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Abstract 

Background:  Despite its conserved role on gene expression and transposable ele‑
ment (TE) silencing, genome-wide CG methylation differs substantially between wild 
Arabidopsis thaliana accessions.

Results:  To test our hypothesis that global reduction of CG methylation would reduce 
epigenomic, transcriptomic, and phenotypic diversity in A. thaliana accessions, we 
knock out MET1, which is required for CG methylation, in 18 early-flowering accessions. 
Homozygous met1 mutants in all accessions suffer from common developmental 
defects such as dwarfism and delayed flowering, in addition to accession-specific 
abnormalities in rosette leaf architecture, silique morphology, and fertility. Integrated 
analysis of genome-wide methylation, chromatin accessibility, and transcriptomes 
confirms that MET1 inactivation greatly reduces CG methylation and alters chroma‑
tin accessibility at thousands of loci. While the effects on TE activation are similarly 
drastic in all accessions, the quantitative effects on non-TE genes vary greatly. The 
global expression profiles of accessions become considerably more divergent from 
each other after genome-wide removal of CG methylation, although a few genes with 
diverse expression profiles across wild-type accessions tend to become more similar in 
mutants. Most differentially expressed genes do not exhibit altered chromatin acces‑
sibility or CG methylation in cis, suggesting that absence of MET1 can have profound 
indirect effects on gene expression and that these effects vary substantially between 
accessions.

Conclusions:  Systematic analysis of MET1 requirement in different A. thaliana acces‑
sions reveals a dual role for CG methylation: for many genes, CG methylation appears to 
canalize expression levels, with methylation masking regulatory divergence. However, 
for a smaller subset of genes, CG methylation increases expression diversity beyond 
genetically encoded differences.
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Background
Eukaryotic gene expression can be fine-tuned by epigenetic changes such as modifi-
cations to DNA, histones, and changes in chromatin architecture. DNA methylation 
is established and maintained by a cohort of methyltransferases, including MET1/
DNMT1 (DNA METHYLTRANSFERASE 1), which semi-conservatively copies meth-
ylation marks in the CG nucleotide context from the template to the daughter strand. 
In plants, MET1 is the principal enzyme for establishing cytosine methylation in rep-
licating cells, especially during fertilization and embryogenesis [1, 2].

In A. thaliana, even partial inactivation of MET1 can profoundly alter the genome-
wide distribution of cytosine methylation, often causing phenotypic abnormali-
ties due to the emergence of epialleles affecting the activity of developmental genes 
[3, 4]. These effects are aggravated when MET1 activity is reduced further, as in the 
EMS-induced met1-1 mutant and the T-DNA insertion mutant met1-3, in which 
genome-wide CG methylation is largely eliminated, particularly at pericentromeric 
heterochromatin [5, 6]. This in turn affects histone methylation [7–9], chromatin 
accessibility, and long-range chromatin interactions [10] and also leads to ectopic 
methylation by de novo cytosine methylation pathways [11, 12].

The genomes of natural accessions of A. thaliana vary considerably, with an aver-
age of one single nucleotide polymorphism (SNP) every 200 base pairs of the genome 
in a given pairwise comparison of accessions from different parts of the geographi-
cal range [13]. Natural accessions also vary substantially in their methylome, tran-
scriptome, and mobilome (transposable element, TE) landscapes [14–17]. Large-scale 
structural variation along with methylome variation at TEs is influenced by genetic 
variation at loci encoding components of the methylation machinery, suggesting that 
the methylation machinery is a target of selection during adaptation to the environ-
ment [15, 16, 18–21]. Substantial variation in methylation is also apparent in genic 
regions, functioning as a storehouse of epialleles, some of which can impact key 
developmental processes and fitness under new environments [22, 23]. Despite the 
documented variation in methylome patterns and the known connections between 
DNA methylation and gene expression, how much variation in DNA methylation 
contributes to adaptive variation in gene transcriptional activity remains a matter of 
intense debate [24–27].

Given the large variation in methylomes across A. thaliana accessions, we hypothe-
sized that reduction of methylation would reduce differences in chromatin accessibil-
ity and gene expression between accessions. To study genetic-background-dependent 
responses to genome-wide CG hypomethylation, we generated met1 loss-of-function 
mutants in 18 A. thaliana accessions. The number of differentially expressed genes 
varied greatly in accessions. While TE-related genes behaved very similarly across 
accessions, responding nearly uniformly with a substantial increase in expression, non-
TE-associated genes were much more variable, both in terms of the number of differen-
tially expressed genes and the extent of expression change of individual genes. However, 
a small group of genes with divergent expression profiles across wildtypes became more 
similar in expression once MET1 was lost. We conclude that MET1-dependent DNA 
methylation has dual roles, reducing differences in the transcriptional activity of diverse 
genomes for most genes, but increasing transcriptional diversity of a minority of genes.
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Results
Generation of met1 mutants

We used CRISPR-Cas9 mutagenesis [28] to target the MET1 gene (AT5G49160) in 
18 early-flowering accessions of A. thaliana, creating frameshift mutations in exon 7 
(“Methods,” Additional file  1: Table  S1). For each accession, transgene-free lines were 
genotyped at the MET1 locus and propagated. In the next generation, we obtained 
homozygous met1 mutants from 17 accessions, with two mutant lines of independ-
ent origin for 14 accessions and one mutant line for Cvi-0, Ler-1, and Col-0. For Bl-1, 
we did not recover a sufficient number of homozygous progeny for in-depth analysis. 
Because Bl-1 heterozygotes already had morphological defects, we included these in our 
analyses, along with heterozygous mutants in Col-0, Ler-1, and Bu-0. We also included 
second-generation met1 homozygotes from Tsu-0 and Tscha-1 (descended from sib-
lings of first-generation homozygotes) to glean first insights into progressive changes at 
later generations of homozygosity. For one Bs-1 line with bi-allelic mutations in MET1, 
we only analyzed second-generation progeny that was homozygous for one of the two 
alleles.

Previous work showed that epigenetic states across the genome can diverge in differ-
ent lineages of met1 mutants over several generations [5, 11]. To ensure that we could 
directly link chromatin state and gene expression, we performed paired BS-seq, ATAC-
seq, and RNA-seq on leaf tissue of the same plant rosettes, collected as three biologi-
cal replicates for both wild-type and met1 mutant lines (“Methods”). All together, we 
obtained 73 BS-seq, 158 ATAC-seq, and 158 RNA-seq libraries that passed quality 
control.

MET1 can both buffer and increase transcriptomic variation across accessions

Since natural accessions of A. thaliana are known to express diverse transcriptomes 
in their wild-type state [16], we hypothesized that MET1-induced CG methylation 
may contribute to generating this diversity and that the transcriptomes would become 
more similar to each other in met1 mutants. We therefore first grouped all wildtypes 
(54 samples) and all met1 mutants (104 samples) separately, and analyzed 19,473 genes 
with sufficient read counts in both groups. Contrary to our hypothesis, UMAP projec-
tions of read counts at these genes revealed greater differences between accessions in 
met1 mutants compared to their respective wild-type samples (Fig. 1a). This suggested 
an alternate hypothesis where MET1 functions in buffering transcriptomic diversity 
across accessions, with its absence therefore unmasking larger regulatory differences. 
Wild-type samples had 1210 differentially expressed genes (DEGs; defined as genes with 
|log2(fold change)|≥1, FDR adjusted p-value≤0.01) (Additional file  2: Table  S2, Addi-
tional file 3: Dataset S1) between accessions, fewer than those identified between acces-
sions in met1 mutant samples (1868 DEGs) (Additional file 2: Table S2, Additional file 4: 
Dataset S2). There were only 406 DEGs that were shared by wildtypes and met1, i.e., 
which were differentially expressed independently of MET1 activity. These are likely to 
include genes that are associated with structural variation or major differences in cis-
regulatory sequences. There were 804 DEGs that were unique to wild-type samples, i.e., 
where differences in expression between accessions were greatly reduced upon loss of 
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MET1. Finally, the largest group in this comparison comprised 1462 DEGs that were 
unique to met1 samples, i.e., which were expressed at similar levels across wildtypes, but 
became differentially expressed in met1 mutants. These inferences were also apparent 
from heatmaps (Additional file 5: Fig. S1) and density distributions (Additional file 5: Fig. 
S2) of Pearson correlation coefficients between accessions. Together, these observations 
indicate that there is evidence for both of our alternative hypotheses—MET1 reduces 
transcriptomic diversity across accessions for many genes, but for a smaller group of 
genes it adds another layer of expression complexity to diversify transcriptomes.

Fig. 1.  Transcriptomic variation among accessions in met1 mutants and wildtypes. a UMAP projections of 
transformed RNA-seq read counts in 19,473 genes similarly compared for wildtypes (left) and met1 mutants 
(right). These genes were further analyzed to identify DEGs across accessions, separately for WTs and 
met1 mutants. b UMAP representation of transformed RNA-seq counts from 158 samples (104 hetero- or 
homozygous met1 mutants and 54 wild-type plants) across 21,657 genes. Colors indicate accessions, 
and shapes indicate genotype. WT, wild-type; Mut Het, heterozygous met1 mutants; Mut Homo G1, 
first-generation homozygous met1 mutants; Mut Homo G2, second-generation homozygous met1 mutants. 
c Volcano plot of 3479 DEGs identified in a contrast between all met1 mutant samples and all wild-type 
samples. TE-associated DEGs (TE-DEGs) are colored purple, and Non-TE-DEGs yellow. d Chromosomal 
distribution of 3479 DEGs from the all-met1-against-all-wild-type contrast, and their log2(fold change) in 
mutants relative to the corresponding wildtypes. Upregulated DEGs are colored orange and downregulated 
DEGs green. e DEGs in the 18 accession-specific contrasts, compared to the all-met1-against-all-wild-type 
contrast (denoted by “A,” third column from the left). f Variation in numbers of upregulated and 
downregulated Non-TE-DEGs and TE-DEGs across different contrasts, bars colored similarly to d. For e and 
f, colors below bars indicate accession-specific contrasts. g Boxplots showing distribution of the coefficient 
of variation (CV) for expression level (measured in transformed read counts) across accessions, compared 
between 104 met1 mutant and 54 wild-type samples at 10,151 Non-TE-DEGs, 1,524 TE-DEGs, and 291 
Universal DEGs. *** indicates Wilcoxon-test p-value <0.0001
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TE‑ and Non‑TE genes are differentially expressed in met1 mutants

A major role of MET1 is the transcriptional silencing of TEs by establishing and main-
taining CG methylation [29, 30]. We next asked whether there were any accession-spe-
cific differences in the requirement of MET1 in regulating the expression of both TE 
genes (genes associated with TEs, see “Methods”) and other protein-coding genes. We 
first analyzed RNA-seq read counts of 21,657 genes in all samples (wildtypes and met1 
mutants) and generated a UMAP visualization. Two distinct clusters of samples could 
be observed, one encompassing wild-type and the other met1 plants (Fig. 1b). In agree-
ment with our initial results, wild-type samples were less spread out than mutant sam-
ples, indicating greater gene expression heterogeneity in met1 mutants than in wild-type 
plants. Comparison of first- and second-generation homozygous mutants in the Tscha-1 
and Tsu-0 accessions did not indicate major changes upon propagation of mutant lines.

