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The diverse consequences of genotype-by-environment (GxE) interactions determine trait 

phenotypes across levels of biological organization for crops, challenging our ambition 

to predict trait phenotypes from genomic information alone. GxE interactions have many 

implications for optimizing both genetic gain through plant breeding and crop productivity 

through on-farm agronomic management. Advances in genomics technologies have 

provided many suitable predictors for the genotype dimension of GxE interactions. 

Emerging advances in high-throughput proximal and remote sensor technologies have 

stimulated the development of “enviromics” as a community of practice, which has the 

potential to provide suitable predictors for the environment dimension of GxE interactions. 

Recently, several bespoke examples have emerged demonstrating the nascent potential 

for enhancing the prediction of yield and other complex trait phenotypes of crop plants 

through including effects of GxE interactions within prediction models. These encouraging 

results motivate the development of new prediction methods to accelerate crop 

improvement. If we can automate methods to identify and harness suitable sets of 

coordinated genotypic and environmental predictors, this will open new opportunities to 

upscale and operationalize prediction of the consequences of GxE interactions. This 

would provide a foundation for accelerating crop improvement through integrating the 

contributions of both breeding and agronomy. Here we draw on our experience from 

improvement of maize productivity for the range of water-driven environments across the 

US corn-belt. We provide perspectives from the maize case study to prioritize promising 

opportunities to further develop and automate “enviromics” methodologies to accelerate 

crop improvement through integrated breeding and agronomic approaches for a wider 

range of crops and environmental targets.

Keywords: environmental characterisation, envirotyping, yield prediction, drought, crop modelling, crossover 

genotype by environment interactions, target population of environments, multi-environment trial

INTRODUCTION

Sustainable improvement of on-farm crop yield productivity, through improving yield potential 
and yield stability, is a complex long-term objective for both breeders and agronomists (Duvick 
et  al., 2004; Hall and Richards, 2013; Fischer et  al., 2014; Hat�eld and Walthall, 2015; Beres 
et  al., 2020; Cooper et  al., 2021; Hunt et  al., 2021). Heterogeneity of current environmental 
conditions that impact crop yield and the in�uences of climate change continually challenge 

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.735143&domain=pdf&date_stamp=2021--10
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.735143
https://creativecommons.org/licenses/by/4.0/
mailto:mark.cooper@uq.edu.au
https://doi.org/10.3389/fpls.2021.735143
https://www.frontiersin.org/articles/10.3389/fpls.2021.735143/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.735143/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.735143/full


Cooper and Messina Enviromics for Breeding and Agronomy

Frontiers in Plant Science | www.frontiersin.org 2 September 2021 | Volume 12 | Article 735143

the de�nition of the Target Population of Environments (TPE) 
for both breeders and agronomists (Chapman et  al., 2012; 
Harrison et  al., 2014; Lobell et  al., 2015; Voss-Fels et  al., 2019; 
Hammer et  al., 2020; Cooper et  al., 2021; Smith et  al., 2021). 
Many of the important environmental details required for 
interpretation of experimental results and to enable prediction 
of genotype reaction-norms are not currently captured routinely 
for the multi-environment trials (METs) conducted by breeders 
and agronomists. Further, for most crop breeding programs 
the relationships between the environments sampled in METs 
and the dominant environmental conditions of the TPE are 
neither well understood nor adequately quanti�ed (Cooper and 
DeLacy, 1994; Cooper et al., 2021). Improved sensor technologies 
and prediction methodologies are urgently required to 
characterize and study environments within breeding and 
agronomy METs and to quantify the relationships between the 
environments sampled in METs for all stages of crop improvement 
programs and their importance for the TPE (Messina et  al., 
2020; Crespo-Herrera et  al., 2021; Kusmec et  al., 2021; 
Potgieter et  al., 2021; Smith et  al., 2021).

