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Simple Summary: Cancers have regions of low oxygen concentration where hypoxia-related sig-
naling pathways are activated. The hypoxic tumor microenvironment has been widely accepted as
a hallmark of cancer and shown to be a critical factor in the crosstalk between cancer and stromal
cells. Fibroblasts are one of the most abundant cellular components in the tumor stroma and are also
significantly affected by oxygen deprivation. In this case, we discuss the molecular and cellular mech-
anisms that regulate fibroblasts under hypoxic conditions and their effect on cancer development and
progression. Unraveling these regulatory mechanisms could be exploited in developing potential
fibroblast-specific therapeutics for cancer.

Abstract: Solid cancers are composed of malignant cells and their surrounding matrix components.
Hypoxia plays a critical role in shaping the tumor microenvironment that contributes to cancer pro-
gression and treatment failure. Cancer-associated fibroblasts (CAFs) are one of the most prominent
components of the tumor microenvironment. CAFs are highly sensitive to hypoxia and participates
in the crosstalk with cancer cells. Hypoxic CAFs modulate several mechanisms that induce cancer
malignancy, such as extracellular matrix (ECM) remodeling, immune evasion, metabolic reprogram-
ming, angiogenesis, metastasis, and drug resistance. Key signaling molecules regulating CAFs in
hypoxia include transforming growth factor (TGF-β) and hypoxia-inducible factors (HIFs). In this
article, we summarize the mechanisms underlying the hypoxic regulation of CAFs and how hypoxic
CAFs affect cancer development and progression. We also discuss the potential therapeutic strategies
focused on targeting CAFs in the hypoxic tumor microenvironment.

Keywords: cancer; cancer-associated fibroblast; hypoxia; tumor microenvironment

1. Introduction
1.1. Normal Fibroblasts and CAFs

Fibroblasts are one of the most abundant cells in the connective tissue, producing
various ECM proteins. Fibrous structural proteins, adhesive proteins, and gelatinous
ground substances secreted by fibroblasts form the three-dimensional framework of tissues.
Fibroblasts are functionally heterogeneous in different organs, and even within the same
organ, their roles may differ depending on their location. Heterogeneous phenotypes
of fibroblasts can appear through different transcriptional programs depending on the
epigenetic modifications and local environment [1–3]. Most fibroblasts originate from
the primitive mesenchyme and are defined by their morphology and location within the
resident tissue. Since fibroblasts share mesenchymal lineages with adipocytes, osteoblasts,
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and chondrocytes, they lack specific intrinsic markers and are distinguished by cell shape
and localization combined with excluding the expression of markers assigned to other cell
types [4–6]. Functionally, in addition to producing ECM proteins, fibroblasts can secrete a
variety of signaling factors and metabolites that can affect surrounding cells. In response to
tissue damage, they can temporarily transform into a highly contractile phenotype called
myofibroblasts. This fibroblast subtype is commonly associated with α-smooth muscle actin
(α-SMA) and are primarily involved in wound healing and tissue fibrosis [7–9]. Fibroblasts
also participate in immune cell recruitment and contribute to regulating active or inhibitory
responses in inflammatory conditions [10–12]. Therefore, the role of fibroblasts is not
limited to ECM regulation but is also important for maintaining tissue homeostasis and
communicating with other cells.

Normal fibroblasts usually exert inhibitory functions against cancer, whereas fibrob-
lasts affected by cancer cells can be converted into CAFs, leading to a variety of cancer-
promoting events. However, recent studies have shown that the relationship between
cancer cells and fibroblasts is complex and context-dependent, with consequences that may
be either positive or negative for cancer progression [13,14]. For instance, fibroblast-specific
protein 1 (FSP1)-positive fibroblasts have been shown to prevent epithelial malignancies by
protecting epithelial cells from DNA damage through collagen encapsulation of carcino-
gens [15]. CAFs can be roughly defined if they show an elongated morphology, lack the
mutations found in cancer cells, and are negative for markers expressed in other cell types.
CAFs are highly heterogeneous, and several cell surface markers have been used to define
CAF subtypes, such as α-SMA, fibroblast activation protein (FAP), SP1, platelet-derived
growth factor receptor (PDGFR), and tumor endothelial marker 8 (TEM8). However, none
of these markers are exclusively expressed by CAFs, which is one of the factors that makes
CAF-targeted therapy difficult [7,16]. Most CAFs originate from fibroblasts residing in
cancer tissues and can be activated by multiple factors. Signaling molecules that induce
CAF activation include TGF, interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF), PDGF,
and fibroblast growth factor (FGF) [17–21]. Direct contact of fibroblasts with cancer cells can
activate fibroblasts through membrane proteins such as Notch and Ephrin receptors [22–25].
Physiological damage caused by radiation, reactive oxygen species (ROS), or anticancer
drugs can also activate CAF. Changes in the ECM environment, such as increased tissue
stiffness, induce CAF through activation of various transcriptional programs [4]. Activated
CAF stimulates tumor cells to form a positive feedback loop and reorganizes the tumor
microenvironment to be more favorable for cancer growth. CAFs secrete proteases to break
matrix crosslinking and reconstruct tumor tissue through various matrix components and
crosslinking enzymes. Tissue reconstruction by CAF increases the stiffness of the tumor tis-
sue and creates a pathway for cancer cells to invade more easily [2,4,6,20]. Increased tissue
stiffness also causes blood vessels to collapse, leading to tumor hypoxia. This stimulates
the survival and proliferation signals of cancer cells and reduces drug delivery [26].

