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Abstract. A subset X of the d-dimensional Euclidean space R d can cover its 
shadows in R d, if every orthogonal projection of X onto a ( d -  1)-dimen- 
sional linear subspace of R a is contained in some congruent copy of X. 
Whereas every two-dimensional convex disc C c R d has this property, no 
(d - 1)-polytope does, provided that d >_ 4. 

1. Introduction 

This contribution originates in a question which has been posed independently by 
Pach [8] and Zalgaller. With the terminology of Definition 2 below, they asked 
whether every two-dimensional convex disc can cover its shadows in the ordinary 
space •3. Janos Pach told us that he likes to put this question in a more 
dynamical context: If a convex body (say, a stone) can be thrust through a convex 
hole in the wall by a linear motion (without twisting) then can this be done by a 
movement perpendicular to the wall? The answer to this question is positive and, 
again, of twofold origin. One solution is due to Kowaljov [5]. Let us give a brief 
outline of his argument. With the notation of Definition 3 below, it is enough to 
prove that every strictly convex disc F c R 2, whose boundary curve is twice 
continuously differentiable, can cover its small contractions in direction e 2 = (0,1). 
We say that Y c R 2 arises from the convex disc X c R 2 by a skew expansion, if 
there are two parallel supporting lines GI, G 2 of X and points pe ~ X n  G~, 
i ~  {1,2}, r ~ G t \ { p t } ,  q~relintconv{pl, r }, such that the affine map f :  
R 2 ~  R 2 satisfying f(Pi)=Pi, i~  {1,2), f (q )=r ,  carries X onto Y. Given a 
strictly convex disc F c R 2 as above and a disc G = D(h, e2)[F ] with 3, < 1 and 
sufficiently close to 1, then F arises from G by some composition of at most two 
skew expansions, and motions. This statement, whose proof requires some inge- 
nious analytic arguments, is the main step in Kowaljov's construction. Our 
solution, presented in Section 6, studies polygonal, rather than smooth, approxi- 
mations, and then uses the passage to infinitesimals, together with Helly's 
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theorem, to reduce the general case to that of arbitrary quadrangles. The fact that 
every convex quadrangle can cover its shadows in R 3, which presents the only 
computational difficulty in this approach, has been known to Pach for quite some 
time. We would be happy to learn about a more elegant proof than the one of 
Section 4 below. In higher dimensions the situation changes radically: No convex 
d-polytope, with d >_ 3, can cover its shadows in R d+l. This leads to several open 
questions, some of which we have collected in Section 7. 

Our basic geometric terminology follows Gri~nbaum's book [4], with a few 
small modifications. So we denote by e i the ith vector in the standard basis of R d, 
whose ith coordinate equals one, while all of its other coordinates vanish. When 
there is no danger of confusion we also write x i for the i th coordinate of x ~ R d, 
hence x i = (x, ei). It will often be convenient to identify R k, k < d, with the 
subspace lin{ e 1 . . . . .  e k } of R d. The Euclidean unit ball and unit sphere in R d are 
denoted by B a= ( x ~ R d :  x <1} and S d- l= { x ~ R d :  Ilxll=l}. By x ± we 
understand the orthogonal subspace to x ~ R d, x _L = {y ~ R~: (x,  y )  = 0}. 
F(d,  k), 0 < k < d, stands for the Grassmann manifold of all k-dimensional 
linear subspaces of R d. We consider the group isom(R d) of all isometries of R d, its 
normal subgroup isom÷ (R d) of all orientation preserving isometries, also called 
proper motions, of R d, as well as some other subgroups, such as the 0rthogonal 
group O(d) and the rotation group SO(d) = O(d)Nisom+ (RJ). (d × d)-matrices 
act upon R d as linear operators in the usual way, the matrix M =  (M~j) trans- 
forms x to the vector Mx, given by (Mx)~=~,d=xM~jxs. The norm of M is 
defined by I[Mi[ = (~.dj~lMi2) 1/2. We write d(x, A) for the distance between 
x ~ R d and A c R d, A '~ 0.  I f  A is closed and convex, there exists a unique point 
y in A, the nearest point vA(x), satisfying ItY - xt[ = d(x, A). The basic properties 
of the nearest point map v A: R d ..., A are discussed in [6]. By ~d we denote the 
space of all nonempty compact, convex subsets of R d, with the Hausdorff distance 
8. A convex body in R d is a d-dimensional element of ~d" The vector n ~ S d-1 is 
called an outer normal of C ~ ~d at the point x ~ bd(C), if (n, x )  > (n, y )  for 
every y ~ C. If P ~ t¢ d is a polytope, we denote by OP the set of its proper faces. 
We call n ~ S a-1 an outer normal of P at the face F ~ OP, if (n,  x )  >_ (n,  y )  for 
some x ~ r e l i n t ( F )  and every y ~ P .  In this case x + n  ± is a supporting 
hyperplane of P, containing F. The following definitions lead to our main theme. 
If X I = ( X  1,d 1) and X 2 = ( X  2,d 2) are metric spaces we say that a map f:  
X 1 ~ X 2 is a general contraction, if d=(fp, fq)<_ dx(p,q) for all pairs p,q. The 
word contraction, without further attribute, is reserved here for.those maps f :  
R d._., R a which are linear, have nonnegative determinant, and are general con- 
tractions with respect to the standard Euclidean metric of R a. The directional 
contractions D(u ,~ ) ,  u ~ S  a-l, 0 < ~ < 1 ,  given by D ( u , ~ ) [ x ] = x + ( h -  
1)(x ,u)u,  will receive our special attention. They connect the identity map 
D(u ,1)  to the orthogonal projection ,r, = D(u,O) onto the ( d -  1)-dimensional 
subspace u _L. By abuse of language we call f[A] a contraction of A, if f itself is a 
contraction in the above sense. For real numbers a and b > a we use the 
a b b r e v i a t i o n s  ] a , b [ =  {x  ~ R:  a < x < b},  ] a , b ] = l a ,  b [ U { b } ,  
[a,b[= ]a ,b[u{a} ,  [a,b]= ]a,b]U[a,b[. 