To obtain first insights into MET1 function across all accessions, we examined pro-
tein-coding genes whose expression levels changed significantly in a contrast of all met1 
mutants against all wild-type plants, thereby identifying 3479 DEGs. Of these, 1466 
genes (42% of all DEGs) were associated with TEs, which we called TE-DEGs (Addi-
tional file 2: Table S2, Additional file 6: Dataset S3), and these corresponded to 87% of 
the 1678 TE-associated genes with sufficient information in our dataset (“Methods”). 
Almost all of them were upregulated in met1 mutants compared to wild-type plants, and 
often greatly so (Fig. 1c). This was consistent with previous findings from early- and late-
generation homozygous met1 mutants [31–35], including the observation that Class II 
DNA TEs of the En/Spm superfamily were most often among activated TE-DEGs [36, 
37]. Consistent with TE density being highest near the centromeres [38], TE-DEGs were 
enriched in pericentromeric regions (Fig. 1d). Many of the TE-DEGs were strongly over-
expressed in met1 mutants, hundreds of times or more (Fig. 1c).

The picture was different for the remaining 2013 DEGs that were not associated with 
TEs (Non-TE-DEGs, Additional file 2: Table S2, Additional file 6: Dataset S3), and which 
corresponded to 10% of the 19,979 Non-TE genes with sufficient information in our 
dataset. Although the majority was also upregulated in met1 mutants, more than a third, 
728, was downregulated (Fig. 1c). Non-TE-DEGs were also more uniformly distributed 
along the chromosome arms, and overall expression changes for both up- and downreg-
ulated genes were much more moderate (Fig. 1d). Gene Ontology (GO) enrichment of 
Non-TE-DEGs revealed several terms related to abiotic and biotic stresses and stimulus 
response (Additional file  5: Fig. S3). We conclude that across all accessions, Non-TE-
associated genes vary much more in their sensitivity to loss of MET1 than TE-associated 
genes.

Mis‑regulated genes vary among met1 mutants of different accessions

A closer examination of DEGs called by contrasting all met1 mutants against all 
wildtypes showed that DEGs were not uniformly induced or repressed across acces-
sions (a random subset of such DEGs is shown in Additional file  5: Fig. S4). Hence 
we individually examined each of the 18 accessions for genes that were differentially 
expressed between met1 mutants and the corresponding wild-type parents. We found 
that the number of DEGs in each accession varied substantially (Fig.  1e, Additional 
file  2: Table  S2, Additional file  6: Dataset S3), but that this was much more true for 
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Non-TE-DEGs than TE-DEGs. In addition, while downregulated TE-DEGs were rare in 
all accessions, the ratio of up- to downregulated Non-TE-DEGs in met1 mutants was 
much more variable (Fig.  1f, Additional file  5: Fig. S5). The number of Non-TE-DEGs 
ranged from 278 (26% of all DEGs) in Com-1 to 3409 (77% of all DEGs) in Est. Notably, 
even though we could only analyze heterozygous Bl-1 met1 mutants, these had more 
Non-TE-DEGs than homozygous met1 mutants in several other accessions, suggesting 
that even the removal of only one of the two functional MET1 copies was sufficient to 
alter expression levels of a large number of genes, at least in this accession.

In total, there were 10,151 Non-TE-DEGs and 1524 TE-DEGs that were differentially 
expressed in at least one of the accessions or in the all-met1-against-all-wild-type con-
trast. Expression levels of both DEG sets were significantly more variable across acces-
sions in met1 mutants compared to wildtypes (Fig. 1g, Additional file 5: Fig. S6), once 
again demonstrating that expression diversity across accessions was overall higher in the 
absence of MET1 activity.

We used all 10,151 Non-TE-DEGs to build a weighted gene co-expression network 
(“Methods”), finding nine modules. Genes from module “D” were the most consistent 
in their expression levels across all accessions, being on average always upregulated in 
met1 mutants compared to the respective wild-type plants (Additional file  5: Fig. S7, 
Additional file 7: Dataset S4). GO enrichment analyses revealed that many “D module” 
genes were associated with nucleic acid metabolic processes, DNA repair and transcrip-
tion, although only weakly significantly so. This suggests that MET1 likely affects core 
metabolic machinery genes, which may further impact a different subset of downstream 
genes in each accession.

We next generated a frequency spectrum to examine the overlap of DEGs between 
accessions. When we focused on the two extreme accessions, Est and Com-1, a great 
majority of TE-DEGs were shared across most contrasts, while the picture for Non-TE-
DEGs was very different. While almost 30% of the 3409 Non-TE-DEGs in Est were not 
detected in any other accession, 98% of the 278 Com-1 Non-TE-DEGs were found in 
at least one other accession (Fig. 2a,b, Additional file 5: Fig. S8). The 983 unique Non-
TE-DEGs in Est were enriched for functions with a common theme of RNA and DNA 
metabolism (Fig. 2c), compatible with a scenario in which mis-regulation of one or a few 
specific master regulators had led to expression changes in numerous Non-TE-DEGs in 
Est.

When overlaying DEGs from the 18 accession-specific met1-against-wild-type com-
parisons and the all-met1-against-all-wild-type comparison, we found 291 universal 
DEGs (Additional file 8: Dataset S5), albeit with the extent of expression change in met1 
mutants differing considerably across accessions (Fig. 1g, Additional file 5: Fig. S6). Only 
15 of the universal DEGs were Non-TE-DEGs (Fig. 2d), and eight of these 15 genes are 
strongly expressed in siliques in Col-0 wild-type plants [39]. We had measured gene 
expression in rosette leaves, and many of these genes were expressed at low levels in 
our wild-type samples, but strongly upregulated in met1 mutants. Included among the 
15 genes were three maternally imprinted genes, FWA, SDC, and AT1G59930 [40, 41], 
along with AT5G35120, which we suspect may be maternally imprinted as well, given its 
sequence similarity with AT1G59930 and selective expression in the endosperm. Ectopic 
FWA expression is known to delay flowering in both Col-0 and Ler-1 accessions [42, 43], 
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while ectopic activation of SDC has been shown to lead to dwarfism and leaf curling in 
Col-0 [41, 44]. This is consistent with the whole-plant phenotypes described in detail 
below. Four consistently observed DEGs encoded an ULP-1 protease family domain. 
ULP-1 sequences have been found to be associated with Mutator-like TEs in Cucumis 
melo (“CUMULEs”), although there is no evidence that similar CUMULEs in rice or A. 
thaliana assist in TE mobilization [45]. Because these genes are not annotated as “TE 
genes” in TAIR10, they are included in our list of Non-TE-DEGs.

Finally, we assessed to what extent DEGs from one accession changed in the other 
accessions. Genes identified as up- or downregulated Non-TE-DEGs after loss of MET1 
in one accession changed on average almost always in the same direction in each of the 
other accessions, but did so less strongly (Fig. 2e, f ). TE-DEGs on the other hand were 
similarly upregulated in all accessions, but downregulated TE-DEGs were often vari-
ably expressed in other accessions (Additional file 5: Fig. S9). This finding is consistent 
with the idea that MET1 activity often homogenizes gene expression levels in different 
genetic backgrounds.

Fig. 2  Qualitative and quantitative comparisons of accession-specific DEGs. a, b Frequency spectrum of 
Est and Com-1 TE-DEGs and Non-TE-DEGs across all other accessions. c The top 20 GO terms enriched for 
983 DEGs unique to Est. d Heatmap of log2(fold change) of 15 universal Non-TE-DEGs across all accessions, 
grouped by protein function categories. TAIR10 gene names, encoded proteins and their preferential tissues 
of expression in wild-type (where known) are shown. e, f Heatmaps of average log2(fold change) for all 
Non-TE-DEGs from one accession in each of the other accessions. Barplots on the right indicate the absolute 
frequency of Non-TE-DEGs in each accession
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met1 mutants exhibit reduced DNA methylation and increased overall chromatin 

accessibility

To investigate how much of the variation in DEGs across accessions arose from differ-
ences in DNA methylation and chromatin architecture, we characterized the methyl-
omes and chromatin accessibility in our collection of met1 mutants and corresponding 
wild-type lines. As expected from the knockout of MET1, cytosine methylation in the 
CG sequence context was drastically and consistently reduced in homozygous met1 
mutants, dropping to an average genome-wide level of 0.2%, representing a 98.5% 
decrease from mean wild-type levels (Additional file 5: Fig. S10). Cytosine methylation 
in non-CG contexts was moderately affected in first-generation met1 mutants, being on 
average 6.8% higher in the CHG context and 21% lower in the CHH context. Second-
generation met1 mutants of Tsu-0 and Tscha-1 had greatly increased CHG methylation, 
both relative to first-generation met1 mutants and wild-type parental lines (Additional 
file 5: Fig. S10). This increase in methylation during successive rounds of inbreeding has 
previously been described for met1-3 mutants in the Col-0 accession [11].

