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ABSTRACT 55 

Cancer-Associated Fibroblasts (CAFs) are major contributors to pancreatic ductal 56 

adenocarcinoma (PDAC) progression, through pro-tumour cross-talk and the generation of 57 

fibrosis (physical barrier to drugs). CAF inhibition is thus an ideal component of any therapeutic 58 

approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential 59 

therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in 60 

PDAC tumour stroma and its prognostic significance. Herein we show that high expression of 61 

SLC7A11 in PDAC tumour stroma (but not tumour cells) is independently prognostic of poorer 62 

overall survival. We demonstrate using orthogonal approaches that PDAC-derived CAFs are 63 

highly dependent on SLC7A11 for cystine uptake and glutathione synthesis, and that SLC7A11 64 

inhibition significantly decreases their proliferation, reduces their resistance to oxidative stress 65 

and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, our 66 

paradigm-shifting work demonstrates the need to inhibit SLC7A11 in the PDAC stroma, as 67 

genetic ablation of SLC7A11 in PDAC cells alone is not enough to reduce tumour growth. 68 

Finally, our work validates that a nano-based gene-silencing drug against SLC7A11, developed 69 

by our group, reduces PDAC tumour growth, CAF activation and fibrosis in a mouse model of 70 

PDAC. 71 
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INTRODUCTION 82 

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with a 5-year survival rate of 83 

<9% (1). A major reason for this poor prognosis is the drug-refractory nature of PDAC caused 84 

by inherent chemoresistance mechanisms and physical barriers to drug delivery. The dense 85 

fibrotic PDAC microenvironment drives both of these mechanisms (2). Fibrosis distorts the 86 

tumour vasculature physically hindering drug access and creates a harsh hypoxic and nutrient-87 

deprived microenvironment (2). These conditions promote the transition of cancer cells from an 88 

epithelial phenotype to a more metastatic and chemoresistant mesenchymal phenotype (2). The 89 

architects of the PDAC microenvironment are Cancer-Associated Fibroblasts (CAFs) (2, 3). 90 

CAFs are activated by signals released from PDAC cells and hypoxia, resulting in a self-91 

perpetuating loop of excessive extracellular matrix (ECM) protein deposition that creates fibrosis 92 

(2, 3). CAFs also reciprocate pro-survival signalling to PDAC cells, thus promoting PDAC cell 93 

survival and epithelial to mesenchymal transition (2, 3). This makes stromal remodelling and 94 

inhibition of CAF activity an important consideration for PDAC therapeutic approaches. 95 

CAFs and PDAC cells share an oxygen/nutrient poor microenvironment. PDAC cells have 96 

altered their metabolism to survive and proliferate in this stressful microenvironment (4). These 97 

alterations can lead to metabolic addictions that can be therapeutically exploited. A potential 98 

target that has gained significant interest is the Xc
-
 amino acid antiporter, which imports cystine 99 

into the cell, in exchange for glutamate (5-7). Xc
- 

is a heterodimer of solute carrier 3A2 100 

(SLC3A2; membrane anchor) and solute carrier 7A11 (SLC7A11, also known as xCT; amino 101 

acid transporter) (5-7). This transporter sits at the crux of multiple metabolic activities necessary 102 

for cancer cell survival, including protein synthesis and redox regulation. First, cystine 103 

transported by SLC7A11 is reduced to cysteine, which is an irreplaceable component of proteins, 104 

that is required for disulphide bond formation. Second, cysteine is also the rate-limiting amino 105 

acid in the synthesis of the potent antioxidant glutathione (GSH) (8). GSH is important in PDAC 106 

cell survival as KRAS-driven metabolic changes, pro-tumour signalling and microenvironment-107 

driven hypoxia increase intracellular oxidative stress (9). Without this protection, uncontrolled 108 

oxidative stress could compromise cell survival by damaging DNA and proteins.  109 

In light of these critical roles, SLC7A11 has been identified as a prognostic factor and potential 110 

therapeutic target in a number of cancers (10-15). In PDAC, Lo et al (16) demonstrated that 111 
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SLC7A11 was upregulated in PDAC cells under oxidative stress and cystine deprivation in vitro. 112 

They subsequently showed that SLC7A11 inhibitor sulfasalazine (SSZ) significantly reduced 113 

subcutaneous PDAC tumour growth (17). Since then, additional studies have demonstrated the 114 

therapeutic potential of inhibiting or genetically ablating SLC7A11 in PDAC cells (18-22). 115 

While these findings were promising, a key limitation of all the above studies was that they 116 

ignored the role of SLC7A11 in CAFs or the impact of CAFs on PDAC cell sensitivity to 117 

SLC7A11 inhibition. This is a critical gap in our knowledge for therapeutic inhibition of 118 

SLC7A11 in PDAC, given the prominent cross-talk between CAFs and PDAC cells and their 119 

impact on PDAC drug sensitivity. In addition, evidence suggests that amino acids can be 120 

exchanged between tumour cells and stromal cells to help overcome nutrient deficiencies and 121 

drive tumour progression (23, 24). Therefore, it is possible that SLC7A11 may play a similar role 122 

in PDAC/CAF metabolic cross-talk because of its ability to regulate both glutamate efflux and 123 

cysteine production.  124 

We hypothesised that SLC7A11 inhibition in CAFs had the potential to directly inhibit a key 125 

cellular target in PDAC and to break a potential nutrient feeding axis between CAFs and PDAC 126 

cells. We demonstrate for the first time that high stromal expression of SLC7A11 in human 127 

PDAC tissues predicts poorer overall survival. SLC7A11 inhibition in human patient-derived 128 

CAFs reduces their proliferation, anti-oxidant capacity and ability to support PDAC cell 129 

proliferation in 3D co-cultures. We also demonstrate the therapeutic potential of inhibiting 130 

SLC7A11 expression using a potent and selective gene silencing nanomedicine to decrease 131 

orthotopic PDAC tumour growth, stellate cell activation and fibrosis. 132 
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RESULTS 139 

High stromal SLC7A11 expression in human PDAC specimens predicted poor overall 140 

survival. 141 

Results showed that SLC7A11 and its partner SLC3A2 mRNA levels are upregulated in PDAC 142 

patient-derived CAFs compared to patient-derived non-cancerous pancreatic fibroblasts (Figure 143 

1A). Similar results were obtained when we analysed Ohlund et al data (25), which showed 144 

SLC7A11 mRNA expression was increased in iCAF (2.7-fold) and myCAF (1.6-fold) sub-145 

populations compared to quiescent pancreatic stellate cells (pancreatic stellate cells differentiate 146 

into CAFs; Supplementary Table 1). We confirmed that all human PDAC CAFs expressed 147 

SLC7A11 protein (Figure 1B). SLC7A11 protein levels in human CAFs (5/6 CAFs tested) were 148 

comparable to the PDAC cells with the highest SLC7A11 expression (HPAFII and ASPC1) 149 

(Figure 1B). SLC7A11 protein levels were higher in PDAC cells derived from metastatic sites 150 

(HPAFII/AsPC1) relative to those from primary pancreatic tumours (MiaPaCa-2/Panc-1) 151 

(Figure 1B). Co-immunofluorescence staining for SLC7A11 and SMA (CAF marker) in 152 

human PDAC tumours demonstrated abundant SLC7A11 protein in SMA positive CAFs and 153 

tumour elements (Figure 1C). We next scored SLC7A11 protein expression, as determined by 154 

immunohistochemistry using a validated antibody (refer to methods and Figure S1), in tumour 155 

and stromal compartments of human PDAC tissue microarrays (Figure 1D; independent scoring 156 

scales were used for tumour and stromal compartments) and correlated with overall patient 157 

survival (Figure 1E-G). 58% of patients were Tumour
high

 (Figure 1E) and 47% were Stroma
high

 158 

(Figure 1F). SLC7A11 expression in the PDAC tumour compartment alone did not predict 159 

patient survival (Figure 1E). Similar results were obtained when we analysed the ICGC publicly 160 

available mRNA data (26) (Figure S2). Importantly, in a multivariate logistic regression, no 161 

baseline variables were associated with stromal SLC7A11 expression and high SLC7A11 in the 162 

stroma was independently prognostic of poorer overall survival (Figure 1F, p=0.041, Hazard 163 

ratio=1.45; see Supplementary Table 2 contains multivariate parameters), when adjusted for 164 

vascular invasion. In addition, we identified a sub-group of patients (Tumour
low