Definition 1. The set A c R d can cover B c R d, if there exists a proper motion 
r ~ isom+ (R a) such that B c r[A]. 
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Definition 2. A c R d can cover its shadows in R d, if A can cover ~r.[A] = 
D(u,O)[A],  for  every u ~ S d-1. 

Definition 3. A c R d can cover its contractions, if A can cover f [A] ,  whenever 
f :  R d ~ R d is a contraction.  A can cover its contract ions in direction u ~ S d - l ,  if 
A can cover  D(u ,  h)[A], for every ~ ~ [0,1]. A can cover its small contract ions in 
direction u, if there is some number  ~ o ~ ]0,1[ such that A can cover D(u ,  ~)[A], 
for every h ~ IX0,1 ]. 

A considerable  part  of  our studies involves local centers and local axes. 

Definit ion 4. Consider a set A c R a, containing the origin o of R d in its interior. 
o is a local center  for A, if we can associate to every pair  (u, N) ,  u ~ S  d - l ,  N 
some ne ighborhood  of the identity in O(d ) ,  a number  2~o ~ ]0,1[ and a m a p  
?~ ~ r x f rom [?~0,1] into N, such that D(u,  ?Q[A] c rx[A] for every X ~ [?~0,1]. 

This  means  that  small directional contract ions of  A can be covered by  small 
rotations.  

Definition 5. A line G = l in{g} ~ F(d ,1)  is a local axis for A c R d, if, given any 
u ~ g ± n S d - I  and any neighborhood N of the identity in O(d) ,  we can find 
ho ~ ]0,1[ and  a map  ~ ~ r x f rom [~0,1] into N, such that  r x ( x ) =  x for every 
x ~ G and D ( u ,  k)[A] c rx[A ] for all ~ ~ [~o,1]. 

2. Simple Facts 

The not ions  of  the preceding section are not independent  f rom one another.  I f  
X c R d can  cover  its contractions, then it can trivially cover its shadows in R a. A 
few slightly less obvious facts are collected in the next two lemmas.  

Lemma 1 

I f  X c R d can cooer Y c R d, and Y can cover Z c R a, then X can cover 
Z. (1) 

I f  ( X . )  ~ ~ N and ( Y . ) .  ~ r~ are converging sequences in ~d, such that X~ 
can cover Y., for  every n E N,  then l i m .  ~ X .  ~ ~a can cover (2) 
l i m .  ~ ~Y.  E ~d" 

L e m m a  1 is trivial: just  r emember  that isom÷ (R d) is a locally compact  group, 
and that  the elements of ~d are all compact .  

Lemma 2 

Consider X c R a c R n, with d < n. X can cooer its shadows in R ~ if ,  
and  only i f ,  it can cooer every contraction D ( u , h ) [ X 1 ,  u ~ S  d-1 (3) 
~ [ 0 , 1 ]  in R d. 

Assume  that u ~ S d- 1 and . ~  c ~d are such that D(  u, ~ )[ X] ~ ~ ,  for  
every X ~ ~ and h ~ ]0,1]. I f  each element o f  ~ can cooer its small 
contractions in direction u, then each element o f  ~ can cover its (4) 
contractions in direction u. 
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Assume that fg c ~a contains, together with each set X, every regular 
affine image of X. I f  there exists a direction u ~ S a- 1 such that each 
X ~ f¢ can cover its small contractions in direction u, then each X ~ 
can cover its contractions. 

(5) 

Proof 
Ad (3). Jus t  observe that every directional contract ion D(u ,  3`)[ X], u ~ S d- 1 

~ [0,1], of  X c R a c R ", d < n, is congruent  to the or thogonal  projection of X 
on to  some d-dimensional  linear subspace of R", and vice versa. 

Ad (4). Set, for X ~  r, V x =  { # e [ 0 , 1 ] :  X can cover D(u,X)[X] ,  for all 
~ [#,1]}. We  derive from (2) that V x is compact ,  hence V x = [3`,1], for some 

3  ̀> 0. In the case 3  ̀> 0 we have Y = D(u, ~)[X]  ~ ~ ,  consequently Y can cover 
D ( u ,  #)[Y] for  each/~ ~ [/~0,1] with suitable t~0 ~ ]0,1[. Now X can cover Y; so, 
by  (1), X can cover  D(u,/~)[Y] = D(u, 3`/x)[X], contradict ing the definition of 3`. 
Hence  3, = 0, and  (4) follows. 

Ad  (5). Because of (4), every Y ~ f¢ can cover its contract ions in direction u. 
G iven  X ~ fg and  (v, 3`) ~ S d- 1 × [0,1], we choose r ~ SO(d )  such that  r ( u )  = v. 
Sett ing Y =  r - l [ x ]  ~ ~ ,  we obtain  a proper  mot ion s of  R a satisfying D(u,  X)[Y] 
c s lY].  A straightforward calculation shows that  D(v,  ?O[X] c rsr- l[X].  This 
means  that  every X ~ f¢ can cover all its directional contractions.  If  f :  R 't ~ R d is 
an a rb i t ra ry  nondegenerate  contraction,  we find an or thonormal  basis (v~,. . . ,  va) 
of  R a, number s  ~, ~ ]0,1], 1 _< i < d, and a rotat ion r ~ SO(d) ,  such that f = 
r o D(va, 3`a)o . . . .  D(vl ,  3`1). For  a proof  see [1, p. 14ff], with slight adaptat ions.  
Let  us define the sets X ~ f ¢ ,  0 < i < d ,  inductively, by  X 0 =  X, X~= 
D(v~, X~)[X~_x], 1 < i _< d. We have already established that  X, can cover X~+ 1, 
0 < i < d -  1, and,  with the aid of (1), conclude that  X can cover f [X] .  If  the 
cont rac t ion  f is degenerate, we use (2), together with the fact that f may  be 
a p p r o x i m a t e d  by  nondegenerate  contractions, to obtain some proper  mot ion  r 
with f [ X ]  c r[ X]. This completes  our proof  of  (5). [] 

The  following two lemmas  show that  each convex set, which can cover its 
contract ions ,  gives rise to a whole family of  sets with the same property.  

