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Can we reduce the workload of mammographic screening
by automatic identification of normal exams with artificial
intelligence? A feasibility study
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Abstract

Purpose To study the feasibility of automatically identifying normal digital mammography (DM) exams with artificial intelli-

gence (AI) to reduce the breast cancer screening reading workload.

Methods and materials A total of 2652 DM exams (653 cancer) and interpretations by 101 radiologists were gathered from nine

previously performed multi-reader multi-case receiver operating characteristic (MRMCROC) studies. An AI systemwas used to

obtain a score between 1 and 10 for each exam, representing the likelihood of cancer present. Using all AI scores between 1 and 9

as possible thresholds, the exams were divided into groups of low- and high likelihood of cancer present. It was assumed that,

under the pre-selection scenario, only the high-likelihood group would be read by radiologists, while all low-likelihood exams

would be reported as normal. The area under the reader-averaged ROC curve (AUC) was calculated for the original evaluations

and for the pre-selection scenarios and compared using a non-inferiority hypothesis.

Results Setting the low/high-likelihood threshold at an AI score of 5 (high likelihood > 5) results in a trade-off of approximately

halving (− 47%) the workload to be read by radiologists while excluding 7% of true-positive exams. Using an AI score of 2 as

threshold yields a workload reduction of 17% while only excluding 1% of true-positive exams. Pre-selection did not change the

average AUC of radiologists (inferior 95% CI > − 0.05) for any threshold except at the extreme AI score of 9.

Conclusion It is possible to automatically pre-select exams using AI to significantly reduce the breast cancer screening reading

workload.
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Key Points

• There is potential to use artificial intelligence to automatically reduce the breast cancer screening reading workload by

excluding exams with a low likelihood of cancer.

• The exclusion of exams with the lowest likelihood of cancer in screening might not change radiologists’ breast cancer detection

performance.

• When excluding exams with the lowest likelihood of cancer, the decrease in true-positive recalls would be balanced by a

simultaneous reduction in false-positive recalls.
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Abbreviations

AI Artificial intelligence

AUC Area under the curve

BI-RADS Breast imaging reporting and data system

CAD Computer-aided detection

CI Confidence interval

DM Digital mammography

PoM Probability of malignancy

ROC Receiver operating characteristic

Introduction

Population-based screening programs with digital mammog-

raphy (DM) reduce mortality from breast cancer due to the

earlier detection of the disease [1, 2], but their efficiency is

continuously under discussion [3, 4]. False-positive findings

[5] lead to negative effects such as unnecessary workup, par-

ticipant anxiety and reluctance to re-attend screening, as well

as a reduction in cost-effectiveness [6]. On the other hand,

since the program-based sensitivity of screening is approxi-

mately 75% [7], false-negative findings may lead to false re-

assurance and ultimately a delayed cancer detection. One of

the reasons why mammographically visible cancers are

missed is the low prevalence of cancer (approximately, 10

per thousand) in a screening population [8, 9].

Computer-aided detection (CAD) systems to improve

mammography reading have been used since the beginning

of this century. However, so far no study has found any direct

improvement in screening outcomes, likely because of the low

specificity of these traditional CAD systems [10, 11]. The re-

cent breakthrough in artificial intelligence (AI) performance,

based on the use of deep learning algorithms, is now closing

the gap between human and computer performance in many

applications related tomedical imaging [12]. Novel AI systems

may, therefore, be able to improve the performance and effi-

ciency of population-based screening programs [13]. For

mammography evaluation, deep learning–based systems have

demonstrated a stand-alone performance as good as radiolo-

gists [14], as well as a significant improvement of radiologists’

breast cancer detection accuracy when used for decision sup-

port [15]. However, this radiologist-like performance may

enable other uses of AI for mammography evaluation in

screening. Of particular interest are approaches aimed at reduc-

ing workload, considering the increasing scarcity of (breast)

radiologists in some countries [16–18].

In this work, we explore the possibility of using an AI

system to pre-select likely-normal mammograms. This was

done using an AI system that provides an exam-based score

denoting the likelihood of cancer present in the mammogram.