Stroma
high

) that 165 

had significantly poorer overall survival compared to all other score combinations (Figure 1G-166 

H).  167 
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Inhibition of SLC7A11 in CAFs reduced cell proliferation and metabolically rewires CAFs. 168 

To assess SLC7A11 function in CAFs, we used siRNA and two pharmacological inhibitors 169 

[Sulfasalazine (SSZ), Erastin]. SLC7A11-siRNA potently reduced mRNA (Figure S1C) and 170 

protein levels (Figure S1D) compared to control siRNA. Inhibition of SLC7A11 by siRNA, SSZ 171 

or erastin significantly decreased CAF proliferation and viability (Figure 2A-C). Importantly, 172 

SLC7A11 knockdown in CAFs inhibited proliferation in both SLC7A11
low

 and SLC7A11
high

 173 

cells (Figure S3A)], indicating that SLC7A11 is functionally essential in CAFs regardless of 174 

expression level. 2-mercaptoethanol (2-ME), which facilitates bypass of xCT for intracellular 175 

cysteine (27), rescued CAF growth in the presence of SSZ (Figure 2B). This indicated that SSZ-176 

induced growth arrest of CAFs was due to cystine starvation. To prove this, we assessed cystine 177 

uptake following SLC7A11 inhibition. Indeed, treatment of CAFs with either SLC7A11-siRNA 178 

or SSZ significantly reduced cystine uptake (Figure 2D-E) and intracellular glutathione (Figure 179 

2F-G) relative to controls. The reduction in glutathione was rescued by addition of N-acetyl-180 

cysteine (NAC; Figure 2G), which provides an SLC7A11-independent source of cysteine.  181 

We also validated previous findings that both SSZ and erastin significantly decreased MiaPaCa-2 182 

PDAC cell proliferation (Figure S3B-C) and that SSZ inhibition can be rescued by 2-ME (17). 183 

In contrast to results in PDAC cells and CAFs, SLC7A11 knockdown had minimal effect on the 184 

viability (<20% reduction in viability) of non-tumour human pancreatic ductal epithelial cells 185 

(Figure S3D-E).  186 

We next assessed intracellular reactive oxygen species (ROS; oxidative stress) and found that 187 

SLC7A11 knockdown in CAFs had no effect on intracellular ROS in the absence of stress, but 188 

significantly increased intracellular ROS in the presence of tBHP (Figure 2H; tBHP increased 189 

mitochondrial ROS, Figure S4A), suggesting decreased anti-oxidant capacity. In contrast, SSZ 190 

treatment alone increased intracellular ROS in CAFs, to levels where tBHP treatment had no 191 

significant additive effect on intracellular oxidative stress (Figure 2I). Note that the lack of an 192 

increase in intracellular ROS with tBHP alone is due to the short incubation time (1 hour) 193 

utilised for this assay. SLC7A11 knockdown in CAFs had no effect on glutamate secretion 194 

(Figure S4B). 195 

 196 
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Inhibition of SLC7A11 increased sensitivity to oxidant stress and ferroptosis.  197 

Next, we wanted to examine whether the increase in intracellular ROS in CAFs makes them 198 

vulnerable to external oxidant stress (a common feature of the PDAC tumour 199 

microenvironment). We confirmed that SLC7A11 knockdown was maintained in the presence of 200 

oxidative stress (Figure S4C) and observed that oxidative stress increased SLC7A11 protein 201 

expression in cells treated with control siRNA (Figure S4C). Knockdown of SLC7A11 using 202 

siRNAs in CAFs sensitised them to external oxidant stress (tert-butyl hydroperoxide, tBHP) by 203 

decreasing viability (Figure 3A) and increasing apoptosis (Figure 3B, Figure S4D). Previous 204 

studies inhibiting SLC7A11 in PDAC cells have identified a key anti-proliferative mechanism to 205 

be induction of oxidative stress-induced cell death referred to as ferroptosis (19, 21, 28). We 206 

observed that inhibition of SLC7A11 with erastin reduced glutathione peroxidase activity 207 

indicative of ferroptosis in CAFs (Figure 3C). Importantly, the ferroptosis inhibitor ferrostatin 208 

rescued CAFs from the anti-proliferative effects of erastin further confirming ferroptosis (Figure 209 

3D). Stable knockdown of SLC7A11 (Figure S1F-G) in CAFs using shRNA also significantly 210 

decreased cell viability in the presence of oxidant stress (Figure 3E) and increased ferroptosis 211 

(i.e. decreased glutathione peroxidase activity, Figure 3F).   212 

SLC7A11 inhibition increased senescence of CAFs (in the absence of stress). 213 

Given SLC7A11 siRNA alone had no effect on apoptosis (Figure 3B), we explored other anti-214 

proliferative mechanisms. We showed that SLC7A11 siRNA had no effect on autophagy (Figure 215 

S4E), but increased CAFs in S-phase of cell cycle (Figure S4F, suggesting hindered S phase 216 

progression. Furthermore, we showed that SLC7A11 knockdown in CAFs significantly increased 217 

senescence (Figure 3G). This effect was reproduced by treatment of CAFs with SSZ (Figure 218 

3H). Together our results showed that SLC7A11 knockdown in CAFs induced senescence and in 219 

the presence of additional oxidative stress compromised CAF survival. 220 

SLC7A11 inhibition decreased CAF and PDAC co-culture spheroid growth in vitro. 221 

To determine whether SLC7A11 inhibition in CAFs had any effect on their ability to support 222 

PDAC cell growth we performed 3D co-culture assays [spheroid outgrowth (Figure 4A) and 223 

spheroid growth assays (Figure 4C)]. Knockdown of SLC7A11 in either CAFs, PDAC cells, or 224 

both cell types significantly reduced spheroid outgrowth (Figure 4B). Importantly, knockdown 225 
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of SLC7A11 in CAFs alone or in both cell types was more effective at inhibiting spheroid 226 

outgrowth than SLC7A11 knockdown in PDAC cells alone (Figure 4B). Using a stable 227 

knockdown approach in a 3D matrigel-embedded spheroid assay, we observed similar results 228 

(Figure 4D). Except SLC7A11-shRNA in MiaPaCa-2 PDAC cells alone had no effect on 229 

spheroid growth. In contrast, SLC7A11-shRNA in CAFs alone or in both tumour cells and CAFs 230 

reduced spheroid growth rate by > 30% (Figure 4D). 231 

SLC7A11 inhibition decreased collagen remodelling in vitro. 232 

To examine the impact of SLC7A11 knockdown in CAFs on ECM remodelling, we used a 233 

matrix contractility assay (higher contraction = greater remodelling; Figure 5A). SLC7A11 234 

knockdown in CAFs significantly reduced contraction of collagen plugs over 6 days (Figure 235 

5A). Brightfield analysis of picrosirius red-stained collagen plugs at the end of the assay 236 

demonstrated that collagen plugs remodelled by CAFs transfected with SLC7A11-siRNA had 237 

decreased collagen relative to controls (Figure 5B). Polarised light analysis (measures density of 238 

collagen fibrils) showed that plugs remodelled by CAFs transfected with SLC7A11-siRNA had 239 

less overall birefringent fibrils (Figure 5C), decreased high and medium density fibrils, and 240 

significantly increased low density fibrils, relative to controls (Figure 5D). This was also 241 

confirmed by Second Harmonics Generation (SHG) analysis of fibrillar collagen (Figure 5E). 242 

Fibril organisation was also assessed by Grey-Level Co-Occurrence Matrix (GLCM) analysis of 243 