L e m m a  3. I f  C ~ ~a can cover its contractions, then every parallel set C + pB d, 
p >_ 0 in R a can also cover its contractions. 

Proof. In order  to show that D = C + pB a, p > 0, can cover its contractions,  
consider  any  linear map  f :  R a +  R a with Lipschitz constant  L i p ( f ) < 1 .  By 
definit ion, f [ C ]  c r[C], for some r ~ isom+(Rd) .  Every point  p ~ D can be 
wri t ten as a sum p = c + x for some c ~ C and some x ~ R a with Ilxll-< p- We 
have  f ( p )  = f ( c ) +  f ( x ) ,  hence d ( f ( p ) , f ( c ) )  = I l f ( P ) -  f (c) l l  = IIf(x)l l  < p. It  
follows tha t  f [ D ]  c f [ C ] +  pB a c r [ C ] +  pB a = t i c  + pBa], as stated in our 
l emma,  if] 

Lemma 4. Assume that the d-dimensional compact convex set C c R d can cover its 
contractions. Then C - C can cover its contractions and the origin is a local center 
for C - C. 
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Proof. To each contraction f :  R d ~ R d we can associate elements r of SO(d) 
and t ~ R d, such that f [C]  c r[C] + t. Hence f [ -  C] = - f [C]  c - (r[C] + t) = 
r [ -  C ] -  t. Because f and r are linear maps, this implies 

f [ C - C ]  = f [ C ] +  f [ - C ]  c r [ C ] +  t + r [ - C ] - t  

= r [ C ] + r [ - C ]  = r [ C - C ] .  

It remains to show that the origin o is not only a center of symmetry, but also a 
local center, for the convex body S = C -  C. Given u ~ S d-1 and an open 
neighbourhood N of 1 in SO(d), the above reasoning implies that R (~ )  = { r 
SO(d):  D(u ,  h)[S] c r[S]} is not empty, for any X ~ [0,1]. We want to prove 
that W =  (X ~[0,1]:  R ( ? Q n N = O }  is bounded away from 1. Otherwise we 
obtain a sequence ( ?~ , ) i~  in W, converging to 1, and a sequence (r,)i~ N in 
SO(d),  converging to some r ~ SO(d), such that r, ~ R(~i )  i E •. 

Obviously S = l i m , _ ~ D ( u ,  X,)[S] c limi~o~r,[S ] = r[S], and S ~ cg d im- 
plies S = r[S]. 

We conclude that D(u,  h,)[S] c r~[S] = r~r-~[S], for every i ~ N. But r,r -1 
belongs to N, for sufficiently large i, which contradicts the fact that every X, lies 
in W. Lemma 4 is established. [] 

3. A Sufficient and a Necessary Condition 

The requirements for a convex body C c R a, to cover its contractions, involve the 
Lie group i s o m .  (Rd). It  is convenient to pass to the corresponding conditions 
involving infinitesimal motions, that is, elements of the Lie algebra of i som.  (Rd). 
The book [1] contains all the necessary background. 

Lemma 5. Let  P be a d-dimensional convex polytope in R d, and u ~ S d-1 a unit 
vector. I f  there exist a skew symmetric (d  x d)-matrix M and a vector t ~ R d such 
that, for  every vertex x o f  P and every outer normal n of  P at x, 

( M x  + t - ( x , u ) u , n )  < O, (6) 

then P can cover its small contractions in direction u. 

Proof. Denote by X the d2-dimensional vector space of all real (d x d)-matrices 
and by S its linear subspace, consisting of the skew symmetric matrices. If we 

with a (d)-dimensional smooth submanifold of X, then S can be identify O ( d )  

considered as the tangent space of O(d)  at the identity, S = 7"10(d). Let us write 
exp0: S ~ O ( d )  for the exponential map. Similarly, the group D u of all positive 
dilatations in direction u ~ S d- 1 has its exponential map exp,: R ~ D u given by 
expu(h)[x ] = x + (e x - 1 ) ( x ,  u)u .  The exponential map expr  for the translation 
group of R a can be described by expr( t ) [x  ] = x + t, x, t in R d. 

If  there are elements M ~ S, t ~ R d, satisfying (6), we associate to every 
x ~ R a an orbit  curve ~x: R ~ R d by setting ~x(~-) = exPr ( ' r t )o  
expo(TM)oexp,  ( -  ~)[x]. Consider the set I I  = {(x, n): x is a vertex of P, n is 
the outer normal of P at some facet containing x }. Since H is finite, we use (6) 
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and the easily established expression ~ ( 0 ) =  M x  + t -  (x ,  u )u  for the derivative 
of  ~x, to obtain a number e>  0 such that ( ~ ( 1 - ) -  x, n)  < 0 for every (x, n) ~ I I  
and every z ~ ]0, e[. If  e is small enough, the additional inequalities ( ~ ( ~ - ) -  
y, m )  < O, for every vertex x and every (y,  m) ~ l I ,  y ~= x, are automatically 
satisfied, which means ~ ( ~ - ) ~  P, for every vertex x of P and every ~-~ [0, e[. 
Setting r~ = expr(~t)oexPo(~M ) ~ isom+ (Rd), we obtain D(u, e-~)[P]  c r - t [ P ] ,  
~" ~ [0, e[, which is the claim of Lemma 5. [] 

A similar result is true for arbitrary convex bodies, but since it would require 
some extra work without giving, at the moment,  any extra benefit, we omit it here. 