Genotype-by-environment interactions (GxE) have been 
long recognized as important factors impacting successful 
application of selection in plant breeding and for the yield 
stability of cultivars released from breeding programs 
(Comstock and Moll, 1963; Finlay and Wilkinson, 1963; 
Allard and Bradshaw, 1964; Eberhart and Russell, 1966; Blum, 
1988; Nyquist and Baker, 1991; Cooper and DeLacy, 1994; 
Cooper et  al., 2020). Similarly, agronomists have a long 
history of investigating the environmental responses of cultivars 
developed by breeding programs under on-farm management 
systems (French and Schultz, 1984; Passioura, 2002, 2006, 
2007; Sadras and Angus, 2006; Kirkegaard and Hunt, 2010; 
Van Ittersum et  al., 2013; Holzworth et  al., 2014; Assefa 
et  al., 2018; Archontoulis et  al., 2020; Hunt et  al., 2021). 
Farmers seek improved technology combinations based on 
genotypes and agronomic management that can consistently 
deliver yield productivity close to the potential of their 
on-farm environments, while managing the risk of crop failure 
(Hammer et  al., 2014; Hunt et  al., 2021). As a constructive 
step toward improving the predictability of on-farm crop 
productivity, there has been continual re�nement of the 
de�nition of environments in METs and the agricultural TPE 
to recognize the important role of crop management and 
for investigation of the in�uences of genotype-by-environment-
by-management (GxExM) interactions (Kirkegaard and Hunt, 
2010; Hammer et al., 2014, 2020; Hat�eld and Walthall, 2015; 
Beres et  al., 2020; Peng et  al., 2020; Cooper et  al., 2021; 
Hunt et  al., 2021; Potgieter et  al., 2021; Smith et  al., 2021). 
�us, we can study genetic improvements from the perspective 
of the breeder, crop management improvements from the 
perspective of the agronomist, and improvement in genotype–
management technology combinations from the perspective 
of the farmer. In all cases, an improved understanding of 
the environmental context for achievable yield performance 
can enhance their contributions to further improve on-farm 
crop productivity. Hence the importance of the nascent 
technologies and methods of enviromics.

PERSPECTIVE: HARNESSING 
ENVIROMICS FOR CROP 
IMPROVEMENT

While the use of the terminology “enviromics” is relatively 
recent, the motivations and concepts for studying agricultural 
environments in METs and the TPE to accelerate crop 
improvement have a long history. �ere have been many calls 
for enhanced attention to environmental characterization to 
accelerate crop improvement. Plant breeders have long sought 
environmental de�nitions and covariates to assist interpretation 
of plant responses and the GxE interactions detected in METs 
and to understand their relevance for the on-farm TPE (Finlay 
and Wilkinson, 1963; Allard and Bradshaw, 1964; Baker, 1988; 
Blum, 1988; Cooper and Hammer, 1996; Boer et  al., 2007; 
Heslot et  al., 2014; Jarquín et  al., 2014; Pauli et  al., 2016; Xu, 
2016; Ly et  al., 2018; Bustos-Korts et  al., 2019, 2021; Millet 
et  al., 2019; Costa-Neto et  al., 2020, 2021; Porker et  al., 2020; 
Crossa et  al., 2021; Li et  al., 2021; Resende et  al., 2021; Smith 
et al., 2021). �e role of water availability and impact of drought 
on crop yield and investigations to determine the traits 
contributing to crop productivity under drought conditions 
have received signi�cant attention from breeders (e.g., Blum, 
1988; Fukai and Cooper, 1995; Campos et  al., 2004; Bänziger 
et  al., 2006; Ribaut, 2006; Messina et  al., 2011, 2018; Cooper 
et  al., 2014a), agronomists (French and Schultz, 1984; Sadras 
and Angus, 2006; Kirkegaard and Hunt, 2010; Van Ittersum 
et  al., 2013; Hunt et  al., 2021), and physiologists (Richards 
and Passioura, 1989; Ludlow and Muchow, 1990; Bolaños and 
Edmeades, 1996; Passioura, 2002, 2006, 2007; Messina et  al., 
2011, 2015, 2019; Araus and Cairns, 2014; Hammer et  al., 
2014; Araus et  al., 2018; Sinclair, 2018; Simmons et  al., 2021). 
Complexity, cost, and the timeliness of detailed measurements 
of the water status of environments and genotypic variation 
for plant responses to water de�cits under �eld conditions 
have limited adoption and application of many discoveries and 
methods to the scale of breeding programs. Recently, new 
proximal and remote sensor technologies and data modelling 
capabilities have become available to enhance characterization 
of environments and measure plant responses under �eld 
conditions at higher throughput and at greater scales to enhance 
applications for crop improvement and yield prediction (Pauli 
et  al., 2016; Guan et  al., 2017; Araus et  al., 2018; Messina 
et  al., 2018; Van Eeuwijk et  al., 2019; Cooper et  al., 2020; 
Messina et  al., 2020; Peng et  al., 2020; Schwalbert et  al., 2020; 
Costa-Neto et  al., 2021; Jain et  al., 2021; Jin et  al., 2021; 
Potgieter et  al., 2021; Smith et  al., 2021; Yang et  al., 2021).