SHG images but showed no significant difference between ns-siRNA and SLC7A11-siRNA 244 

groups (Figure 5E).  245 

Genetic ablation of SLC7A11 in PDAC cells only had no effect on tumour growth in 246 

genetically engineered mouse models. 247 

Results above suggested that the presence of CAFs would likely influence the effect of an 248 

SLC7A11 inhibition approach in vivo. We assessed the impact of genetic ablation of SLC7A11 249 

(Figure S5) driven by a pancreas-specific promoter (Slc7a11
fl/fl

, does not affect CAFs), in 250 

transgenic mouse models of PDAC (KC and KPC mice (29)). We observed no significant 251 

difference in PDAC precursor lesion formation between control and Slc7a11
fl/fl

 KC mice (Figure 252 

6A). In addition, in KPC mice we did not observe a significant difference in survival (Figure 253 

6B) or intratumoural αSMA-positive CAFs (Figure 6C), but we did note a significant decrease 254 
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in intratumoural collagen in KPC Slc7a11
fl/fl

 mice, relative to controls (Figure 6D). We 255 

subsequently tested the effect of SLC7A11-siRNA on isolated KPC PDAC cells and KPC CAFs 256 

in vitro. Higher basal expression of SLC7A11 was observed in KPC PDAC cells relative to 257 

CAFs (Figure S6A) and siRNA potently knocked down SLC7A11 in both cell types (Figure 258 

S6B-C). Consistent with in vivo results, inhibition of SLC7A11 using an siRNA transient 259 

orthogonal approach had no effect on KPC PDAC cell proliferation (Figure 6E). However, 260 

SLC7A11 siRNA did significantly reduce proliferation of KPC CAFs (Figure 6F).  261 

Gene silencing nanoparticles targeting SLC7A11 decreased orthotopic tumour growth, 262 

CAF activity and fibrosis. 263 

To overcome the physical barrier of fibrosis and deliver therapeutics to PDAC mouse tumours 264 

we developed di-block polymeric nanoparticles (Star 3), which can self-assemble therapeutic 265 

siRNA to form a nanocomplex that is stable in circulation and can extravasate from tumour 266 

vessels (30). Star 3-SLC7A11-siRNA decreased SLC7A11 protein levels in orthotopic 267 

pancreatic tumours (Figure 7A). The therapeutic efficacy of Star 3-SLC7A11-siRNA against 268 

orthotopic pancreatic tumours was then assessed using a therapeutic regimen, with or without co-269 

administration of Abraxane® (human albumin-bound paclitaxel; currently used in combination 270 

with gemcitabine to treat PDAC in the clinic; Figure 7B). Whilst Abraxane® treatment had no 271 

effect on tumour growth, SLC7A11 inhibition alone, or in combination, significantly decreased 272 

tumour growth (Figure 7C), and reduced the incidence of metastases (Table 1), but had no 273 

effect on the number of metastases per mouse (Figure 7D). Furthermore, Star 3-SLC7A11-274 

siRNA significantly decreased the frequency of intratumoural αSMA positive cells (Figure 8A) 275 

and picrosirius red staining (fibrosis), relative to controls (Figure 8B), though fibril density and 276 

organisation were not significantly affected (Figure 8C; Figure S7A-B). Our results suggested 277 

that SLC7A11 knockdown reduced total intratumoural collagen rather than the quality of 278 

remaining collagen. This resulted in an increase in the fraction of open CD31-positive blood 279 

vessels, relative to controls (Figure 8D), suggesting normalisation of intratumoural vasculature. 280 

 281 

 282 

 283 
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DISCUSSION 284 

PDAC urgently requires more effective treatments that target both tumour cells and the 285 

tumour/fibrosis-promoting stromal CAFs. In this study, we showed for the first time that high 286 

SLC7A11 expression in the stroma of human PDAC tumours predicts poorer patient survival. 287 

We also demonstrated that limiting cystine uptake in CAFs via inhibition or knockdown of the 288 

amino acid transporter SLC7A11, halted their proliferation and sensitised them to oxidative 289 

stress. In a 3D CAF/PDAC cell co-culture setting, this approach led to decreased spheroid 290 

growth, indicating that we had disrupted PDAC-CAF cross-talk. SLC7A11 knockdown in CAFs 291 

also decreased their ability to remodel 3D collagen in vitro, implying this approach had the 292 

potential to affect matrix remodelling in PDAC tumours. Finally, we showed that our siRNA-293 

containing nanoparticles were able to decrease mouse tumour growth, incidence of metastases 294 

and fibrosis. A key finding of this study is the importance of SLC7A11 in regulating the growth 295 

and function of CAFs, and that inhibiting SCL7A11 in CAFs is essential to maximise the full 296 

therapeutic benefit of targeting SLC7A11 in PDAC.   297 

High SLC7A11 expression has been reported to predict poorer survival in different tumour types 298 

(14, 31, 32). However, the role of SLC7A11 in PDAC is less clear. Maurer et al (33) and more 299 

recently Badgley et al (21) observed significantly higher levels of SLC7A11 mRNA in the 300 

PDAC epithelial compartment relative to stroma. Yang et al (34) recently showed that expression 301 

of the long non-coding RNA, SLC7A11-AS1 (antisense transcript of SLC7A11) was also 302 

increased in PDAC tumour tissue relative to normal pancreas, and higher levels of SLC7A11-303 

AS1 among PDAC patients predicted poorer overall survival. SLC7A11-AS1 in PDAC cells was 304 

found to act as a scavenger for reactive oxygen species by preventing proteasome degradation of 305 

nuclear factor erythroid-2-related factor 2 (Nrf2), a key master regulator of redox homeostasis. 306 

The results add another layer of oxidative stress protection indirectly regulated by SLC7A11 307 

expression. We analysed gene expression array data from the ICGC PACA-AU cohort and found 308 

that SLC7A11 mRNA expression did not correlate with overall survival. However, using an 309 

immunohistochemistry (IHC)-based approach in the ICGC cohort, we demonstrated that high 310 

SLC7A11 protein in the stroma, but not in the tumour compartment, was prognostic of poorer 311 

patient survival. The difference between expression array and IHC results might be explained by 312 

the lack of segregation of tumour and stroma in the ICGC gene expression array data set. This is 313 
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a critical consideration, given the ICGC PDAC cohort has been identified as the most stroma-314 

rich cohort in comparison to TCGA and UNC PDAC cohorts (33). In our IHC approach, tumour 315 

and stroma were scored on separate scales to account for differences in maximum expression 316 

between the compartments and to prevent the masking of stromal SLC7A11 expression by the 317 

higher average levels of expression in tumour elements. Interestingly, we identified a sub-318 

population of patients with a combination of high stromal SLC7A11 expression and low tumour 319 

expression that had significantly poorer overall survival than all other PDAC patients. This might 320 

be indicative of metabolic cross-talk between PDAC cells and CAFs in a subset of patients. 321 

Studies have demonstrated that decreased SLC7A11 in tumour cells can confer resistance to 322 

glucose deprivation by increasing glutamate retention (35, 36), as glutamate can fuel the TCA 323 

cycle under low glucose conditions. Thus, a situation where PDAC tumour cells can increase 324 

glutamate retention, while potentially sourcing cysteine from nearby SLC7A11
high

 stromal cells, 325 

could be advantageous for their survival. Our results highlight that despite the higher average 326 

expression of SLC7A11 in the tumour compartment, expression in the PDAC stroma may be 327 

more functionally significant for disease progression. In addition, a retrospective analysis of 328 

expression array data from (25) showed that SLC7A11 expression was elevated in iCAFs and 329 

myCAFs relative to quiescent pancreatic fibroblasts, particularly in iCAFs. Future studies will 330 

investigate the potential role of SLC7A11 in the immune modulatory functions of iCAFs. 331 

We used orthogonal approaches consisting of two pharmacological inhibitors [sulfasalazine 332 