We analyzed the effects on performance of excluding exams

with a low score (i.e., low likelihood of cancer present) from

human reading, which would reduce the screening workload

for radiologists and increase the cancer prevalence in the ac-

tually evaluated images.

Materials and methods

Data and population characteristics

Digital mammograms were collected from nine previously

performed multi-reader multi-case (MRMC) observer studies

[19–26]. The review board at each institution waived local

ethical approval and informed consent or approved the use

of the anonymized patient data for retrospective research.

All the datasets of the MRMC studies were enriched with

exams with cancer. The ground truth, in terms of cancer pres-

ent, benign lesion present, or absence of abnormalities, of each

DM exam, was confirmed by histopathology and/or at least

1 year of follow-up. During each MRMC study, each DM

exam was evaluated by multiple breast radiologists who pro-

vided malignancy scores for each exam (BI-RADS and/or

level of suspicion).

In total, 2654 exams (653 with cancer, 768 with benign

lesions, 1233 normal) and readings by 101 radiologists (52%

from the USA and 48% from Europe) were gathered (yielding

28,296 independent exam interpretations). Approximately,

half the exams were from screening and half from clinical

practice. Detailed information about the tumor histology was

not available. The DM images were acquired with devices

from four different vendors (Siemens Healthineers; Hologic

Inc.; General Electric Healthcare; SectraMamea) across seven
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different countries. Further details of these nine studies have

previously been reported elsewhere [14].

Artificial intelligence system

For this study, we used an AI system dedicated to breast can-

cer detection in DM and digital breast tomosynthesis

(Transpara 1.4.0, Screenpoint Medical BV). The system uses

deep learning convolutional neural networks, feature classi-

fiers, and image analysis algorithms to detect calcifications

and soft tissue lesions in two different modules [14]. Based

on these detected lesions and overall exam appearance, the AI

system assigns an exam-based integer score denoting the like-

lihood that cancer is present in the exam (hereafter AI score,

also known as Transpara Score). This AI score ranges between

1 and 10 (10 means high likelihood that a cancer is present in

the exam). The AI score is calibrated so that approximately the

same number of normal exams (10% of the total) is assigned

to each AI score category. In a population with low prevalence

of cancer (where most exams are normal), such as a screening

population, it may therefore be expected that approximately

10% of the total exams are in each category. In a screening

population, the 10% of exams scored 1 are predicted to have

the lowest risk of harboring cancer (because category 1 has the

lowest incidence of exams with cancer), while the 10% of

exams scored 10 have the highest risk of harboring cancer

(because category 10 contains the largest fraction of exams

with cancer). Since the calibration of the AI score is performed

only with screening mammograms without abnormalities, the

AI score is independent to the composition of the datasets.

However, the fact that all datasets used for this study were

enriched with cancers implies that the found distribution of

AI scores in our study is skewed towards higher numbers,

since it should be expected that cancer cases are not evenly

distributed over AI categories.

The AI system was trained, validated, and tested using an

external database representative of screening containing over

9000 mammograms with cancer (one-third of which are

presented as lesions with calcifications) and 180,000 mammo-

grams without abnormalities. The AI score was also calibrated

with this external database, using only the normal mammo-

grams. The mammograms used in this study have never been

used to train, validate, or test the algorithms. The mammo-

grams originate from devices from four different vendors

(Hologic; Siemens; General Electric; Philips) and institutions

across Europe, USA, and Asia.

Automated pre-selection of cases

For this study, the distribution of the normal exams and those

containing benign or malignant lesions according to the

ground truth was computed as a function of the AI score. To

divide the exams into two groups (excluded and pre-selected

for evaluation), we varied the threshold dividing these two

groups across all possible AI scores, i.e., from 1 to 9.

Consequently, the pre-selection scenarios included exams-to-

be-evaluated as those with scores greater than 1, 2, 3, 4, 5, 6, 7,

8, or greater than 9 (equivalent to only pre-selected category

10). For each threshold, the characteristics of the exams in

both groups were analyzed.

