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Simple Summary: Tumor microenvironment is a major contributor to tumor growth, metastasis and
resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from
different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the
case of colorectal cancer. Although their functions differ according to their subtype, their detection
is not easy, and there are no established markers for such detection. They are possible targets for
therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment
target. More research remains to be carried out to establish their role in prognosis and treatment.

Abstract: The therapeutic approaches to cancer remain a considerable target for all scientists around
the world. Although new cancer treatments are an everyday phenomenon, cancer still remains
one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although
patients with CRC may have better survival compared with other malignancies. Not only the tumor
but also its environment, what we call the tumor microenvironment (TME), seem to contribute to
cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-
associated fibroblasts are a major component. They arise from normal fibroblasts and other normal
cells through various pathways. Their role seems to contribute to cancer promotion, participating
in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different
markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-
associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown
that their existence is correlated with prognosis, and they are already under evaluation as a possible
target for treatment. However, extensive research is warranted.

Keywords: cancer-associated fibroblasts; CAFs; tumor microenvironment; colorectal cancer

1. Introduction

Solid tumors and their treatment are an ongoing challenge for scientists. In recent years,
tumor microenvironment (TME) seems to have an emerging role in tumorigenesis, tumor
growth, metastasis and resistance to therapy [1,2]. TME consists of the extracellular matrix
(ECM) and different cells and micromolecules (tumor cells, immune cells, vasculature
and cancer-associated fibroblasts (CAFs)) [2,3]. All of them are involved in tumor growth,
mainly by activating different pathways, and provide information on progression to one
another [4,5]. Fibroblasts are the main stroma components leading to ECM remodeling in
the connective tissue [6,7]. They are mesenchymal cells that can be differentiated under
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specific signals in various organs [3]. CAFs are fibroblasts with a crucial role in tumor
growth and metastasis by interacting with cancer cells via various mechanisms, such as
exosomes, production of cytokines or cell-to-cell contact [8]. Although their detection
and characterization are not apparent, they seem to be prognostic biomarkers of immense
importance with therapeutic implications [8,9].

Despite the progress achieved in cancer therapeutics, colorectal cancer (CRC) remains
an important health issue. It is the third most frequent cancer worldwide, and its inci-
dence is increasing, especially in the Western world [10]. The treatment options include
chemotherapy and, uncommonly, immunotherapy, as a choice in a specific number of
patients (maximum 15% in stage IV) [11]. In the aspect of translational oncology, four
molecular subtypes have been announced by the CRC Subtyping Consortium (CRCSC):
CMS1, CMS2, CMS3 and CMS4 [12]. The criteria for this categorization were: transcrip-
tomic profiling, microsatellite instability, mutation characteristics, somatic copy alternations
number and DNA methylation. The CMS4 subtype (~20%), known as mesenchymal, is the
most relevant to TME and ECM reconstruction, with the worst prognosis [12]. However,
until now, an important part of TME has been omitted. CAFs seem to have a prognostic sig-
nificance at every stage of carcinogenesis and tumor growth in CRC [4,8,9]. Wu J et al. [13],
in a systemic review and meta-analysis interpretation, have shown that the existence of
CAFs in the stroma around colorectal adenomatous polyps and the primary tumor site is
related to poor prognosis and higher recurrence rates.

2. Pro-Tumor Effects of CRC-Associated Fibroblasts

Tumor-cell-derived Nodal stimulates the transition of normal fibroblasts into CAFs,
which function to enhance the tumor growth of CRC cells, both in vitro and in vivo, by
activating the TGF-β/Smad/Snail pathway [14]. Snail-positive fibroblasts present CAF
properties [15], supporting the hypothesis that Snail is a critical controller of CAF arrange-
ment determined from the fibroblasts. Snail could be a TGF-β target gene that intercedes
with a few pro-tumorigenic roles in TGF-β signaling [16,17] and is additionally essential for
inducing the pro-tumorigenic impacts of fibroblasts on CRC cells [18]. It is subsequently
sensible to conjecture that Nodal-mediated CAF arrangement through Snail signaling
seems to advance forceful phenotypes in CRC. Moreover, apart from the Nodal, interleukin
(IL)-34, a cytokine overexpressed by CRC cells, can also fortify ordinary fibroblasts to
present a cellular phenotype [19]. Hence, the crosstalk between CRC and fibroblasts in-
duced by solvent variables, such as Nodal and IL-34, plays a critical part in upgrading CAF
arrangement within the TME of CRC. Moreover, other CRC cell-secreted components may
likely take an interest in directing the separation of fibroblasts into CAFs, which warrants
further investigation.

