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Today’s meta-analyses summarize their results in several ways.
When the outcome is dichotomous, some authors prefer the
number needed to treat (NNT), because it expresses the efforts
that clinicians and patients must expend in order to accomplish
the desired treatment target. The NNT is calculated as the in-
verse of the risk difference (RD), which is an absolute measure

of effectiveness. However, many meta-analyses continue to utilize
relative measures of effectiveness such as odds ratio (OR) and
risk ratio (RR).

It is the ultimate aim of evidence-based medicine (EBM) to
individualize group data from clinical research, in order to satisfy
each individual patient’s values and preferences.1 Therefore,
many EBM theorists note that since event rates vary, often
dramatically, across patients, a single NNT is unlikely to be ap-
plicable to all patients. They therefore advocate individualizing
the NNT, depending on estimates of RR obtained from group
studies and on each patient’s expected event rate (PEER).2 This
approach is based on the assumption of constant RR, i.e. ‘the
relative benefits and risks of therapy are the same for persons
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with high or low PEERs’.3,p.120 Basically the argument goes
that, assuming a constant RR, the absolute benefit of the treat-
ment, usually expressed as NNT, is smaller among low risk patients
than among high-risk patients. A classical example where this
holds is the treatment of hypertension.4

But is this premise true for a wide variety of health interven-
tions? Sackett et al. themselves wrote, ‘this (constancy of RR) is
a big assumption’.5,p.170

To the best of the present authors’ knowledge, no empirical
study to date has directly examined how applicable or general-
izable various effect measures of meta-analyses are in actual
practice. One study showed that RR and OR are more independ-
ent of the baseline risk than RD for a wide range of randomized
controlled trials (RCT),6 but these investigators examined in-
dividual trials and do not tell us which summary effect measure
was better for meta-analysis.

Another study compared fixed as well as random effects model
OR and RD for 125 meta-analyses and found that RD tended to
be more heterogeneous among trials.7 They noted that random
effects estimates often showed wider CI than fixed effects models
and concluded that, since formal tests of heterogeneity are often
underpowered, it might be appropriate to assume that system-
atic differences among trials are always present and to use a
random effects model. This study did not include RR in their
comparisons. Moreover, neither of these two studies tells us how
often a summary effect measure, OR or RR or RD, is constant
over a range of baseline risks. The constancy of an effect
measure is an important factor to consider in deciding if we 
can individualize NNT and which summary measure to utilize if 
we want to do so. The present report presents the results of an
empirical examination of the generalizability of the most com-
monly used measures of association for summarizing treatment
effects in meta-analyses.

Methods
We included all the meta-analyses in the field of psychiatry 
as well as a randomly selected subset of all the other meta-
analyses in other branches of medicine contained in a recent
issue of the Cochrane Library.8 When a meta-analysis pooled
more than three RCT to produce a summary measure for one
outcome, we compared the OR, RR and RD of each of the
included RCT with the pooled OR, RR and RD, respectively,
from the other RCT. At minimum, a meta-analysis of three 
RCT would contribute three comparisons because, for a single
outcome, we would compare each of the three RCT to a meta-
analysis of the other two. Another meta-analysis of three RCT
would contribute nine comparisons if the study pooled the
three RCT for three discrete outcomes, such as acceptability of
treatment, response, and side effects. Furthermore, for each out-
come, the number of comparisons was equal to the number of
RCT: a meta-analysis of four RCT would yield four comparisons,
five RCT five comparisons, and so on.

Using methods described by Fleiss,9 if the individual OR (or
RR or RD) and the pooled OR (or RR or RD) were statistically
significantly different at a conventional P-value of 0.05, we
regarded them as discordant and, if not, as concordant.