1.2. Hypoxia Signaling Pathways

Cancer has regions of permanent or temporary exposure to hypoxia due to abnormal
blood vessel formation and lack of blood supply. As cancer grows, oxygen becomes
more deprived, and hypoxia signaling is activated in both cancer cells and stromal cells
in the tumor microenvironment. HIF transcription factors are thought to be the most
important molecules of hypoxia signaling in cancer cells [27]. HIF-dependent signaling
promotes adaptation of cells to hypoxic conditions, promoting changes favorable to cancer
progression. HIF consists of a cytoplasmic α subunit that is degraded in the presence of
oxygen and a constitutively expressed nuclear β subunit (also known as aryl hydrocarbon
receptor nuclear translocator, ARNT) [28]. The HIF heterodimer interacts with CBP/p300
coactivator in the nucleus to transactivate downstream genes which contain hypoxia-
responsive elements (HREs) [29]. The α subunit has two proline residues, which are
hydroxylated by HIF prolyl hydroxylase (PHD; also known as Egl nine homolog, EGLN)
enzymes in the presence of oxygen. Hydroxylation of proline residues promotes binding
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of HIF-α to von Hippel-Lindau tumor suppressor (VHL) and consequently ubiquitinates
and degrades HIF-α. In the absence of oxygen, HIF-α is stabilized and translocate to
the nucleus, where it binds to the β unit and activates the expression of hypoxia-related
genes [30–33]. On the other hand, factor inhibiting HIF (FIH) inhibits the binding of
HIF to the nuclear coactivators CBP/p300 by hydroxylating an asparagine residue in
the C-terminal transactivation domain of HIF, thereby reducing transcriptional activity.
In hypoxia, FIH enzyme activity is inhibited, and CBP/p300 binds to HIF, increasing
transcriptional activity [34–36]. The HIF protein family consists of three members: HIF-1,
HIF-2, and HIF-3. Although HIF-1 and HIF-2 are highly conserved at the protein level
and share similar domain structures, their expression levels in specific tissues and the
target genes they activate are quite different. There are several hundred known HIF-1/2
targets involved in cellular adaptation to hypoxia. HIF-2 is thought to be responsible for
the long-term hypoxic response when HIF-1α is degraded after an acute hypoxic response.
In contrast, HIF-3 lacks the transactivation domain found in HIF-1/2 and rather encodes
a polypeptide that represses HRE-responsive gene expression [37]. Hypoxia promotes
HIF-induced transcriptional responses in cancer cells as well as noncancerous stromal cells,
including CAFs. CAFs are prominent component of the tumor microenvironment and are
regulated under hypoxia by both HIF dependent and independent mechanisms [26,38]. In
this review, we discuss the mechanisms by which hypoxia regulates CAFs and the role of
activated CAFs in the hypoxic tumor microenvironment (Figure 1).

Figure 1. CAF-mediated cancer progression in hypoxia. Several mechanisms are involved in CAF-
mediated cancer progression under hypoxia. HIF and TGF-β pathways play a major role in CAF
activation and function. A number of genes have been demonstrated as direct transcriptional
targets of HIF in either CAFs or cancer cells. Crosstalk between CAFs and cancer cells may alter
ECM structure, immune responses, cell metabolism, angiogenesis, and metastasis through various
signaling molecules (created with BioRender.com on June 2022).

2. Mechanisms Underlying CAF Regulation and Function in Hypoxia
2.1. ECM Remodeling

Hypoxia and HIF have been implicated in the regulation of post-translational modi-
fication of collagen proteins and interaction between ECM components. Collagen prolyl
hydroxylases (P4HAs) and lysyl hydroxylases (PLODs) are key enzymes involved in colla-
gen deposition and fiber alignment. P4HA-mediated proline hydroxylation induces proper
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folding of newly synthesized procollagen chains and stabilizes the protein by increasing
the melting temperature of collagen. PLODs hydroxylate the lysyl residues of collagen
and form a cross-link between collagen and pyridinoline, which is necessary for collagen
stabilization [39–42]. It has been shown that HIF transcriptionally activates both P4HAs
and PLODs in fibroblasts to regulate collagen biogenesis and deposition. Fibroblast-specific
HIF activation promotes ECM alignment and stiffness, which contributes to morphological
changes and migratory behavior of breast cancer cells [43]. In lung fibroblasts, oxidative
stress induces HIF activation by inhibiting FIH, which negatively regulates HIF, and in-
creases the expression of PLOD2 and lysyl oxidase-like 2 (LOXL2). Lysyl oxidases are
essential enzymes in the biosynthesis of connective tissue that catalyze the formation of
cross-links in collagen and elastin. FIH inhibition by siRNA-mediated knockdown or
hydroxylase inhibitors increased collagen cross-linking and tissue stiffness [44]. In pancre-
atic ductal adenocarcinoma, hypoxia upregulates fibulin-5 (FBLN5) expression via TGF-β
and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. FBLN5 is a pro-
tumorigenic matricellular glycoprotein that inhibits fibronectin-integrin binding required
for ECM-cell interaction. Hypoxic induction of FBLN5 in CAFs isolated from mouse pan-
creatic ductal adenocarcinoma were reversed by pharmacologic inhibition of TGF-β or
PI3K/AKT [45].