Because overall methylation patterns were greatly altered in met1 mutants, we wanted 
to closely examine genomic regions with the most significant changes in methylation. 
We contrasted 73 methylomes including both met1 mutants and the wild-type parents 
from all 18 accessions (“Methods”) to identify differentially methylated regions (DMRs) 
in the CG, CHG, and CHH contexts (Fig. 3a, b, Additional file 5: Fig. S11, Additional 

Fig. 3  Reduced CG methylation and increased chromatin accessibility in met1 mutants. a, b UMAP 
representation and heatmap of CG methylation levels in wild-type plants and met1 mutants across 749 
CG-DMRs (from a total of 2388 CG-DMRs). c UMAP representation of chromatin accessibility in log2(CPM) of 
9505 highly variable dACRs (HV-dACRs) across wild-type plants and met1 mutants. d Heatmap of z-scaled 
values of 9505 HV-dACRs grouped by k-means clustering, with mean accessibility for each dACR indicated on 
the right. TMM, trimmed mean of M-values. CPM, counts per million
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file 9: Dataset S6, Additional file 10: Dataset S7, Additional file 11: Dataset S8). The 2388 
CG-DMRs overlapped with the vast majority of the 350 CHG-DMRs and 1023 CHH-
DMRs. Approximately half of all CG-DMRs overlapped with TE sequences, a quarter 
overlapped TE genes, while 42% overlapped Non-TE genes (Additional file 5: Fig. S10, 
Additional file 2: Table S2).

While most CG-DMRs in met1 mutants retained minimal or no CG methylation, 
the extent of reduction in methylation differed across accessions, consistent with 
accession-specific methylation patterns in the presence of MET1 [16] (Fig.  3a, b, 
Additional file  5: Fig. S12). To assess the functional consequences of this variation, 
if any, we asked how loss of cytosine methylation impacted genome-wide chromatin 
architecture in each accession. To this end, we identified accessible chromatin regions 
(ACRs) by ATAC-seq in all met1 mutants and the corresponding wildtypes. With 
this analysis, which allowed us to define differential ACRs (dACRs) with accessibil-
ity changes in at least two accessions (“Methods,” Additional file 12: Dataset S9), we 
could focus on 9505 highly variable dACRs (HV-dACRs) with particularly stark vari-
ation in accessibility across accessions and genotypes (“Methods,” Additional file 13: 
Dataset S10). We visualized variation in accessibility levels at these HV-dACRs using 
UMAP (“Methods”), which similarly to the RNA-seq data (Fig. 1b) revealed two dis-
tinct clusters of wild-type plants and met1 mutants (Fig.  3c), with wild-type plants 
from different accessions being more similar to each other than met1 mutants from 
different accessions. Approximately one third of all HV-dACRs overlapped in posi-
tion with Non-TE genes, 24% with TE genes, and 62% with TE sequences (Additional 
file 5: Fig. S13, Additional file 2: Table S2).

Genome wide, the chromatin of met1 mutants was more accessible than chromatin 
of wild-type plants, and this difference was particularly pronounced for two subgroups, 
k-groups 1 and 3, of HV-dACRs identified by k-means clustering (Fig.  3d). Across all 
accessions, approximately one third (31%) of CG-DMRs overlapped with HV-dACRs, 
but at the same time, most HV-dACRs (88%) did not overlap with DMRs (Additional 
file 2: Table S2), indicating that the vast majority of HV-dACRs appeared due to trans 
effects of methylation changes in the genome.

To see whether epigenetic profiles at TEs, which included both TE genes and other TE 
sequences, differed from Non-TE genes, we averaged methylation levels using genome-
wide methylated cytosines in all contexts (“Methods”) and chromatin accessibility lev-
els using 34,993 consensus ACRs (“Methods”) for all met1 mutants and wild-type plants 
across 31,189 TEs and 29,699 Non-TE genes including 1 kb flanking sequences (Addi-
tional file 5: Fig. S14). Genome-wide chromatin accessibility patterns in met1 mutants 
mirrored cytosine methylation levels, with increases in accessibility accompanied by 
decreases in methylation for most accessions. This pattern was much more pronounced 
in magnitude over TEs (Additional file 5: Fig. S14a) than in Non-TE genes (Additional 
file 5: Fig. S14b). These observations once again demonstrate that TEs are highly sensi-
tive to the absence of MET1, in agreement with TE genes being strongly upregulated in 
met1 mutants.

Finally, we asked how much of the expression changes at DEGs were explained by 
these epigenetic alterations. We focused on Est and Com-1, the two accessions with 
the highest and lowest number of DEGs. While TE-DEGs behaved similarly in the two 
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accessions, Non-TE-DEGs showed contrasting patterns, with accessibility differences 
between met1 mutants and wildtypes being on average much smaller in Est than in 
Com-1 (Additional file 5: Fig. S14c), confirming a complex relationship between meth-
ylation, chromatin accessibility and gene expression changes at Non-TE-DEGs, which in 
turn leads to very different numbers of Non-TE-DEGs in different accessions.

Non‑TE‑DEGs show varying methylation and chromatin accessibility profiles 

across accessions

Observing that differential gene expression can be accompanied by epigenetic changes, 
we quantitatively assessed mutual relationships of cytosine methylation and chromatin 
accessibility with gene expression, having analyzed all of the three factors from the same 
individuals across our collection of met1 mutants and wildtypes.

To investigate whether the presence or absence of methylation within or in proximity 
to a gene could influence its expression level, we examined how DEGs were regulated in 
the presence of a DMR. We first defined a consensus set of 7132 DEGs from all 18 acces-
sions (“Methods,” Additional file 5: Fig. S15, Additional file 14: Dataset S11, Additional 
file 15: Dataset S12), containing TE-DEGs (1401) and Non-TE-DEGs (5731) and inter-
sected their genomic coordinates with 1569 CG-DMRs with sufficient methylation calls 
across all samples that were identified from all mutant and wild-type samples (“Meth-
ods,” Additional file 16: Dataset S13).

While only a small fraction of consensus DEGs were located close to a CG-DMR (21% 
of TE-DEGs and 7% of Non-TE-DEGs) (Additional file  2: Table S2), the converse was 
also true: only a minority of CG-DMRs was found next to DEGs (21% next to TE-DEGs 
and 27% to Non-TE-DEGs). Local differences in CG methylation are thus neither nec-
essary nor sufficient for differences in gene expression between wild-type and met1 
mutant plants. At the loci where both expression and CG methylation were altered, we 
examined expression counts and methylation levels in homozygous met1 mutants and in 
corresponding wild-type plants from 17 accessions. As a control, we randomly sampled 
Non-DEGs (genes that were not differentially expressed; “Methods”) that positionally 
overlapped with DMRs.

Most TE-DEGs with CG-DMRs in either their extended gene bodies (“Methods,” 
Additional file  5: Fig. S16, Additional file  5: Fig. S17c) or 1.5 kb up- or downstream 
sequences (“cis” regions) (“Methods,” Additional file  5: Fig. S16, Additional file  5: Fig. 
S18c) had lost CG methylation in met1 mutants. These TE-DEGs were upregulated in 
all met1 mutants, albeit to a different extent in each accession. Non-TE-DEGs, which 
were already observed to be very variable in their differential expression levels, exhib-
ited a wide gradient of methylation differences between met1 mutants and the respec-
tive wild-type parents (ranging from −100 to +10%). This was observed both when 
DMRs were located in extended gene bodies (Additional file 5: Fig. S17a) and in 1.5 kb 
up- or downstream sequences (Additional file 5: Fig. S18a). In both cases, one group of 
Non-TE-DEGs was strongly upregulated and had highly reduced methylation in met1 
mutants, suggesting that methylation could have a strong effect on gene regulation at 
these genes. There was also another group of more moderately up- or downregulated 
Non-TE-DEGs with negligible methylation changes in met1 mutants. On examining 
the accession-of-origin of each of these Non-TE-DEGs, we found that the same gene in 
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different accessions could be found in either of the groups identified above, indicating 
considerable epigenetic plasticity across accessions.

Consequently, we asked whether parental methylation and expression state can pre-
dict epigenetic and transcriptional response in met1 mutants. DEGs classified in the top 
quintiles of wild-type CG methylation levels (“Methods”) were more likely to increase in 
expression than DEGs from the bottom quintiles, which were similarly likely to be up- 
or downregulated in met1 mutants (Fig. 4c, g, Additional file 5: Fig. S19c, Fig. S19g). In 
terms of expression changes, we found that DEGs from the lowest quintile of expression 
counts in the wild-type parents were the ones that were the most upregulated in met1 
mutants (Fig. 4a, e, Additional file 5: Fig. S19a, Fig. S19e). These observations are con-
sistent with high levels of CG methylation in the wild-type state serving to silence genes.

In A. thaliana, many constitutively active genes are marked by gene body CG meth-
ylation (gbM) [46] and the methylation levels of these genes are known to vary in tan-
dem with their differential expression across A. thaliana accessions [22, 23]. Among 
Non-TE-DEGs with gene body CG-DMRs, 91 out of 196 genes (46%) were methylated 
in the wild-type state (“gbM like” genes; “Methods”) in at least one accession. Most 
of these “gbM-like” genes were downregulated in met1 mutants (Additional file  5: 
Fig. S20a). When we examined the larger set of all Non-TE genes (19,979), we found 

Fig. 4  CG-DMRs in gene bodies of Non-TE-DEGs and TE-DEGs. Differences in CG methylation between met1 
mutants and wild-type plants plotted against differences in gene expression. Dots are colored by wild-type 
expression quintiles (a,b,e,f) and wild-type methylation quintiles (c,d,g,h) with density distributions shown 
on top and left. Expression levels are represented as transformed read counts (tr. counts) and methylation 
levels as % CG methylation in CG-DMRs
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three genes that were consistently gbM-like in wildtypes of 17 accessions, but with 
highly reduced methylation in homozygous met1 mutants. These were AT5G20490 
(XIK, encoding a myosin family protein involved in root hair growth and trichome 
development), AT5G37130 (encoding a prenylyltransferase superfamily protein), and 
AT5G44800 (PICKLE, encoding a protein that affects histone methylation levels and 
impacts floral meristem identity) (Additional file 5: Fig. S20b). Only AT5G37130 was 
a consensus Non-TE-DEG (being significantly downregulated in met1 mutants in 
Aa-0, Com-1, Pi-0 and Cvi-0) (Additional file  5: Fig. S20c). Incidentally, genes that 
were highly methylated and weakly expressed in wildtypes (exhibiting TE methylation 
characteristics in the CG context or “CG teM-like” genes; “Methods”) were always 
upregulated in met1 mutants (Additional file 5: Fig. S21), similarly to TE-DEGs. The 
two groups of genes, with gene body or TE methylation in the CG context, did not 
overlap.