(SSZ), erastin] and RNA interference (siRNA, shRNA) to show that inhibition of SLC7A11 in 333 

CAFs reduced CAF proliferation, and that this effect was abrogated by β-mercaptoethanol (2-334 

ME). 2-ME bypasses the need for SLC7A11 by reducing cystine to cysteine, thus the need for 335 

SLC7A11 cystine shuttling becomes redundant (27). Ferrostatin (a ferroptosis inhibitor) was also 336 

able to prevent the decrease in CAF proliferation when exposed to erastin. These results are in 337 

support of a recent study by Badgley et al  (21) which demonstrated that inhibition of SLC7A11 338 

in PDAC cells induced ferroptosis. Interestingly both SLC7A11 knockdown and SSZ treatment 339 

in CAFs were found to induce senescence. This is the first time senescence has been reported as 340 

a response to SLC7A11 inhibition and may have been a survival response to amino acid 341 

deprivation and potentially hindered protein synthesis. Indeed, Daher et al (19) demonstrated that 342 

genetic ablation of SLC7A11 in PDAC cells induced an amino acid stress response.  343 
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We confirmed that both SLC7A11 knockdown and SSZ significantly hindered cystine uptake as 344 

well as the production of the antioxidant GSH. Given cystine is integrated into GSH as cysteine, 345 

and cysteine levels control GSH synthesis, these results implied that SLC7A11 inhibition 346 

decreased intracellular cysteine. A key point of difference between siRNA-based and SSZ-based 347 

approaches was that SLC7A11 knockdown alone did not significantly increase oxidative stress in 348 

CAFs, whereas SSZ did. A potential explanation for this difference is that SSZ can decrease 349 

levels of additional enzymes and signalling pathways involved in protection against oxidative 350 

stress (37-39), which might induce higher oxidative stress more rapidly than SLC7A11 gene 351 

silencing. Importantly, supplying cells with an SLC7A11-independent source of cyst(e)ine via 352 

N-acetyl-cysteine was able to rescue GSH levels in SSZ-treated CAFs. Our results highlighted 353 

the crucial dependence of CAFs on SLC7A11 for cystine uptake and GSH synthesis. 354 

Our novel findings led us to investigate the potential impact of SLC7A11 inhibition on cross-talk 355 

between PDAC cells and CAFs. Importantly, in the spheroid growth assay, stable SLC7A11 356 

knockdown in PDAC cells alone had no effect on spheroid growth. This lack of an effect may 357 

have been due to the reduced contribution of PDAC cells to the total spheroid volume in the 358 

spheroid growth assay (3:1 excess of CAFs), as opposed to the equal ratio of PDAC cells:CAFs 359 

used in the outgrowth assay. In addition, the presence of a basement matrix in the spheroid 360 

growth assay may have contributed to the phenotype, as CAF-mediated matrix remodelling 361 

would have assisted spheroid local invasion and growth. SLC7A11 knockdown in CAFs also 362 

significantly reduced their ability to remodel 3D collagen in vitro, suggesting that SLC7A11 363 

inhibition in CAFs might remodel a key barrier to drug delivery in vivo. Our results reiterate the 364 

importance of targeting SLC7A11 in both CAFs and PDAC cells.  365 

Consistent with this, conditional knockout of SLC7A11 in only the tumour compartment of KPC 366 

tumours did not affect mouse survival, but interestingly it did decrease intra-tumoural fibrosis, 367 

implying pro-fibrogenic cross-talk between tumour and stromal cells had been disrupted. 368 

Notably, these results were reproduced in vitro, whereby SLC7A11 knockdown in isolated CAFs 369 

from the KPC mouse tumours significantly reduced their proliferation but had no effect in KPC 370 

PDAC cells. Our results are in striking contrast to prior KPC mouse PDAC models in which 371 

SLC7A11 was inhibited via a modified form of erastin (20), systemic deletion of SLC7A11 or 372 

cysteinase enzyme treatment (21) and significantly reduced tumour growth. What is important to 373 
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note is that these studies did not selectively target PDAC tumour cells and these mouse models 374 

are characterised as having a prominent fibrotic tumour stroma. Therefore, it is likely that 375 

SLC7A11 inhibition would have also affected CAFs pro-tumour/fibrotic activity which would 376 

have contributed to the reduced tumour growth.  377 

Both prior studies also demonstrated that SLC7A11 inhibition (20) or systemic genetic deletion 378 

(21) in the KPC mouse model increased median survival, highlighting the efficacy of SLC7A11 379 

inhibition as a standalone therapeutic approach. To complement this work, we opted for an 380 

orthotopic model of PDAC with a defined pre-mortality endpoint. Our approach had the 381 

advantage of utilising human-derived PDAC cells and CAFs and the defined endpoint allowed 382 

for a time-matched comparison of the effect of SLC7A11 knockdown on CAF activation, 383 

fibrosis and tumour size. Using this model, we tested the therapeutic efficacy of a polymeric 384 

nanoparticle (Star 3) that we specifically developed to package SLC7A11-siRNA and overcome 385 

physical barriers to drug delivery to penetrate fibrotic PDAC tumours in mice (30). Our 386 

nanoparticle preferentially accumulates in PDAC tumours, but is rapidly cleared from normal 387 

organs, minimising the chance for off-target toxicity (30). Star 3-SLC7A11-siRNA was able to 388 

decrease tumour growth by >60%. This was coupled with reduced incidence of metastases, 389 

decreased CAF activation and intratumoural collagen (fibrosis), as well as normalised tumour 390 

vasculature. It should be noted that our approach used human-specific SLC7A11-siRNA and 391 

would not have targeted mouse cells. Thus, the effects we observed may be an underestimate of 392 

the effect of SLC7A11 inhibition in PDAC tumours, as mouse CAFs can be co-393 

recruited/activated in the model. Regardless, our results demonstrate the efficacy of Star 3-394 

SLC7A11-siRNA against PDAC tumours and its ability to alleviate a physical barrier to drug 395 

delivery. While this did not translate into increased sensitisation of orthotopic PDAC tumours to 396 

Abraxane®, the dosing schedule selected was suboptimal to test whether SLC7A11 inhibition 397 

could sensitise to lower amounts of Abraxane®.  Future studies will investigate the potential for 398 

sensitisation to higher doses of Abraxane as well as identify other potential drug/therapeutic 399 

combinations using drugs (i.e. gemcitabine, cisplatin, carboplatin) or irradiation which increase 400 

intracellular reactive oxygen species. 401 

One limitation of our study was the lack of a proficient adaptive immune system in the host mice 402 

used. PDAC tumours have been demonstrated to be immune privileged, with immune infiltrate 403 
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primarily consisting of immune suppressive M2 macrophages and regulatory T cells. A number 404 

of studies have now demonstrated that reprogramming of CAFs and the PDAC stroma can 405 

improve anti-tumour immune responses (40-42). Arensman et al (18) demonstrated that 406 

SLC7A11 was dispensable for T-cell proliferation and anti-immune response in vivo. 407 

Importantly, they showed that SLC7A11 knockout using CRISPR/cas9 gene editing in 408 

subcutaneous PDAC tumours sensitised them to anti-CTLA-4 immunotherapy (18), suggesting 409 

SLC7A11 inhibition might work in synergy with immunotherapies.  410 

This study brings together over a decade of research into the therapeutic potential of SLC7A11 411 

inhibition in PDAC. Taken together, our findings and those of previous studies have 412 

demonstrated that SLC7A11 inhibition in PDAC is a multi-pronged therapeutic approach that 413 

can reverse PDAC resistance by : (i) directly inhibiting PDAC cell (16-20) and CAF 414 

proliferation; (ii) increasing PDAC cell chemosensitivity (16, 17, 19); (iii) interfering with pro-415 

tumour signalling and potentially nutrient exchange between PDAC cells and CAFs; (iv) 416 

alleviating a physical barrier to drug delivery (fibrosis); (v) enhancing anti-tumour immune 417 

responses (18).  418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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METHODS 430 