Under the pre-selection scenarios, we assumed that readers

would only evaluate exams in the pre-selected group (high

likelihood of cancer present), whereas exams in the low-

likelihood group would automatically be assigned a Bnormal^

classification.Workload reduction throughout the text is there-

fore expressed in terms of the number of exams that have to be

read by the screening radiologists. Given the calibration of the

AI system, a pre-selection threshold of 5, for instance, means

that half of the exams in a screening program would be ex-

cluded from human reading. An estimation of how radiolo-

gists’ performance would change after pre-selection was cal-

culated by a posteriori modification of the original radiolo-

gists’ scores: for the exams in the excluded group, all the

radiologists’ scores were automatically modified to the lowest

possible value (e.g., 1). This implies that we assumed invari-

ance in human behavior for the pre-selected mammograms

that were above the threshold and therefore should be

evaluated.

Statistics

The breast cancer detection accuracy of radiologists in the

original scenario was compared with the simulated pre-

selection scenario with a non-inferiority null hypothesis

[27–31] based on the differences in the average area under

the receiver operating characteristic curve (AUC). The non-

inferiority margin was set at 0.05 in this study. Non-inferiority

was concluded when the AUC difference Bpre-selection

scenario^ – Boriginal reading^ was greater than 0 and the

lower limit of the 95% confidence interval (CI) of the differ-

ence was greater than the non-inferiority margin. Confidence

intervals were Bonferroni-corrected for multiple comparisons.

To obtain the average AUC across all our data, we used the

public-domain iMRMC software for analysis (version 4.0.0,

Division of Imaging, Diagnostics, and Software Reliability,

OSEL/CDRH/FDA, Silver Spring, MD) [29, 30], which can

handle not fully crossed study designs, such as the split-plot

design resulting when pooling the nine datasets from this

study [32, 33]. The reader-averaged ROC curves were created

by averaging the reader-specific non-parametric (trapezoidal)

curves along lines perpendicular to the chance line [34]. This

average is area-preserving; its AUC is equal to the reader-

averaged non-parametric AUCs. The analysis was not done

per dataset, given the homogeneous performance of the AI

system across datasets seen in Rodriguez-Ruiz et al [14]. We
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therefore assumed that no differences per dataset would be

present in this study.

Results

Performance of the AI system

The distributions of DM exams as a function of AI score are

shown in Fig. 1 (for each type of exam according to ground

truth: a, normal; b, cancer; c, benign). As expected, normal

exams are distributed evenly across AI scoring categories,

with an average of 10.0% of normal exams per category

(range 7.2–14.9%). For the exams containing cancer, 72.5%

are categorized within the highest cancer-present likelihood

category (10), whereas 95.1% lie in the categories 5–10. In

comparison, only 27% of exams containing benign lesions are

in category 10. An example of an exam with cancer that was

assigned a low AI score is shown in Fig. 2.

Automated pre-selection of cases

The proportion and type of exams that would be excluded

from reading after a pre-selection of exams using different

pre-selection thresholds are depicted in Fig. 3. The trade-off

between reducing screening reading workload (e.g., excluding

normal exams) and excluding exams containing cancer from

the reading is shown: halving the workload of screening

(− 47% of screening exams) can be achieved if only exams

with scores higher than 5 are read, at the expense of excluding

7% of cancer exams. With a threshold of 2 for pre-selection,

for instance, only 1% of exams containing cancer are excluded

but the reading workload is reduced by up to 17%.

Simultaneously, these thresholds would reduce the cases con-

taining benign lesions by 27% and 5%, respectively, thus re-

ducing the number of false-positive recalls substantially.

After the pre-selection of exams, assuming invariance of

reader behavior, the average breast cancer detection perfor-

mance (AUC) of the radiologists did not change. The AUC

for the reading of the pre-selection population was non-

inferior to the AUC of the original population. This was sig-

nificant (lowest Bonferroni-corrected 95% CI > − 0.05, AUC

differences were less than 1%, see Fig. 4) for all possible

thresholds except for 9, when only exams in the highest

cancer-present likelihood category (10) would be evaluated

(low 95% CI = − 0.052, AUC decreased by 2%).