Lemma 6. Let P be a d-dimensional convex polytope in R a, such that the origin o 
of R a is a local center for P. Then we can associate, to every u ~ S  d-l,  a skew 
symmetric ( d x d)-matrix M, satisfying 

(Mx-(x,u)u,n)_<0 (7) 

for every vertex x of P and every outer normal n of P at x. 

Proof Consider, as in the proof o f  Lemma 5, for a fixed u ~ S  a-l ,  the 
exponential maps exp0: S ~ O(d)  and expu: R ~ D,. Let ( ~ i ) , ~  be a sequence 
in ]0,1] converging to 0. According to Definition 4 we obtain a sequence (Ai) i ~ N 
in S, converging to the zero matrix, such that exp0(Aj)expu(-~/)[P] c P, for 
sufficiently large i. Set M i = (1/~'i)A ~. If (Mi)i~ N is a bounded sequence in the 
vector space S of all skew symmetric (d  × d)-matrices, we may assume that it 
converges to some M ~ S. For every vertex x of P and outer normal n of P at x 
we have, for i large enough, (exP0(A/)oexp, ( -  ~-i)[x]- x, n)  < 0, hence 0 > 
limi_.oo((1/~i)(exPo(Ai)oexp~ ( -  ~'i)[x]- x), n)  = ( M x  - (x ,  u)u,  n),  as stated 
under (7). 

Assuming now that ( M i ) ~  ~ is not bounded, we shall reach a contradiction. 
Denote  by Pi = IIM~II the norm of M r, and set ~ = (1 /p i )M i. Again we may 
assume that (N~)~ N converges, to a matrix N ~ S, N ~: 0. As above we obtain 
the relation (Nx ,  n) < O, for every vertex x of P and every outer normal n of P 
at x. This is impossible, though, as we see by induction on d. The case d = 1 is 
obvious. For  the inductive step, let us choose a vertex x of P such that Ilxll >- IIYlI, 
for every y ~ P. After replacing P by sP and N by sNs-1, for a properly chosen 
similarity s = 3,r, r ~ SO(d), h > 0, we may assume x = e d, d > 7¢. Since N is 
skew symmetric, we have (Nx ,  x )  = 0, and by using appropriate normal vectors n 
of  P at x, we conclude from this and the relations (Nx ,  n)  < O, that Nx = 0. It  
follows that the restriction N i x  "~ maps x - t =  R d-1 into itself. We apply the 
inductive assumption to N i x  ± and to the projection ~rx[P ]. Remember  N ~  0, 
hence N i x  i _./: O. Lemma 6 follows. [] 

As an illustration of Lemma 6 we show here that no regular octahedron can 
cover its contractions, in the sense of Definition 3. Otherwise the origin o would 
be a local center of P =conv({ ei: i ~ Z 3 } U { - el: i ~ ~' 3 }), see Lemma 4. Here, 
by  abuse of language, we identify the set {1,2,3} c Z with the cyclic group Z 3 of 
order three. Consider the pairs (x~, n~), i ~ 1 3, of vertices and outer normals of 

the polytope P, given by x~=e~, n i= (1/¢r3)(e~ - ei+l-e i+2) .  Applying the 
condition (7) of  Lemma 6 to u = ( 1 / v ~ ) ( 1 , 1 , 1 )  and to the pairs (x~,n~), we 
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would have to find a skew symmetric (3 x 3)-matrix M = (Mjk), satisfying M 1 2  - 

M31 + 1 /3  < 0, M23 - M12 + 1 /3  _< 0, M3x - 3423 + 1 /3  < 0, which is impossible. 
It would be interesting to use Lemma 6 for a direct proof of Theorem 3 below, 
and to look for analogues in connection with arbitrary convex bodies and their 
contractions. 

4. Polygons 

This section contains the main step toward our proof of the fact that every convex 
disc can cover its contractions. We identify R 2 with the field C of complex 
numbers, and take advantage of its multiplicative structure. The imaginary unit in 
C is the vector i = e 2 = (0,1), so that multiplication by i is a rotation with angle 
~r/2. 

Definition 6. If P c R 2 is a convex polygon, we denote by A°P the set of its 
vertices and by AlP the set of its edges, n(P, k)  stands for the outer normal of P 
at k ~ A I P .  We set I I ( P ) =  { (a ,n (P ,k ) ) :  a ~ A ° P , k ~ A I p ,  a ~ k } .  P is called 
nondegenerate, if no two of the lines l in{el},l in{eE},aff(X),  where X runs 
through the two-point subsets of A°P, are parallel. 

Definition 7. Given a ~ R 2, n ~ R2\(0} and ~ ~ R, we consider the linear 
transformation Nt: R 2 ~ R 2, the open half-space H(a, n) c R 2 × R  = R 3 and the 
open half-plane Hi(a, n) c R 2, defined by 

N f = ~ ' e 2 - ' i ,  orequally N f = ( ?  ~ ~) ,  

H ( a , n )  = ( ( x , ~ ' ) E R 2 x R : ( x - N ~ ( a ) , n ) < 0 } ,  

H f ( a , n  ) = { x ~ R Z : ( x , ~ ) e H ( a , n ) } .  

Lemma 7. With the notation of Definition 7 we have 

H ~ ( a , n ) n H ~ ( b , n ) c H f ( X a + # b , n ) , i f X > O ,  tx>O, a n d h + l x = l .  (8) 

H~( a, re)f3 Hf(a , n) c Hf(a , Xm +ttn), if m, n are linearly indepen- 
dent and h > O, ~ > O. Furthermore, Hi(a, m)f3 Hi(a,  n) is the open (9) 
Convex cone with apex Ni( a ) and outer normals m, n. 