We calculated pooled estimates using both a fixed effects model
(Mantel-Haenszel) and a random effects model (DerSimonian
and Laird). Theoretically neither may be entirely satisfactory

because the latter is only exchanging the questionable homo-
geneity assumption of the former for a fictitious random
distribution of effects.10,11 In practice, when pooling non-
heterogeneous studies, investigators have found that both agree
rather well, but the random effect model tends to be more
conservative, and often yields wider CI.7,12

Because it is conceivable that the rate of concordance could
be artificially inflated due to small sample size of some of the
RCT involved (that is, we fail to reject the hypothesis that the
point estimate from the individual RCT differs from the pooled
estimate because of inadequate precision, and therefore excess-
ively wide CI), we conducted a sensitivity analysis restricted to
comparisons in which both individual RCT and the correspond-
ing meta-analyses produced statistically significant results. In
order to examine the consistency of treatment effectiveness
indices when the control event rate (CER) differs substantially,
we conducted another sensitivity analysis limited to instances
where the results of RCT and the meta-analysis were statistic-
ally significant and in addition the CER of individual RCT was
less than half or more than twice of that of the weighted average
of the other studies from that meta-analysis. We further exam-
ined concordance rates when the results of the individual RCT
and the meta-analysis were statistically significant and the CER
of individual RCT was three-times different from that of the
weighted average of the other studies.

Our results showed that the fixed effects OR, random effects
OR and random effects RR all produced potentially acceptable
concordance rates between one RCT and the meta-analysis 
of similar RCT (see Results). In order to individualize NNT, we
would apply these indices of treatment effectiveness to PEER by
the following formulae:

NNT =
1

and NNT =
1 – PEER + OR × PEER

PEER × (1 – RR) PEER × (1 – OR) × (1 – PEER)
.

We therefore next examined the extent to which these
models would produce similar individualized NNT across the
range of baseline risks in which clinicians would typically apply
the method of individualizing the NNT. For this analysis, we
used meta-analyses which produced statistically significant fixed
effects model OR. For each meta-analysis that met this criterion,
we calculated the NNT assuming patient expected event rates of
0.1, 0.2, 0.3, 0.4, and 0.5.

To determine the extent of agreement, we needed to define 
a range of NNT in which the clinical implications are likely to 
be very similar. We chose the following (inevitably somewhat
arbitrary) criteria: for NNT of 1–5 differences of <3; for NNT 
of 6–10, differences of <4; for NNT of 11–50, differences of
<15; for NNT 51–100, differences of <30; for NNT over 100,
,0.3 × NNT. Using these criteria, we calculated agreement of
the individualized NNT based on fixed or random effects OR and
random effects RR.

Because the results were very similar between psychiatry and
general medicine, we present the combined results. Because 
of lack of independence of effect measures in these sets of com-
parisons, we were unable to calculate 95% CI for the concordance
rates or to examine if the differences in the concordance rates
were statistically significant. The results, however, show us how
often, in absolute terms, we can expect the pooled effects of
meta-analyses to apply to separate groups of patients.



We did not exclude the comparisons where statistical hetero-
geneity was noted if the studies were combined and the sum-
mary measures were reported in the original meta-analyses.
Nor did we consider the impact of switching from the absence
to the presence of the selected outcome event for the RR (for
instance, from death to survival, or persistent disease to cure),
although the RR of event and the RR of no event can make a
substantial difference in the estimated effect size, its 95% CI 
and observed heterogeneity (in contrast to RR, OR and RD are
symmetrical around 1 and 0, respectively, if we switch the
selected event, and therefore do not present such problems).13

We aimed to examine the generalizability of pooled results as
they are currently practised and reported.

Results
We made 1843 comparisons between OR, RR or RD of an
individual RCT and the pooled OR, RR or RD of meta-analyses
of all the other comparable RCT for various outcome variables
extracted from 55 meta-analyses in the Cochrane Library (16
from psychiatry and 39 from general medicine). These included
such diverse topics as antenatal thyroxin releasing hormone
(TRH) prior to preterm delivery, antibiotics in salmonella, anti-
coagulation following non-embolic stroke, clozapine for schizo-
phrenia and pharmacotherapy for dysthymia.

In terms of the total sample of comparisons made, all effect
measures appeared to be reasonably and satisfactorily general-
izable at around 90% concordance rates, but random effects
model OR and RR produced the highest concordance rates (92%)
(Table 1).

When we limited the comparison to those instances in which
both individual RCT and their corresponding meta-analysis
produced statistically significant outcomes, 412 comparisons were
possible for each effect measure. Here fixed or random effects
model OR and random effects model RR had concordance rates
which were still close to 90%, while the risk difference demon-
strated an appreciable drop in concordance.