Discussion

In this work, we have evaluated the feasibility of using an AI

system to automatically discriminate between screening mam-

mography exams that have a higher and a lower likelihood

that cancer is present. Our study shows that, in some situa-

tions, it could be a possibility to exclude exams with a lower

AI score from human evaluation since the cancer prevalence

in these exams is much lower than in an unselected popula-

tion, thus potentially reducing the reading workload for

radiologists.

Fig. 1 Distribution of normal (a), cancer (b), and benign exams (c) as a

function of AI score, representing the likelihood of cancer present (1–10,

10 means high likelihood of cancer present). The contribution of each

dataset to the overall percentage of exams is shown

4828 Eur Radiol (2019) 29:4825–4832



If such a pre-selection scenario is to be considered, our

results point to a trade-off between reducing workload and

risking to exclude exams with cancer, which depends on the

threshold chosen to create the two groups. On the other hand,

the optimal threshold would likely be dependent on local prac-

tices and necessities. With a low threshold, we observed a

relatively safe scenario with an approximate reduction of

17% in workload at the expense of excluding 1% of exams

with cancer from reading (at a cancer detection rate in screen-

ing of approximately 6/1000, the cancer prevalence in this

group would be approximately 0.3 per 1.000). With a thresh-

old set at an AI score of 5, the workload reduction increases to

47%, at an expense of 7% of cancers. Nevertheless, the exams

with cancer in this study do not only originate from screening

but also from clinical practice, and it is reported that some

cancers in the original reader study were detected by other

means such as palpation, ultrasound or breast tomosynthesis

[19–26]. This likely means that the reported percentage of

excluded exams containing cancer in this study might be

overestimating the actual exclusion proportion of screen-

detected cancers. A limitation of our study is that we cannot

analyze the abovementioned results per detection mode

(screening or clinical), per histopathological type of cancers

or per breast density, because this information is not available

from the original studies.

Our results suggest that pre-selection of exams does not

lead to a reduction of the overall detection performance of

radiologists, with the AUC varying by less than 1%. This

supports the theory that cancers missed by AI are also missed

by radiologists, probability due to their low mammographic

visibility.

We assumed invariance in reading of the pre-selectedmam-

mograms. However, in actual screening practice, there might

be several factors affecting radiologists’ scoring of pre-

selected exams. The higher prevalence of cancer in the pre-

selected cohort might lead to a higher sensitivity for breast

cancer, as in practice, it is easier to detect abnormalities when

their frequency is relatively high [8]. Likewise, it would be

Fig. 2 An example of the nine exams in our study that contained cancer

but were assigned an AI score of 1 or 2, the lowest cancer-present likeli-

hood categories. None of the 6 radiologists recalled this exam during the

original MRMC study (read without priors), suggesting that the cancer

visibility with mammography is poor in these exams (and in fact, the

cancer may have been detected by other means)

Fig. 3 Proportion (%) of exams that would be excluded from the final

sample to be evaluated by the radiologists, using all possible AI scores as

thresholds values for pre-selection for reading
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interesting to investigate whether reading the pre-selected

group of mammograms in a specific order, e.g., from higher

to lower AI score, is also of added value (as cancer prevalence

increases with increasing AI score). It would also be possible

to increase the recall rate in the pre-selected cohort on purpose

(by lowering the recall threshold), in order to counter-balance

the exclusion of the cancer-containing mammograms with a

low AI score. The fact that more benign lesions are excluded

likely makes this possible without increasing the overall recall

rate.

The exclusion of cases with benign lesions likely improves

the specificity of screening, thus reducing possible harms as-

sociated with false-positive recalls. The similarity of ROC

curves after exclusion of cases suggest indeed that the nega-

tive effect of dismissing exams with cancer is partially bal-

anced by dismissing also false-positive assessments.

However, it may be assumed that most benign abnormalities

with a relatively lowAI score will be lesions that are classified

as certainly benign by breast radiologists without biopsy;

therefore, the effect on the fraction of women that undergoes

biopsy for benign lesions may be smaller.

