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CAN YOU COMPUTE THE OPERATOR NORM?

TOBIAS FRITZ, TIM NETZER, AND ANDREAS THOM

(Communicated by Marius Junge)

Abstract. In this note we address various algorithmic problems that arise in
the computation of the operator norm in unitary representations of a group
on a Hilbert space. We show that the operator norm in the universal uni-
tary representation is computable if the group is residually finite-dimensional
or amenable with a decidable word problem. Moreover, we relate the com-
putability of the operator norm on the group F2 × F2 to Kirchberg’s QWEP
Conjecture, a fundamental open problem in the theory of operator algebras.

1. Introduction

In this article we study various algorithmic problems related to the computation
of the operator norm on group rings. Let us take some time and state the setup
more precisely. Let A be a finite alphabet, let FA be the free group on the set A, and
let R ⊂ FA be a subset. We denote by Γ := 〈A|R〉 the group which is generated by
the set A subject to relations R. The group Γ is equipped with a natural surjection
FA → Γ, which we denote by g �→ ḡ. The kernel of this surjection is 〈〈R〉〉, the
normal subgroup generated by the set R. A triple (Γ, A,R), as above, is called a
presented group; it is called finitely presented if R is finite. We denote the integral
group ring of a group Γ by ZΓ, and the complex group ring by CΓ. For a ∈ ZFA,
we denote by ā its canonical image in ZΓ.

We want to study the operator norm of ā, considered as an element in the
universal group C∗-algebra C∗

uΓ and the reduced group C∗-algebra C∗
λΓ. We denote

the universal C∗-norm on CΓ by ‖.‖u and the operator norm associated with the
left-regular representation by ‖.‖λ; more generally, we write ‖.‖ϕ for the semi-norm
associated to any unitary representation ϕ : Γ → U(Hϕ):

‖ϕ(a)‖ϕ := sup {‖ϕ(a)ξ‖ | ξ ∈ Hϕ, ‖ξ‖ ≤ 1} .

For more information about these notions, consult the appendices in [5]. It is well-
known that ‖.‖λ ≤ ‖.‖u with equality if and only if Γ is amenable; this is Kesten’s
theorem [15]. The natural trace on CΓ is denoted by τ : CΓ → C; it is given by

the formula τ
(∑

g∈Γ agg
)
= ae. We denote the cone of hermitian squares in CΓ

by Σ2CΓ, that is:

Σ2CΓ :=

{
n∑

i=1

a∗i ai | n ∈ N, ai ∈ CΓ

}
.
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We say that a real number α ∈ R is computable if it can be approximated to any
precision with rational numbers by a Turing machine or, equivalently, if there is an
algorithm which produces two sequences of rational numbers (pn)n∈N and (qn)n∈N

such that (pn)n∈N is monotone increasing, (qn)n∈N is monotone decreasing, and
supn pn = α = infn qn. Most numbers that we usually think of are computable by
their very definition. Although there are only countably many computable num-
bers since there are only countably many possible algorithms, one has to think
hard to give an explicit example of an uncomputable number. One is Chaitin’s
constant, whose binary expansion

∑
n∈N

εn2
−n encodes the halting problem. Here,

εn ∈ {0, 1} depending on whether the n-th machine in some explicit list of all Tur-
ing machines halts. Chaitin’s constant is definable in the language of set theory
but not computable. It is important for us that numbers defined in a much sim-
pler language, the first-order language of real closed fields, are computable; this is
Tarski’s famous theorem about quantifier elimination, which we will apply several
times. The distinction between computable and definable numbers goes back to
Turing [33].

More generally, we want to speak about computable functions depending on an
element in the integral group ring of a group.

Definition 1.1. Let (Γ, A,R) be a presented group. We say that a function
f : ZΓ → R is computable if there exists an algorithm that takes as input an
element a ∈ ZFA and produces two sequences of rational numbers (pn)n∈N and
(qn)n∈N such that

(1) (pn)n∈N is monotone increasing,
(2) (qn)n∈N is monotone decreasing, and
(3) supn pn = f(ā) = infn qn.

