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Since the turn of the century, researchers have sought to diagnose cancer based on

gene expression signatures measured from the blood or biopsy as biomarkers. This

task, known as classification, is typically solved using a suite of algorithms that learn a

mathematical rule capable of discriminating one group (“cases”) from another (“controls”).

However, discriminatory methods can only identify cancerous samples that resemble

those that the algorithm already saw during training. As such, discriminatory methods

may be ill-suited for the classification of cancer: because the possibility space of cancer

is definitively large, the existence of a one-of-a-kind gene expression signature is likely.

Instead, we propose using an established surveillance method that detects anomalous

samples based on their deviation from a learned normal steady-state structure. By

transferring this method to transcriptomic data, we can create an anomaly detector for

tissue transcriptomes, a “tissue detector,” that is capable of identifying cancer without

ever seeing a single cancer example. As a proof-of-concept, we train a “tissue detector”

on normal GTEx samples that can classify TCGA samples with >90% AUC for 3 out

of 6 tissues. Importantly, we find that the classification accuracy is improved simply by

adding more healthy samples. We conclude this report by emphasizing the conceptual

advantages of anomaly detection and by highlighting future directions for this field

of study.

Keywords: machine learning, TCGA, anomaly detection, classification, surveillance

1. INTRODUCTION

Cancer is a collection of complex heterogeneous diseases with known genetic and environmental
risk factors. Physicians diagnose cancer by carefully weighing evidence collected from patient
history, physical examination, laboratory testing, clinical imaging, and biopsy. Computers can
aid diagnosis and improve outcomes by mitigating diagnostic errors. Indeed, this objective is
actively researched, where studies have shown that computers can reduce the reading errors of
mammography (Rangayyan et al., 2007) and commuted tomographic (CT) (Chan et al., 2008)
images. Meanwhile, researchers have also sought to use computers to diagnose cancer based on
gene expression signatures measured by high-throughput assays likemicroarray or next-generation
sequencing (Alon et al., 1999; Golub et al., 1999). Gene expression signatures are ideal
biomarkers because mRNA expression is dynamically altered in response to changes in the cellular
environment. However, developing molecular diagnostics requires large data sets which have only
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recently become available due to reduced assay costs. These data
could usher in a new era in clinical diagnostics.

Within the last decade, scientists have produced large
transcriptomic data sets containing thousands of clinical samples.
Of these, the TCGA stands out as the most comprehensive,
having sequenced more than 10,000 unique tissue samples from
33 cancers and healthy tissue controls (Weinstein et al., 2013).
Meanwhile, an equally large study, GTEx, has sequenced non-
cancerous samples comprising 54 unique human tissue types
(Lonsdale et al., 2013). Already, a number of studies have
used the TCGA data to build diagnostic classifiers that can
determine whether a tissue sample is cancerous or not based
only on its gene expression signature (Kourou et al., 2015).
This task, known as classification, is typically solved using a
suite of algorithms that learn a mathematical rule capable of
discriminating one group (“cases”) from another (“controls”).
This rule is learned from a large portion of the data called the
“training set,” and then evaluated on withheld data called the
“test set.” Discriminatory classifiers like artificial neural networks
(ANNs), support vector machines (SVMs), and random forests
(RFs) have become popular in the biological sciences (Jensen and
Bateman, 2011). All of these work well for high-dimensional data,
so long as the training set contains enough correctly labeled cases
and controls.

Clinicians need to answer questions like, “Is this tissue
cancerous or not?” and “Is this cancer malignant or not?”
ANNs, SVMs, and RFs can all answer these questions by
learning a discriminatory rule from labeled data. However,
discriminative methods have two major limitations, both of
which apply to cancer classification. The first limitation is
theoretical: discriminative methods suffer from the problem of
having to see all possible abnormalities in order to make an
accurate and generalizable prediction (Sodemann et al., 2012).
This is relevant to cancer because there exists countless ways in
which a normal cell could become cancerous. As such, the label
“cancer” does not encompass a known homogeneous group, but
rather a heterogeneous collection of unknown types. It is simply
not possible to anticipate the nature or extent of these “unknown
unknowns” (Rumsfeld, 2002). The second limitation is practical:
even for an ideal homogeneous cancer class, the tumor may
occur too rarely for there to exist enough data to learn a
meaningful discrimination rule. Discriminatory methods require
sufficient sample sizes to learn a rule that tolerates the large
variance observed in replicates of transcriptomic data (McIntyre
et al., 2011). For these reasons, discriminatory methods are
doomed to fail.