When we further limited the comparisons to instances in
which the CER of individual RCT was less than half or more
than twice of that of the corresponding meta-analyses random
effects model OR had the highest concordance rate (88%), closely
followed by fixed effects model OR and the random effects
model RR (87% and 84%, respectively). The concordance rate
of the RD, both fixed and random effects model, showed
marked declines from the values obtained for the total sample.
The results were consistent when we examined more extreme
cases where the CER was three-times different (Table 1).

We noted no particular clinical area where either the OR or the
RR showed more than occasional inconsistency across studies.

Out of 412 comparisons in which both RCT and meta-analysis
had significant results, in only 17 instances (4%) was the dis-
crepancy qualitative, i.e. an RCT produced an RR in the opposite
direction from the random effects model RR of the meta-analysis
of the other RCT. Instances in which qualitative differences
were noted for a number of outcomes were very diverse and
showed no common features that we can discern: antibiotics for
treating salmonella gut infection, prophylactic surfactant in pre-
term infants, amodiapine versus chlorquinine in symptomatic
patients with malaria, and clozapine versus typical antipsychotics
in schizophrenia.

For a range of patient’s expected event rates (PEER), point
estimates of the individualized NNT calculated from fixed effects
OR, random effects OR and random effects RR all produced good
to excellent agreement, and were unlikely to lead to differing
clinical decisions (Table 2).

Discussion
In this study, the random effects model OR showed the greatest
consistency across RCT within meta-analyses, closely followed
by the fixed effects model OR and random effects model RR. 
All of these measures of effect showed individual RCT results
consistent with those of the other trials addressing the same
question 82% or more of the time, even when the baseline risk
differed substantially. On the other hand, the random or fixed
effects model RD proved substantially less generalizable.

This degree of concordance for some measures of associations
is surprising and encouraging, given that trials differ in the
patients recruited, the way the interventions are administered,
and the way the outcomes are measured, all of which can influ-
ence the size of the treatment effect. Publication bias could have
inflated the concordance rates. This could occur if negative RCT,
which would likely have RR qualitatively discrepant from those
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Table 2 Agreement of point estimates of individualized number
needed to treat (NNT) based on fixed effects odds ratios (OR), 
random effects OR and random effects risk ratios (RR)

Fixed effects Fixed effects Random effects 
OR versus OR versus OR versus

random random random
PEERa effects OR effects RR effects RR

0.1 97% 82% 83%

0.2 98% 92% 93%

0.3 99% 90% 91%

0.4 99% 89% 90%

0.5 99% 80% 82%

a Patient’s expected event rate.

Table 1 Concordance between each individual randomized controlled trial (RCT) and meta-analytic results of the remaining RCT among
Cochrane meta-analyses

Odds ratio Risk ratio Risk difference

No. of comparisons Fixed Random Fixed Random Fixed Random

All comparisons 1843 90% 92% 89% 92% 85% 88%

When both RCT and meta-analysis significant 412 86% 88% 82% 86% 72% 78%

When both significant and CERa doubly different 91 87% 88% 78% 84% 56% 65%

When both significant and CER three-times different 50 84% 84% 76% 82% 54% 64%

a Control event rate.
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in positive RCT, were not published. In addition, systematic
reviews that suggested substantial heterogeneity may not have
been performed or published. We cannot know the extent of
this bias.

Demonstrating similar treatment effects across differing
groups of patients within a series of trials would provide the
strongest support for assuming a constant RR or OR. For
instance, assume that pooling results in the low, moderate, and
high-risk patients who participated in a group of trials showed
a similar magnitude of effect. Such a finding would provide very
powerful evidence for applying a single OR or RR in calculating
the likely benefit in all such patients. Unfortunately, such 
data are seldom available. The results of this study provide
somewhat weaker, but still compelling, evidence that we may
safely assume a similar magnitude of treatment effect when we
want to individualize treatment decisions in separate groups of
individuals or in an individual patient who may have a varying
baseline risk.