Obviously, the values of a computable function f : ZΓ → R are all computable
real numbers; the converse does not hold. Many decision problems in group theory
have been studied, the most famous being the word problem [6, 7, 26]. Here, given
a finitely presented group (Γ, A,R), the task is to find an algorithm which decides
whether an input g ∈ FA satisfies ḡ = eΓ or not.

Remark 1.2. Note that the computability of the functions a �→ ‖a‖u or a �→ ‖a‖λ
immediately gives a solution to the word problem. Indeed, for g ∈ FA, we have
either ‖ḡ − eΓ‖ = 0 or ‖ḡ − eΓ‖ ≥ 1, depending on whether g is trivial in Γ or
not. Hence, a computation of the operator norm in the sense above gives a decision
procedure.

Our first result is the following converse of the previous remark for the class of
amenable groups.

Theorem 1.3. Let (Γ, A,R) be a finitely presented amenable group. Then, the
word problem for (Γ, A,R) is decidable if and only if the function

ZΓ � a �→ ‖a‖λ ∈ R

is computable.

In general, amenable groups need not have a decidable word problem, as was
shown by Kharlampovich [16].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CAN YOU COMPUTE THE OPERATOR NORM? 4267

Generally speaking, while it is easy for a given g ∈ FA to find a certificate that
ḡ = eΓ, if that is the case, it is hard (and sometimes impossible) to get a certificate
that ḡ �= eΓ, if that is the case. In order to provide the second certificate, one needs
additional information about Γ. Let us recall a fundamental result of Mostowski
and McKinsey and explain its proof, since it serves as a motivation for our work.

Theorem 1.4 (Mostowski [25], McKinsey [23]). Every finitely presented residually
finite group (Γ, A,R) has a decidable word problem.

Proof. The algorithm does a parallel search for w ∈ 〈〈R〉〉 and for finite quotients
ϕ : Γ → H with ϕ(w) �= 0. The first search is done by enumerating all elements
in 〈〈R〉〉 and comparing them with w. The second search is done by enumerating
all A-tuples of permutations, checking whether they satisfy all relations in R, and
computing w on the A-tuple of permutations. Since Γ is residually finite, at some
point one of the searches must terminate. �

Therefore, showing undecidability of the word problem is one strategy (maybe
not the most promising) for proving that a group is not residually finite. The
converse is not true: the Baumslag-Solitar group BS(2, 3) is not residually finite [3],
but has, as a 1-relator group, a decidable word problem [21].

In this note, we study the property of a group being residually finite-dimensional
(RFD) (see Definition 2.4), a certain strenghtening of residual finiteness, and show
that it implies computability of the norm in the universal group C∗-algebra. The
largest known class of RFD groups contains free groups, Fuchsian groups and many
Kleinian groups (see Lubotzky-Shalom [20] and the remarks after Definition 2.4).
For more information on property RFD and related notions consult Brown-Ozawa
[9]. Our main result is the following theorem.

Theorem 1.5. Let (Γ, A,R) be a finitely presented RFD group. Then, Γ has a
decidable word problem and the function

ZΓ � a �→ ‖a‖u ∈ R

is computable.

The proof of Theorem 1.3 and Theorem 1.5 follow closely the basic idea of the
proof of Theorem 1.4 that we have outlined above. Whereas there is always a
sequence of upper bounds, a sequence of lower bounds requires more information
about the group and can be provided if the group is RFD or amenable with a
decidable word problem.

It is a famous open problem in the theory of operator algebras whether the group
F2 × F2 is RFD, now called Kirchberg’s Conjecture [17]. In principle, a strategy
to disprove Kirchberg’s Conjecture is to show that the norm in the universal group
C∗-algebra of F2 × F2 is in fact not computable. This is not as unreasonable as it
may sound, since there are many relatively easy computational problems related to
F2 × F2, which are known to be unsolvable (see the remarks in Section 4).

Let us return to the problem of actually computing the operator norm. Once one
is in the situation that some number, such as the operator norm of some specific
element a ∈ ZΓ, is computable, one has to face the following problem. Suppose
another computable number α is given in the form of a machine that computes it.
Can we decide whether ‖a‖ = α? This again is hard, and in general it is impossible
to decide if two machines compute the same number. However, we can circumvent
this problem in special cases.
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Theorem 1.6. Let FA be a free group on the finite set A. Then there is an
algorithm which takes as input a ∈ ZFA and computes a definition of ‖a‖ in the
first order language of real closed fields. In particular, if α is any other number
defined in the first order language of real closed fields, then it is decidable whether
‖a‖ = α holds or not.