Terminology has emerged in combination with the advances 
in the technologies for studying the characteristics of 
environments in METs, for their applications to assist 
interpretation of GxE interactions, and to quantify reaction-
norms for genotypes. To ensure we  bene�t from the deep 
history of studying agricultural environments and how they 
in�uence plant responses, crop performance, and adaptation 
for the TPE, we  include what has previously been referred to 
as environmental characterization (Fukai and Cooper, 1995; 
Chapman et  al., 2000; Lö�er et  al., 2005; Chenu et  al., 2011; 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Cooper and Messina Enviromics for Breeding and Agronomy

Frontiers in Plant Science | www.frontiersin.org 3 September 2021 | Volume 12 | Article 735143

Mathews et  al., 2011; Kholová et  al., 2013; Pauli et  al., 2016; 
Smith et  al., 2021) and envirotyping (Cooper et  al., 2014b; 
Pauli et  al., 2016; Xu, 2016; Porker et  al., 2020; Couëdel et  al., 
2021; Smith et  al., 2021) within scope of the applications of 
enviromics for crop improvement. �e convention we  adopt 
is that the terminology of enviromics represents the collective 
of activities that are undertaken to study, measure, and quantify 
the characteristics of micro- and macroenvironments and how 
they in�uence responses of plants (genotypes) at the �eld, 
MET and TPE levels. Within the domain of enviromics, the 
terminology of environmental characterization is used to refer 
to the applied activities that use the methodologies and 
technologies of enviromics to characterize the important 
environmental variables that are in�uential on the plant responses 
observed within �eld conditions and experimental METs. Further, 
the concept and terminology of envirotyping are applied to 
uses of the available environmental characterization information 
to identify appropriate groupings of the environments sampled 
in METs and to quantify their relationships to the TPE to 
assist interpretations of plant responses to the environments, 
any GxE interactions, and di�erences in reaction-norms of 
genotypes at the levels of the MET and the TPE. �e level 
of envirotyping resolution that can be  applied extends along 
a continuum from coarse-grained to �ne-grained, depending 
on the target situation (Cooper et  al., 2014a,b, 2020). 
We  encourage the constructive transdisciplinary dialogue that 
is required to provide an improved understanding of the 
environmental variables that determine important GxE 
interactions and ultimately identi�cation of sets of coordinated 
environmental and genomic predictors of variation for genotypic 
reaction-norms within the MET and the TPE (e.g., Messina 
et  al., 2011; Ly et  al., 2018; Bustos-Korts et  al., 2019, 2021; 
Millet et  al., 2019).

EXAMPLE: HARNESSING ENVIROMICS 
FOR MAIZE YIELD IMPROVEMENT IN 
THE US CORN-BELT

�e genetic improvement in grain yield of temperate maize 
for the US corn-belt provides a useful case study for considering 
past and potential roles of enviromic technologies to contribute 
to strategies focused on accelerating yield improvement for 
the future TPE. Past contributions to improvements in on-farm 
yield productivity of maize from both genetics and agronomy 
have been documented (Russell, 1991; Duvick et  al., 2004; 
Duvick, 2005; Cooper et  al., 2014a). �e in�uences of GxE 
and GxExM interactions on grain yield variation have been 
investigated (Boer et  al., 2007; Messina et  al., 2009; Ga�ney 
et  al., 2015; Assefa et  al., 2018; Cooper et  al., 2020; Rogers 
et  al., 2021). Environmental heterogeneity within the TPE and 
its in�uence on GxE interactions for yield have been quanti�ed 
(Lö�er et  al., 2005; Cooper et  al., 2020; Crespo-Herrera et  al., 
2021; Rogers et  al., 2021) and the important in�uence of 
drought on grain yield recognized (Boyer et  al., 2013; Ga�ney 
et al., 2015; Kimm et al., 2020). �e environmental and genetic 
determinants of GxE interactions for grain yield of maize have 

been investigated by variance components, stability analysis, 
and more recently through extensions of these approaches using 
molecular markers and crop models (Eberhart and Russell, 
1966; Boer et  al., 2007; Gage et  al., 2017; Messina et  al., 2018; 
Cooper et al., 2020; Rogers et al., 2021). Agronomic management 
strategies that reduce on-farm yield gaps have been developed 
(Grassini et  al., 2011; Assefa et  al., 2018). �ere is ongoing 
interest in using improved understanding of the environmental 
determinants of yield performance, adaptation, and reaction-
norms of maize hybrids that provide a focus for testing and 
further development of enviromic methodologies (Cooper et al., 
2014a,b, 2020; Gage et  al., 2017; Messina et  al., 2020; 
Kusmec et  al., 2021; Rogers et  al., 2021).

