [2] utilized the prefix-
filtering framework and the ordering of vectors to find similar
vector pairs from a collection of vector data. Xiao et al. [27]
improved [2] by using positional filtering and suffix filtering.
Xiao et al. [25] extended the prefix-filtering framework to
support edit distance by using a gram-based method. Xiao
et al. [26] proposed an approach to deal with top-k similar-
ity joins, which can directly find the top-k results without a
given threshold. Vernica et al. [22] proposed to use MapRe-
duce to support similarity joins. Qin et al. [19] proposed a
novel asymmetric method to map string objects to set ob-
jects, and then employed the prefix-filtering framework to
address similarity-join and similarity-search problems. We
used our adaptive framework to extend these methods, and
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Figure 15: Comparison of adaptive similarity-search
algorithms and existing methods w.r.t set similarity.

showed the superiority of our framework over the prefix-
filtering framework in the experiment.

There are many studies on similarity search [3,6,10,13,14,
19,29]. Our method differs from theirs as we use an adaptive
method. Li et al. [14] developed a technique that can choose
high-quality grams of variable lengths, called VGRAM, from
a collection of strings. Our problem is orthogonal to theirs
since they focused on how to map string objects to sets (i.e.,
VGRAM sets) while we focus on how to select elements from
each obtained set.

The other related studies are selectivity estimation of Sim-
Search and SimJoin queries [7,9,11,12,17]. Existing meth-
ods typically require an expensive initial process to sup-
port efficient estimations, such as computing min-wise signa-
tures [17] or creating the summary structures of objects [9].
They are not applicable to address our problem. There are
also some studies on approximate string matching [18] and
approximate entity extraction [15].

8. CONCLUSION
In this paper, we have studied the problem of similarity

join and similarity search. We proposed an adaptive frame-
work to support the two types of queries. We theoretically
and experimentally proved that the prefix filtering did not
always achieve high performance. We also found that differ-
ent objects should use different prefix lengths. We developed
a cost model to judiciously select an appropriate prefix for
each object. We devised delta inverted indexes to efficiently
select an appropriate prefix. We extended our method to
support SimSearch queries. We have implemented our
method and compared with state-of-the-art methods. Ex-
perimental results show that our adaptive outperforms the
prefix-filtering framework and achieves high performance for
both similarity join and similarity search.

Acknowledgement. This work was partly supported by

the National Natural Science Foundation of China under Grant

No. 61003004, the National Grand Fundamental Research 973 Pro-

gram of China under Grant No. 2011CB302206, National S&T Major

Project of China under Grant No. 2011ZX01042-001-002, a project of

Tsinghua University under Grant No. 20111081073, and the “NExT

Research Center” funded by MDA, Singapore, under the Grant No.

WBS:R-252-300-001-490.

9. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD
Conference, pages 313–324, 2003.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

0

10

20

30

40

50

1 2 3 4

T
im

e 
(m

s)

Edit-Distance Threshold

Adapt-Search (gram)
Adapt-Search (chunk+gram)

ChunkGram
Flamingo

0

100

200

300

400

500

8 12 16 20

T
im

e 
(m

s)

Edit-Distance Threshold

Adapt-Search (gram)
Adapt-Search (chunk+gram)

ChunkGram
Flamingo

(a) QueryLog-String (b) DBLP-String

Figure 16: Comparison of adaptive similarity-search
algorithms and existing methods w.r.t edit distance.

[5] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[6] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava.
Fast indexes and algorithms for set similarity selection queries.
In ICDE, pages 267–276, 2008.

[7] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava.
Hashed samples: selectivity estimators for set similarity
selection queries. PVLDB, 1(1):201–212, 2008.

[8] E. H. Jacox and H. Samet. Metric space similarity joins. ACM
Trans. Database Syst., 33(2), 2008.

[9] L. Jin and C. Li. Selectivity estimation for fuzzy string
predicates in large data sets. In VLDB, pages 397–408, 2005.

[10] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-gram/2l:
A space and time efficient two-level n-gram inverted index
structure. In VLDB, pages 325–336, 2005.

[11] H. Lee, R. T. Ng, and K. Shim. Power-law based estimation of
set similarity join size. PVLDB, 2(1):658–669, 2009.

[12] H. Lee, R. T. Ng, and K. Shim. Similarity join size estimation
using locality sensitive hashing. PVLDB, 4(6):338–349, 2011.

[13] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, 2008.

[14] C. Li, B. Wang, and X. Yang. Vgram: Improving performance
of approximate queries on string collections using
variable-length grams. In VLDB, pages 303–314, 2007.

[15] G. Li, D. Deng, and J. Feng. Faerie: efficient filtering
algorithms for approximate dictionary-based entity extraction.
In SIGMOD Conference, pages 529–540, 2011.

[16] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.
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