Thanks to Tarski’s theorem, the definition of some number α in the first order
language of real closed fields takes the form

(p(α) = 0) ∧ (q1(α) > 0) ∧ · · · ∧ (qn(α) > 0)

for some n ∈ N and polynomials p, q1, . . . , qn ∈ Z[t].
Theorem 1.6 can be used to give algorithms that decide some useful properties.

For example, it is decidable whether a ∈ ZFA is invertible in C∗
u(FA) or not. It is

not known at the moment whether this result extends to all RFD groups. There
are other variations on Theorem 1.6. For example we can show, using similar
techniques, that there is an algorithm that takes a self-adjoint element a ∈ ZFA as
input and produces definitions of real numbers μ1, μ2 such that the spectrum of a
in C∗

u(FA) has the form [μ1, μ2] ⊂ R.
The article is organized as follows. In Section 2, we study the norm in the

universal representation and prove Theorem 1.5 and Theorem 1.6. Theorem 1.3 is
proved in Section 3. In Section 4, we discuss a relation with Kirchberg’s QWEP
Conjecture and speculate about a relationship with some algorithmic problems
related to the group F2 × F2, which are known to be undecidable.

2. Computability of the norm in the universal representation

The following lemma provides the key to the computation of a sequence of upper
bounds. It can be regarded as a special case of a strict Positivstellensatz due to
Schmüdgen [31].

Lemma 2.1. Let a ∈ ZΓ. Then,

‖a‖u = inf
{
λ ∈ R≥0 | λ2 − a∗a ∈ Σ2CΓ

}
.

Proof. Clearly, Σ2CΓ ⊆ (C∗
uΓ)+ := {x∗x | x ∈ C∗

uΓ}. Conversely, we claim that

x + ε1 ∈ Σ2CΓ for every x ∈ (C∗
uΓ)+ ∩ CΓ and ε > 0. If this were not the case

for some x, then the Riesz extension theorem [2] would guarantee the existence
of a linear map ϕ : CΓ → C with ϕ

(
Σ2CΓ

)
⊆ R+ and ϕ(x) < 0. For this, it is

essential that 1 is an algebraic interior point in Σ2CΓ, as shown in [11]. The GNS
construction turns this ϕ into a unitary representation πϕ with the property that
πϕ(x) �≥ 0 so that x �∈ (C∗

uΓ)+. �

If (Γ, A,R) is a finitely presented group, then one can find a convergent sequence
of upper bounds on ‖a‖u as follows. Let FA,n be the set of elements in FA with
word length less than or equal to n. Let us write Q(A,R) for the quadratic module
in CFA generated by {1− r | r ∈ R}. More precisely, we set

Q(A,R) :=

⎧⎨
⎩

∑
r∈R∪{0}

nr∑
k=1

b∗r,k(1− r)br,k

∣∣∣∣∣ ni ∈ N, bi,k ∈ CFA, ∀i ∈ R ∪ {0}

⎫⎬
⎭ .
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Obviously, Q(A,R) is a convex cone, and functionals on CFA which are positive on
Q(A,R) are in bijection with positive functionals on CΓ. In particular, the proof
of Lemma 2.1 yields

(1) ‖ā‖u = inf
{
λ ∈ R≥0 | λ2 − a∗a ∈ Q(A,R)

}
for all a ∈ ZFA. Here, ā denotes the canonical image of a in ZΓ.

We define Qn(A,R) to be the subset of those elements in Q(A,R) which have
a representation with all bi,k ∈ CFA,n. Then Qn(A,R) is finite-dimensional, and⋃

n Qn(A,R) = Q(A,R). In fact,

Qn(A,R)

=

⎧⎨
⎩

∑
r∈R∪{0}

∑
g,h∈FA,n

Cr,g,hg
−1(1− r)h

∣∣∣∣∣ (Cr,g,h)g,h∈Γn
∈

⊕
r∈R∪{0}

MFA,n
(C)+

⎫⎬
⎭ .