 431 

Quantitative real-time PCR (qPCR), Western blotting, siRNA transfections  432 

Description is included in Supplementary Materials and Methods.  433 

 434 

Cell isolation and culture. 435 

Human PDAC cells (MiaPaCa-2, Panc-1, AsPC1 and HPAFII; American Tissue Culture 436 

Collection) were cultured as described (43-45). PDAC cell purity was confirmed by short 437 

tandem-repeat profiling (CellBank Australia). Normal Human Pancreatic Ductal Epithelial 438 

(HPDE) cells (a gift from Ming Tsao, Ontario Cancer Institute) were cultured in Keratinocyte-439 

serum-free (KSF) medium containing 50 mg/ml bovine pituitary extract (BPE) and 5 ng/ml 440 

epidermal growth factor (EGF), as previously described (46). Quiescent human pancreatic 441 

fibroblasts, activated by culture on plastic, were isolated from patients with benign pancreatic 442 

conditions using a Nycodenz gradient centrifugation and cultured in IMDM containing 10% FBS 443 

and 4mM L-glutamine, as previously described (47). Human CAFs were isolated from PDAC 444 

tumour tissue by explant culture and cultured in IMDM containing 10% FBS and 4mM L-445 

glutamine, as previously described (48, 49). The purity of CAFs was assessed by positive 446 

immunostaining for glial fibrillary acidic protein (GFAP) and alpha-smooth muscle actin (α-447 

SMA) and negative immunostaining for cytokeratin, as described (47). All cells were maintained 448 

at 37°C in a humidified atmosphere containing 5% CO2 and were negative for mycoplasma. 449 

Cells were lifted by incubation in 0.05% trypsin (CAFs) or 0.25% trypsin (PDAC cells) and 450 

pelleted at 335 x g, 3 min at room temperature before resuspension. 451 

 452 

Immortalisation of human PDAC CAFs and establishment of human PDAC and CAF cell 453 

lines stably expressing shRNA. 454 

Human patient-derived PDAC CAFs at passage 9 (PSC line 1 in Figure 1B) were immortalised 455 

by lentiviral delivery of a human telomerase expression construct (GenTarget, Cat. LVP1131-456 

RP). Cells were maintained in puromycin selection and red fluorescent protein positive cells 457 

sorted on a BD FACS Aria II cell sorter. MiaPaCa-2 cells and hTERT-immortalised CAFs were 458 

then transduced with lentiviral constructs expressing scramble shRNA, SLC7A11-shRNA 459 
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sequence 1 (Origene, Cat. TL309282). Transduced cells were maintained in puromycin and GFP 460 

positive cells sorted on a BD FACS Melody cell sorter. SLC7A11 knockdown was confirmed by 461 

Western blot. All CAF shRNA cell lines were re-validated by positive immunostaining for 462 

GFAP and α-SMA, and negative immunostaining for cytokeratin. 463 

 464 

Isolation and culture of KPC transgenic mouse PDAC and CAF cells lines from PDAC 465 

tumours. 466 

KPC PDAC cells were supplied by co-authors Jen Morton and Paul Timpson and were cultured 467 

as previously described (50). KPC CAFs were isolated as previously described (48, 49) from 468 

KPC PDAC tumours and were validated by immunocytochemistry for GFAP and αSMA. KPC 469 

CAFs were cultured as per human PDAC CAF culture medium and conditions (48, 49) .  470 

 471 

Immunofluorescence for SLC7A11 and αSMA co-localisation. 472 

Formalin-fixed, paraffin-embedded human PDAC tumour tissue was obtained through the 473 

Australian Pancreatic Cancer Genome Initiative. Antigen retrieval was performed as previously 474 

described (43-45). Tissue sections were then stained with the following antibodies: SLC7A11 475 

(Cell Signalling Technologies, Cat. 12691; 1:25) and αSMA (Sigma-Aldrich, Cat. A5228; 476 

1:1000) overnight at 4
o
C, followed by anti-rabbit-AF647 secondary antibody (Abcam Cat. 477 

ab150115) and anti-mouse-AF488 secondary antibody (Life Technologies, Cat. A11001; 1:1000) 478 

for 1h at room temperature. Tissues were then mounted using Prolong Gold Antifade mountant 479 

(ThermoFisher Scientific, Cat. P36931) and imaged on a Zeiss 900 confocal microscope.   480 

 481 

Immunohistochemistry comparison of SLC7A11 antibodies on human PDAC tumour 482 

tissue. 483 

Serial sections of formalin-fixed, paraffin-embedded human PDAC tumour tissue were obtained 484 

through the Australian Pancreatic Cancer Genome Initiative. Antigen retrieval was performed as 485 

previously described (43-45). Tissue sections were probed with the following antibodies: 486 

SLC7A11 (Cell Signalling Technologies, Cat. 12691, 1:25; Abcam, Cat. ab37185, 1:2000; 487 

Novus Biologicals, Cat. NB300-318, 1:2000), biotinylated anti-rabbit secondary antibody 488 

(Vector Laboratories, Cat. BA-1000; 1:50) and Vectastain® ABC kit (Vector laboratories). 3,3’ 489 

diaminobenzidine was used as the substrate and hematoxylin as a counter-stain. Note that the cell 490 
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signalling antibody used was validated based on requirements as detailed in (51). We showed 491 

similar staining patterns in PDAC tissue sections using 3 independent antibodies (Figure S1A). 492 

In addition, our positive control brain tissue (Figure S1B) had abundant SLC7A11 protein 493 

expression and our negative control skin tissue (Figure S1B) had no SLC7A11 expression, 494 

consistent with SLC7A11 expression levels defined in the human protein atlas. Specificity of the 495 

antibody was also confirmed by its ability to detect specific SLC7A11 gene silencing (siRNA 496 

and shRNA) in Western blot (Figure S1D-G). 497 

 498 

Correlation of SLC7A11 expression in human PDAC specimens with overall survival. 499 

Immunohistochemistry analysis: Formalin-fixed, paraffin-embedded human PDAC tissue 500 

microarrays (TMAs) were obtained through the Australian Pancreatic Cancer Genome Initiative 501 

(International Cancer Genome Consortium Cohort). Patient demographics are summarised in 502 

Supplementary Table 3. TMA rehydration and blocking for immunohistochemistry was 503 

performed as previously described (43-45). TMAs were probed with the following antibodies: 504 

SLC7A11 (Cell Signalling Technologies, Cat. 12691; 1:25), biotinylated anti-rabbit secondary 505 

antibody (Vector Laboratories, Cat. BA-1000; 1:50) and Vectastain® ABC kit (Vector 506 

laboratories). 3,3’ diaminobenzidine was used as the substrate and hematoxylin as a counter-507 

stain. Intensity of staining in tumour and stromal compartments was scored using a four-point 508 

scale (0-3) by two independent scorers, based on the intensity in ≥75% of each compartment 509 

(normal acinar and ductal cells not scored). Score scales for tumour and stroma compartments 510 

were independent of each other. A consensus score was obtained for each core. For each set of 3 511 

cores per patient, the highest tumour and stroma scores were selected for correlation with patient 512 

parameters. Any non-PDAC tumours were excluded. Scores of 0-1 = SLC7A11
low

; Scores of 2-3 513 

= SLC7A11
high

. Scores were then correlated with overall survival using a Kaplan Meier Survival 514 

Curve (see statistical analyses). Patients that were deceased due to other causes or still alive were 515 

censored. Note that 2 patients did not have a tumour compartment in all 3 cores and were 516 

excluded. RNA analysis: Normalised SLC7A11 expression values (expression array data) were 517 

from the PACA-AU cohort through the ICGC data portal (all expression data for the PACA-AU 518 

cohort publicly available at ICGC data portal: https://dcc.icgc.org/projects/PACA-AU). Non-519 