On the other hand, we expect that the possibility space
for steady-state normal tissue is appreciably smaller than
that of the aberrant tumor. By modeling this normal latent
structure directly, we could learn a new rule that detects
cancerous samples as a departure from normal. This follows
the biological intuition that tumors themselves are anomalies
of normal cellular physiology. The field of machine learning
already has well-established methods that can detect anomalies
in high-dimensional data, especially images, for the purpose
of surveillance (Budhaditya et al., 2009). By transferring these
methods to transcriptomic data, we can create an anomaly

detector for tissue transcriptomes, a “tissue detector,” that is
capable of identifying cancer without ever seeing a single cancer
example. In this report, we show that “tissue detectors” are
sensible and accurate for the classification of cancer based
on gene expression signatures. We do this by training an
anomaly detection model on normal GTEx samples, then
using it to accurately differentiate normal from cancerous
TCGA samples. In presenting these results, we highlight
future research directions for the detection of anomalous gene
expression signatures.

2. METHODS

2.1. Data Acquisition
We acquired the combined GTEx and TCGA data from Wang
et al. (2018), who harmonized them using quantile normalization
and svaseq-based batch effect removal (Wang et al., 2018). After
downloading the data in fragments per kilobase of transcript per
million (FPKM), we chose six tissues that had large sample sizes
in both GTEx and TCGA: breast, liver, lung, prostate, stomach,
and thyroid. Table 1 shows the number of healthy and cancer
samples for each tissue.

2.2. Model Training
We refer to a predictive model and its threshold as a “tissue
detector,” of which we trained six (one for each tissue). To
train the “tissue detector,” we z-score standardized each gene
within the GTEx training set, then performed a residual analysis
of the GTEx training set. Residual analysis is based on the
principle that most data have an underlying structure that can be
largely reconstructed using a subset of the principal components,
whereby the difference between the reduced representation and
the original observations are termed the residues. Residual
analysis uses the squared value of the residue as a proven way
to measure the degree to which an observation is an outlier.
For normally distributed data, the squared value of the residues
follows a non-central χ

2 distribution. By comparing the norm
of the residue for an unlabeled sample to a procedurally-
selected threshold (corresponding to a stipulated false alarm
rate), we have a predictive rule that decides whether to reject the
null hypothesis and call that sample an anomaly (Jackson and
Mudholkar, 1979). Our “tissue detector”method is available from
https://github.com/thinng/tissue_detector.

2.3. Model Testing
After training each model on the GTEx data, we evaluated its
performance on the respective TCGA data. For each sample in
the test set, we calculated an anomaly score based on the distance
between that sample and the model reference. We did this by
projecting the sample to the principal component space and
measuring its residue, where higher residue scores indicate that
the sample is more anomalous. If the anomaly score is larger than
the anomaly detection threshold, the sample is called abnormal
(i.e., an outlier). Otherwise, the sample is called normal (i.e.,
an inlier). This allows us to differentiate between normal and
cancerous TCGA samples without ever seeing a single cancer
example. We repeated this procedure for increasingly smaller
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TABLE 1 | This table shows the number of samples in each GTEx training set and TCGA test set, alongside the test set performance of that anomaly detector.

GTEx (N) TCGA (N) TCGA (C) Precision Recall Specificity Accuracy AUC

Breast 89 110 982 0.975 0.965 0.782 0.947 0.903

Liver 115 48 295 0.986 0.939 0.917 0.936 0.973

Lung 313 59 503 0.987 0.907 0.898 0.906 0.960

Prostate 106 48 426 0.949 0.742 0.646 0.732 0.734

Stomach 192 33 380 0.943 0.966 0.333 0.915 0.547

Thyroid 318 53 441 0.974 0.925 0.792 0.911 0.893

Precision and recall remain high for all classifiers, but specificity suffers for select tissues. This suggests that our “tissue detector,” when it fails, has a bias toward viewing all TCGA

samples as abnormal. The acronyms N and C refer to number of normal and cancerous samples, respectively.

subsets of the training data, with specificity averaged across ten
bootstraps each.