Trait GxE interactions identi�ed from the results of METs 
can be  investigated in terms of models of the reaction-norms 
of genotypes across an environmental gradient (Figure  1A). 
When modelling genotype reaction-norms, in the absence of 
informative descriptors to order the environments, the mean 
yield of all genotypes that were tested in an environment has 
been used as an environmental gradient for such investigations, 
e.g., Finlay and Wilkinson (1963), Allard and Bradshaw (1964), 
and Eberhart and Russell (1966) are early examples. In such 
cases, there has always been a recognition of the need for 
more informative environmental descriptors to enhance the 
predictive skill of models for new environments outside of 
the sample obtained in METs.

An important distinction is drawn between GxE interactions 
that are a consequence of di�erences in magnitude of genetic 
variance among environments and those that result in changes 
in the rank of the genotypes across the environmental gradient 
(Baker, 1988; Cooper and DeLacy, 1994; Van Eeuwijk et  al., 
2001, 2016). Such analyses can be  applied to the empirical 
results and genomic predictions for any stage of a breeding 
program (Cooper et  al., 2014a,b). When water availability is 
recognized as an important contributor to the di�erences in 
mean yield levels of environments, the environmental gradient 
can be investigated and characterized in terms of environmental 
descriptors of water availability, e.g., plant available water 
content in the soil, and crop evapotranspiration. Many 
approaches have been attempted, ranging from coarse-grained 
to �ne-grained characterization of environmental di�erences 
in water availability. A common coarse-grained approach is 
to categorize environments as either water-limited (drought) 
or water-su�cient (irrigated or well-watered), e.g., Ga�ney 
et  al. (2015) (Figure  1B). To complement such environment 
characterization of METs, plant breeders and agronomists 
have conducted controlled side-by-side experiments imposing 
treatments based on levels of water inputs through managing 
irrigation levels to represent water-de�cit and water-su�cient 
environments expected in the TPE. When drought is of 
su�cient importance in the TPE to become a long-term 
breeding target, this has in some cases justi�ed the establishment 
of specialized �eld-based research facilities to enable more 
�ne-grained consideration of the continuum of environments 
ranging from water-de�cient to water-su�cient (e.g., Fischer 
et al., 1989; Cooper et al., 1995, 2014a, 2020; Weber et al., 2012; 
Rebetzke et  al., 2013).
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Enviromic technologies have been incorporated within 
the operations of such dedicated field-based drought research 
facilities to enable the detailed characterization of the 
environmental conditions within experiments (Cooper et al., 
2014a; Reynolds et  al., 2020) and to understand and predict 
important GxExM interactions at the different stages of a 
breeding program (Cooper et  al., 2014a,b). Such integration 
of enviromic technologies into breeding operations has 
enabled definition and quantification of key environmental 
variables, detailed studies of trait contributions to yield 
variation within breeding program cycles and prediction of 
trait contributions to yield improvement for the TPE (Messina 
et al., 2011, 2015, 2018; Cooper et al., 2014a). The upscaling 
of the environmental characterization of water availability 
in drought experiments, based on proximal and remote 
sensor technologies, has been enabled through using the 
environmental measurements directly, e.g., vapor pressure 

deficit, evapotranspiration, rainfall, temperature, or as inputs 
to crop models to quantify daily water balance throughout 
the crop life cycle, from planting to harvest (French and 
Schultz, 1984; Chapman et  al., 2000; Sadras and Angus, 
2006; Gaffney et al., 2015; Messina et al., 2015). The integrated 
use of the environmental measurements with a suitable crop 
model (e.g., Messina et  al., 2019) enables a continuum of 
coarse-grained to fine-grained characterization of 
environments. Recent applications of the integrated sensor 
and crop modelling approach have investigated 
characterization of environmental water sufficiency in terms 
of crop level evapotranspiration and the timing of water 
deficits in relation to crop growth and development using 
the concept of crop-level water supply/demand ratio 
determined on a daily time step (Muchow et  al., 1996; 
Chapman et al., 2000; Chenu et al., 2011; Messina et al., 2015; 
Cooper et  al., 2020). Therefore, using such advances in 