We next carried out a similar quantitative analysis to examine the relationship 
between differential expression changes and differential chromatin accessibility 
at DEGs (“Methods,” Additional file  5: Fig. S22). Approximately 37% of all consen-
sus DEGs (“Methods”) were associated with HV-dACRs within 1.5 kb upstream and 
downstream of their gene body (Additional file 2: Table S2). While chromatin accessi-
bility increased almost proportionally with expression in met1 mutants for TE-DEGs, 
increased accessibility could be associated with, but did not necessitate an increase in 
gene expression for Non-TE-DEGs (Additional file 5: Fig. S23, Additional file 5: Fig. 
S24). Accessible chromatin is well known to favor gene transcription by facilitating 
transcription-factor binding [47, 48] although there is also evidence that inaccessi-
ble regions can occur in some long and highly transcribed genes [49]. Together, these 
observations point to complex interactions between gene expression and chromatin 
accessibility levels in cis, especially at Non-TE-DEGs.

MET1 can have indirect effects on the expression of Non‑TE genes

Since variation in the response of gene expression, methylation and chromatin acces-
sibility to loss of MET1 was most apparent for Non-TE-DEGs, we focused on these 
genes to explore the nature of their epigenetic plasticity. Among 5731 consensus Non-
TE-DEGs that varied in their expression response across accessions (Fig. 5a), 21% had 
differentially accessible chromatin regions (HV-dACRs) in their vicinity, but lacked a cis 
CG-DMR (“cis” here including the gene body) (Additional file 2: Table S2). Conversely, a 
minority of Non-TE-DEGs, 255 (5%) had cis CG-DMRs but no nearby HV-dACRs, and 
a majority of Non-TE-DEGs, 4105 (72%) had neither a nearby HV-dACR nor CG-DMR 
(Additional file  2: Table  S2). Closer inspection of several genes from these categories, 
AT1G60190, PR1, ROS1 (Fig.  5a), showed that the relationship between altered gene 
expression, CG methylation, and accessibility in met1 mutants varied substantially, both 
across genes and accessions.

To focus on close-range interactions between changes in methylation, chromatin 
accessibility, and gene expression at the same locus, we examined Non-TE genes associ-
ated with both cis HV-dACRs and CG-DMRs—comprising 164 DEGs, which we com-
pared with 107 randomly sampled Non-DEGs (“Methods”), by overlaying methylation, 
accessibility, and gene expression data for each gene across 17 accessions. We observed 
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that 3073 genes (in 17 accessions) with strongly reduced CG methylation (>75% meth-
ylation reduction) had a tendency to have increased chromatin accessibility. Of these, 
15.6% were strongly upregulated in met1 mutants, while only 1% were strongly down-
regulated (Fig.  5b). Incidentally, strongly upregulated genes in this group also stood 
out from the rest because they exhibited moderately increased accessibility in met1 
mutants, consistent with methylation changes being directly responsible for induction of 

Fig. 5  Non-TE-DEGs in met1 mutants can have different epigenetic states in different accessions. a Heatmap 
of expression changes across 5731 Non-TE-DEGs in 17 accessions, with an adjacent heatmap showing 
variance expressed as standard deviation (SD) across accessions, and scatterplots of changes in expression 
and accessibility in representative genes, AT1G60190 and PR1, from two different DEG categories (based 
on overlap with cis CG-DMRs and HV-dACRs). A genome browser screenshot of ATAC-seq, RNA-seq, and 
BS-seq data in three accessions is shown for a third example gene locus, ROS1, harboring both cis DMRs 
and cis dACRs. b Scatterplot of changes in chromatin accessibility and methylation in Non-TE-DEGs across 
17 accessions. Colors and density distributions represent custom bins of expression changes. A closeup 
of a selected region is shown below. c Scatterplots similar to b for Non-TE genes. d Boxplots showing 
MET1-dependent changes in chromatin accessibility, gene expression, and CG methylation of genes that 
are weakly (“LOW”) or highly (“HIGH”) methylated in wild-type Cvi-0. The same genes are compared for 
Cvi-0 (dark green) and 16 other accessions (gray). e Scatterplot of changes in methylation and expression in 
Non-TE-DEGs with gene body CG-DMRs, colored by DEGs specific to Col-0 (black) against the same genes in 
other accessions (yellow). f Scatterplot of changes in chromatin accessibility and expression in Non-TE-DEGs 
carrying cis dACRs, colored by DEGs specific to Col-0 (black) against the same genes in other accessions 
(yellow). Expression levels are represented as transformed read counts (tr. counts); chromatin accessibility 
levels as TMM (trimmed mean of M-values) normalized values in counts per million (CPM), and methylation 
levels as % CG methylation
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expression (Fig. 5b). For both DEGs and Non-DEGs (Fig. 5b, c), there were many other 
different combinations of methylation and accessibility states, and these did not always 
cluster by degree of expression change. Together, these observations suggested the pres-
ence of multiple epigenetic states, both for different genes in the same accession and for 
the same gene in different accessions.

We next examined Non-TE genes (271 genes including 164 DEGs and 107 Non-DEGs) 
as a group for accession-specific epigenetic patterns, first comparing the methylation 
levels of these genes in wildtypes and mutants. Cvi-0 had the highest fraction of genes 
with minimal reduction in methylation in met1 mutants (Additional file  5: Fig. S25a). 
This was explained by Cvi-0 wild-type having already many genes with low methylation 
levels, limiting the extent of any further reduction in methylation (Additional file 5: Fig. 
S25a). We asked how genes with low CG methylation in Cvi-0 wild-type, that is, genes 
with methylation levels that could not be reduced much further by loss of MET1, fared in 
other accessions. While the average reduction in methylation level was greater in other 
accessions, as expected, changes in accessibility and expression level after inactivation 
of MET1 were similar in magnitude when compared to Cvi-0 (Fig.  5d). This observa-
tion provides further support for genome-wide hypomethylation indirectly affecting the 
expression of many genes. Finally, comparing the relationship between MET1-depend-
ent changes in methylation, chromatin accessibility, and gene expression in the reference 
accession Col-0 with changes in other accessions confirms that Col-0 is not particularly 
representative of A. thaliana accessions at large (Fig. 5e, f ).

met1 mutants express signatures of known epialleles

Many of our met1 mutants had strong methylation and expression changes at well-
known loci sensitive to epigenetic regulation, such as FWA [42] (Additional file 5: Fig. 
S25c,d), SDC [44] (Additional file 5: Fig. S26), the PAI genes [50], IBM1 [51], SNC1 (with 
alleles similar to the bal variant of SNC1) [52], the ROS1 demethylase, which is known 
to function as a methylation sensor [11, 53, 54] (Fig.  5a, Additional file  5: Fig. S25b), 
AG [4] (Additional file 5: Fig. S27), and SUP (with alleles similar to the clark-kent vari-
ant of SUP) [55] (Additional file 5: Fig. S28). New epialleles at several of these loci have 
been reported before in Col-0 and C24 met1 mutants [3, 56]. We observed a variety of 
methylation patterns at these loci depending on the accession of origin, with consider-
able differences in chromatin accessibility and gene expression across accessions; several 
examples at the FWA locus are shown in Additional file 5: Fig. S25c,d. As seen before 
[11], some epialleles arose only in second-generation met1 mutants (Additional file  5: 
Fig. S27), suggesting that epialleles continue to accumulate in the absence of MET1 dur-
ing inbreeding.

met1 mutants vary in phenotypes and segregation distortion

Compared to their wild-type parents, homozygous met1 mutants were dwarfed, flow-
ered late, and had altered rosette leaf architecture—although to different degrees 
in each accession (Fig.  6a, Additional file  5: Fig. S29-S30). met1 mutants also suffered 
from silique abnormalities, in some cases affecting fertility (Fig.  6b–d). Additionally, 
we observed during the preparation of ATAC-seq libraries that met1 mutant nuclei 
had lower levels of endopolyploidy (Additional file  5: Fig. S31). Homozygous mutants 
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were underrepresented in the progeny of heterozygous parents, consistent with reduced 
transmission of met1 alleles, as described previously [6, 57]. To estimate the extent of 
segregation distortion, we grew up to 96 progeny of heterozygous mutants and geno-
typed all individuals. In all accessions, homozygotes were underrepresented (Fig.  7a, 
Additional file 17: Table S3), from 2% in Aa-0 to 18% in Uk-1.

Bs-1 Line 2 included two different types of homozygous mutants that were phe-
notypically distinct, with the frameshift allele, which we used for the genomic analy-
ses described above, causing more severe phenotypic defects and being more strongly 
underrepresented in a segregating populations (Fig.  7b, Additional file  17: Table  S3). 
Bu-0 Line 2 and Ste-0 Line 2 segregated individuals with different combinations of two 
mutant alleles along with a wild-type allele, pointing not only a bi-allelic origin of the 
met1 alleles but also a change in the generative ploidy level. Genotyping by sequencing 
also revealed heterozygous individuals with a skewed ratio of reads for the wild-type and 
mutant alleles, especially in Bu-0 Line 1, Pi-0 Line 1, Col-0 Line 2, and Bl-1 Line 1 (Addi-
tional file 17: Table S3). Since heterozygotes of these four lines also exhibited phenotypic 
variation (Fig. 7c, Additional file 5: Fig. S32), we suspected that there was variation in 
ploidy. Both Bu-0 Line 1 and Line 2 as well as wild-type Bu-0 plants used in this study 
turned out to be tetraploid, possibly explaining the altered segregation ratios (Fig. 7d, 
e). However, other lines with skewed heterozygous allele frequencies were derived from 
diploid parents (Additional file 5: Fig. S32), awaiting a more comprehensive explanation 
of genotypic and phenotypic variation in these lines.