For a ∈ ZFA, we consider all n ≥ n0 where n0 is such that a ∈ CFA,n0
and

Λ− a∗a ∈ Qn0
(A,R) for some Λ ∈ R. Then by equation (1),

(2) ‖a‖2u ≤ min

{
Λ ∈ R

∣∣∣∣∣ ∃(Cr,g,h)g,h∈Γn
∈
⊕

r∈R∪{0} MFA,n
(C)+

with Λ− a∗a =
∑

r∈R∪{0}
∑

g,h Cg,hg
−1(1− r)h

}
,

where the right-hand side is now just a semidefinite programming problem in ma-
trices

⊕
r∈R∪{0} MFA,n

(C). As shown in equation (1), this bound becomes tight

for n → ∞. So, computing the value of the semidefinite program by bounding it
from above with an accuracy of, say, 1/n provides a convergent sequence of upper
bounds on ‖a‖u. For more details on semidefinite programming see, for example,
[34]. This shows the following:

Corollary 2.2. For any finitely presented group (Γ, A,R) there is an algorithm
computing a convergent sequence of upper bounds on ‖.‖u on ZΓ.

Semidefinite programming duality provides another point of view on (2). We
claim that

(3) ‖a‖2u ≤ max {ϕ(a∗a) : ϕ : CFA → C, ϕ (Qn(A,R)) ⊆ R≥0, ϕ(1) = 1} ,
where the right-hand side is a semidefinite program dual to (2) for n ≥ n0, and
the two optimal values coincide. To see this, note first that both semidefinite
programs are feasible: (2) is feasible by the assumption n ≥ n0; (3) is feasible since
(−1) �∈ Qn(A,R) and by the Hahn-Banach theorem. Therefore, for any feasible
solutions (Cr,g,h)g,h and ϕ,

(4) ϕ(a∗a) ≤ Λ− ϕ

⎛
⎝ ∑

r∈R∪{0}

∑
g,h

Cr,g,hg
−1h

⎞
⎠ ≤ Λ.

We claim that there are ϕ and (Cr,g,h)g,h for which this bound is tight. This is so
since Λ−a∗a lies, for the optimal Λ, on the boundary of the cone Qn(A,R) so that
there exists a functional ϕ : CFA,n → C with ϕ(Λ − a∗a) = 0. This ϕ is optimal
since ϕ(a∗a) = Λ, which saturates (4).

We end the discussion of semidefinite programming by noting that these ideas
not only apply to the universal C∗-norm on group rings, but on any ∗-algebra with
a finite presentation in terms of generators and equality or positivity relations for
linear combinations of words in those generators. This has been worked out in
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more detail in [29] as “noncommutative polynomial optimization” (note that the
“primal” and “dual” conventions of [29] are opposite to ours). Many applications
and particular cases had already been studied earlier; this includes hierarchies of
semidefinite programs for commutative moment problems [18] and noncommutative
moment problems arising in quantum information theory [28].

If there was any way to understand efficiently how fast the sequence of upper
bounds converges, then one could turn Corollary 2.2 into an actual computation
of the operator norm in the sense of Definition 1.1. However, this seems to be
out of reach even for reasonable groups and is impossible in general, as it would
imply decidability of the word problem by Remark 1.2. This is in contrast to the
commutative case, for which convergence bounds have been derived [8,12]. In order
to provide interesting lower bounds on the norm in the universal representation, we
have to make additional assumptions on Γ.

In the following, we need basic properties of the unitary dual of a discrete group.
For details about the unitary dual and the Fell topology on it, consult the informa-
tive appendices in [5].

Lemma 2.3. Let Γ be a group and let Φ be a set of unitary representations which
is dense in the unitary dual of Γ. Then for every a ∈ ZΓ,

‖a‖u = sup {‖ϕ(a)‖ϕ | ϕ ∈ Φ} .

Proof. This is well-known and an immediate consequence of the definition of the
Fell topology on the unitary dual. �

Let us now give a definition of property RFD.

Definition 2.4. A group Γ is called residually finite-dimensional (RFD) if the set
of finite-dimensional unitary representations is dense in the unitary dual of Γ.

Note that if Γ is finitely generated and RFD, then finite-dimensional represen-
tations must separate the elements of Γ, and Γ follows to be residually finite by
Mal’cev’s theorem [22].