While in this study we propose automatic labeling of mam-

mograms that would never be read by human radiologists, an

alternative possibility is to use the automatically created

groups of exams to differentiate cases that need double read-

ing, from cases for which single reading is sufficient. Such a

strategy may be valuable for e.g. European screening pro-

grams, where double reading is a practice, and may be of

special interest for programs that use breast tomosynthesis as

the imaging technique for screening, because of the longer

reading time per case [25, 35]. Obviously, the effects of such

stratification should be further evaluated.

Improvements of the computer system, such as inclusion of

temporal information from prior exams, will presumably fur-

ther enhance the pre-selection, as the current system only uses

information from the current DM exams. Evaluation of other

systems and versions should be regularly performed consider-

ing the rapid speed of evolution in the field of machine learning.

Our study had several limitations. The used datasets were

not obtained from screening, but were enriched with cancer

cases. The exams were not double-read, as is common practice

in screening in Europe, but independently read by multiple

radiologists per case. The mix of screening and clinical data

may have also introduced cancers that have different charac-

teristics from screen-detected cancers, which might bias our

results. Since we have no histological characteristics of the

tumors, we cannot be certain of the impact of the cancers that

were excluded from human reading based upon the AI score

on women’s health. However, because mass screening per se

is a balance between benefits, harms, and costs for the society,

pre-selection of possibly abnormal and definitively normal

cases may be a valid alternative for current screening practice.

Further testing of such a pre-selection scenario in real screen-

ing populations is required to validate our findings in terms of

the effect on recall rates, true-positive and false-positive

screening assessments, and interval cancer rates.

In conclusion, we present a new strategy to reduce the

reading workload in mammography-based breast cancer

screening programs which do not appear to decrease the de-

tection performance of radiologists, by using an AI system to

automatically pre-select exams for radiologist evaluation

while excluding those exams which have a low likelihood of

harboring cancer from human reading.

Acknowledgements The authors would like to thankDr. BrandonGallas,

Dr.Weijie Chen, andMr. Qi Gong (Division of Imaging, Diagnostics, and

Software Reliability, OSEL/CDRH/FDA, Silver Spring, MD, USA) for

their help in implementing the statistical methods of the study with their

iMRMC software (https://github.com/DIDSR/iMRMC). We would also

like to thank all the radiologists involved in the reader studies whose

results were used in this work and ScreenPoint Medical for providing

their software for this research.

Fig. 4 ROC curves (a) and change (b) in AUC values of the average of

radiologists in the original population, as well as in all possible pre-

selected populations (using all possible AI scores as threshold values

for pre-selection for reading; if the case is not pre-selected, the radiologist

score is converted to the lowest possible cancer suspicion score for the

MRMC study). 95% confidence intervals are Bonferroni-corrected

4830 Eur Radiol (2019) 29:4825–4832

https://github.com/DIDSR/iMRMC


Funding The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Ritse Mann.

Conflict of interest The authors of this manuscript declare relationships

with the following companies:

The authors KL, PC, TH, TM, SZ, IS, and RM of this manuscript

declare relationships with Siemens Healthineers (Erlangen, Germany):

TM is an employee, KL, PC, TH, SZ, IS, and RM received research

grants.

The authors AR, AG, and RM declare relationships with ScreenPoint

Medical BV (Nijmegen, Netherlands): AR and AG are employees, RM is

an advisor.

Statistics and biometry Dr. Brandon Gallas, Dr. Weijie Chen, and Mr.

Qi Gong (Division of Imaging, Diagnostics, and Software Reliability,

OSEL/CDRH/FDA, Silver Spring, MD, USA) kindly provided statistical

advice for this manuscript.

One of the authors has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Informed consent Written informed consent was waived by the

Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Study subjects or cohorts overlap Some study subjects or cohorts have

been previously reported in (BStand-alone artificial intelligence for breast

cancer detection in mammography: Comparison with 101 radiologists^

by A. Rodriguez-Ruiz et al 2018, accepted in December 2018, Journal of

the National Cancer Institute).