By using the Wang et al. data, we can evaluate the utility
of the anomaly detection method with all batch effects already
removed. Nevertheless, we chose to use the GTEx data as the
“normal” training set so that any residual batch effects between
the GTEx and TCGA data would cause the “tissue detector” to
call false positives (i.e., to call the healthy TCGA abnormal). For
a robust and conservative estimate of performance, we focus
our discussion on specificity (which is especially penalized by
false positives).

3. RESULTS AND DISCUSSION

3.1. Cancer Is a Tissue Anomaly
For this study, we trained a “tissue detector” on each of the
six tissues described in Table 1, using only the GTEx samples
for training. We then evaluated its performance on withheld
TCGA data by calculating an anomaly score for each TCGA
sample and comparing it against the anomaly threshold: if the
score is greater than the threshold, the sample is considered an
anomaly (i.e., cancerous). Figure 1 shows the (log-)ratio of per-
sample anomaly scores relative to the tissue-specific anomaly
threshold (y-axis) for each tissue (x-axis), faceted based on
whether the sample is cancerous. Especially for breast, liver, lung,
and thyroid data, our “tissue detector” not only recognizes most
TCGA cancer samples as anomalies, but also recognizes most
TCGA healthy samples as normal. On the other hand, anomaly
detection is poor for prostate and stomach tissue. Table 1 shows
the precision, recall, and specificity for each “tissue detector.” For
almost all tissues, recall is better than specificity, meaning false
positives are more common than false negatives. Figure 2 shows
the first two principal components of the best performing tissue
(breast) with the worst performing tissue (stomach).

3.2. Detection Improves With More Normal
Samples
We hypothesized that increasing the number of normal samples
shown to the “tissue detector” during model training would
improve its specificity, especially for the poorly performing
prostate and stomach detectors. To test this hypothesis, we
measured the specificity of each “tissue detector” as trained
on increasingly smaller subsets of the GTEx data. Figure 3

FIGURE 1 | This figure shows the (log-)ratio of per-sample anomaly scores

relative to the tissue-specific anomaly threshold (y-axis) for each tissue (x-axis),

faceted based on whether the sample is cancerous. The “tissue detector” calls

any sample above the x-intercept threshold as an anomaly (i.e., cancerous).

The threshold is selected procedurally during model training. This figure shows

performance for TCGA test set only; no TCGA samples were included in the

training set.

shows the specificity for each “tissue detector’ (y-axis) according
to the number of samples in the training set (x-axis). A
pattern emerges: the inclusion of additional GTEx samples can
improve the classification of TCGA samples, up until a point of
diminishing returns.

4. CURRENT CHALLENGES

4.1. Translating Concept to Clinic
In this study, we used normal GTEx samples to train a model that
could classify TCGA samples. We acknowledge that there is no
direct clinical application for this experiment, since it is trivial to
differentiate between cancer and non-cancer tissue using simple
microscopy. As a proof-of-concept, we chose to use these data
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FIGURE 2 | This figure shows the first two principal components of the best performing tissue (breast; A) and the worst performing tissue (stomach; B), calculated

using the log of all tissue data. While the healthy TCGA breast tissue is indistinguishable from normal GTEx tissue, the healthy TCGA stomach falls slightly outside the

range of normal GTEx tissue. Although the healthy TCGA stomach tissue is markedly different than the cancer tissue, many of these samples look like anomalies from

the perspective of the GTEx “tissue detector”.

FIGURE 3 | This figure shows the specificity for each “tissue detector” (y-axis)

according to the number of samples in the training set (x-axis). Performance is

averaged across 10 bootstraps of the GTEx training set. This figure shows

performance for TCGA test set only; no TCGA samples were included in the

training set.

to demonstrate tissue anomaly detection because the data set
is sufficiently large and publicly available. However, anomaly
detection could suit many health surveillance applications. By
changing the class of samples used in the training set, the
meaning of “anomaly” changes. For example, if we include only
benign tumors in the training set, then an anomaly detector
might identify whether a biopsied tumor is potentially malignant

(i.e., not benign). Likewise, using a training set of blood
biomarkers for patients with surgically resected tumors might
yield an anomaly detector that can identify whether a primary
tumor has recurred. Other novel applications might include
training a “tissue detector” on healthy lymphatic tissue to screen
for lymphatic metastasis or on chemotherapy-sensitive tumor
biopsies to screen for emerging drug resistance. Whatever the
application, anomaly detection is unique in that it only requires
that there exist data for the null state that is under surveillance:
it is not necessary that researchers have characterized the full
spectrum of the undesired outcome.