On the other hand, we found that no effect measure was
100% applicable to all the possibly similar groups of patients.
Our results apply only to the range of baseline risks seen in the
studies that we included. The largest range was a 30-fold differ-
ence but the large majority was up to 5-fold difference; in 81%
the difference was no greater than 2-fold, in another 10% no
greater than 3-fold, and in another 5% no greater than 5-fold.
Applying our results to greater differences in baseline risk is 
less secure. Examples are recently accumulating where OR and
RR do appear to differ materially among subgroups of patients
with differing baseline risks. They include anti-arrhythmic
drugs after myocardial infarction,14 carotid endarterectomy,15

and human immunodeficiency virus infection.16 Our results
suggest that these cases represent exceptions, and that across
various health interventions in humans, fixed effects model OR
and random effects model OR or RR would be correct in eight

to nine out of ten instances when applied to separate groups of
individuals.

On the basis of our results, the best summary measure for a
meta-analysis might be the random effects model OR. Clinicians
could then use this OR to calculate PEER-adjusted NNT. More-
over, OR has some theoretical advantages over RR, because (1)
it is symmetric around unity, (2) it does not predict impossible
event rates if measure is assumed constant, (3) efficient estimation
in small samples is available, (4) it can be easily expanded to a
model with multiple factors and multiple levels, and (5) it can
be estimated from any of the basic three epidemiological study
designs (retrospective, cross-sectional or prospective).17

However, along with these mathematical properties, there 
are other factors to consider when recommending a summary
measure for meta-analyses, such as the ease of interpretation
and communication.18 Clinicians find the OR difficult to inter-
pret19 and repeated examples show that even the most prestigious
journals misinterpret OR as if they were RR.20,21 This difficulty
appears even greater when the result is to be used to obtain
‘informed consent’ from a patient.22 The difference between OR
and RR is large when the CER is moderate to high and/or when
the OR and RR are much greater or smaller than 1.0, and mis-
interpreting OR as RR often ends up overestimating the benefits
or harms of an intervention.13 Furthermore, calculation of NNT
from OR and PEER is arithmetically complicated.23 On the other
hand, our analyses suggested that point estimates of individual-
ized NNT agree well if we calculate them from OR or RR.

Our results, and the additional considerations we have outlined,
suggest the following approach to individualizing estimates of
treatment benefit. First, the clinician should examine the avail-
able results to ensure that there is no evidence that relative risk
varies substantially across risk groups. In the absence of such
evidence, the clinician can safely use the random effects model RR
to estimate PEER-adjusted NNT for individual patients they treat.

KEY MESSAGES

• When applying the results from a meta-analysis to individual patients, numbers needed to treat (NNT) are often
calculated using the combined relative risk and the patient’s expected event rate. This approach assumes that
relative risks are constant across individual trials. This study examined the constancy of different summary effect
measures.

• The odds ratio from fixed effects and random effects models and the relative risk from random effects models
were reasonably constant across different baseline risks.

• The risk difference showed considerably less constancy, independent of the model used to combine the data.

• Given the interpretational ease of the relative risk, clinicians may want to rely on the relative risk from random-
effects models.



To practice evidence-based therapeutics, clinicians have to
integrate measures of efficacy and safety from the literature
with their patient’s unique risks and values.1 To do this requires
two assumptions. First, we assume that we can accurately
estimate our patient’s underlying baseline risk (or the ‘expected
event rate’ referred to by Furukawa and colleagues).2 This is no
simple matter: while clinicians appear to be reasonably accurate
in estimating the relative risks of different patients, even experi-
enced clinicians perform poorly when estimating any one indi-
vidual’s absolute risk.3 Methods for estimating the expected event
rate for a particular patient have recently been reviewed and
will not be considered further in this commentary.1 The second
common assumption in extrapolating from trials or meta-analyses
to individual patients (who typically are at different risks from
the ‘average patient’ in these studies), is that the relative effects
of therapy are similar for patients at different risks. The study by

Furukawa and colleagues2 in this issue of the International Journal
of Epidemiology adds to the emerging evidence supporting the
validity of this assumption.