PDAC patients were excluded (total PDAC patients = 242 patients). Normalised expression 520 

values were broken into tertiles (low = 0-1.98, medium = 1.98-2.52, high = 2.53-6.45) and 521 
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correlated with overall survival.  SLC7A11 mRNA expression was then correlated with overall 522 

survival using a Kaplan Meier Survival Curve (see statistical analyses). For comparison of 523 

SLC7A11 expression in mouse iCAFs, myCAFs and quiescent pancreatic fibroblasts (pancreatic 524 

stellate cells) normalised expression data from Ohlund et al (25). Details of experiments can be 525 

found in the original publication. Briefly, mouse pancreatic fibroblasts were isolated from wild-526 

type C57Bl/6 mice by outgrowth and cultured as follows: (1) quiescent fibroblasts alone in 527 

Matrigel; (2) cultured in trans-well with tumour organoids = iCAFs (αSMA
low

IL-6
high

); (3) 528 

grown in monolayer = myCAFs (αSMA
high

IL-6
low

). RNAseq was performed and relative 529 

expression of genes (normalised expression) assessed using cufflinks (version 2.0.2) with default 530 

settings (25).  531 

 532 

Preparation of drugs, cell viability, cell cycle, cell death and senescence assays.  533 

Description is included in Supplementary Materials and Methods. 534 

 535 

Measurement of cystine uptake, glutathione synthesis, oxidative stress and glutamate 536 

efflux.  537 

Description is included in Supplementary Materials and Methods. 538 

 539 

3D co-culture models, matrix contractility assays.  540 

Description is included in Supplementary Materials and Methods. 541 

 542 

Transgenic pancreatic cancer mouse model and genetic ablation of SLC7A11. 543 

Genetically engineered mouse model (GEMM) experiments using the KC (Kras-mutated) and 544 

KPC (Kras- and p53-mutated) mouse model (29) [Alleles used: Pdx-1-promoter, lox-stop-lox-545 

KrasG12D/+ allele, and lox-stop-lox-Trp53R172H/+ ± Slc7a11
fl/fl 

(IMPC (MGI:1347355)] were 546 

genotyped by Transnetyx (Cordoba, TN, USA). Pancreatic intraepithelial neoplasia (PanIN) 547 

scoring: Slc7a11
+/+

 KC (KC) and Slc7a11
fl/fl 

(KC with conditional Slc7a11 knockout under Pdx-548 

1 promoter) mice were sampled at 70 days of age and PanINs scored from whole H&E sections 549 

and normalised to mm
2
 of section. Survival: KPC and KPC Slc7a11

fl/fl
 mice were monitored at 550 

least 3 times weekly and sampled when exhibiting clinical signs of PDAC (abdominal swelling, 551 

jaundice, hunching, piloerection and weight loss). Slc7A11 knockout was confirmed by RNA in 552 
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situ hybridisation and Western blot (Figure S5). RNA in situ hybridisation (ISH) was performed 553 

on formalin-fixed KPC tumour sections. RNA ISH (RNAscope) was performed according to the 554 

manufacturer’s protocol (ACD RNAscope 2.0 High Definition–Brown) for Slc7a11 (Basecope 555 

probe targets floxed exon 3). Western blot was performed as above, except the following 556 

antibodies were used SLC7A11 (Cell Signaling Technology, Cat. 98051, 1:1000) and HSP90 557 

(Cell Signaling Technology, Cat. 4875, 1:1000). 558 

 559 

Star nanoparticle synthesis. 560 

Star nanoparticles (Star 3) were synthesised as previously described by our team (30). The 561 

purified core cross-linked star nanoparticle was analysed by GPC, NMR and FTIR after 562 

purification to determine its composition [final composition: f oligoethylene glycol methyl ether 563 

methacrylate (OEGMA)/f Dimethylaminoethyl methacrylate (DMEAMA) 14.5/85.5 mol % ; Mn 564 

= 155,000 g/mol (± 5000g/mol); Average Size DLS = 28 (+/- 5nm); Average Zeta potential =  40 565 

(+/-3)]. The nanoparticle was solubilised in methanol and dialysed with acidic water (pH = 3.0) 566 

for 24 h, and then further dialysed using water (pH = 6.5) for 48 h, then freeze-dried. 567 

 568 

Orthotopic pancreatic cancer mouse model and SLC7A11 inhibition studies.  569 

Luciferase-expressing MiaPaCa-2 cells were established as described (43). These cells were co-570 

implanted with human CAFs (10
6 

of each) into the tail of the pancreas of 8 week-old female 571 

BalbC nude mice, as described (43, 49). Star 3-siRNA gene silencing efficiency study: 6-weeks 572 

post-implant, mice were treated with 3mg/kg control-siRNA (antisense: 5’-573 

GAACUUCAGGGUCAGCUUGCCG) or SLC7A11-siRNA (antisense: 5’-574 

AGACCCAAUAAGUUUGCCG) complexed to Star 3 nanoparticles, intravenously once daily 575 

for three days. Star 3-siRNA therapeutic study: 4 weeks post-implant, mouse were randomised 576 

based on luminescence as described (43) (Figure S7C), then treated with 3mg/kg of control-577 

siRNA or SLC7A11-siRNA complexed with Star 3, intravenously once daily for the first three 578 

days, followed by twice weekly for 4 weeks. Mice were co-treated intravenously with 10mg/kg 579 

Abraxane® (10 mg/kg paclitaxel and 90mg/kg human albumin; Specialised Therapeutics 580 

Australia) or 90mg/kg human albumin (control), once weekly for 4 weeks. At end points, mice 581 

were humanely euthanised and organs/tumours harvested. Tumour volume was calculated by 582 

calliper measurement with operator blinded to treatment. Tumour fragments were 4% 583 
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paraformaldehyde-fixed for histology, frozen in Tissue-Tek® Optimal Cutting Temperature 584 

Compound (O.C.T; VWR International) for fluorescence analyses or snap frozen for protein 585 

extraction. Metastases were detected by ex vivo luminescent imaging (>600 counts) and 586 

confirmed by H&E as previously described (43).  587 

 588 

Measurement of collagen content and immunohistochemistry for SLC7A11, Alpha Smooth 589 

Muscle Actin (αSMA) and CD31  590 

Full description of methods is in Supplementary Materials and Methods.  591 

 592 

Statistical Analyses. 593 

Statistical comparisons were performed using two-tailed student t-test (2 groups) or ANOVA (3 594 

groups; post-hoc tests: Dunn’s multiple comparison and Sidak’s multiple comparison). Analyses 595 

were performed using GraphPad Prism. Comparisons of univariate time to event (survival) were 596 

performed using the log-rank test and hazard ratios calculated from the Cox proportional hazards 597 

(PH) model. Multivariate associations between variables and time to event were contained from 598 

PH regression and survival curves calculated using the method of Kaplan-Meier (KM). Where 599 

tumour and stroma scores correlated with outcome, baseline variables associated with predicting 600 

scores were examined by multivariate logistic regression. Survival analyses were performed 601 

using Analysis of Censored and Correlated Data (ACCoRD) V6.4 Boffin. A p-value 0.05 was 602 

considered statistically significant. 603 

 604 

Study Approval 605 

All studies involving the use of human specimens and cell lines were approved by the UNSW 606 

Sydney human ethics committee (approvals: HC14039, HC180973, HREC13/023) and the 607 

German Technical University of Munich human ethics committee (approval: 5510/12). Animal 608 

studies were approved by the UNSW Sydney animal care and ethics committee (approval: 609 

ACEC 16/25B) for orthotopic mouse models and by local ethical review committee at University 610 
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Figure 1: SLC7A11 is upregulated in human CAFs and can predict poorer overall survival 935 

in human PDAC patients. A) Quantitative real-time PCR analysis of SLC7A11 and SLC3A2 936 

expression in total RNA extracts from normal pancreatic fibroblasts (isolated from n=8 patients 937 

with benign pancreatic conditions) and CAFs (isolated from n=10 PDAC patients). Bars show 938 

mean+s.e.m., circles indicate independent replicates (*p0.05, student t-test). B) Western blot of 939 