Hypoxia induces collagen expression and secretion. In renal fibroblasts, via HIF-1α,
hypoxia induces the production of collagen proteins and decreases the turnover of ECM
structure. HIF-1α transcriptionally activates TIMP metallopeptidase inhibitor 1 (TIMP1) to
suppress matrix metalloproteinases (MMPs) and ECM turnover [46]. It has been suggested
that renal pericytes can be transformed into myofibroblasts by hypoxia, possibly via VEGF
and PDGF signaling, to enhance ECM production and fibrosis [47]. Likewise, type I and
III collagens were upregulated by hypoxia in rat cardiac fibroblasts [48]. In keloid tumors,
HIF-1α protein and target genes were increased in keloid fibroblasts compared to normal
dermal fibroblasts. Indeed, hypoxic stress stimulated CAF-mediated collagen secretion,
which was inhibited by CAY10585, a selective HIF-1α inhibitor [49]. Hypoxic areas within
the tumor mass change over time into fibrous foci replacing necrotic lesions. In human
breast carcinoma, immunohistochemical studies have shown that fibrosis localized to
hypoxic regions correlates with the expression of HIF-1 target gene carbonic anhydrase 9
(CA9) [50]. CA9 is a transmembrane glycoprotein with an enzymatic activity that extrudes
acid into the extracellular space and stabilizes the intracellular pH, thereby preventing
acidosis-induced apoptosis of cells [51]. Indeed, it has been shown that ectopic expression
of CA9 in NIH3T3 fibroblasts promotes their proliferation [52]. CA9 is highly expressed in
hypoxic CAFs and to a lesser extent in tumor cells and is associated with higher recurrence
and poor survival rates in breast cancer patients [50]. However, further in vitro and in vivo
studies are needed to elucidate the mechanism of collagen biogenesis in hypoxic CAFs and
cancer cells.

In addition, ECM remodeling is also attributed to the degradation of collagen proteins.
Hypoxia-induced degradation of ECM structure may contribute to tumor cell invasion
and metastasis by creating a physical route for intra- and extravasation. MMP family of
proteinases specifically target various ECM components, such as collagens and gelatins,
for proteolytic degradation. HIF transcription factors have been shown to upregulate the
expression of several MMP proteins including MMP1, MMP2, MMP9, and MMP14 under
hypoxia [53–56]. Aspartyl proteinase cathepsin D is another matrix degrading enzyme
induced by hypoxia or HIF-1α overexpression [54]. Cathepsin D is aberrantly expressed in
breast cancer patients and contributes to the invasion of metastatic cancer cells via collagen
degradation [57–59]. Urokinase plasminogen activator receptor (uPAR), transcriptionally
activated by HIF-1α, increases the metastatic potential of cancer cells under hypoxic con-
ditions [54,60,61]. HIF-1-driven CA9 expression acidifies the extracellular environment,
which in turn activates CAFs to produce MMP2 and MMP9 for ECM breakdown and
tumor cell invasion in prostate cancer [62]. In summary, hypoxic signaling engages in
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the production, modification, and degradation of matrix proteins that contribute to ECM
remodeling within the tumor microenvironment (Figure 2).

Figure 2. CAF-mediated ECM remodeling in hypoxia. Hypoxia regulates extracellular environ-
ment via several mechanisms: post-translational modification of ECM proteins; ECM cross-linking;
increasing ECM stiffness; collagen synthesis; collagen degradation; altering ECM-cell interactions.
Abbreviations: HIF, hypoxia-inducible factor; TIMP1, TIMP metallopeptidase inhibitor 1; MMP,
matrix metallopeptidase; P4HA, collagen prolyl hydroxylase; PLOD, lysyl hydroxylases; LOXL2,
lysyl oxidase-like 2; TGF-β, transforming growth factor beta; PI3K, phosphoinositide 3-kinase; AKT,
AKT serine/threonine kinase; FBLN5, fibulin (created with BioRender.com on June 2022).