Methodology

• retrospective

• experimental

• multicenter study

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. Smith RA, Cokkinides V, Brooks D, Saslow D, Brawley OW

(2010) Cancer screening in the United States, 2010: a review of

current American Cancer Society guidelines and issues in cancer

screening. CA Cancer J Clin 60:99–119

2. Broeders M, Moss S, Nyström L et al (2012) The impact of mam-

mographic screening on breast cancer mortality in Europe: a review

of observational studies. J Med Screen 19:14–25

3. Independent UK Panel on Breast Cancer Screening (2012) The

benefits and harms of breast cancer screening: an independent re-

view. Lancet 380:1778–1786

4. Welch HG, Prorok PC, O’Malley AJ, Kramer BS (2016) Breast-

cancer tumor size, overdiagnosis, and mammography screening

effectiveness. N Engl J Med 375:1438–1447

5. Breast Cancer Surveillance Consortium (BCSC) Performance mea-

sures for 1,838,372 screening mammography examinations from

2004 to 2008 by age–based on BCSC data through 2009.

National Cancer Institute. Available via http://www.bcsc-research.

org/statistics/performance/screening/2009/perf_age.html. Accessed

29 Sep 2017

6. Brewer NT, Salz T, Lillie SE (2007) Systematic review: the long-

term effects of false-positive mammograms. Ann Intern Med 146:

502–510

7. Karssemeijer N, Bluekens AM, Beijerinck D et al (2009) Breast

cancer screening results 5 years after introduction of digital mam-

mography in a population-based screening program. Radiology

253:353–358

8. Evans KK, Birdwell RL,Wolfe JM (2013) If you don’t find it often,

you often don’t find it: why some cancers are missed in breast

cancer screening. PLoS One 8:e64366

9. Huynh PT, Jarolimek AM, Daye S (1998) The false-negative mam-

mogram. Radiographics 18:1137–1154 quiz 1243-1134

10. Fenton JJ, Taplin SH, Carney PA et al (2007) Influence of

computer-aided detection on performance of screening mammog-

raphy. N Engl J Med 356:1399–1409

11. Lehman CD, Wellman RD, Buist DS et al (2015) Diagnostic accu-

racy of digital screening mammography with and without

computer-aided detection. JAMA Intern Med 175:1828–1837

12. Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep

learning in medical image analysis. Med Image Anal 42:60–88

13. Trister AD, Buist DSM, Lee CI (2017) Will machine learning tip

the balance in breast cancer screening? JAMA Oncol. https://doi.

org/10.1001/jamaoncol.2017.0473

14. Rodriguez-Ruiz A, Lång K, Gubern-Merida A et al (2019) Stand-

alone artificial intelligence for breast cancer detection in mammog-

raphy: comparison with 101 radiologists. J Natl Cancer Inst. https://

doi.org/10.1093/jnci/djy222

15. Rodríguez-Ruiz A, Krupinski E,Mordang J-J et al (2018) Detection

of breast cancer with mammography: effect of an artificial intelli-

gence support system. Radiology 181371

16. Rimmer A (2017) Radiologist shortage leaves patient care at risk,

warns royal college. BMJ 359

17. National Health Institutes England, Public Health England, British

Society of Breast Radiology, Royal College of Radiologists (2017)

The breast imaging and diagnostic workforce in the United

Kingdom. Available via https://www.rcr.ac.uk/publication/breast-

imaging-and-diagnostic-workforce-united-kingdom. Accessed 30

Dec 2018

18. Wing P, Langelier MH (2009) Workforce shortages in breast imag-

ing: impact on mammography utilization. Am J Roentgenol 192:

370–378

19. Wallis MG, Moa E, Zanca F, Leifland K, Danielsson M (2012)

Two-view and single-view tomosynthesis versus full-field digital

mammography: high-resolution X-ray imaging observer study.

Radiology 262:788–796

20. Visser R, Veldkamp WJ, Beijerinck D et al (2012) Increase in per-

ceived case suspiciousness due to local contrast optimisation in

digital screening mammography. Eur Radiol 22:908–914

21. Hupse R, Samulski M, Lobbes MB et al (2013) Computer-aided

detection of masses at mammography: interactive decision support

versus prompts. Radiology 266:123–129

22. Gennaro G, Hendrick RE, Ruppel P et al (2013) Performance com-

parison of single-view digital breast tomosynthesis plus single-view

digital mammography with two-view digital mammography. Eur

Radiol 23:664–672

23. Siemens Medical Solutions USA Inc (2015) FDA Application:

Mammomat Inspiration with Digital Breast Tomosynthesis.