4.2. Data Integration
One challenge faced in the detection of anomalous gene
expression signatures is the limited amount of data available
for training and testing. Even as data sets get larger, anomaly
detection will still benefit from the combination of multiple data
sets, known as horizontal data integration (Tseng et al., 2012).
However, horizontal data integration is complicated because
every data set has intra-batch and inter-batch effects caused by
systematic or random differences in sample collection. These
differences could arise from a variety of biological factors (e.g.,
biopsy site, age, sex) or technical factors (e.g., RNA extraction
protocol, sequencing assay), including latent factors unknown
to the investigator (Leek et al., 2012). Although software like
ComBat and sva can remove intra-batch biases, inter-batch
biases may still remain. Indeed, inter-batch biases could explain
why our “tissue detectors,” when they fail, tend to view all
TCGA samples as abnormal (though the “normal” TCGA
samples do all come from sites adjacent to cancerous tissue).
Although Wang et al. tried to harmonize the TCGA and GTEx
data (Wang et al., 2018), the removal of inter-batch biases is
non-trivial and further challenged by the prevailing need to
preserve test set independence. Moreover, owing to how next-
generation sequencing data measure the relative abundance of
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gene expression, these data also contain inter-sample biases that
sit on top of the intra-batch and inter-batch biases (Soneson
and Delorenzi, 2013; Quinn et al., 2018a). It remains an open
question of how best to integrate multiple data sets. Non-
parametric or compositional PCA-like methods could provide a
suitable alternative to anomaly detection that is more robust to
inter-batch and inter-sample biases.

4.3. Interpretability
Another challenge faced in the detection of anomalous gene
expression signatures is the lack of transparency in the decision-
making process. Although the concept of anomaly detection
is intuitive, its implementation decomposes high-dimensional
data into orthogonal eigenvectors that do not necessarily have
any meaning to biologists. When examining these eigenvectors
directly, it may be unclear how an anomaly detection model
reached its decision. This makes it difficult to formulate new
hypotheses to improve the model performance or elucidate
the biological system. Future work should aim to improve the
interpretability of anomaly detection methods. One approach
might involve building a tool that visualizes which eigenvector
components contributed maximally to each decision. If some
constituent genes are consistently involved in misclassification,
this could generate testable hypotheses. Similarly, one could try to
characterize the biological importance of the maximally relevant
eigenvectors through gene set enrichment analysis (GSEA),
as done by Weighted Gene Correlation Network Analysis
(Langfelder and Horvath, 2008). This would allow investigators
to frame inlier and outlier distributions not only in terms of
the constituent genes involved, but also in terms the biological
pathways affected. This too could generate testable hypotheses.
With these improvements, anomaly detection would become
an interpretable and actionable classification strategy for many
health surveillance applications.

5. SUMMARY

Technological advances have made it possible to measure the
global gene expression signature of any biological sample at little

cost. Already, there is a growing body of evidence that gene
expression signatures can be used as biomarkers to diagnose
cancer (Kourou et al., 2015). In this report, we present a novel
application of anomaly detection to classify cancer based on
gene expression signatures. By learning the latent structure of
normal gene expression from a training set of normal samples,
we created a “tissue detector” that can identify cancer without
having seen a single cancer example. Our method contrasts with
discriminatory methods, widely used in the biological sciences,
which can only identify cancerous samples that resemble those
that the algorithm already saw during training. In principle,
discriminatory methods do not make sense for a disease like
cancer where a one-of-a-kind gene expression signature is
theoretically possible. Practically speaking, anomaly detection
further benefits from normal samples being more readily
available and easier to collect than abnormal samples: for any
cancer, many more people do not have the cancer than do. Since
the inclusion of additional normal samples can improve the
specificity of anomaly detection, the curation of large normal data
sets could open up the possibility of building diagnostic tests for
extremely rare cancers.
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