2.2. Cytokines and Immune Response

In early studies, hypoxia has been shown to regulate several hypoxia-related genes
in human fibroblasts [63]. Representative genes include well-known HIF targets such as
TGF-β. It has been reported that hypoxia induces the expression of fibrogenic cytokine
TGF-β, which is involved in matrix protein production and transition of fibroblasts to my-
ofibroblasts [64,65]. Myofibroblasts are a fibroblast subpopulation that can be transformed
from resident fibroblasts in the tumor microenvironment by several factors, including
hypoxia. Myofibroblasts are characterized by the expression of α-SMA within cytoplas-
mic stress fibers, and sustained activation of myofibroblasts can lead to tissue fibrosis.
The stiff ECM environment generated by cancer-associated myofibroblasts increase the
risk of epithelial–mesenchymal transition and invasiveness of tumor cells [66]. It has been
shown that hypoxia activates TGF-β signaling via HIF-1α to convert fibroblasts into myofi-
broblasts, which in turn induces C-X-C motif chemokine 13 (CXCL13) expression for B cell
recruitment and metastatic progression of prostate cancer cells. Nuclear translocation of
HIF-1α was markedly increased in fibroblasts isolated from mouse prostate cancer model
and deletion of HIF-1α prevented the hypoxic induction of fibroblast-to-myofibroblast
differentiation [67]. CAFs also secrete CXCL12 (also known as stromal cell-derived factor 1,
SDF1), which is a canonical ligand for the chemokine receptor CXCR4, to promote the
growth and angiogenesis of CXCR4-expressing cancer cells [68]. CXCR4 has been identified
as a direct transcriptional target of HIF-1α under hypoxia in various cell types including
mouse embryonic fibroblasts (MEFs). In addition, hypoxia enhances CXCR4 mRNA stabil-
ity, thereby regulating CXCR4 expression at both transcriptional and post-transcriptional
levels [69]. In another study, CAF has been shown to induce HIF-1α-dependent oxidative
response, thereby increasing the expression of CXCR4 and interleukin-6 (IL-6) receptors in
prostate cancer cells to promote epithelial-to-mesenchymal transition (EMT) and invasion
of the tumor cells [70].

CAFs are known to support cancer cells evade surveillance of the immune sys-
tem by secreting various factors that can regulate tumor-associated immune cells [12,71].
In melanoma, CAFs were shown to secrete a number of immunomodulatory factors such
as TGF-β, IL6, IL10, and PD-L1 to inhibit T cell-mediated cytotoxicity [72]. In pancreatic

BioRender.com


Cancers 2022, 14, 3321 6 of 17

ductal carcinoma, there was an aberrant expression of the arginase 2 (ARG2) in hypoxic
CAFs. ARG is an enzyme that metabolizes arginine, an important factor required for T cell
survival and activation. Increased consumption of arginine by ARG2-overexpressing CAFs
restricted T cell proliferation and anti-cancer immune reactions. ARG2 has a potential HRE
sequence, and upregulation of ARG2 by hypoxia is associated with HIF-1α expression [73].

The paracrine actions of cytokines and growth factors secreted by CAFs also confer re-
sistance to radiation therapy. CAF-derived factors such as IGF2, PDGF-AA, and insulin-like
growth factor binding proteins (IGFBPs) were found in conditioned media that increased
the protective effects, survival, and proliferation of HeLa cells against irradiation [74].
In addition, radiation therapy itself promotes CAF activation by producing ROS and induc-
ing inflammation [75]. Radiotherapy induces spatial and temporal fluctuations in oxygen
concentrations, which potentiates the fibrotic and pro-angiogenic responses and immune
modulation within the tumor microenvironment [76,77]. Therapeutic attempts to restore
oxygenation before or during radiation therapy may be helpful.

2.3. Metabolic Reprogramming

Altered metabolic function is observed in many types of cancers and aerobic glycolysis
is considered as one of the major hallmarks of cancer. One study showed that fibroblasts
transformed with constitutively active HIF-1α mutant promote the in vivo growth of co-
injected MDA-MB-231 breast cancer cells via enhanced aerobic glycolysis and paracrine
production of nutrients [78]. Similarly, HIF-1α upregulated the expression of glycolytic en-
zymes and lactate production in human synovial fibroblasts to support energy metabolism
and cell survival [79]. In dermal fibroblasts cultured in lactate medium, HIF-1α was stabi-
lized due to ROS production and the expression of glycolytic enzymes such as pyruvate
dehydrogenase kinase 1 (PDK1) and pyruvate kinase M2 (PKM2) was increased [80].

As in cancer cells, the change in glucose metabolism is one of the characteristic features
of CAFs. It has been shown that hypoxia enhances glycolysis in mammary CAFs through
oxidized activation of the ATM serine/threonine kinase. ROS-activated ATM induces glu-
cose transporter 1 (GLUT1) membrane translocation via phosphorylating GLUT1 at Ser-490.
Membrane GLUT1 uptakes glucose from ECM for glycolysis and lactate production. In ad-
dition, ATM upregulates PKM2 expression possibly via the PI3K/AKT pathway to enhance
glycolytic activity. Furthermore, lactate generated by hypoxic CAFs promotes breast cancer
cell invasion by activating the TGF-β1/p38 MAPK pathway and upregulating MMP2 and
MMP9 expressions [81]. In a following study, hypoxia-activated ATM phosphorylated
BCL2 interacting protein 3 (BNIP3) to induce autophagy and exosome release in mammary
CAFs. ATM also phosphorylates ATPase H+ transporting V1 subunit G1 (ATP6V1G1)
to induce fusion between autophagosomes and multivesicular bodies. Hypoxic CAFs
promote cancer cell invasion through this autophagy-related exosome release [82].