Fig. 6  Rosette and silique morphology of met1 mutants. a Representative images of two independently 
derived mutants and the corresponding wild-type (WT) for six accessions at 6 weeks post germination; 
scale bars represent 1 cm. b–d Silique morphology in three accessions. Scale bars represent 1 mm. Gen1, 
first-generation homozygous mutants; Gen 2, second-generation homozygous mutants



Page 16 of 33Srikant et al. Genome Biology          (2022) 23:263 

Discussion
The genomes, methylomes, and transcriptomes of different A. thaliana accessions can 
vary substantially [13, 16], and studying their interplay has often focused on TEs, which 
are silenced by DNA methylation [14, 19]. DNA methylation is also prevalent through-
out euchromatin, both near and inside protein-coding genes that are not associated with 
TEs [23, 58]. MET1 is well known to establish methylation in the predominantly occur-
ring CG nucleotide context and cause major phenotypic consequences when its func-
tion has been lost. The availability of a collection of met1 mutants in several accessions 
enables the investigation of gene expression diversity associated with variation in the 
parental genomes and epigenomes. We analyzed first- and second-generation homozy-
gous met1 mutants, finding that the majority of qualitative and quantitative variation 
in gene expression across accessions arises from genes that are not associated with TEs 
(Non-TE-DEGs).

Fig. 7  Segregation distortion in met1 mutants. a Proportions of wild-type and met1 mutant genotypes in 
progeny of heterozygous individuals. L1, L2, Line 1, Line 2. b Different phenotypes in met1 Bs-1 Line 2. “Ins” 
refers to “insertion” and “subst” refers to “substitution.” c Phenotypic diversity in Bu-0 Line 2. d Endopolyploidy 
peak position ratios (from flow cytometry profiles) in Bu-0 and Col-0 lines relative to tomato internal standard. 
“Col-Tet,” Col-0 tetraploid line. e Fractions of segregating genotypes in met1 Bu-0 Line 2 progeny. Scale bars in 
b and c = 1 cm
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The absence of CG methylation can disturb the regulatory balance of hundreds to 
thousands of genes, and that it does so to a remarkably different extent in genetically 
diverse backgrounds. Moreover, the comparison of transcriptome diversity across acces-
sions between wild-type and met1 mutants shows that CG methylation by MET1 can 
mask underlying genetic diversity at some genes, but at the same time increase expres-
sion diversity at another, albeit smaller set of genes.

When analyzing a consensus set of DEGs from all accessions together, we systemati-
cally find that the effects of MET1 inactivation can be linked to the initial epigenetic 
state of the wild-type parent. Genes that are highly CG methylated, expressed at low 
levels, and have inaccessible chromatin in wild-type plants are the ones that are most 
likely to become strongly expressed and to have greatly increased chromatin accessibility 
in the corresponding met1 mutants. This pattern is typical for most TE-DEGs, but also 
seen at some Non-TE-DEGs. From first principles, genes not associated with TEs are 
much more likely than those genes associated with TEs to change in expression due to 
indirect effects of MET1, and this is confirmed by Non-TE-DEGs being more variable in 
their methylation and accessibility changes in met1 mutants. This is also associated with 
more variation in gene expression changes: While TE-DEGs are almost always upregu-
lated, Non-TE-DEGs change in both directions in met1 mutants.

Genomic regions that become more accessible in Col-0 met1 mutants have been asso-
ciated with multiple gene groups, classified by their expression changes [10]. In our 
study, we find that this association can be multi-layered, varying by gene, initial methyla-
tion level in wild-type, and overall genetic background. Our most important conclusion 
is perhaps that CG methylation, which requires MET1 activity, cannot be simply thought 
of as a factor that masks genetic differences or that increases expression diversity beyond 
genetic variation, but that its effects are highly context-dependent.

Our results show that the same gene across different wild-type backgrounds can not 
only exist in multiple epigenetic states, but also that it can vary in its regulatory response 
to genome-wide CG hypomethylation, thereby unveiling distinct associations between 
methylation, chromatin accessibility, and gene expression. For example, the study by 
Zhong and colleagues [10] demonstrated how local changes in methylation were suffi-
cient to alter chromatin accessibility at the FWA epiallele in the reference accession Col-
0. Upon examining the FWA locus in homozygous met1 mutants in different accessions, 
we find that the increases in accessibility can vary substantially despite a similar degree 
of CG hypomethylation in each met1 mutant, starting from different initial parental 
methylation levels (Additional file  5: Fig. S25). Additionally, the relationship between 
accessibility changes and expression changes is non-linear for this gene (Additional 
file 5: Fig. S25), suggesting that either variation in cis-regulatory sequences or trans reg-
ulators make an important contribution to FWA expression beyond methylation.

FWA is only one example from 11,675 unique DEGs in our set of met1 mutants from 
18 accessions (compared to 1759 DEGs, when comparing only Col-0 wild-type and 
met1). That only 291 DEGs among these 11,675 unique DEGs are universal across all 
accessions highlights the differential sensitivity of each genetic background to methyl-
ation-dependent changes in gene expression. Accession-specific DEGs include devel-
opmental and epigenetic regulators such as ROS1, IBM1, and SUVH3, many of which 
feature well-examined epialleles. We note that because we only sampled leaves, we 
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almost certainly have not discovered all genes that are sensitive to loss of MET1, and 
indeed many other tissues besides leaves are phenotypically affected in met1 mutants.

Methylation and chromatin accessibility changes are clearly neither necessary nor suf-
ficient for changes in gene expression in met1 mutants, again revealing how methylation 
and chromatin architecture must interact with cis-regulatory sequences to effect gene 
expression [59]. Genetic variation in both regulatory and non-regulatory sequences 
can also influence gene expression, a factor that we have ignored so far. In maize, TE 
insertion polymorphisms can affect both chromatin accessibility state as well as expres-
sion levels of adjacent genes [60]. Genetic variants within conserved non-regulatory 
sequences in maize [61] and A. thaliana [62] accessions can be associated with gene 
expression, and at least in some cases these sequences overlap with accessible chromatin 
regions. In other cases, structural variants within gene bodies may influence expression 
independently of underlying epigenetic variation [22]. De novo genome assemblies in 
five A. thaliana accessions have shown that highly diverged sequences within DNase-I 
hypersensitive sites are often associated with differential gene expression, even though 
most chromatin architecture changes are largely independent of genetic variation [63]. 
All of these examples demonstrate that high-quality genome assemblies of the 18 acces-
sions used in our study will almost certainly provide additional insight into the inter-
play between the genome, epigenome, and transcriptome at the intraspecific level. More 
importantly, genome assemblies will help identify which signals of reduced accessibility 
or gene expression are merely due to absence of the underlying DNA sequences, instead 
of more subtle sequence variation or even trans effects.

It will also be interesting to determine whether genes with altered methylation and 
chromatin accessibility are more likely to change in their expression during further 
cycles of propagation. Since TEs are known to mobilize upon inbreeding of epigenetic 
mutants, high-quality reference genomes will also be useful to identify induced copy 
number variation and presence-absence variation of TEs in different accessions. In addi-
tion, deeper investigation of non-CG and residual CG methylation in met1 mutants, 
catalyzed by other methyltransferases and compensatory pathways, examined together 
with chromatin marks, may further improve our understanding of methylation-induced 
gene regulation.

A wide range of silique abnormalities and distorted segregation ratios observed in 
our met1 mutants indicates that the absence of MET1 function may be detrimental for 
gametogenesis, fertilization or post-zygotic development, at least in some accessions. 
Among the accessions used in our study, Ler-1 and Tsu-0 carry a microRNA haplotype 
that impairs silencing of specific TEs in male gametes (Ler-0 MIR845 haplotype [64]). 
Furthermore, epigenetic variation across Col-0, Ler-1, and Cvi-0 has been shown to 
impact seed development due to differential imprinting [65, 66]. For example, the com-
paratively higher fertility of met1 mutants in Cvi-0 could be explained by the natural 
hypomethylation of the HDG3 (AT2G32370) locus in wild-type Cvi-0 plants (Additional 
file 5: Fig. S28), thereby reducing dramatic effects in seed size as observed in mutants of 
other accessions. Future studies on the epigenetic and epigenomic landscape of game-
tophytic, embryonic, and endosperm tissue of our met1 mutants will shed light on how 
hypomethylation in somatic cells can impact fertilization processes.
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Conclusion
The absence of MET1 in A. thaliana has long been known to affect the chromatin land-
scape [7, 8, 10, 11]. Here we highlight the value of studying accessions beyond the ref-
erence accession Col-0, finding not only that CG methylation, gene expression, and 
chromatin accessibility can widely vary, but also that the impact of MET1 can be much 
greater in other accessions, especially at genes that are not associated with TEs.

Our met1 mutant collection provides future opportunities for investigating how epi-
genetic and epigenomic regulation at individual loci are fine-tuned across accessions 
to determine plant phenotype. Another opportunity will be to study the TE mobiliza-
tion landscape in these mutants, and to ask whether sites with newly inserted or newly 
excised TEs have similar epigenetic states across different genetic backgrounds and how 
these in turn affect adjacent protein-coding genes [60]. Finally, while the resources and 
insights we have generated have already improved our understanding of the variation in 
epigenetic and epigenomic regulation that evolution has produced, high-quality genome 
assemblies of the studied accessions will make our resources even more valuable.

Methods
CRISPR/Cas9 knockout of MET1 in 18 A. thaliana accessions

Using a plant molecular cloning toolbox [28], a supermodule destination binary vector 
carrying a plant-codon optimized Cas9 driven by a UBQ10 promoter was cloned with 
a single guide-RNA (gRNA) targeting the A. thaliana MET1 (AT5G49160 ) gene. The 
gRNA was designed using the CRISPR design tool in Benchling (www.​bench​ling.​com) 
targeting a 20-bp region in exon 7 of MET1 (Additional file 1: Table S1), which is the 
same exon where previously described met1-3 mutants are known to harbor a T-DNA 
insertion [6]. This exon is present in the catalytic domain of the protein and harbors 
a motif that is a binding site for cytosine nucleotide substrates [67]. Eighteen early-
flowering A. thaliana accessions were transformed with the above CRISPR construct by 
Agrobacterium-mediated floral dipping [68], carried out twice with a 7–10-day interval. 
Seeds of primary transformants (T1) were screened for the presence of the transgene by 
selecting for the mCherry fluorescence marker, and sown on soil. These T1 plants were 
subjected to heat treatment cycles for enhancing Cas9 activity [69]. Genotyped lines car-
rying a mutation in the gRNA target region were propagated to the T2 generation after 
segregating the transgene (by selecting for non-mCherry seeds), followed by identifica-
tion of lines carrying heritable heterozygous mutations. One to two heterozygous T2 
lines per accession were further subjected to one or two more rounds of propagation to 
identify first-generation homozygous plants in the segregating progeny.