Also, consider a finite set . ~  of open half-spaces H(a, n), a ~ R:, n ~ R 2 \ { o } ,  a 
vector t ~ R 2 and a reflection o: R 2 ~ R 2 at one of the axes l in(el}, l in(e2}.  Then 

the intersection f'l.~ of the half-spaces in ~ is not empty, provided that (10) 
Iq~ q~ #: f~, for every subset .o~ of ~,~ with at most four elements; 

fq~v #: 0 if, and only if 

n{n(a+t,n): n ( a , n ) ~ }  #;0, or 

n{H(aa,an): H(a,n) e , ~ }  #: ~ .  (11) 



52 H.E. Debrunner and P. Mani-Levitska 

Proof. In  order  to see (10) we apply Helly's theorem [2] to the set J g  of  open 
half-spaces in R 3. The remaining statements follow from easy exercises in linear 
algebra. [] 

Def in i t ion  8. A convex polygon P c R 2 is good, if 

n ( H ( a , n ) :  ( a , n )  ~ I I ( V ) }  4: ,~. (12) 

I f  we remember  that i is the imaginary unit in R 2 = C and compare (12) with (6) 
in L e m m a  5, we see that a good convex polygon can cover its small contractions 
in direction e 2. 

Def in i t ion  9. A standard representation of the convex r-gon P c R 2 is a 
bijective map  k ~ a k f rom the cyclic group Z~ with r elements onto A°P, such that 
l k = cony(  a k + 1, ak ) ~ AlP, for every k. Setting n k = n (P ,  l k) according to Defini- 
t ion 6, we introduce the sets A~ = H~(a k, nk)A H~(ak, n k _ l )  , and the angular 
po lyhedron  A ( P )  = n (  H ( a  k, n k ) A  H ( a  k, nk_l) :  k E l r } .  

Lemma 8. Every nondegenerate triangle D c R 2 is good. 

Proof. With  the notation of  Definition 9, we consider a standard representation 
k ~ a k, k ~ Z 3 = {0,1,2), of D. We have to show A ( D )  ~ O ,  or equivalently, 

A ( A ~ :  k E Z 3 }  4 : O ,  f o r s o m e f  ~ R. (13) 

Let  a r g ( x ) ~  [0,2~r[ be the argument of  x E C \ ( 0 } ,  such that x = I[x[le 'arg(~). 
Af te r  appropr ia te  reflections at the axes l in{ex},lin{e 2 } and by changing the 
representat ion k ~ a k, if needed, we may assume, in view of  (11), 

i r /2 < v 1 < v 0 - ~ r  < v 2 < 3~r/2 < v 0 < 27r, (14) 

where v k = arg(nk), k ~ Z 3. We study three cases, (15), (16), and (17). 

v2 < ~r. (15)  

W e  use (11) to obtain o ~ a f f ( a  o, al} n ( a  2 + l in (e l} ) ,  after a translation of D. 
Setting et k = arg(ak), k E Z3, and ~0 = sina0c°s a0 = s ineqc°sal ,  we find N~o(ak) 
= (sin2ao)ak, k ~ {0,1}, so it follows f rom (9) and Definition 7 that o E cl(A~o n 

A~o). N o w  we use the remark, that  o ~ H~(a, n), for every a ~ R 2 \ ( o } ,  n ~ R 2 \  
{o~}, is equivalent  to (N~(a),  n )  > 0, where (N~(a) ,  n)  = a2n 2 - ( a l n  2 - a2nl)  = 
Ilall [Inll(sin a sin v - ~ sin(v - a)) with a = arg(a),  v = arg(n).  This, together with 
(14) and (15), immediately implies o ~ A~o, and (13) is established in this case. 

V 2 > 7/. and  0 < / ) 0 -  V2 -~< ~r/2. (16) 

This  time we assume a 2 = 0 and obtain in the same way as above for ~1 = 
sin alcos a 1 the relations o E cl(A~ N A~)  and o ~ A~. 

v2 > ~r and ~r/2 < v 0 - v 2  < ~r. (17) 
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Assume a 2 = O. It  follows that  o ~ cl(A~), for every ( ~ R. Set a = % - (3~r/2), 
~1 = sin a lcos  8 / cos (8  - a~), £2 = sin alcos al ,  ~3 = sin ot0cos % ,  and £4 = 
s ina0cos 6 / c o s ( 8  - %) .  Then 0 < ~1 < (2, because the function f ,  given by  f ( t )  = 
sin alcos t / c o s ( a  a - t )  is strictly decreasing and cont inuous on ]a  1 - ( ~ r / 2 ) ,  a I + 
(~r/2)[, with 0 = f ( r r /2 ) ,  ~ = f ( 8 ) ,  (2 = f (a~) ;  note that  we use (14). Similarly we 
establish ~3 < ~4. Using the remark  above we find o ~ A~ for ( ~  ]~x, ~2[ and 
o ~ A~ for ~ ~ ]~3, ~ [ -  Now (3 < 0 < ~1 and ~1 < ~4. This last inequality is due to 
the fact that  the function g, given by g ( t ) = c o s S s i n t / c o s ( 8 - t )  is strictly 
increasing and  continuous on ] ~ - (~r/2), 8 + ( ~r/2)[, with ~ = g(a~), £ 4 = g ( a o  - 
~r), - ~r/2 < 8 - ( %  - ~r) < 0 < 8 - a x < ~r/2. Note  that we use (17). As a conse- 
quence, ] ~ , ~ 2 [ ~ ] ~ 3 , ~ [ e ~ ,  and (13) follows in this case, too. Lemma  8 is 
established. [] 

Lemma  9. Every nondegenerate quadrangle Q c R 2 is good. 

Proof. In view of (12) and (10) we have to show 

3 

H ( a k , n k )  * ~, (18) 
A = O  

for every set ( ( a  k, nk): 0 < k _<_< 3} c H ( Q )  with four elements. Again we consider 
three cases. 

Assume { a k : 0 < k _ < 3  } :~ A°Q. (19) 

We choose x ~ A°Q\{ak :  0 < k < 3) and set D = c o n v ( A ° Q \ ( x } ) .  L e m m a  8, 
applied to D, and the relation (9) of L e m m a  7 immediately imply A3=0H(ak ,  nk) 
~ A ( D ) * ~ .  