Finitely generated Fuchsian groups and fundamental groups of closed hyperbolic
3-manifolds which fiber over the circle are known to be RFD; see [20]. Indeed,
it is well-known that free groups are RFD; see for example Theorem 2.2 in [20].
Theorem 2.8 in [20] shows that surface groups and fundamental groups of closed
hyperbolic 3-manifolds that fiber over the circle have RFD. Now, it is easy to see
that RFD passes to finite index extensions. This implies the claim for Fuchsian
groups since every Fuchsian group contains a free group or a surface group with
finite index. That every fundamental group of a closed hyperbolic 3-manifold admits
a subgroup of finite index that fibers over the circle is known as Thurston’s Virtual
Fibration Conjecture.

We write f for the direct sum of all finite-dimensional unitary representations of
Γ. The following observation can be regarded as an alternative definition of RFD:

Lemma 2.5. Γ is RFD if and only if ‖.‖u = ‖.‖f on ZΓ.

Proof. Again by definition of the Fell topology, we know that ‖.‖u = ‖.‖f on CΓ if
and only if Γ is RFD. By homogeneity of norms and density of the inclusion Q ⊆ R,
the assumption ‖.‖u = ‖.‖f on ZΓ implies that this equality also holds on RΓ, and
the problem is to show that this implies the equality on all of CΓ.
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We decompose CΓ = RΓ ⊕ i · RΓ. By assumption, the two norms coincide on
each of the two summands; moreover, for a, b ∈ RΓ,

‖a+ ib‖u = ‖a− ib‖u, ‖a+ ib‖f = ‖a− ib‖f ,
since every representation of Γ has a complex conjugate, and taking complex con-
jugates preserves finite-dimensionality. Now it follows from elementary estimates
like [13, Prop. 5.6] that ‖.‖u and ‖.‖f differ on CΓ at most by a factor of 2. So,

‖.‖f ≤ ‖.‖u ≤ 2‖.‖f .
In particular, the C∗-completions C∗

uΓ and C∗
fΓ are canonically isomorphic and the

canonical surjection

ϕ : C∗
uΓ � C∗

fΓ

is an isomorphism. Now the assertion follows from the uniqueness of the norm on
a C∗-algebra. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. The first assertion is clear by Theorem 1.4, since the as-
sumption implies that Γ is residually finite.

In view of Corollary 2.2 it remains to provide a convergent sequence of lower
bounds on the operator norm in the universal representation. Let a ∈ ZFA. Let
n ∈ N and consider the set

X(n) =
{
(ua)a∈A ⊂ U(n)A | r((ua)a∈A) = 1 ∀r ∈ R

}
⊆ U(n)A.

Clearly, X(n) is a compact real algebraic subset of R|A|·2n2

. Denote by D(n) =
{ξ ∈ Cn | ‖ξ‖ ≤ 1} and the function

fn : X(n)×D(n) → R, fn((ua)a∈A, ξ) := ‖a((ua)a∈A)ξ‖2.
Denote the maximum of fn on X(n)×D(n) by αn. By the previous lemmas and
the assumptions on Γ, we have

‖ā‖u = sup
{
α1/2
n | n ∈ N

}
.

Thanks to Tarski’s real quantifier elimination [32], each αn is computable, and

therefore (α
1/2
n )n∈N is the required sequence of lower bounds. This proves the

claim. �

Again, note that this theorem and its proof directly generalize from group ∗-
algebras to arbitrary finitely presented ∗-algebras.

Question 2.6. The group Γ = SL3(Z) is known not to be RFD (see [4]). Is the
function

ZΓ � a �→ ‖a‖u ∈ R

computable?

We now turn to the proof of Theorem 1.6. We need the following lemma.