Genotyping transformants and identification of homozygous mutants

First- and second-generation homozygous mutants were genotyped either using Sanger 
sequencing of a 649 bp PCR-amplicon, or by amplicon-sequencing of a 152-bp PCR-
amplicon (Additional file  1: Table  S1), both covering the CRISPR guide-RNA target 
region. Most of the mutations identified in all mutants were single bp insertions or dele-
tions that occurred within the first 4 bp from the 5′ end of the target region and dis-
rupted the open reading frame due to frameshifting. Candidate homozygous mutants 

http://www.benchling.com
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in segregating T3 populations were first identified by visual phenotyping, followed by 
genotyping.

Plant growth conditions and tissue collection for large‑scale sequencing

Seeds were sterilized by treatment with chlorine gas for 4 h, followed by stratification in 
the dark at 4°C for 4 days in 0.1% agar. All plants were grown in controlled growth cham-
bers at 23 °C, long-day conditions (16 h light/8 h dark) with 65% relative humidity under 
110 to 140 μmol m−2 s−1 light provided by Philips GreenPower TLED modules (Philips 
Lighting GmbH, Hamburg, Germany) with a mixture of 2:1 DR/W LB (deep red/white 
mixture with ca. 15% blue light) and W HB (white with ca. 25% blue light), respectively, 
and watered at 2-day intervals.

Since homozygous mutants from several accessions had reduced fertility and did not 
set sufficient seeds for further propagation, sampling for all sequencing experiments was 
carried out in the first homozygous generation. Segregating populations of T3 mutant 
plants were grown from 1 to 2 lines per accession, and homozygous individuals were 
marked by their distinct phenotype (as identified in previous growth experiments) and 
later confirmed by Sanger sequencing of DNA used for BS-seq libraries. Wild-type 
plants from the same accessions were grown in parallel to all mutant lines.

At 25 days after germination, three homozygous individuals per parental line per 
accession were collected as separate biological replicates, along with three wild-type 
individuals. Sampling involved the collection of two sets of rosette leaves from the same 
individual plant. One set of leaves was immediately frozen in liquid nitrogen containers 
(and subsequently at −80°C) to be homogenized and split for bisulfite sequencing and 
RNA-sequencing analysis. The second set of leaves were collected for ATAC-sequenc-
ing analysis and were subjected to syringe-infiltration with 0.1% formaldehyde in phos-
phate-buffer saline, followed by 0.125 M glycine in phosphate-buffer saline, washed with 
autoclaved water and dried before storage at −80°C. All tissue sampling and fixation was 
carried out within a 30-min time window.

Bisulfite‑seq library prep

Frozen leaf tissue from three biological replicates was mixed and grinded together. This 
powder was used for isolating genomic DNA using the DNeasy Plant Mini Kit (Qia-
gen). One hundred nanograms of this genomic DNA was subsequently used to prepare 
Bisulfite libraries with the TruSeq Nano kit (Illumina, San Diego, CA, USA) according to 
the manufacturer’s instructions, with the modifications used in [71]. The libraries were 
sequenced in paired-end mode, with approximately 8.5 million 150 bp reads/library on 
an Illumina HiSeq3000 instrument.

Processing of Bisulfite‑seq data and DMR calling

Raw BS-seq reads were aligned using Bismark with default parameters [72] and mapped 
to the A. thaliana (TAIR10) reference genome. The bisulfite conversion efficiency for 
each sample was estimated by evaluating the fraction of positions correctly called as 
unmethylated in the chloroplast genome. It was consistently above 99.6% in all sam-
ples. The mapping efficiency for all samples varied between 40 and 65%, with an average 
of 49% (Additional file 18: Dataset S14). Deduplicated bam files generated by Bismark 
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were sorted and then processed using MethylScore (https://​github.​com/​Compu​tomics/​
Methy​lScore [73];) in the CLIP cluster of the Vienna Biocenter (VBC), to identify DMRs 
(differentially methylated regions) across all 73 samples (55 mutants and 18 wildtypes) 
with the following parameters: DMR_MIN_C=10 (minimum 10 cytosines in each 
DMR), DMR_MIN_COV=3X (minimum 3× coverage in each cytosine), MR_FREQ_
CHANGE=20 (at least 20% of samples showing a change in MR frequency to be tested 
as a candidate DMR), CLUSTER_MIN_METH_DIFF=20 (which sets a 20% cutoff for 
methylation difference between clusters in the CG, CHG, and CHH contexts). All other 
parameters were based on default settings.

DMR coordinates were intersected with individual genome-wide cytosine methyla-
tion levels based on the genome_matrix file generated by MethylScore. A total of 2388 
CG-DMRs (Additional file 9: Dataset S6), 350 CHG-DMRs (Additional file 10: Dataset 
S7), and 1023 CHH-DMRs (Additional file 11: Dataset S8) were called across 73 sam-
ples (55 mutants and 18 wildtypes). In some cases, a DMR was enriched for more than 
one context, resulting in partial redundancies. Subsequently, the three context-specific 
DMRs (CG, CHG, CHH) were evaluated for context-specific average methylation levels 
by intersecting with sample-specific cytosine methylation data. This was achieved using 
the bedtools software (v2.26.0) with the following command:

bedtools map -a DMR_coordinates.bed -b methylated_cytosines_sampleX.bed -c 5 -o 
mean -nonamecheck -null "NA" -g TAIR10genomesize > DMR_Methavg_sampleX.bed

Although the DMR calling was performed with a three-read cutoff for each cytosine in 
a DMR, there remained some samples which did not have sufficient coverage. Therefore, 
we retained the same DMRs, but calculated average methylation by lowering the cut-
off to 2 reads per cytosine. For downstream analysis, DMRs with a maximum of 7 NAs 
(insufficient coverage) out of 73 samples were retained. For the CG methylation context, 
this resulted in 1569 DMRs (Additional file 16: Dataset S13), which were used for inter-
secting with dACRs and DEGs.

Intersections between DMRs, transposable elements, and Non‑TE genes

DMR positions were intersected with positions of TAIR10 transposable elements and 
non-TE genes (TAIR10 genes that are not associated with the term “transposable ele-
ment gene”) using bedtools intersect, with a minimum overlap of 1bp (Additional file 2: 
Table S2).

Nuclei isolation for ATAC‑seq

For ATAC-seq analyses, each of the biological replicates was processed individually. 
Fixed tissue was chopped finely with 500 μl of General Purpose buffer (GPB; 0.5 mM 
spermine•4HCl, 30 mM sodium citrate, 20 mM MOPS, 80 mM KCl, 20 mM NaCl, pH 
7.0, and sterile filtered with a 0.2-μm filter, followed by the addition of 0.5% of Triton-
X-100 before usage). The slurry was filtered through one-layered Miracloth (pore size: 
22-25 μm), followed by filtration twice through a cell-strainer (pore size: 40 μm) to col-
lect nuclei.

https://github.com/Computomics/MethylScore
https://github.com/Computomics/MethylScore
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Fluorescence‑activated cell sorting (FACS) for ATAC‑seq

Liberated nuclei were sorted with a MoFlo XDP (Beckman Coulter) instrument outfitted 
with a 488-nm (elliptical focus, 100 mW) and a 375-nm (spherical focus, 35 mW) laser 
for scatter and DAPI emission, respectively. Nuclei were sorted with a 70-μm cytonoz-
zle, sheath PBS [pH 7.0] at psi 30.5/30.0 sample/sheath, purify 1 drop, triggered off the 
DAPI emission (465/30nm). The 2C endoreduplicated population was identified as the 
first clear DAPI emitting population over scatter debris. DAPI emission was utilized to 
reduce further contaminating debris, followed by a clean-up utilizing 530/34 emission 
from the 488-nm laser. 488-nm channels: SSC (488/6), FL1 (520/34). 375-nm channels: 
FL8 (405/30), FL9 (465/30), FL10 (542/27). See Additional file 5: Fig. S31 for the gating 
scheme. Approximately 20,000 DAPI-stained nuclei were sorted using fluorescence-acti-
vated cell sorting (FACS) for each of two technical replicates. For samples from dwarfed 
mutant lines where leaf tissue was scarce, approximately 8000 nuclei were sorted per 
technical replicate.

ATAC‑seq library prep

Sorted nuclei were heated at 60°C for 5 min, followed by centrifugation at 4°C (1000g, 5 
min). The supernatant was removed, and nuclei were resuspended with a transposition 
mix (1 μl homemade Tn5 transposase, 4 μl of 5X-TAPS-DMF buffer, and 15 μl auto-
claved water) followed by a 37°C treatment for 30 min. Two hundred microliters SDS 
buffer and 8 μl 5 M NaCl were added to the reaction mixture, followed by 65°C treatment 
overnight. Nuclear fragments were then cleaned up using Zymo PCR column-purifica-
tion (DNA Clean and Concentrator). Two microliters of eluted DNA was subjected to 14 
PCR cycles, incorporating Illumina indices, followed by a 1.8:1 ratio clean-up using SPRI 
beads.

Genomic DNA libraries (10 ng input from the DNA extracts used for BS-seq-library 
prep) were prepared using a similar library prep protocol starting with Tn5 enzymatic 
digestion (0.5 μl homemade Tn5 transposase, 4 μl of 5X-TAPS-DMF buffer, and auto-
claved water made up to a final reaction volume of 20 μl including the DNA template). 
Digested gDNA was immediately column-purified, followed by PCR (2 μl of eluted DNA 
was used as template for 11 PCR cycles) incorporating Illumina indices, followed by a 
1.6:1 ratio clean-up using SPRI beads.