SLC7A11 in total protein extracts from PDAC cells and human CAFs (Cell lines 1-6). -tubulin 940 

was used as a loading control. C) Immunoflourescence for DAPI, SMA (CAF marker) and 941 

SLC7A11 in a human PDAC tissue specimen obtained through the Australian Pancreatic Cancer 942 

Genome Initiative (APGI). (D-G) Human PDA tissue microarrays obtained through the APGI 943 

(International Cancer Genome Consortium cohort) were stained for SLC7A11 by 944 

immunohistochemistry. D) Samples selected as references for scoring (0,1,2,3) for tumour and 945 

stromal compartments are shown (insets show magnified view of cells). Scores of 0-1 were 946 

classified as low SLC7A11 expression (“Tumour
low

” and “Stroma
low

”), scores of 2-3 were 947 

classified as high SLC7A11 expression (“Tumour
high

” and “Stroma
high

”). E-G) Kaplan-Meier 948 

survival curves showing the correlation between SLC7A11 expression in tumour cells (E), 949 

stroma (F), or a combination of both (G) with overall patient survival (days survived post-950 

diagnosis). Patients that were deceased due to other causes or that were still alive were censored 951 

(shown as black ticks on each line graph). Total patient numbers for each group are indicated in 952 

the graph keys. Asterisks indicate significance based on (F) multivariate analysis (G) univariate 953 

Log-Rank test (*p0.05). H) Representative photos of Tumour
low

Stroma
low

, 954 

Tumour
high

Stroma
low

, Tumour
low

Stroma
high

, and Tumour
high

Stroma
high 

groups. Scale bars in all 955 

photos = 100µm. 956 
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Figure 2: SLC7A11 inhibition in CAFs reduces proliferation and antioxidant capacity by 964 

inhibiting cystine uptake and glutathione production. A) Cell proliferation (based on cell 965 

counting kit 8 absorbance) of CAFs 72h post-transfection with non-silencing siRNA (ns-siRNA) 966 

or SLC7A11-siRNA pool (pool of 4 siRNA sequences). Asterisks indicate significance 967 

(****p0.0001; n=6, student t-test). B) Cell proliferation (cell counting kit 8 absorbance) of 968 

CAFs treated with sulfasalazine (SSZ)  66μM 2-mercaptoethanol (2-ME), as a % of controls. 969 

Circles indicate replicates, asterisks indicate significance (***p0.001, ****p0.0001; One-way 970 

ANOVA). C) Live cell counts of CAFs (as a fraction of controls) treated with erastin for 48h. 971 

Asterisks indicate significance (****p0.0001, n=4; student t-test). D-E) Radiolabelled cystine 972 

uptake as a fraction of ns-siRNA (72h post-transfection) or untreated control cells (48h post-973 

treatment with SSZ). Asterisks indicate significance (*p0.05; student t-test). F-G) Intracellular 974 

glutathione levels as assessed by colorimetric assay, and as a fraction of ns-siRNA (72h post-975 

transfection) or untreated control cells [16h post-treatment with SSZN-acetyl-cysteine (NAC)]. 976 

Asterisks indicate significance (*p0.05, **p0.01, n=6; One-way ANOVA). H-I) Intracellular 977 

oxidative stress in the presence or absence of tert-butyl hydroperoxide (tBHP; oxidative stress), 978 

as measured by CellROX staining and flow cytometry (as a fraction of ns-siRNA + 0 µM tBHP). 979 

Asterisks indicate significance (ns=not significant, **p0.01, n=3; One-way ANOVA). Circles 980 

in all graphs indicate replicates, lines and bars in all graphs represent mean±s.e.m. 981 
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Figure 3: SLC7A11 inhibition in CAFs induces senescence and increases sensitivity to 991 

oxidative stress-induced cell death. A) Live cell counts of CAFs 72h post-transfection with 992 

non-silencing-siRNA (ns-siRNA), SLC7A11-siRNA pool or SLC7A11-siRNA single sequence 993 

(SLC7A11-siRNA single seq) and 24h post-treatment with tert-butyl hydroperoxide (tBHP). 994 

Circles indicate replicates, asterisks and hashes indicate significance (*p0.05, ** p0.01, **** 995 

p0.0001; # p0.05, ## p0.01, relative to ns-siRNA of the same tBHP concentration; n=4; One-996 

way ANOVA). B) Frequency of AnnexinV+DAPI positive (apoptotic) cells, as a fraction of ns-997 

siRNA+0µM tBHP controls, 72h post-transfection and 24h post-tBHP treatment. Circles indicate 998 

replicates, asterisks indicate significance (ns=not significant, **p0.01, ***p0.001; One-way 999 

ANOVA). C) Glutathione peroxidase activity of CAFs treated with erastin (9h) as a % of 1000 

controls. Circles indicate replicates, asterisks indicate significance (*p0.05; n=4; student t-test). 1001 

D) Live cell counts of CAFs 24h post-treatment with 40µM erastin ± 2µM ferrostatin. Circles 1002 

indicate replicates, asterisks indicate significance (*p0.05, n=4; One-way ANOVA). E) Live 1003 

cell counts (trypan blue exclusion) of CAFs stably expressing scramble-shRNA or SLC7A11-1004 

shRNA seq 1, 72h post-seeding and 24h post-treatment with tBHP. Circles indicate replicate 1005 

experiments. Asterisks represent significance (**p0.01, ***p0.001, ****p0.0001; n=3; One-1006 

way ANOVA). F) As per C, except CAFs stably expressed scramble-shRNA or SLC7A11-1007 

shRNA sequence 1 and were treated with 40uM tBHP for 9h, instead of erastin (**p0.01; n=3; 1008 

One-way ANOVA). G-H) β-galactosidase positive cells (senescent cells) as a fraction of total 1009 

cells (mean+s.e.m.): (G) 72h after transfection with control siRNA (ns-siRNA) or SLC7A11-1010 

siRNA or (H) 48h post-treatment with SSZ. Circles indicate replicates, asterisks indicate 1011 

significance (**p0.01; G: n=4, student t-test; H: n=3, One-way ANOVA). Bars and lines in all 1012 

graphs are mean±s.e.m. Replicate numbers in all panels refer to experiments performed using 1013 

independent CAF cells isolated from different PDAC patients. 1014 
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Figure 4: SLC7A11 knockdown in CAFs reduces pro-tumour cross-talk with PDAC cells in 1023 

3D co-culture spheroids.  A-B) Schematic diagram of 3D co-culture spheroid outgrowth assay 1024 

and quantification of 3D co-culture spheroid outgrowth post-transfection with control-siRNA 1025 

(ns-siRNA) or SLC7A11-siRNA pool. Labels: PDACnsCAFns = non-silencing controls; 1026 

PDACnsCAFslc = SLC7A11 knockdown in CAFs only; PDACslcCAFns = SLC7A11 knockdown 1027 

in PDAC cells only; PDACslcCAFslc = SLC7A11 knockdown in both PDAC cells and CAFs. 1028 

Representative photos are shown above each bar with the core circled in white dashed lines and 1029 

outgrowth in red dashed lines (bars in photos = 300µm). Circles indicate replicates, lines indicate 1030 

mean±s.e.m., asterisks indicate significance (ns=not significant, *p0.05, **p0.01, ***p0.001; 1031 

One-way ANOVA). C) Schematic diagram of 3D co-culture growth assay using stable shRNA 1032 

cell lines and D) representative photos (bars in photos = 200µm) and quantification of 3D co-1033 

culture spheroid growth. Labels: PDACscrCAFscr = scramble-shRNA controls; PDACscrCAFslc = 1034 

SLC7A11-shRNA seq 1 in CAFs only; PDACslcCAFscr = SLC7A11-shRNA seq 1 in PDAC 1035 

cells only; PDACslcCAFslc = SLC7A11-shRNA seq 1 in both PDAC cells and CAFs. Circles 1036 

indicate replicates, lines indicate mean±s.e.m., asterisks indicate significance (ns=not significant, 1037 