Lemma 2.7. Let a ∈ ZFA, n = |A|, and let d ∈ N be the length of the longest word
appearing in the support of a. There exists a unitary representation π : FA → U(k)
of dimension k := 2(2n)d and a unit vector ξ ∈ Ck such that ‖a‖u = ‖π(a)ξ‖π.
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Proof. The proof is an application of what is known as Choi’s trick [10, Theorem 7],
which gives an efficient proof that the group Γ = FA is RFD. Let a ∈ ZΓ. It is
a standard consequence of the compactness of the state space of C∗

uΓ that the
operator norm ‖a‖u is achieved at some vector in some unitary representation. Let
σ : FA → U(Hσ) be a unitary representation and let ξ′ ∈ Hσ be a unit vector with
‖a‖u = ‖σ(a)ξ′‖σ. Consider H, the linear span of σ(g)ξ for all g with lengths less
than or equal to d. The dimension of H is at most 2nd. Let p be the orthogonal
projection from Hσ onto H and denote the generators of FA by v1, . . . , vn.

We set

ui :=

(
pσ(vi)p

√
1H − pσ(vi)pσ(vi)∗p√

1H − pσ(vi)∗pσ(vi)p −pσ(vi)
∗p

)
∈ L(H ⊕H).

It is easy to check that u1, . . . , un are unitary, and we let π be the unitary rep-
resentation on H ⊕ H associated with them. Again, it is easy to check that
π(a)(ξ′, 0)t = (σ(a)ξ, 0), and hence ‖a‖u = ‖π(a)ξ‖π for the unit vector ξ = (ξ′, 0)t.
This finishes the proof. �

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Using the notation of the proof of Theorem 1.5, Lemma 2.7
gives that ‖a‖u = αk for some sufficiently large and computable integer k. Clearly,
αk is defined in the first order language of real closed fields. Moreover, the equation
α = αk is decidable if α is defined in the same language, again thanks to Tarski’s
theorem. �

As a corollary to Theorem 1.6, we can now solve algorithmic problems that
require precise information about the spectrum of some element in the integral
group ring.

Corollary 2.8. There is an algorithm that takes as input a ∈ ZFA and decides
whether a is invertible in the universal group C∗-algebra.

Proof. For a =
∑

g agg ∈ ZFA, we write ‖a‖1 :=
∑

g |ag|. It is clear that ‖a‖u ≤
‖a‖1 for all a ∈ ZFA. Now, the element a ∈ ZFA is invertible in C∗

uFA if and only
if a∗a ∈ ZFA is invertible. Let Λ ∈ Z be a computable upper bound for ‖a∗a‖u
such as ‖a‖21. Then the spectral theorem implies that ‖Λ − a∗a‖u = Λ if and only
if a∗a is not invertible in C∗

uFA. This proves the claim, since Theorem 1.6 provides
a decision procedure for this equality. �

3. Lower bounds on the norm

in the left-regular representation

In this section we provide a convergent sequence of lower bounds on the norm
in the left-regular representation. In the case of amenable groups, this leads to a
computation of the natural norm on the integral group ring, using Corollary 2.2
and the fact that ‖.‖λ = ‖.‖u. Note that formulas for norms in left-regular repre-
sentations for certain classes of groups and elements have already been obtained in
[1, 19] for example.

Recall that the group ring ZΓ naturally comes equipped with the trace

τ : ZΓ → Z,
∑
g

agg �→ ae,
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which extends uniquely to a tracial state on C∗
λΓ. This trace is faithful; i.e., we

have that τ (a∗a) = 0 implies a = 0. The following result is well-known, and we
include a proof for convenience.

Lemma 3.1. Let a ∈ ZΓ. Then,

‖a‖λ = sup
{
τ (b∗a∗ab)1/2 | b ∈ CΓ, τ (b∗b) ≤ 1

}
= sup

{
τ ((a∗a)n)1/2n | n ∈ N

}
.

Proof. By definition, 
2(Γ) is the completion of CΓ with respect to the norm b �→
τ (b∗b)1/2, and it carries a natural action of Γ by left multiplication. This directly
implies the first equation.

We now consider the second equation. The inequality τ ((a∗a)n) ≤ ‖a∗a‖nλ ≤
‖a‖2nλ is clear, so that the main task is proving the other direction. We work in the
group von Neumann algebraNΓ. Fix any ε > 0 and consider the spectral projection
p defined by applying Borel functional calculus to a∗a with respect to the indicator
function of the interval [‖a∗a‖λ − ε, ‖a∗a‖λ]. Then a∗a ≥ (‖a∗a‖λ − ε) p, so that

τ ((a∗a)n) ≥ τ ((‖a∗a‖λ − ε)np) = (‖a∗a‖λ − ε)
n
τ (p).