Processing of ATAC‑seq libraries and peak calling

Libraries were sequenced on an Illumina HiSeq3000 instrument with 2 × 150bp 
paired-end reads. Each technical replicate derived from nuclei sorting was sequenced 
at approximately 7 million paired-end reads per library. The reads were aligned as two 
single-end files to the TAIR10 reference genome using bowtie2 [default options], filtered 
for the SAM flags 0 and 16 (only reads mapped uniquely to the forward and reverse 
strands), converted separately to bam files. The bam files were then merged and sorted, 
and PCR duplicates were removed using picardtools. The sorted bam files were then 
merged with the corresponding sorted bam file of a second technical replicate (samtools 
merge --default options) to obtain a final average of 11 million mapped reads for each 
biological replicate (Additional file 19: Dataset S15). Genomic DNA libraries were simi-
larly aligned, with an average of 4.5 million mapped reads per library (Additional file 20: 
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Dataset S16). Peak calling was carried out for each biological replicate using MACS2 
(Additional file 19: Dataset S15) using the following parameters:

macs2 callpeak -t [ATACseqlibrary].bam -f BAM --nomodel --extsize 147 --keep-
dup=all -g 1.35e8 -n [Output_Peaks] -B -q 0.01

After peak calling, every peak set was further filtered based on their respective q-val-
ues in the MACS2 peaks.xls files, retaining peaks with q ≤ 0.001, thereby reducing the 
false positives when all 158 samples were subsequently tested together. This additional 
filtering step was carried out separately after MACS2 calling to minimize the effect on 
peak size based on the q-value.

Filtered peak files and .bam alignment files from a total of 158 samples (104 mutant 
samples plus 54 wild-type samples) were processed with the R package DiffBind to iden-
tify consensus peaks which overlapped in at least two out of three biological replicates 
per group, and represented peaks unique to at least one group (FDR adjusted p-value 
<0.01). To normalize peak accessibility counts with the background probability of Tn5 
integration biases in the genome, .bam files of the control gDNA libraries were also pro-
vided in the DiffBind sample sheet (thereby ensuring that peak accessibility counts were 
normalized to controls). Further details for the DiffBind commands used are provided in 
the Additional file 21: Extended Methods.

A total of 35,049 consensus peaks were identified, with accessibility scores in each 
peak per sample evaluated in counts per million (CPM) after TMM (trimmed mean of 
M-values) normalization. Except for three out of 158 ATAC-seq libraries, FRIP (fre-
quency of reads in peaks) scores relative to the consensus peak set was between 0.2 and 
0.31 for all samples, reflecting the average representation of sample-specific peaks in the 
consensus dataset. After removing peaks which occurred in chloroplast and mitochon-
drial genomes, 34,993 peaks remained. These peaks were further processed to identify 
differentially accessible chromatin regions (dACRs, Additional file 12: Dataset S9) and 
highly variable dACRs (HV-dACRs, Additional file 13: Dataset S10) as explained below.

Metaplot generation

For the 34,993 consensus ATAC-peaks (ACRs) identified from all 158 samples (repre-
senting all accessible regions throughout the genome), we first obtained accessibility val-
ues for each peak region. In a separate step, the final DiffBind object was used to identify 
peak summits for each of the 158 samples across every peak region (commands provided 
in Additional file 21: Extended Methods).

For every sample, a bed file with consensus peak coordinates, the position 100 bp 
upstream and downstream of the peak summit, and the mean accessibility value (for 
the entire peak region) were used to generate a bigWig file (.bw) using the bedGraph-
tobigWig command (UCSC software). Similarly, for cytosines in all contexts and their 
corresponding positions, methylation levels were derived for each Bisulfite library, and 
converted to bigWig files.

Metaplots were generated using the deepTools (3.5.0) package (https://​deept​ools.​readt​
hedocs.​io/​en/​devel​op/​index.​html), first with the computeMatrix function to evaluate the 
mean value of the epigenetic factor tested (methylation in % or chromatin accessibility in 
CPM) across 10 bp non-overlapping bins, within 1000 bp upstream and downstream of a 

https://deeptools.readthedocs.io/en/develop/index.html
https://deeptools.readthedocs.io/en/develop/index.html
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given set of reference regions (TAIR10 Transposable elements/TAIR10 Non-TE protein-
coding genes). The output bed file from this command was subsequently used to gener-
ate metaplots using the plotProfile function.

RNA extraction and RNA‑seq library prep

RNA from each biological replicate was extracted individually using a column-based 
protocol adapted from [74]. RNA quality was validated with the Nanodrop spectropho-
tometer and normalized to 500 ng in a 50 μl volume. Normalized RNA was subsequently 
used for mRNA library prep using an in-house custom protocol adapted from Illumina’s 
TruSeq library prep, with details provided in [75].

Mapping and identification of DEGs

RNA-seq libraries were sequenced at an average coverage of 8 million 150 bp sin-
gle-end reads per library using HiSeq3000. Reads of the same sample from multiple 
sequencing lanes of the same flow cell were merged together, and 9 samples with > 
12.5 million total reads were subsampled (using different seeds) to 80% using seqtk 
(v.2.0-r82-dirty, https://​github.​com/​lh3/​seqtk) with the following command:

seqtk sample -sX <merged_fastq> 0.80 > subsampled_output.fastq
All samples were aligned using bowtie2 to the TAIR10 reference genome, prepared 

using the rsem-prepare-reference function of the RSEM software. Aligned bam files 
were sorted and indexed using samtools V1.9 (mapping statistics in Additional file 22: 
Dataset S17). Gene transcript counts for each sample were estimated using rsem-
calculate-expression. From each sample, chloroplast genes, mitochondrial genes, and 
rDNA cluster genes were excluded from downstream analyses. Twelve genes with 
excessive read counts across all samples were also excluded (Additional file 23: Data-
set S18).

Transcript counts per sample and corresponding metadata were then imported 
using the R packages “tximport” and “tximportData” for creating a DESeq object (R 
package “DESeq2”).

Identification of DEGs (differentially expressed genes) between 18 accessions for met1 mutants 

and wildtypes

Two DESeq objects containing 104 samples of met1 mutants and 54 samples of 
wildtypes were generated separately. After filtering genes with low read counts, a 
common set of 19,473 genes were retained in both objects, and the DESeq function 
was applied under a one-factor model (~Accession) and default parameters (nbinom-
Wald test). DEGs for each group (met1 mutants or wildtypes) were identified from 
the DESeq output as those genes with a p-value < 0.01 and |log2 FoldChange| >1 
(Additional file 3: Dataset S1, Additional file 4: Dataset S2).

Identification of DEGs between met1 mutants and wildtypes

One DESeq object containing 158 samples (104 met1 mutants and 54 wildtypes) was 
created and filtered for genes with low total read counts, resulting in a set of 21,657 

https://github.com/lh3/seqtk
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genes to be analyzed. The DESeq function was applied to the object under the two-
factor interaction model ~genotype + accession + genotype:accession (where geno-
type == wild-type or mutant) using default parameters (nbinomWald test). To obtain 
DEGs between wild-type and mutant genotypes across all accessions (Additional 
file  6: Dataset S3), a contrast was performed set to genotype, retaining only those 
genes with a p-value< 0.01 and |log2 FoldChange| >1. For identifying accession-spe-
cific DEGs (Additional file  6: Dataset S3), similar contrasts were performed, nested 
within each accession. DEGs common to all 19 contrasts (18 accession-specific con-
trasts and the all-mutants-vs-all-wildtypes contrast) were identified as universal 
DEGs (Additional file 8: Dataset S5).

DEGs from each contrast were further classified as TE-DEGs or Non-TE-DEGs 
based on the TAIR10 gene annotation. Genes annotated with the term “transposable 
element gene,” as described in https://​www.​arabi​dopsis.​org/​porta​ls/​genAn​notat​ion/​
gene_​struc​tural_​annot​ation/​annot​ation_​data.​jsp, were called “TE genes” in our analy-
ses. All remaining 29,699 protein-coding genes were called “Non-TE genes.”

Weighted gene co‑expression network analysis

Transformed and normalized RNA-seq counts (vsd counts) were extracted for 10,151 
unique Non-TE-DEGs identified from all 19 contrasts, across 158 samples. This matrix 
was then used to generate a weighted gene co-expression network using the R pack-
age WGCNA [76]. A soft threshold power of 4 was chosen and subsequently used for 
constructing the TOM (topological overlap matrix) with minModuleSize set to 30 and 
mergeCutHeight set to 0.25. This resulted in the generation of 9 distinct gene modules. 
Module eigengenes were examined for correlation to the sample genotype (1 for mutant 
and 0 for wild-type). The highest eigengene significance (0.9) was observed for Module 
“D” with 814 genes (Additional file 7: Dataset S4).

Generation of consensus datasets

Consensus DEGs

These were generated by including DEGs from a total of 19 contrasts—18 pairwise con-
trasts (met1 mutants vs wild-type plants) in each accession, and a contrast between all 
met1 mutants and all wild-type plants. This set of DEGs was filtered to retain only DEGs 
that occurred in at least 2 out of the total 19 contrasts, to obtain a final set of 7132 con-
sensus DEGs. These were further classified as 1401 TE-DEGs (Additional file 14: Dataset 
S11) and 5731 Non-TE-DEGs (Additional file 15: Dataset S12). The metric for evaluating 
expression levels in DEGs was chosen as the variance stabilized transformed read counts 
(vsd counts) generated by the DESeq2 package for each of the 158 RNA-seq libraries. 
We refer to these as transformed read counts in all figures.

HV‑dACRs

ATAC-peaks found across all samples (34,993) were also filtered in several steps. First, 
peaks that showed similar accessibility between both mutant lines relative to the WT 
line in each accession were retained. The second round of filtering retained peaks that 
showed an accessibility change between mutants and wild-type plants in at least two out 

https://www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation/annotation_data.jsp
https://www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation/annotation_data.jsp
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of 18 accessions. This resulted in 31,295 filtered consensus ATAC-peaks, which we refer 
to as differential ACRs (dACRs) (Additional file 12: Dataset S9). To identify highly vari-
able dACRs (HV-dACRs), the following steps were carried out:

(1)	 For every dACR, the coefficient of variation (CV) of mean accessibility levels 
between homozygous mutant samples and wildtypes was identified. From a distri-
bution of CV values across all dACRs, only those among the top 25% were retained.