A few up-to-date studies have also demonstrated the essential functions of cancer
stroma in the improvement of CAFs in CRC. For instance, the expanded stromal expression
of the tissue inhibitor framework metalloproteinase-1 (TIMP-1) fortifies the collection
of CAFs inside CRC tissues somewhat through trans-differentiation of the inhabitant
fibroblasts [20]. Furthermore, dickkopf-3 communicated within the stroma organizes a
concomitant actuation of Wnt and YAP/TAZ signaling, which are facilitated to produce
CAFs in CRC [21]. Additionally, the stromal loss of protein kinase Cζ (PKCζ) advances
an era of a pro-tumorigenic CAF populace in human CRC through a SOX2-dependent
mechanism [22].

2.1. Origin of CAFs

Concerning their origin, CAFs could be derived from: (i) mesenchymal stem cells
(MSCs) [23–26]; (ii) migration of circulating fibrocytes into the TME [27,28]; (iii) epithelial-
to-mesenchymal transition (EMT) [29]; (iv) endothelial-to-mesenchymal transition (EndMT)
of resident endothelial cells [30]; and (v) (less common) trans-differentiation of adipocytes,
pericytes and smooth muscle cells (SMCs) (Figure 1) [31].
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Figure 1. Origin of CAFs and their relation to cancer. CAFs might be derived from mesenchymal cells,
fibroblasts, epithelial cells, endothelial cells, adipocytes, pericytes and smooth muscle cells. The main
markers that can be recognized regarding GI cancers are: FAP, α-SMA, vimentin, FSP1, PDFGR-α/β
and periostin. They are related to cancer by promoting tumor growth, cancer cell proliferation,
invasion and metastasis, angiogenesis and immune remodeling.

In CRC, fibroblasts are considered the main sources of CAFs, although their origin is
not well known [32,33]. The differentiation of quiescent fibroblasts in the TME rapidly be-
comes activated when stimulated by a convention protein, TGF-β. The trans-differentiation
of those resident fibroblasts into CAFs is induced by the increased TGF-β production
within the TME, which is triggered by the induction of CRC cell-derived soluble fac-
tors [34]. Among the ways TGF-β is activated, it has been revealed that the integrin alpha-v
beta-6 (ανβ6), which is expressed in CRC cells, is responsible for the activation of the latent
form of TGF-β. This is crucial for the exhibition of the CAF phenotype, as in the absence
of this, the activation of the latent form of TGF-β is ruptured [35]. All of this leads to the
importance of the capability of activation of TGF-β and the activation of CAFs in CRC.

Furthermore, Nodal, which is a TGF-β superfamily member, critical for endomeso-
dermal induction, is associated with α-smooth muscle actin (α-SMA) positive expression
in CRC tissues and contributes to the transition of resident fibroblasts into CAFs through
the activation of TGF-β/Smad/Snail pathway [14]. In addition to Nodal, it was found
that cytokines (IL-34) are expressed in high abundance in CRC cells, which are also in-
volved in the transition of normal fibroblasts into CAFs [19]. Based on various studies,
tumor stroma plays an important role in the evolvement of CAFs in CRC. Gong et al. [20]
demonstrated that the augmentation of stomal expression of the tissue inhibitor matrix
metalloproteinase-1 (TIMP-1) leads to the stimulation of accumulation of CAFs, which are
trans-differentiated by normal fibroblasts. Moreover, Ferrari et al. [21] revealed that the
activation of Wnt signaling and YAP/TAZ signaling by the increased stromal expression
of the secreted glycoprotein dickkipf-3 also leads to the increase in CAFs. Additionally,
Kasashima et al. [22] found that the promoted tumorigenic function of CAFs is strongly
associated with stromal loss of protein kinase Cζ (PKCζ). Among other sources responsible
for the origin of CAFs, Peng et al. [36] described the differentiation of mesothelial cells
into CAFs by the cell-to-cell interaction, which is mediated by Notch-Jagged1 signaling
and downstream activation of TGF-β/Smad pathway. Wawro et al. [37] revealed that
TGF-β-dependent phosphorylation of tubulin-β3 gives rise to CAFs via endothelial-to-
mesenchymal transition (EndMT) of endothelial cells. It is not clear how mesenchymal
stromal cells differentiate into CAFs via mesothelial-to-mesenchymal transition (MMT).
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Based on RNA sequencing, Rynne-Vidal et al. [38] demonstrated a correlation of TGF-β
signaling and MMT. Despite the above-described precursor cells that are sources of CAFs
in CRC, it is well accepted that the mesenchymal stromal cells can also differentiate into
other mesenchymal-like osteocytes, chondrocytes and adipocytes. This is why upcoming
techniques have to be employed to identify precisely the origin of CAFs in CRC as a strong
tool of increased knowledge of the complexity of CAFs in CRC.