A B

C D

FIGURE 1 | Enviromics progression from (A) coarse-grained to (D) �ne-grained characterization of environmental gradients for a maize multi-environment trial 

(MET) to assist interpretation of grain yield genotype-by-environment (GxE) interactions and genotypic variation for reaction-norms: (A) environments distinguished 

on mean grain yield of all genotypes tested (e.g., Finlay and Wilkinson, 1963), (B) environments distinguished on levels of water inputs; water-limited (drought) versus 

water-suf�cient (well-watered), (C) environments distinguished on levels of water availability quanti�ed as whole season crop evapotranspiration, (D) environments 

distinguished on evapotranspiration and considered in relation to the modelled 99th percentile and 80th percentile yield-evapotranspiration fronts for modelled 

genotype-by-environment-by-management (GxExM) scenarios for the US corn-belt following the methodology of Cooper et al. (2020).
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enviromic capabilities to characterize breeding and agronomy 
METS, the environmental gradient used to study genotypic 
reaction-norms can be refined from the coarse-grained view 
of a contrast between water-limited and water-sufficient 
(Figure  1B) and quantified in terms of important 
environmental variables, such as the crop-level 
evapotranspiration (Figure  1C).

Environmental descriptors such as seasonal crop-level 
evapotranspiration also have been extensively used by 
agronomists to study the expected yield potential of crops 
based on water availability for the range of environments 
that comprise a TPE and to quantify the yield-gaps between 
the yield potential and the on-farm water-limited yield 
levels that are achieved by farmers (French and Schultz, 
1984; Sadras and Angus, 2006; Van Ittersum et  al., 2013; 
Fischer et  al., 2014; Sadras et  al., 2015). A curated global 
yield-gap atlas is available for a range of crops 

(Van Bussel et  al., 2015).1 Applying the methodology for 
yield-gap analysis, Cooper et  al. (2020) developed a water-
limited yield front for the US corn-belt by parameterizing 
a crop model for a range of maize hybrids. The water-
limited yield fronts they obtained represent a yield potential 
reaction-norm where yield was related to in-season 
crop evapotranspiration.

Crop evapotranspiration provides a useful environmental 
descriptor to study GxE interactions in plant breeding METs 
and to study GxExM interactions and yield-gaps in agronomy 
METs. �erefore, given suitable enviromic technologies to 
measure crop evapotranspiration (Guan et al., 2017; He et al., 
2019; Cooper et  al., 2020) a common view of genotypic 
reaction-norms for breeding and agronomic applications can 
be constructed (Figure 1D). Applying yield-evapotranspiration 

1 https://www.yieldgap.org/

FIGURE 2 | Enviromics applied to assess how well a MET represents a target population of environments (TPE). Example of empirical grain yield results from a 

maize MET compared to GxExM expectations for the US corn-belt TPE. To compare the empirical MET results and modelled TPE expectations, environments were 

characterized in terms of crop evapotranspiration to quantify the gradient from water-limited (low evapotranspiration) to water-suf�cient environments (high 

evapotranspiration). Enviromics approaches were applied to the environments sampled in the MET to obtain the inputs for a crop model, which was used to 

estimate crop evapotranspiration following Cooper et al. (2020). The MET example focuses on the yield comparison between two hybrids, P1197 (Responsive; 

Figure 1) and P1151 (Stable; Figure 1). The empirical yield-evapotranspiration results for the MET are superimposed on the simulated cloud of yield-

evapotranspiration outcomes for the TPE. The estimates of the 99th and 80th percentile yield-evapotranspiration fronts for the TPE provide a reference for 

interpreting the empirical yield-evapotranspiration results hybrid reaction-norms obtained for the MET. Whenever the empirical yield for a GxExM combination falls 

below the 80th percentile yield-evapotranspiration front a yield-gap is associated with the on-farm yield. The empirical results from the MET can then be analyzed to 

identify on-farm situations where the yield-gap can be reduced by choice of genotype (e.g., stable or responsive), agronomic management (e.g., plant density, 