Faithfulness of τ together with p �= 0 implies τ (p) > 0, so that the right-hand side
of

τ ((a∗a)n)1/2n ≥ (‖a∗a‖λ − ε)1/2τ (p)1/2n

tends to (‖a∗a‖λ−ε)1/2 as n → ∞. The conclusion follows since ε was arbitrary. �
Note that the proof, and therefore the lemma, applies similarly to any von Neu-

mann algebra equipped with a faithful tracial state τ . We are now ready to prove
Theorem 1.3.

Proof of Theorem 1.3. Concerning (1) ⇒ (2), Lemma 3.1 provides a convergent
sequence of computable lower bounds and Lemma 2.1 a convergent sequence of
computable upper bounds. (2) ⇒ (1) was essentially answered in Remark 1.2: We
are able to algorithmically decide for g ∈ FA whether ‖1− ḡ‖λ = 0 or ‖1− ḡ‖λ ≥ 1,
and it is easy to see that one of the two cases must occur. �

4. Relation to the Kirchberg’s QWEP Conjecture

Let us finish this note with a question and a relation to some famous open
problems in the theory of operator algebras.

Question 4.1. Consider A = {x, y, z, w} and

Γ = F2 × F2 = 〈x, y, z, w | [x, z], [x,w], [y, z], [y, w]〉.
Is the function ZΓ � a �→ ‖a‖u ∈ R computable?

Kirchberg’s seminal work [17] shows that a positive answer to the famous Connes
Embedding Problem is equivalent to F2×F2 being RFD. The question whether F2×
F2 (or equivalently Fn × Fn for any n ≥ 2) is RFD is generally known as a version
of Kirchberg’s QWEP Conjecture. Consult [30] and the references therein for more
details about these fundamental conjectures. By Theorem 1.5, a positive solution
to any of these conjectures would also imply a positive answer to Question 4.1. This
elucidates the importance of the computability of ‖.‖u on the group ring Z(Fn×Fn):
if this norm is not computable, this would refute Connes Embedding Problem and
Kirchberg’s QWEP Conjecture. On the other side, if this norm is computable, and
its computation would even turn out to be practical, this would be very interesting
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for applications in quantum information theory concerning the maximal quantum
violations of Bell inequalities [14].

We want to end by recalling Mihăılova’s construction from [24], which shows
that rather reasonable algorithmic questions, which are known to be solvable for
free groups and surface groups, become intractable for products of free groups.
Our initial hope was that we might be able to relate the computability of ‖.‖u on
Z(Fn×Fn) to the decidability of some of these decision problems for Fn×Fn, which
have been studied so extensively. In particular, the hope was to relate it to the
membership problem for finitely generated subgroups of Fn × Fn. In general, for a
subgroup Λ ⊂ Γ, the membership problem takes some g ∈ Γ as input and asks us to
decide whether g ∈ Λ or g �∈ Λ; typically, one assumes that the word problem for Γ
is decidable and Λ is finitely generated by some finite set which is part of the input.
Mihăılova’s construction [24] provides examples of finitely generated subgroups of
Fn ×Fn for which this problem is undecidable. Let Γ = 〈g1, . . . , gn|R〉 be a finitely
presented group, let π : Fn → Γ be the natural surjection, and consider the kernel
pair

(5) Λ := {(g, h) ∈ Fn × Fn | π(g) = π(h)}.
It is easy to see that the subgroup Λ ⊂ Fn × Fn is generated by R × {e} and a
diagonal copy of Fn. Hence, Λ ⊂ Fn × Fn is finitely generated by some explicit
set of generators. Moreover, the word problem for the finitely presented group Γ
is equivalent to the membership problem for the inclusion Λ ⊂ F2 × F2. Indeed,
(v, w) ∈ Λ if and only if π(v−1w) = e in Γ. Combining this with the existence
of finitely presented groups with undecidable word problem [3, 16, 27], Mihăılova
showed:

Proposition 4.2 (Mihăılova). The membership problem for finitely generated sub-
groups of Fn × Fn is not decidable for any n ≥ 2.

We think that this result supports the point of view that a positive answer to
Question 4.1 is too much to hope for.
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