Assume ( n k : 0 < k < 3 )  :~ ( n ( Q , l ) :  I~AXQ}.  (20) 

If  o ~ conv{ nk: 0 __< k _< 3} then, by the nondegeneracy of Q, the vectors n k lie all 
in some open  semicircle on S 1 and Na=oH~(ak,  nk) is a nonvoid,  open,  un- 
bounded  convex  set in R 2, for every ~ ~ R. In  the case o ~ conv(nk:  0 < k < 3} 
the set D = {x  ~ R2: (x ,  nk)  < ( a  k, nk)  } is a nondegenerate  triangle, and L e m m a  
8, together  with (8), again produce N3=oH(ak , ;ng)D A ( D ) ~ .  So we are left 
with 

{ a k : O _ < k < 3  ) = A°Q, { n k : O < k < 3  } = { n ( Q , I ) : I ~ A 1 Q } .  (21) 

Using a reflection at l in(e l} ,  if needed, we may  assume, in view of  (11), that  
k ~ ak, k ~ Z 4 = (0,1,2,3},  is a s tandard representat ion of Q, and that n k = 
- i(ak+ 1 - ak)/l lak+ 1 - aklt, for  every k. If  there exists a point  b ~ R 2 such that  
( i (a  k - b), nk)  > 0, for each k ~ Z 4, we may  assume, by (11), that  b is the origin 

3 o. Then,  for  every ~ < 0 with I~1 sufficiently large, we obtain o f ' lk=oH~(ak, nk), 
and (18) is satisfied. If  we find no point  b such that  ( i (a  k - b), nk)  > 0 for each 
k ~ Z4,  then the half-planes E k = ( x  ~ R2: ( x  - a k, ink) > 0}, k ~ Z 4, have 
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empty  intersection so, by Hetly's theorem, some triplet, say E o, E 1, E 2, is without 
a common point, too. Considering that a k + l  E Ek, we see that the triangle 
N 1 =conv{  a 0, al ,  a2} has an obtuse angle at a 0, and N 2 = conv(a  0, a3, a2} has 
an obtuse angle at a 2. Because of (11) we may assume o~af f (ao ,  a2}N 
a f f ( a  1, a3).  Set t k = aff{a 1, a3} n ( a  k + l in (nk  }), k ~ {0,2}. Since the angles at 
a o and a 2 are obtuse, we find real numbers %, with %0 < hi < 0 < 7~2 < X3 such 
that  a x = X0a, t o = 3,1a, t 2 = X2a, a 3 = ~3 a, where a = (1/lla311)a 3. Set a = 
arg(a)  ~ [0,2~r[, such that a = e i~, and ~ = s inacos  a. Then ~ 4= 0 and N~(~a) = 
(~ sin2a)a 4: o, for every X ~: 0, by the nondegeneracy of Q. This says N~(tk) 
rel intconv{o,  ak+t} for k ~ (0,2),  and consequently o ~fqk~ ~o.21(H~(tk, nk )n  
H~(tk, nk ~ l) ). A straightforward computation gives N~(tk) ~ H~(a k, nk )~  
H~(ak+l, nk+l), k ~  {0,2}. Combining this with (9), we obtain H~(tk, nk )n  
H~(tk, nk+1) C H~(ak, nk)O H~(ak+ 1, nk+l). We have now reached 

o ~ N (Ht(tk,nk)CqHt(tk,nk+X)) C N Ht(ak,nk), 
k E (0,2} k E Z 3 

so that (18) follows in this case, too. Our proof of Lemma 9 is completed. [] 

Lemma 10. Every nondegenerate convex polygon P c R 2 is good. 

Proof. Remembering (10) and (12) we have to show 

3 

N H ( a k , n k )  * 0 ,  (22) 
k = O  

for every set {(ak, nk): 0 <_ k < 3} c I I ( Q )  with four elements. Let us choose 
X c A°Q with card X ~ {3,4} and {ak: 0 < k < 3) c X. Q = conv(X) is a nonde- 
generate triangle or quadrangle, and Lemmas 8 and 9, together with (9), imply 

3 Nk=oH(ak, nk) D A(Q) ~ 0 ,  as required for the proof of Lemma 10. [] 

5. Local Centers and Local Axes 

The material of this section will be used to show that covering one's contractions 
is not easy, in higher dimensions. 

Definition 10. Let P c R d be a convex polytope, and z a point of rel int(P).  
F ~ OP is called an exposed face of P, with respect to z, if there exists some 
q ~ re l in t (F )  such that (q - z ) / l l q  - zl l  is an outer normal of P at F. 

Note  that, under those circumstances, the nearest point map PF carries z to q. 

Lemma 11. For each z in the relative interior of the convex polytope P c R d, each 
vertex of P with maximal distance from z and each facet F of P with minimal 
distance from z are exposed faces of P, with respect to z. 

The proof  of Lemma 11 is obvious, and shall be omitted here. 
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Lemmal2. Let  P c R d be a convex d-polytope, with o ~ int( P ). I f  the origin o is 
a local center for  P, and F ~ OP is exposed for P, with respect to o, then 
l in(vF(O)} is a local axis for P. 

Proof. This is clear in the case d i m ( F ) =  0. If  d i m ( F ) =  d - 1 ,  set S = aff(F) ,  
q = VF(O), 8 = (½)d(q, re lbd(F)) ,  and choose a neighbourhood N of 1 in SO(d)  
such that d(q ,  S n rS)  < 8, for every r ~ N. Since o is a local center for P,  we 
can associate, to every u ~ S d-I  n q i and ~ ~ ]0,1] sufficiently close to 1, a 
rotat ion r ~ N satisfying D(u,  h) [P]  c rP. But, for X close enough to 1, the set 
D(u ,  X)[F]  contains the (d  - 1)-dimensional ball B = ( x  ~ S; IIx - qll -< 8}. In 
the case r ( q )  ~ q we have rS n B ~ 0 ,  and since rS is a supporting hyperplane of 
rP, this implies B ¢ rP, and consequently D(u,  ?,)[P] ~ rP. It follows that lin{ q } 
is indeed a local axis for P. A similar argument works for 0 < d i m ( F )  < d - 1 ;  we 
omit  the details, and will not  use the corresponding result. [] 

Definition 11. Let 50 be a set of convex polygons in R 2. The origin o is a local 
center for 50, if o ~ int(P),  for every P ~ 50, and, furthermore, given any u ~ S 1 
and any neighborhood N of the identity in SO(2), we can find a number  8 ~ ]0,1[ 
and a map X ~ r x from [1 - 8,1] into N, such that D(u ,  ~,)[P] c rxP , for every 
P ~ 50 and every ~ ~ [1 - 8,1]. 