Chronic hypoxia reprograms normal fibroblasts into CAFs that promote glycolysis
for breast cancer progression. Hypoxia stimulates glycolytic CAFs to provide lactate to
cancer cells, promoting biosynthetic processes such as the pentose phosphate pathway
(PPP) and nucleotide metabolism. Mechanistically, hypomethylation of HIF1A promoter
in hypoxic CAFs led to sustained elevation of HIF-1α and pro-glycolytic HIF-1α target
genes. This epigenetic modification maintains long-term and persistent transcriptome
changes despite reoxygenation after hypoxic exposure [83]. In prostate cancer, direct in-
tercellular contact with cancer cells triggers CAFs to undergo metabolic rewiring toward
glycolytic metabolism. Sirtuin 3 (SIRT3)-dependent ROS production and HIF-1α stabi-
lization upregulates the expression of glucose transporter GLUT1 and lactate transporter
monocarboxylate transporter-4 (MCT4) in CAFs, thereby shuttling lactate from CAFs to
cancer cells to promote anabolic processes and cell growth [84]. Moreover, hypoxia has
been shown to enhance glycolysis and upregulate MCT4 expression via TGF-β1-induced
autophagy in CAFs [85].

In tricarboxylic acid (TCA) cycle, isocitrate dehydrogenase (IDH) enzymes catalyze
the decarboxylation of isocitrate to produce α-ketoglutarate (also known as 2-oxoglutarate)
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and carbon dioxide [86]. It has been shown that downregulation of IDH3α in CAFs
switches the cancer cell metabolism to aerobic glycolysis by stabilizing HIF-1α, but not
HIF-2/3α, in an α-ketoglutarate-dependent manner. In TGF-β- or PDGF-induced CAF
models, aberrant expression of miR-424 inhibited IDH3α mRNA by targeting its three
prime untranslated region (3′-UTR). Downregulation of IDH3α reduces the effective level
of α-ketoglutarate, which in turn limits the activity of PHD2 to hydroxylate HIF-1α for
degradation. Stabilized HIF-1α transactivates glycolytic enzymes and decreases oxidative
phosphorylation via upregulating NADH dehydrogenase (ubiquinone) 1 alpha subcomplex,
4-like 2 (NDUFA4L2) protein [87].

Ectopic expression of stable HIF-1α in CAFs enhances aerobic glycolysis, lactate pro-
duction, and autophagy. Chronic hypoxia activates HIF-1α/BNIP3-mediated autophagic
degradation of Caveolin 1 (Cav-1), which reciprocally stabilizes HIF-1α via ROS production.
Nutrients produced during glycolytic and autophagic metabolism are delivered to nearby
cancer cells and promote cancer growth [88]. Moreover, TGF-β-mediated connective tis-
sue growth factor (CTGF) overexpression alters HIF-1α-dependent cellular metabolism in
fibroblasts, thereby supporting tumor growth [89] (Figure 3).

Figure 3. CAF-mediated metabolic reprogramming in hypoxia. Hypoxia regulates cell metabolism
via several mechanisms: switching of glucose metabolism; increasing glucose uptake; lactate produc-
tion; lactate shuttling; autophagic activation; exosome release. Abbreviations: HIF, hypoxia-inducible
factor; PDK1, pyruvate dehydrogenase kinase 1; PKM2, pyruvate kinase M1/2; MCT4, monocar-
boxylic acid transporter 4; NDUFA4L2, NADH dehydrogenase (ubiquinone) 1 alpha subcomplex,
4-like 2; GLUT1, glucose transporter 1; BNIP3, BCL2 interacting protein 3; ATP6V1G1, ATPase H+

transporting V1 subunit G1; TGF-β, transforming growth factor beta; CTGF, connective tissue growth
factor (created with BioRender.com on June 2022).

2.4. Angiogenesis

Vascular endothelial growth factor (VEGF) is one of the representative target genes of
HIF that acts as a key factor in angiogenesis. VEGF can stimulate VEGFR on the surface
of endothelial cells, then accelerate endothelial cell proliferation and angiogenesis [90].
In breast cancer, it has been shown that HIF-1α, in concert with G protein-coupled estrogen
receptor 1 (GPER), transcriptionally upregulates VEGF expression in hypoxic CAFs to
promote endothelial tube formation [91]. Generally, HIF-1α signaling is thought to promote
cancer progression, but in some studies, HIF-1α was shown to be a negative regulator
of cancer progression. HIF-mediated overexpression of angiogenic factors may promote
abnormal angiogenesis, resulting in non-functional blood vessels and poor tumor perfusion.
Fibroblast-specific HIF-1α, but not HIF-2α, knockout in mouse mammary tumor model
resulted in the formation of normal vessel structure and enhanced tumor growth. Similar
results were obtained when VEGF, a transcriptional target of HIF, was ablated. Deletion of
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VEGF in fibroblasts resulted in normal tumor vasculature, which in turn led to improved
blood perfusion and tumor progression [92].

Stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative
proteomics analysis revealed that mammary CAFs secrete various angiogenic factors to
promote blood vessel sprouting under hypoxia. Co-culture of patient-derived or cancer
cell-transformed CAFs with HUVEC cells in hypoxia altered both intracellular and secre-
tory proteins involved in cell metabolism and angiogenesis. It was found that a significant
portion of the analyzed proteins did not belong to previously known HIF-1α target genes.
Pro-angiogentic factor, stanniocalcin 1 (STC1) and anti-angiogentic factor, collagen type IV
alpha 2 chain (COL4A2) were up- and down-regulated, respectively, by hypoxia-induced
angiogenesis regulator (HIAR) in CAFs. Hypoxic CAFs also stimulated the secretion of
VEGFA by expressing HIAR to promote the sprouting of endothelial cells [93]. Bevacizumab
is an anti-angiogenic monoclonal antibody used for the treatment of various types of solid
cancers. It neutralizes the VEGF ligand and inhibits angiogenesis. However, combina-
tion with other anti-cancer agents is required due to limited efficacy and/or adverse side
effects [94]. As bevacizumab can reduce immune cell infiltration and suppress immune
reactions, combination of bevacizumab and immune checkpoint blockade offers many
clinical benefits in the treatment of cancer. Indeed, in phase I-III studies, the combina-
tions of bevacizumab with PD-L1 inhibitors have shown synergistic effects and positive
outcomes [95].