(2)	 For every dACR, the coefficient of variation (CV) of accessibility levels across sam-
ples (acessions*genotype) was identified. From a distribution of CV values across all 
dACRs, only those among the top 25% were retained.

A union set of peaks from steps (1) and (2) resulted in 9505 highly variable dACRs 
(HV-dACRs, Additional file 13: Dataset S10), which we used for all visualizations and 
downstream processing. Chromatin accessibility levels were measured in counts per 
million (CPM) after TMM (trimmed mean of M-values) normalization generated by the 
DiffBind package. k-means clustering of HV-dACRs was carried out using the functions 
kmeans() in the R stats package, with k = 3.

Consensus DMRs

From the complete set of context-specific DMRs identified, DMRs with a maximum 
of 7 NA values (insufficient coverage) out of 73 samples were retained. This resulted in 
1569 CG-DMRs, 207 CHG-DMRs, and 614 CHH-DMRs. Since we were primarily inter-
ested in understanding the effects of MET1 on genome-wide methylation changes, we 
considered only the 1569 CG-DMRs (Additional file  16: Dataset S13) for intersecting 
with other features. The methylation level for each CG-DMR was measured as arith-
metic mean over methylation percentage of all sample-specific CG cytosines within the 
assigned chromosomal region.

Generation of feature intersections between DEGs, DMRs, and HV‑dACRs

DMR–DEG intersections

DMRs occurring at the extended gene body (between 100bp upstream of the TSS and 
100bp downstream of the TTS of a gene) were called “gene body DMRs,” while those 
that occurred within 1.5kb upstream or downstream of the TSS/TTS respectively were 
named “cis DMRs.” Several DEGs had multiple DMRs associated with them, and there-
fore, we retained only one DMR for each DEG, which showed the largest difference in 
methylation level between mutant and WT for each mutant genotype, thereby aiming to 
represent only the strongest methylation signals that could explain gene expression dif-
ferences. To determine the extent at which MET1-induced CG methylation could influ-
ence gene expression and compare it with methylation in all contexts, we intersected 
DEGs (TE-DEGs and Non-TE-DEGs separately) with CG-DMRs. For each DEG, we 
measured changes in gene expression levels between met1 mutants and wild-type plants, 
and corresponding changes in methylation levels of their closest DMRs. For generating 
scatter plots, we divided wild-type methylation/expression levels of all examined genes 
into quintiles and colored points based on these quintiles.
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HV‑dACR–DEG intersections

Similarly, we analyzed the HV-dACRs closest to each DEG. Since a large majority of HV-
dACRs occurred in proximity to the transcription start site, we grouped all HV-dACRs 
occurring either over the gene body or within 1.5 kb upstream or downstream of the 
TSS/TTS respectively, under a single “cis” category. For each DEG, a single HV-dACR 
which showed the largest difference in accessibility between mutant and WT for each 
mutant genotype was retained. We next measured changes in gene expression levels 
between met1 mutants and wild-type plants, and corresponding changes in accessibility 
levels of their cis HV-dACRs. For generating scatter plots, we divided wild-type accessi-
bility/expression levels of all examined genes into quintiles and colored points based on 
these quintiles.

Intersections of DMRs and HV‑dACRs with Non‑DEG genes

As a control for the DEGs, we generated similar feature intersections for Non-DEGs 
as well. From a total of 1678 TE genes and 19,979 Non-TE genes analyzed using 
DESeq2, we identified 277 TE genes and 14,248 Non-TE genes which were not classi-
fied as “consensus DEGs,” and we subsequently referred to these as “Non-DEGs.” To 
ensure that the number of Non-DEGs analyzed were comparable to the number of 
DEGs in each category, 5731 Non-TE genes were randomly subsampled from the total 
set of 14,248 Non-TE (Non-DEG) genes. However, only 250 TE genes were randomly 
subsampled from the total set of 277 TE (Non-DEG) genes, since the total number of 
TE-DEGs (1401) exceeded the number of TE (Non-DEG) genes.

DMR–HV‑dACR–DEG intersections

For simplicity, the above class of three-way intersections was only carried out for CG-
DMRs and Non-TE genes. In short, Non-TE-DEGs carrying CG-DMRs in both the 
extended gene body and in cis were combined together. These combined DEGs were 
then filtered to identify only those which carried a HV-dACR in cis. This resulted in a 
final set of 164 DEGs which carried both a CG-DMR and a HV-dACR in cis. Similarly, 
when a control set of Non-TE Non-DEG genes were used to generate similar intersec-
tions, a final set of 107 Non-DEGs carrying both a CG-DMR and a HV-dACR in cis 
were identified.

gbM‑like and CG teM‑like genes

To follow conventional definitions of gene body methylation (gbM), only Non-TE-
DEGs with CG-DMRs overlapping the gene body were considered. These criteria 
were satisfied by 196 DEGs across homozygous met1 mutants in 17 accessions (since 
one accession, Bl-1, did not have homozygotes). From this set of genes, we identi-
fied 91 gbM-like genes, which had >80% methylation in the wild-type parent, and 
transformed expression counts in wild-type ≥6.53, which represented moderate to 
high expression in wild-type samples (among the top three quintile ranges of the dis-
tribution of gene expression levels in wildtypes) for all Non-TE genes. In a separate 
analysis, 601 out of 19,979 Non-TE genes (comprising DEGs and Non-DEGs) were 
identified to carry CG-DMRs in their gene body. From these, 366 genes were found to 
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be gene body methylated (using the criteria explained above) in at least one wildtype 
among 17 accessions. The number of accessions represented by every gene was then 
counted to identify 3 genes that were similarly gbM-like in wildtypes of all 17 acces-
sions (see diagram in Additional file 5: Fig. S20b).

Next, we identified 51 CG teM-like genes that exhibited >80% CG methylation 
in the wild-type state, and transformed expression counts in wild-type state being 
≤4.39, which represented genes in the lowest quintile range of the distribution of 
wild-type expression levels for all 196 genes.

Metadata (transformed expression counts and methylation levels in met1 and 
mutants wild-type plants) for gbM-like and CG teM-like genes were then extracted 
from the total set of 196 genes (thereby representing the same genes in all accession 
backgrounds) and used for generating visual plots in Additional file 5: Fig. S20a and 
Additional file 5: Fig. S21.

Gene Ontology enrichment and visualization

GO enrichment was carried out using agriGO (http://​bioin​fo.​cau.​edu.​cn/​agriGO), with 
the singular enrichment analysis (SEA) analysis tool and Arabidopsis (TAIR10) gene 
model as the reference. Graphical results of significant GO terms were generated in 
agriGO. The GO terms were further visualized with ReviGO (http://revigo.irb.hr).

Segregation distortion analyses

Experimental design

To accurately estimate the extent of this segregation distortion in mutants of various 
accessions, we grew a maximum of 96 segregating progeny from heterozygous parent 
lines (2 mutant lines per accession) and genotyped them individually using amplicon-
sequencing of the MET1 locus, amplifying a 150-bp region around the CRISPR/Cas9-
induced frameshift mutations.

Amplicon‑seq library preparation, sequencing, and genotyping

Amplicon-seq libraries were prepared according to the CRISPR-finder system [77], 
where amplicons from multiple 96-well plates can be pooled together for high-through-
put sequencing by incorporating frameshifted primers and TruSeq adapters with 96 bar-
codes. The amplicons were designed as 152-bp sequences spanning the gRNA target site 
in the MET1 gene locus (Additional file  1: Table  S1). A total of 2788 individual sam-
ples were sequenced at an average coverage of 12,000 reads per sample on a HiSeq3000 
instrument with 2 × 150 bp paired-end reads.

Sequenced read pairs were first merged using FLASH (Fast Length Adjustment of 
SHort reads) (https://​ccb.​jhu.​edu/​softw​are/​FLASH/), followed by demultiplexing based 
on plate-specific frameshifted primers (see Additional file 24: Table S4) using the use-
arch10 fastx_truncate function. Only samples with ≥80 reads were retained for down-
stream processing. For all samples within a plate (i.e., segregating progeny), amplicon 
reads per individual were counted for the ratio of wild-type alleles to mutant alleles, to 
estimate whether the genotypes were homozygous for the mutant allele (wild-type reads 
≤ 15%), heterozygous (wild-type reads ≥ 42% or ≤ 58%), or wild-type (wild-type reads ≥ 
90%). A fourth genotypic classification, “skewed heterozygous” was made for individuals 

http://bioinfo.cau.edu.cn/agriGO
http://revigo.irb.hr
https://ccb.jhu.edu/software/FLASH/
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where the read ratio between the wild-type and mutant alleles were either 0.15–0.42 or 
0.58–0.90 (i.e., if either one of the alleles were more represented than the other, but not 
approximately equal in counts).

For Bu-0 Line 2, Ste-0 Line 2, and Bs-1 Line 2 samples that had more than one mutant 
MET1 allele, additional genotypic categories were specified: homozygous allele 2, hete-
rozygous allele 2, skewed heterozygous allele 2, bi-allelic, skewed bi-allelic and tri-allelic 
(Additional file 17: Table S3).

Cytometric ploidy analysis

Cytometric determination of generative ploidy levels was conducted on a CytoFlex 
(Beckman Coulter) outfitted with a 488-nm laser, 10 μL min−1 flow rate. Nuclei were 
freshly liberated by chopping into cold General-purpose Buffer [78], filtered through 
40-μm mesh, and stained with 50 μg mL−1 propidium iodide and 50 μg mL−1 RNase for 
10 min at 20°C. The 2C endoreduplication population was identified as the first clear 
PI emitting population over scatter debris. The 2C nuclei of Solanum lycopersicum (var. 
Moneymaker) provided by the Zentrum für Molekularbiologie der Pflanzen (ZMBP) 
Cultivation Facility and Capsicum annuum provided by Annett Strauss (ZMBP) were 
used as internal standards to determine the relative Arabidopsis generative ploidy levels.
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