This means that a small contraction in any direction u can be covered by a 
small rotation, simultaneously, for all members of 50. 

Lemma 13. Consider a set 5 a of  convex polygons in R 2, such that the origin o is a 
local center for  50. Let k be an exposed edge for some P ~ 50, with respect to o. 
Given any Q ~ 50, denote by L1, L 2 the supporting lines of Q which are parallel to 
aff(k) ,  and set l i = Q (3 L i. Then l] and l z are always exposed edges of  Q, with 
respect to o. 

Proof  Otherwise we may assume that there are polygons P, Q in 5 ° such that 
k = ( x  ~ P :  x 1 < Yl for every y ~ P}  is an exposed edge for P, with respect to o, 
whereas l = ( x ~ Q: x 1 > Yl for every y ~ Q } is not an exposed edge of  Q, with 
respect to o. Therefore we have, without lack of  generality, x 2 > 0, for every x ~ 1. 
Determine the vertices v ~ k ¢3 A°P, w ~ 1A A°Q by requiring v 2 > x2, for every 
x ~ k, w 2 < Y2, for every y ~ I. Clearly v 2 > 0, w 2 > 0. The direction - e 1 is an 
outer  normal  of  P at v, satisfying (iv, - ca) > 0, and by the construction of w, 
we find an outer  normal n of Q at w, such that (iw, n)  < 0. Let us choose a small 

/ 

number  I - > 0 ,  and set u = ( s i n t - , c o s , ) .  The condition (7), with M =  (~ -o'), 

applied to u and (P ,  v , -  el) and to (Q, w, n)  leads, after a short calculation, to 
the inequalities ~(io, - e l )  + (v ,  u ) ( u ,  el)  < 0 and ~(iw, n)  - (w,  u ) ( u ,  n )  < O, 
which have to be fulfilled simultaneously by some ~ ~ R. If  we choose ~- 
sufficiently small, we obtain a contradiction between these inequalities. Thus 
L e m m a  13 is established. [] 
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6. Some Results 

Theorem 1. Every two-dimensional compact convex set can cover its contractions. 

Proo f  Denote  by 9 ~ the set of  all convex polygons P c R 2 which are nondegen- 
erate, in the sense of Definition 6. We derive from Lemma 10, Definition 8, and 
L e m m a  5, that  every P ~ 9 ~ can cover its small contractions in direction e 2. The 
s ta tement  (4) in Lemma 2 shows that every P ~ ~ can cover its contractions in 
direction e v Since 9 ~ is dense in the set c¢ 2, we use (2) to conclude that every 
two-disc C ~ ~z can cover its contractions in direction e 2. In  order  to complete 
ou r  proof  of  Theorem 1, we just apply (5) to the class ~2- [] 

The  si tuation in higher dimensions is not  clear to the authors of  this essay, as 
the two following theorems illustrate. 

Theorem 2. Consider a convex set C ~ ~d, d > 3. I f  either dim(C)  < 2 or else C 
is a k-dimensional ellipsoid for  some k <_ d, then every parallel set C + pB d, p > O, 
can cooer its contractions. 

Proof  In view of  Theorem 1 and Lemma 3 it remains to show that every 
ellipsoid C can cover its contractions. To this end we may assume C = { x ~ R k: 
Eki=l(Xi/Oti)2<_l}, al_>a2>_ . . .  >_0tk>0. A well known minimax principle 
(see, for example [7], p. 263) gives the relations a i = m i n { m a x x ~ c n E l l x l l :  E 
F(k ,  k -  i + 1)}. If  f :  R k ~  R k is a nondegenerate contraction, we set D = f [ C ]  
and  fli = min{maxx ~ on  Ellxll: E ~ F(k,  k - i + 1)}. Obviously fli < ai, 1 < i _< k. 
Since D is congruent  to the ellipsoid D O = {x E Rk: Egi=a(xi/fli) 2 <1}  c C, it can 
be covered by  C, and Theorem 2 follows. [] 

Not ice  that  each set A ~ cg d, as described by the above theorem, can also 
cover  its shadows in R", n > d. We just have to apply (3) of Lemma 2. The 
cor responding  statement is not  true for any polytope. 

Theorem 3. No d-dimensional convex polytope can cooer its contractions, provided 
that d > 3. 

Proo f  If  there is a counterexample, then Lemma 4 also guarantees the existence 
of  a d-poly tope  P c R a such that 

the origin o of  R d is a center of symmetry and, at the same time, a (23) 
local center  for P. 