2.5. Metastasis

It has been shown that global haplodeficiency of PHD2 lowers tumor metastasis by
inhibiting CAF activation. In a spontaneous polyomavirus middle T antigen (PyMT) mam-
mary tumor model, PHD2 deletion suppressed ECM production and matrix contraction
mediated by CAFs, which resulted in impaired cancer cell extravasation. In the PHD2-null
mouse, paracrine interaction between cancer cells and CAFs was disrupted, which was
mediated by TGF-β1 produced by cancer cells. Interestingly, decreased TGF-β1 secretion
in cancer cells lacking PHD2 is likely independent of HIF as inhibition of HIF did not
restore TGF-β1 production [96]. If that is the case, it is possible that PHD2 regulates CAF
activation by targeting non-HIF substrates. Indeed, PHD and FIH enzymes have been
found to hydroxylate several substrates other than HIF [97–101]. However, it should be
noted that there has been a recent study that refutes the hydroxylation of some PHD
substrates in vitro [102]. In another study, pharmacologic inhibition of HIF hydroxylases
ameliorated intestinal fibrosis by suppressing TGF-β1-mediated activation of fibroblasts.
This antifibrotic effect of hydroxylase inhibitors was independent of HIF and was at least
partially due to inhibition of the extracellular regulated kinase (ERK) pathway [103].

Similarly, another study showed that chronic hypoxia suppresses the pro-tumorigenic
remodeling of the tumor microenvironment by CAFs, thereby inhibiting tumor growth and
metastasis. They have shown that both hypoxia and depletion of PHD2 in CAFs stabilize
HIF-1α, which in turn reduce α-SMA and periostin expressions required for CAF-induced
ECM remodeling and cancer cell invasion. In an orthotopic breast cancer model, inhibition
of PHD2 by an HIF-hydroxylase inhibitor DMOG (dimethyloxalylglycine) reduces primary
tumor stiffness and metastases of tumor cells to distant organs. Furthermore, co-injection
of 4T1 breast cancer cells and PHD2-null CAFs prevents the CAF-induced metastasis of
cancer cells to liver and lungs. Suppression of CAF-induced stromal remodeling and cell
invasion by PHD depletion was dependent on HIF-1α as simultaneous depletion of HIF-1α
prevented such events [104]. In support of these findings, HIF-1α knockout in cardiac
fibroblasts was shown to increase tissue fibrosis following ischemic injury [105].

In pancreatic cancer, hypoxia upregulates HIF-1α expression in both cancer cells and
fibroblasts. MRC5 fibroblast cells cultivated in hypoxia secrete hepatocyte growth factor (HGF)
to increase c-Met phosphorylation and invasiveness of PK8 pancreatic cancer cells [106].
Hypoxic CAFs can induce EMT of cancer cells by altering the epigenetic transcriptional
program. EMT enables distant metastasis by allowing epithelial cells to acquire mesenchy-
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mal properties such as reduced cell-cell contact and increased motility. In colorectal cancer
model, hypoxia has been shown to induce CAF-mediated secretion of exosomes to promote
cancer progression [107]. In PC3 prostate cancer cells, HIF-1α, NF-κB, and COX-2 pathways
are activated by CAF-mediated ROS generation, leading to EMT and metastatic dissemina-
tion [108]. Curcumin (diferuloylmethane) has been shown to suppress CAF-mediated EMT
and cell invasion by inhibiting MAOA/mTOR/HIF-1α-dependent oxidative response [70].
Reciprocally, by selectively removing hypoxic populations from tumors, it has been shown
that hypoxic tumor cells affect CAF number and ECM composition. Genetically engineered
PC3 cells expressing HRE-driven cytosine deaminase has been established to convert the
nontoxic prodrug 5-fluorocytosine to active 5-fluorouracil under hypoxia. Significant re-
duction of CAFs and fiber volume were observed in PC3 xenograft model when hypoxic
tumor cells were eliminated by 5-fluorouracil [109].

3. Targeting CAFs for Cancer Therapy

As CAFs play a major role in various cancer-promoting processes, inhibiting CAFs can
be one of the effective strategies for cancer treatment. However, there is also evidence that
CAFs inhibit cancer progression under certain circumstances, so it is necessary to consider
which CAF subtypes should be targeted in which context [110]. Currently, a significant
number of CAF-targeted cancer therapies are being developed, but most are in preclinical
trials. Several different approaches have been proposed for CAF inhibition. Here, we will
discuss potential anticancer agents targeting CAFs in the hypoxic tumor microenvironment
(Table 1).

Table 1. Potential anticancer drugs targeting CAFs in the hypoxic tumor microenvironment.