Available via https://www.accessdata.fda.gov/cdrh_docs/pdf14/

P140011b.pdf. Accessed March 3 2018

Eur Radiol (2019) 29:4825–4832 4831

http://www.bcsc-research.org/statistics/performance/screening/2009/perf_age.html
http://www.bcsc-research.org/statistics/performance/screening/2009/perf_age.html
https://doi.org/10.1001/jamaoncol.2017.0473
https://doi.org/10.1001/jamaoncol.2017.0473
https://doi.org/10.1093/jnci/djy222
https://doi.org/10.1093/jnci/djy222
https://www.rcr.ac.uk/publication/breast-imaging-and-diagnostic-workforce-united-kingdom
https://www.rcr.ac.uk/publication/breast-imaging-and-diagnostic-workforce-united-kingdom
https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140011b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140011b.pdf


24. Garayoa J, Chevalier M, CastilloM et al (2018) Diagnostic value of

the stand-alone synthetic image in digital breast tomosynthesis ex-

aminations. Eur Radiol 28:565–572

25. Rodriguez-Ruiz A, Gubern-Merida A, Imhof-Tas M et al (2017)

One-view digital breast tomosynthesis as a stand-alone modality

for breast cancer detection: do we need more? Eur Radiol. https://

doi.org/10.1007/s00330-017-5167-3

26. Clauser P, Baltzer PA, Kapetas P et al (2019) Synthetic 2-

dimensional mammography can replace digital mammography as

an adjunct to wide-angle digital breast tomosynthesis. Invest Radiol

54:83–88

27. Blackwelder WC (1982) BProving the null hypothesis^ in clinical

trials. Control Clin Trials 3:345–353

28. Chen W, Petrick NA, Sahiner B (2012) Hypothesis testing in non-

inferiority and equivalence MRMC ROC studies. Acad Radiol 19:

1158–1165

29. Gallas BD, Bandos A, Samuelson FW,Wagner RF (2009) A frame-

work for random-effects ROC analysis: biases with the bootstrap

and other variance estimators. Commun Stat - Theory Methods 38:

2586–2603

30. Gallas B (2017) iMRMC v4.0: application for analyzing and sizing

MRMC reader studies. Division of imaging, diagnostics, and

software reliability, OSEL/CDRH/FDA, Silver Spring, MD.

Available via https://github.com/DIDSR/iMRMC/releases, https://

cran.r-project.org/web/packages/iMRMC/index.html. Accessed 30

Dec 2018

31. Gennaro G (2018) The Bperfect^ reader study. Eur J Radiol In press

32. ChenW, Gong Q, Gallas BD (2018) Efficiency gain of paired split-

plot designs inMRMCROC studies. Medical imaging 2018: image

perception, observer performance, and technology assessment.

International Society for Optics and Photonics, pp 105770F

33. Gallas BD, BrownDG (2008) Reader studies for validation of CAD

systems. Neural Netw 21:387–397

34. Chen W, Samuelson FW (2014) The average receiver operating

characteristic curve in multireader multicase imaging studies. Br J

Radiol 87:20140016

35. Dang PA, Freer PE, Humphrey KL, Halpern EF, Rafferty EA

(2014) Addition of tomosynthesis to conventional digital mam-

mography: effect on image interpretation time of screening exam-

inations. Radiology 270:49–56

Publisher’s note Springer Nature remains neutral with regard to jurisdic-

tional claims in published maps and institutional affiliations.

4832 Eur Radiol (2019) 29:4825–4832

https://doi.org/10.1007/s00330-017-5167-3
https://doi.org/10.1007/s00330-017-5167-3
https://github.com/DIDSR/iMRMC/releases
https://cran.r-project.org/web/packages/iMRMC/index.html
https://cran.r-project.org/web/packages/iMRMC/index.html

	Can...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Data and population characteristics
	Artificial intelligence system
	Automated pre-selection of cases
	Statistics

	Results
	Performance of the AI system
	Automated pre-selection of cases

	Discussion
	References