In discussing underlying or baseline risks in this commentary,
I am not referring simply to the control event rate, but rather to
patient characteristics (such as age, gender, disease aetiology,
concomitant conditions, or disease status) present at baseline
and known to impact prognosis for that particular disease. It 
is well recognized that any analyses relating treatment effects 
to control event rates in the same dataset will demonstrate a
relation even if none exists (since the control event rate factors
into both the expression for baseline risk and the expression for
treatment effect).4

The best evidence for deciding whether treatment responsive-
ness differs across a spectrum of underlying risks would arise
from individual patient data meta-analyses where the relative
treatment effects in subgroups with widely varying risks can 
be directly compared. Although some such analyses have been
conducted, they are few and far between and we are left to
consider the second best approach to address this question: com-
parison of the relative treatment effects in different trials testing
the same intervention (assuming that patients in different trials
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with the same condition will have different risk profiles). The
problem is how to find these groups of related trials—the 
easiest solution (employed by Furukawa and colleagues) is to 
review the reference lists of the rigorously conducted systematic 
reviews included in the Cochrane Collaboration database. I have
described this approach as second best as selection bias may very
well distort the findings (since a group of trials reporting widely
divergent treatment effects are unlikely to be pooled to provide
a single summary measure due to excessive heterogeneity).
However, at this time it is the best we have.

Schmid et al.5 provided the first such systematic approach by
examining the relationship between effect measures and base-
line risk in 115 meta-analyses (using a hierarchical model to
account for the functional correlation between observed rates
discussed earlier and random error in measurement of the
control rate). They found that while the risk difference was
significantly related to underlying risk in 31% of cases, in 87%
of cases the relative risk (RR) (and in 86% of cases the odds
ratio [OR]) did not vary significantly with the control event
rate. Fukurawa and colleagues extend this work in a separate
dataset by demonstrating high rates of concordance for both the
OR and the RR in 1843 comparisons between individual trials
and the summary effect measures derived from pooling all other
trials in that topic area.2 In particular, they found that the con-
cordance rates were high for both OR and RR even when control
event rates differed substantially (up to threefold) between trials.
They found a qualitative discrepancy (where an individual trial
reported an RR [or OR] in the opposite direction from the sum-
mary RR [or OR] for the other trials) in only 4% of cases but
could not discern any features of these trials that suggested why
such a discrepancy may occur. Thus, while both studies suggest
that relative effect measures are constant across the usual spec-
trum of underlying risks in the vast majority of cases, neither
study has advanced our understanding of when this assumption
is unlikely to hold.

Sackett has hypothesized that relative treatment effects 
will be constant over the usual range of underlying risks for ‘risk
factor’ interventions designed to slow the progress of disease,
but that they will rise with increasing baseline risk for interven-
tions designed to reverse the consequences of a disease process.6

This latter situation would seem to apply particularly when the
intervention has both positive and negative effects on the out-
come of interest (for example, surgical procedures to prevent
certain outcomes in the long-term usually expose patients to 
an increased risk of these same outcomes in the immediate 
peri-operative period). Thus, we would expect the relative risk
reduction (RRR) associated with treatments such as angiotensin
converting enzyme inhibitors in heart failure, beta-blockers 
in myocardial infarction, or thiazides for hypertension to be
similar in patients with different underlying risks—indeed this
is exactly what is seen.7–9 On the other hand, we would 
expect the RRR associated with interventions such as carotid
endarterectomy or coronary artery bypass grafting to be higher
in patients at higher risk—again, exactly what is seen.10,11

However, a word of caution: the validity of this hypothesis
depends on the outcomes examined and is unlikely to hold for
combined endpoints where the risk factor intervention impacts
on only one of these endpoints.12 For example, consider the
example of cholesterol lowering agents. Although these drugs
produce a consistent RRR in ‘coronary events’ and ‘cardiac

mortality’ across different risk strata, their RRR for the
combined endpoint of ‘all-cause mortality’ will vary and indeed
be greater in ‘high-risk’ patients (such as those with established
coronary disease) in whom a greater proportion of all deaths
will be cardiac.13

Nevertheless, on the basis of the studies by Drs Schmid and
Furukawa, it now seems reasonable to accept the assumption
that relative treatment effects are consistent across the spectrum
of underlying risks … usually.
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