Drugs Mechanisms Effects Cancer Models Status References

Tranilast TGF-β inhibition
Inhibits CAF-mediated fibrosis
by reducing pro-inflammatory
cytokines

Lymphoma, Lewis lung
carcinoma, gastric cancer Preclinical [111–113]

Pirfenidone TGF-β inhibition Inhibits CAF activation and
proliferation

Non-small-cell lung carcinoma,
pancreatic cancer Preclinical [114–118]

Minnelide TGF-β and HIF
inhibition Induces CAF inactivation Pancreatic cancer Phase I-II [119–122]

SD208 TGF-β inhibition Reduces CAF-induced
chemoresistance Colorectal cancer Preclinical [123]

GANT61 GLI inhibition Reduces CAF-induced
chemoresistance Colorectal cancer Preclinical [123]

PD98059 ERK1/2 inhibition Inhibits CAF signaling Melanoma Preclinical [124]
LY294002 PI3K inhibition Inhibits CAF signaling Melanoma Preclinical [124]
ProAgio αvβ3 inhibition Induces apoptosis Pancreatic cancer Phase I [125,126]

AMD3100 CXCR4 inhibition Inhibits CAF-mediated immune
evasion

Multiple myeloma,
non-Hodgkin’s lymphoma,
pancreatic ductal adenocarcinoma

Approved [127–129]

TGF-β, transforming growth factor-β; GLI, GLI Family Zinc Finger; ERK1/2, extracellular regulated kinase 1/2;
PI3K, phosphoinositide 3-kinase; CXCR4, C-X-C motif chemokine receptor 4.

3.1. Targeting CAF Activation and Function

Efforts have been made to develop therapeutic agents that target the signaling path-
ways responsible for CAF activation or tumor-promoting factors secreted from the active
CAFs. In the context of targeting CAFs in relation to the hypoxic tumor microenvironment,
TGF-β, HIF, and CXCL12/CXCR4 signaling pathways are perhaps the most promising tar-
gets.

Currently, several TGF-β modulators are in phase I-III clinical trials for different
cancers [17,130,131]. In preclinical studies, tranilast has been tested as an antifibrotic
agent to inhibit CAF-mediated fibrosis by reducing TGF-β, CXCL12, and MMP2 in fi-
broblasts [111,112]. Similarly, in a rat type-2 diabetes model, tranilast has been shown
to reduce the hypoxic induction of pro-inflammatory cytokines IL-1β, NF-κB, and TNF-
α [113]. Pirfenidone, an anti-fibrotic agent for idiopathic pulmonary fibrosis, inhibits CAF
activation and proliferation in lung and pancreatic cancers by targeting TGF-β and reduces
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the production of fibrotic mediators secreted by CAFs [114–117]. In hypoxic pulmonary
hypertension, pirfenidone inhibits hypoxia-induced proliferation and migration of adven-
titial fibroblasts, thereby reducing the expression of α-SMA and collagen type I alpha 1
chain (COL1A1) [118]. Minnelide, a pro-drug of triptolide, downregulates TGF-β signaling
in CAFs to enhance tumor regression in a mouse model of pancreatic cancer. It inhibits
collagen stabilization and hyaluronan synthesis by reverting active CAFs into an inactive
state [119,120]. In hypoxia, minnelide inhibits the transcriptional activity of HIF-1 by de-
pleting its co-activator p300, thereby decreasing the stemness in pancreatic cancer [121].
Minnelide is currently in phase II trial against adenosquamous carcinoma of the pancreas
(ASCP) [122].

Hypoxia induces TGF-β2 secretion from CAFs and activates HIF-1α to transcription-
ally upregulate the expression of GLI family zinc finger 2 (GLI2) in colorectal cancer stem
cells. GLI2 transcriptional factor has been implicated in carcinogenesis and chemoresis-
tance in various solid malignancies. Co-culture of tumorsphere cells with CAFs under
hypoxia promotes resistance to 5-fluorouracil (5-FU) and oxaliplatin treatment in a GLI2-
dependent manner. Such hypoxia-induced chemoresistance was reversed by combination
therapy with TGF-β inhibitor SD208 and GLI Inhibitor GANT61 [123]. TGF-β promotes
MMP-mediated cleavage of CD44, a cell surface receptor for hyaluronic acid implicated in
cancer cell invasion and metastasis [124]. CD44 is highly expressed in CAFs present in the
avascular hypoxic regions of HT29 colorectal tumor mouse model. Moreover, co-culture
of CD44-expressing CAFs and Lewis lung carcinoma (LLC) cells enhances the chemore-
sistance of LLC cells against 5-FU treatment by upregulating the expression of multidrug
resistance protein 1 (MDR1) in cancer cells [132]. ERK1/2 inhibitor PD98059 and PI3K
inhibitor LY294002 may be used to inhibit the TGF-β-mediated MMP/CD44 signaling by
blocking the transduction pathway that mediates CD44 cleavage and activation [124].