irrigation strategy), or genotype–management technology combinations.
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fronts estimated for maize in the US corn-belt, Cooper 
et  al. (2020) investigated the opportunities to close yield-
gaps from an integrated breeding and agronomic perspective. 
With availability of genotypic and environmental predictors, 
such an integrated view of GxExM interactions can 
be  predicted for all stages of a plant breeding program to 
inform selection and hybrid advancement by breeders and 
to assist agronomists to provide decision support services 
to identify suitable combined genotype and management 
technologies for farmers to reduce on-farm yield productivity 
gaps (Cooper et  al., 2014b). Figure  2 provides an example 
of such an integrated view, constructed by superimposing 
a yield-evapotranspiration front modelled for the TPE of 
the US corn-belt and the empirical yield results for two 
contrasting maize hybrids that were obtained from a MET 
where an enviromic approach was applied to quantify the 
range of crop evapotranspiration levels sampled in the MET. 
With this integrated view the GxExM interactions associated 
with the empirical yield results from the MET can 
be  investigated from a breeding perspective selecting for 
improved yield potential and yield stability and from an 
agronomy perspective to identify genotype and management 
technology combinations to close yield-gaps given the crop 
available water and the achievable yield for an environment.

Improvements in proximal and remote sensor technologies 
to quantify and upscale measurement of important environmental 
variables determining GxExM interactions, e.g., 
evapotranspiration (Figure 2; Guan et al., 2017; He et al., 2019; 
Kimm et  al., 2020), open a wide range of opportunities for 
applications of enviromic technologies to accelerate crop 
improvement by integrating breeding and agronomy (Cooper 
et al., 2020; Peng et al., 2020; Kusmec et al., 2021) and enabling 
environment-speci�c predictions (Rogers et al., 2021). For maize 
breeding in the US corn-belt, early applications of these enviromic 
technologies have been integrated into the operations of crop 
improvement programs and are in operational use today (Cooper 
et al., 2014a,b, 2020; Ga�ney et al., 2015; Messina et al., 2018). 
Such applications of enviromics to analyze GxExM interactions 
for yield are not restricted to water and drought. Alternative 
environmental descriptors, such as nitrogen availability (Bänziger 
et  al., 1999; DeBruin et  al., 2017; Mueller et  al., 2019; Udvardi 
et  al., 2021), can also be  applied as appropriate for the crop 
breeding target, cropping system, and TPE.

DISCUSSION

Given the ubiquity of GxExM interactions for crop grain 
yield within an agricultural TPE, it is expected that further 
developments in the domain of enviromics will continue 
and their applications will expand as plant breeders incorporate 
these technologies within their breeding operations. With 
the continuing advances in crop genomics (Morrell et  al., 
2012; Yuan et  al., 2017; Tao et  al., 2021; Varshney et  al., 
2021) and phenotyping (Araus and Cairns, 2014; Araus 
et  al., 2018; Van Eeuwijk et  al., 2019; Messina et  al., 2021; 
Smith et al., 2021), a wide array of suitable genomic predictors 

are available and becoming cost-effective options for many 
crop breeding applications. Agronomists and physiologists 
have invested in the development of methods for measuring 
important environmental variables (Chenu et al., 2011; Guan 
et  al., 2017; Smith et  al., 2021) and suitable crop models 
to integrate the multiple influences of environmental 
conditions on yield outcomes for different genotypes 
(Chapman et  al., 2003; Messina et  al., 2006, 2018, 2019; 
Chenu et  al., 2009; Holzworth et  al., 2014; Muller and 
Martre, 2019; Wang et  al., 2019). These same methods can 
be  developed to provide suitable environmental predictors 
for envirotyping and to enhance genomic prediction (Cooper 
et  al., 2014a,b; Jarquín et  al., 2014; Messina et  al., 2018; 
Voss-Fels et al., 2019; Costa-Neto et al., 2021; Resende et al., 
2021). An integrated breeding–agronomy approach to 
accelerate crop improvement is within reach through 
operationalizing the genomic, enviromic, phenomics, and 
quantitative modelling processes required to obtain suitable 
genotypic and environmental predictors for appropriate stages 
of crop improvement programs. Successful applications have 
been demonstrated for commercial maize breeding in the 
US corn-belt (Cooper et  al., 2014a; Gaffney et  al., 2015). 
Opportunities are emerging for development of integrated 
breeding-agronomy approaches for other crops and target 
regions to tackle current GxExM challenges and the anticipated 
impacts of climate change (Hatfield and Walthall, 2015; 
Hammer et  al., 2019; Beres et  al., 2020; de los Campos 
et  al., 2020; Messina et  al., 2020; Ramirez-Villegas et  al., 
2020; Crossa et al., 2021; Hunt et al., 2021; Kusmec et al., 2021; 
Smith et  al., 2021; Udvardi et  al., 2021).
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