*p0.05, **p0.01, ****p0.0001, n=4-6; One-way ANOVA). Replicate numbers in panel B 1038 

refer to independent experiments performed using MiaPaCa-2 combined with CAF cells isolated 1039 

from different PDAC patients. Replicate numbers in panels D refer to replicate spheroids 1040 

performed using MiaPaCa-2 PDAC cells combined with an immortalised CAF line. 1041 
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Figure 5: SLC7A11 knockdown in CAFs hinders collagen remodelling in vitro. A) 1051 

Schematic diagram of assay and representative photos of collagen plugs contracted by CAFs 1052 

transfected with control-siRNA (ns-siRNA) or SLC7A11-siRNA pool over 6 days are shown. 1053 

The line graph shows the average area of contracted plugs at the indicated time points 1054 

(mean±s.e.m.; *p0.05, n=4; One-way ANOVA). B-E) Analysis of collagen content in collagen 1055 

plugs contracted by CAFs transfected with ns-siRNA or SLC7A11-siRNA at assay endpoint. B) 1056 

Average picrosirius red signal. Circles indicate replicates, lines indicate mean±s.e.m., asterisks 1057 

indicate significance (**p0.01, n=4; student t-test). Representative images of picrosirius red 1058 

staining are shown. C) Average total birefringence. Circles indicate replicates, lines indicate 1059 

mean±s.e.m., asterisks indicate significance (*p0.05, n=4; student t-test). Representative 1060 

birefringence images are shown. D) Average % of total birefringence that was high (red-orange), 1061 

medium (yellow) and low (green). Circles indicate replicates, lines indicate mean±s.e.m., 1062 

asterisks indicate significance (*p0.05, n=4; student t-test). E) Left graph shows the average 1063 

maximum second harmonics generation (SHG) signal detected by two-photon confocal 1064 

microscopy of collagen plugs. Representative SHG images are shown. Right graph shows the 1065 

average correlation based on GLCM analysis of SHG maximum intensity projections. Circles 1066 

indicate biological replicates, lines indicate mean±s.e.m., asterisks indicate significance (ns=not 1067 

significant, *p0.05, n=4; student t-test). Replicate numbers in all panels refer to independent 1068 

experiments performed using independent CAF cells isolated from different PDAC patients. 1069 
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Figure 6: Genetic ablation of SLC7A11 in PDAC cells had no effect on orthotopic 1081 

pancreatic tumour growth in vivo. A) Quantification of Pancreatic Intraepithelial Neoplasia 1082 

(PanINs) 1A-3 from KC mice (n=7) and KC mice with SLC7A11 conditional KO under Pdx1-1083 

promoter (KC Slc7a11
fl/fl

; n=7) at 70 days of age (mean±s.e.m.). B) Kaplan-Meier analysis 1084 

showing survival percentage of KPC (n=26) and KPC Slc7a11
fl/fl

 mice (n=24) mice. C) 1085 

Representative photos of KPC and KPC Slc7a11
fl/fl

 tumour sections probed for SMA (brown). 1086 

The quantification of SMA staining is shown in the graph (mean±s.e.m.), based on ImageJ 1087 

analysis of representative regions from each tumour section (n=5 mice per group). Scale bars = 1088 

400µm. D) Representative photos of KPC and KPC Slc7a11
fl/fl

 tumour sections. The 1089 

quantification of picrosirius red staining is shown in the bar graph (mean±s.e.m.), based on 1090 

ImageJ analysis of representative regions from each tumour section. Scale bars = 400µm. 1091 

Asterisks indicate significance (*p0.05; n=5 mice per group; student t-test). E-F) Live cell 1092 

counts (mean±s.e.m.) of (E) KPC PDAC cells and (F) KPC CAFs 72h post-transfection with 1093 

control-siRNA (ns-siRNA) or mouse SLC7A11-siRNA pool (SLC7A11 pool). Asterisks indicate 1094 

significance (*p0.05, **p0.01; n=3; one-way ANOVA). 1095 
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Figure 7: Star 3+SLC7A11-siRNA treatment reduces orthotopic pancreatic tumour growth 1114 

and metastasis. All orthotopic tumours were co-injections of PDAC cells and CAFs. A) 1115 

Orthotopic pancreatic tumours were treated with STAR nanoparticles + control-siRNA or 1116 

SLC7A11 siRNA single sequence (SLC7A11 single seq) in the regimen shown. Representative 1117 

photos of immunohistochemistry for SLC7A11 in tumour tissue at the model endpoint are 1118 

shown. Graph shows optical density (staining intensity) calculated from average pixel intensity 1119 

measurements from 3 representative images per tumour, using ImageJ. Circles indicate 1120 

individual mice, lines indicate mean±s.e.m., asterisks indicate significance (*p0.05; One-way 1121 

ANOVA). B) Treatment regimen for therapeutic model analysed in panels (C-D).  Circles and 1122 

triangles in all dot plots in panels C-D represent individual mice. C) Tumour volume at 1123 

therapeutic model endpoint, as assessed by calliper measurement ex vivo (mean±s.e.m.). 1124 

Asterisks indicate significance (*p0.05; One-way ANOVA). D) Representative photos of 1125 

metastases confirmed by H&E staining following detection at model endpoint by ex vivo 1126 

luminescence imaging of organs. Graph shows metastatic sites per mouse (mean±s.e.m.) for each 1127 

treatment group. Scale bars in all figures = 200µm. 1128 
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Figure 8: Star 3+SLC7A11-siRNA treatment of orthotopic pancreatic tumours reduces 1142 

intratumoural CAF activation and fibrosis, and normalises tumour vasculature. A) 1143 

Representative photos of tumour sections probed for SMA (brown). The quantification of 1144 

SMA staining is shown in the graph (mean+s.e.m.), based on ImageJ analysis of representative 1145 

regions from each tumour section. Asterisks indicate significance (*p0.05; Control-siRNA, 1146 

n=7; SLC7A11-siRNA single seq, n=5; student t-test). B) Representative photos of picrosirius 1147 

red and methyl green stained tumour sections. The quantification of picrosirius red staining is 1148 

shown in the bar graph (mean+s.e.m.), based on ImageJ analysis of representative regions from 1149 

each tumour section. Asterisks indicate significance (*p0.05; Control-siRNA, n=8; SLC7A11-1150 

siRNA single seq, n=5; student t-test). C) Polarised light analysis of representative regions from 1151 

picrosirius red stained specimens. Representative photos are shown. Left bar graph shows total 1152 

birefringence (mean+s.e.m.; Control-siRNA, n=8; SLC7A11-siRNA single seq, n=5). Right bar 1153 

graph shows the average frequency (mean+s.e.m.; Control-siRNA, n=8; SLC7A11-siRNA single 1154 

seq, n=5) of low, medium and high birefringence collagen fibrils (higher birefringence = denser 1155 

fibril). ns = not significant (student t-test). D)  Representative photos of CD31-stained tumour 1156 

sections. Red arrows indicate open blood vessels. The bar graph shows the fraction of CD31-1157 

positive blood vessels that were open (mean+s.e.m.), based on ImageJ analysis of representative 1158 

regions from each tumour section. Asterisks indicate significance (*p0.05; Control-siRNA, 1159 

n=8; SLC7A11-siRNA single seq, n=5; student t-test). Fields of view used for analyses in all 1160 

panels, provided an average area coverage of 13% of the total tumour section (excluding necrotic 1161 

regions). All circles in graphs represent individual mice. All scale bars in photos = 100µm. 1162 
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TABLES 1168 

 1169 

Incidence of metastases 

(% of mice with metastases) 

Control-siRNA  

+  Albumin 

Control-siRNA  +  

Abraxane 

SLC7A11-siRNA 

+ Albumin 

SLC7A11-siRNA 

+ Abraxane 

50 37.5 28.6 37.5 

 1170 

Table 1: Metastases incidence in orthotopic PDAC model treated with Star 3+SLC7A11-1171 

siRNA. 1172 
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