HIF transcription factors continue to be of interest as therapeutic targets for cancer,
and although some HIF inhibitors have shown considerable promise, their clinical applica-
tions are still limited. Developing selective HIF inhibitors remains a challenge. Direct HIF
inhibitors may suppress mRNA expression, protein synthesis, alpha/beta dimerization,
or transcriptional activity. Several drugs have been developed to indirectly inhibit HIF by
modulating its upstream or downstream effector molecules [27,133–136]. Recently, FDA
approved belzutifan, a small molecule inhibitor of HIF-2α, for the treatment of renal cell car-
cinoma patients associated with von Hippel–Lindau disease [137–139]. It should be noted
that HIF in CAFs may either promote or inhibit cancer depending on the specific tumor con-
text and microenvironment. CAF-specific HIF-depleting or -activating therapeutics should
be developed and tested in preclinical models. In addition, HIF increases the expression of
αvβ3 integrin at the surface of cancer cells, endothelial cells, and myofibroblasts, thereby
promoting tumor cell motility [140,141]. ProAgio, a rationally designed protein agent,
targets αvβ3 at a novel site and induces apoptosis of cells expressing high levels of αvβ3.
In PDAC, where integrin αvβ3 is highly expressed, ProAgio targets cancer-associated
pancreatic stellate cells (CAPaSC) to induce apoptosis and increase tumor permeability,
leading to enhanced drug delivery [125,126]. ProAgio is currently in phase I clinical trial
for pancreatic cancer.

CXCR4, a hypoxia-inducible chemokine receptor, interacts with CXCL12 to suppress
CD8-positive cytotoxic T cells, thereby supporting immune evasion of tumor cells. CXCL12
is known to be produced mainly by fibroblast activation protein (FAP)-expressing CAFs
in the tumor microenvironment [127]. In a mouse lung carcinoma model, depletion of
FAP-expressing stromal cells causes acute cytokine-induced hypoxic death of both cancer
and stromal cells [142]. In pancreatic ductal adenocarcinoma, combination therapy with
anti-PD-L1 antibody and AMD3100, a selective CXCR4 antagonist, increases T cell accumu-
lation in tumor tissue by suppressing CXCR4-mediated exclusion of cytotoxic T cells [127].
AMD3100 is an FDA-approved drug for patients with multiple myeloma or non-Hodgkin’s
lymphoma who have undergone bone marrow transplantation [128]. Several other CXCR4
antagonists are being tested for cancer treatment in preclinical and clinical settings [129].
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3.2. CAF Depletion

Various methods have been assessed to deplete CAFs residing in the tumor tissue.
FAP is one of the highly expressed CAF markers in many epithelial cancers and is a po-
tential target for CAF depletion. Genetic or pharmacological depletion of FAP-expressing
CAFs reduces tumor growth in preclinical cancer models [143–145]. The aFAP-PE38 im-
munotoxin targeting FAP specifically depletes FAP-positive CAFs to inhibit angiogenesis
and induce apoptosis, thereby reducing tumor growth. Combination of aFAP-PE38 with
paclitaxel increased antitumor activity and prolonged survival in a mouse 4T1 breast cancer
model [143]. Depletion of α-SMA-expressing CAFs promotes extensive remodeling of the
tumor ECM and reduced tissue stiffness. In cholangiocarcinoma, α-SMA-positive CAF
depletion by photothermal therapy (PTT) reduced tumor stiffness and growth. PTT is a
physical therapy that induces hyperthermia by irradiating photoactivable nanoparticles
with a near-infrared laser. Gold-decorated iron oxide nanoflower (GIONF)-mediated hyper-
thermia preferentially depleted CAFs in xenograft mouse model and contributed to tumor
regression [146]. In another study, however, depletion of α-SMA-positive CAFs induced
intratumoral hypoxia as it reduces secretion of pro-angiogenic factors and lowers vascular
density. In a transgenic PDAC mouse model, genetic depletion of CAFs promoted tumor
hypoxia, EMT, and cancer stemness. In addition, CAF depletion suppressed the infiltration
of effector T cells associated with increased cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) expression. Indeed, administration of CTLA-4 checkpoint blockade restored the
overall survival of mice reduced by CAF depletion. Such results highlight the need for
caution in establishing therapeutic strategies, as CAF depletion may rather promote cancer
progression, depending on the circumstance [147].

4. Conclusions

Tumor hypoxia is a common feature of advanced cancers that can affect both cancer
and stromal cells. Hypoxia-induced oncogenic signals modulate CAF phenotype and
function to support cancer formation and progression. Moreover, cellular signatures ap-
pearing in hypoxia are induced not only by oxygen deprivation but also by mutations, ROS
production, and metabolic changes associated with pseudohypoxia [148]. Hypoxic CAFs
regulate ECM dynamics, immune response, cell metabolism, vessel formation, metastasis,
and therapy resistance in cancer. Signaling pathways activated in hypoxic environments
include TGF-β, HIF, and CXCL12/CXCR4 pathways. In general, targeting these molecules
is expected to be an effective strategy for cancer treatment, but it should be noted that,
depending on the role of hypoxic CAFs in certain cancers, in some cases, it may rather
promote cancer progression. Several drugs that may affect cellular responses to hypoxia
have been evaluated in preclinical and clinical studies. Some of these drugs have previously
been approved by the FDA for other purposes or mechanisms, and it may be of interest
to investigate their effects on hypoxic CAFs. In addition, it is necessary to check whether
these drugs can be used in combination with currently used therapeutics to improve
treatment efficacy.
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