We  are going to show, by induction on d, that  no  such polytope P with 
d = d i m ( P )  > 3 can occur. Consider first a three-polytope P c R 3, satisfying (23). 
L e m m a s  11 and  12 say that any  vertex p of  P with maximal norm tIPtl is an 
exposed face of  P,  with respect to o, and that lin{ p}  is a local axis. An  
appropr ia te  similarity transformation allows us to assume p = e 3, and we set, for 

~ ] - 1,1[, Px = ~r~[ P N ( p ± + ~ p)]  c p ± = R 2. Compar ing  Definition 5 with 
Defini t ion 11, we notice that o is a local center for the set Y = {Px: ~, ~ ] -  1,1[}. 
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According to Lemma 11, some edge k of P0 = P n R 2 is an exposed face of P0, 
and Lemma 13 implies the existence of two exposed edges parallel to k, with 
respect to o, for every Px, ?t ~ ] - 1,1[. Choosing a unit vector u such that lin{ u } 
and aff(k) are parallel, we conclude that r r , ( P ) =  P N u-~, and that, for each 
point q in ( r e l b d % ( P ) ) \ { p , - p } ,  the line q+ l in{u}  intersects P in a line 
segment Sq c bd(P) ,  which has positive length and contains q in its relative 
interior. On the other hand, 

S~ = P N ( x + l i n { u } )  = {x} ,  f o r x  ~ ( p , - p } .  (24) 

The set SB(P, u) =U{Sx: x ~ relbd % ( P ) )  = P n %-l[relbd %(P)]  is usually 
called the shadow boundary of P in direction u, and (24) states that SB(P, u) is 
pinched at p and at - p. By Lemma 11 the polygon % ( P )  has an edge l which is 
an exposed face of %(P) ,  with respect to o; hence the facet F =U{ Sx: x ~ / } ~ OP 
is exposed for P, with respect to o. It follows that the nearest point maps v t, v F 
satisfy vl(o ) = VF(O ) = ff ~ relint(F),  and that for at least one endpoint of 1, say 
r, the set S r i_s an edge of F, and is exposed for F ,wi th  respect to ft. We set, for 
)k ~ [ - 1,1], Px = ~(P/Ih~ll)(P n (/3 ± + ?t/3)), and 6 ° = { Px: X ~ [ - 1,1] }. Notice 
that ff~ = ~r<~/ll~ll)(F); h e n c e  'tr(~/,/iNi)(ar) is exposed for P1, with respect to o, and 
parallel to u. Just as above it follows that the plane section P n ( f f  ± + X/3) has 
two edges parallel to u, but this time for every ?t in the closed interval [ -1 ,1 ] .  
Taking also F and - F  into account, we see that S~ is a nondegenerate line 
segment, containing x in its relative interior, for every x ~ relbd %(P) .  In other 
words, the shadow boundary SB(P, u) is everywhere broad, contradicting (24). 
Thus Theorem 3 is established in the case d = 3. For the inductive step, assume 
that the d-polytope P c R d satisfies (23), for d > 4. We choose a vertex x of P 
with maximal norm Ilxll, and there is no loss of generality if we set x = e d. By 
Lemma 12, lin{x} is a local axis for P; hence the origin o of x ± = R d-1 is a 
center of symmetry, as well as a local center, for rr~[P], contradicting the 
inductive hypothesis. Theorem 3 follows. [] 

7. Questions 

In view of the preceding theorems, we feel that the following main problem may 
not have an easy solution. 

Question 1. Which convex bodies can cover their contractions? 
It would be interesting to know the answer for certain subclasses of ~d, with 

appropriate regularity conditions. 
In another direction, Gale [3] has constructed a general contraction f :  P ~ Q 

from a rectangle P of minimal width I onto a square Q of minimal width 2. With 
this in mind we ask: 

Question 2. Are the Euclidean balls the only convex bodies in R d which can 
cover all their general contractions X c R a? 

There are several variants of this question. Let us say that X c R d is a 
compression of C ~ ~d, if there exists a bijective general contraction from C onto 
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X. Remember  that  Gale 's  square Q is not  a compression of  the rectangle P. N o w  
we can try to  determine those convex bodies C ~ ffd which can cover all their 
compressions,  or  convex compressions, in R d. Similar problems may  be posed in 
infinite dimensional,  or curvilinear, spaces. 

Question 3. Which polyhedra P c R d can cover their contractions? 
Here the term polyhedron means some finite union of convex polytopes. The 

analogue of  Question 3 could be asked for arbitrary subsets of  R d. 

Ques t ion  4. Which  convex bodies C of  R d can cover their shadows in Ra? 
Even for d-polytopes this question is not  answered by Theorem 3. As an 

illustration we construct a class of sets in R 3 which can cover their shadows. 
Cons ider  any set S in the unit ball B 3, satisfying S = -  S. Choose a centrally 
symmetr ic  convex disc F =  - F in R 2, such that B 2 c F. C = c lconv(S U F )  can 
cover its shadows. Namely, by  Theorem 1 and (3), F can cover ¢ru(F), for every 
u ~ S 2, and considering Lemma 4, we may  assume ¢ r u ( F ) c  r(F),  for some 
r ~ SO(3) carrying R 2 onto u t .  But r (F)  c u ± contains B 3 N u ±, and therefore 
¢r~(S). It  follows that ¢ru(C ) = clconv(cr~S n ~ruF) c r (F)  c r(C). Similar con- 
structions could obviously be carried out in higher dimensions. On the other hand 
the regular octahedron P, as described under  Lemma 6, cannot  cover all its 
shadows in R 3. Actually H = ~r,(P), u = (1/J_~_~l, 1,1), cannot  be covered by P. 
H is a regular hexagon of  side length s = ~ ( 2 / 3 ) .  If  P could cover H, we would 
find, in view of  Lemma 4, a rotation r ~ SO(3), satisfying L = r ( H ) c  P. But 
every point  x with Ilxll -- s has distance less than p := (s/2)(v~- - 1) from some 
vertex y o f  P.  Since s>20 ,  each bail B p ( y ) = { z ~ R 3 :  l l z - y l l < p } ,  y ~ A ° P ,  
can  conta in  at most  one of  the six vertices of  L. Consequently A°L n Bp(y) ~ 0 ,  
for every y ~ A°P. But it is easy to see that no  two-dimensional subspace of R 3 
can meet every ball Bp(y), y ~ A°P. We have reached a contradiction, and P 
cannot  cover its shadows. 

Question 5, Is there an efficient algorithm to decide whether a given d-polytope 
P can cover the d-polytope Q c R  d, d > 3? 
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