2.2. Tumor Microenvironment and Fibroblast Heterogeneity

It is well known that cancer is not just an aggregation of abnormal cells growing
uncontrollably. Cancer constitutes an organ encompassing a wide range of several cell
populations, which coactivate between the cell population, the tumor cells and their own
microenvironment. TME plays a crucial role in the initiation, proliferation and metastasis
of a tumor. Its major components are the cells themselves and the ECM, which supplies
a structural component of the TME. CAFs are the activated fibroblasts of the stroma and
secrete growth factors, inflammatory ligands and ECM proteins [39–44].

The capacity of CAFs to create significant amounts of ECM proteins, including colla-
gen, glycoproteins and proteoglycans, is one of their key characteristics [45]. Under healthy
and pathological circumstances, the ECM serves as a complex structure that anchors and
supports environmental cells via hundreds of different proteins [46]. Collagens, proteo-
glycans and hyaluronic acid are important ECM structural components that provide a
framework within cells, and other ECM elements (such as laminin or fibronectin, for exam-
ple) interact with them [45,47]. Moreover, ECM proteins transmit signals to cells, which
are then processed by integrins and other cell surface receptors. The cellular pathways
activated by these signals, known as mechano-transduction, have an impact on cellular pro-
cesses, such as proliferation, survival, morphology, adhesion and motility [48–50]. Due to
the matrix protein ability to sequester growth factors and change their signaling properties,
the ECM also serves as a growth factor reservoir [51]. The biochemical composition, me-
chanical characteristics and integrity of the ECM are frequently altered in conditions such
as fibrosis, cardiovascular or musculoskeletal diseases [52–54] and cancer [55]. Recently,
it was demonstrated that ECM possesses biomechanical and physical characteristics that
affect all cancer hallmarks, including cellular processes that contribute to tumorigenesis,
development and spread [56] and metastatic potential [57,58]. Additionally, the pancreatic
ductal adenocarcinoma constitutes up to 90% of the tumor region [59], and the fibrotic
stroma in breast cancer is unusually dense, which hinders blood flow to the tumor and the
delivery of anticancer medications [60]. More aggressive tumors and a worse prognosis for
the patient have been demonstrated to be correlated with ECM alterations within tumors
(quantity, stiffness, etc.) [61–64].

To define CAFs, we need to understand normal fibroblasts, whose definition remains
unclear due to the scarcity of specific markers that are not expressed in any other cell types,
such as adipocytes, chondrocytes and osteoblasts. All of them share the same embryonic
origin (from the primitive mesenchyme that develops out of the mesoderm) [65–68]. In
practical terms, to define fibroblasts, their cell shape, location and the lack of markers for
epithelial cells, endothelial cells and leukocytes are evaluated.

In non-cancerous homeostatic conditions, fibroblasts are the main producers of the
connective tissue ECM, presenting at the resident stage and exhibiting an important sensor
of tissue integrity [69]. The resulting data indicate that this function has a strong relation
with age [70,71]. Following the tissue damage signal, the activated fibroblasts—termed as
myofibroblasts—regulate tissue repair, participating in a crosstalk with immune cells [72,73].
Their role in wound healing is to contract the wounds while producing and organizing
the ECM [74]. Throughout the time when the wound heals and the scar is formed, the
myofibroblasts are eventually disappeared after they became apoptotic [75].

The spectrum of differences between normal fibroblasts and myofibroblasts comprises
(a) an active endoplasmic reticulum [76], (b) expression of α-SMA and increased levels of
vimentin [77], (c) the arrangement of complex and organized stress fibers and fibronexus
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adhesion complexes [78]. There is formulation of a permissive action in the interaction
between the bundles of microfilaments and the ECM proteins that preserve the cellular
contractile force and allow the fibroblasts to maintain their microenvironment. This results
in the production of ECM proteins (such as collagen, elastin, fibronectin, tenascin and
remodeling enzymes) [79,80].

In cancerous conditions, the cancer cells contort the process of wound healing, and
they have the ability to migrate away from or infiltrate into adjacent tissues. CAFs con-
stitute the activated fibroblasts of the stroma and secrete growth factors, inflammatory
ligands and ECM proteins. The difference between normal fibroblasts and CAFs is the
expanding production of collagen and ECM protein, which activates them in a hyper state
that magnifies cancer progression.

To support a tumorigenic primary niche, many stromal cell types congregate. Tumor
cells are exposed to immune-system-driven demands for elimination after evading the
cell-intrinsic processes of apoptosis [81]. This process involves tumor-cell-specific antigens,
which are identified by cytotoxic immune cells and result in the elimination of tumor
cells [82]. Within the TME, fibroblasts and macrophages also help restrict growth, but the
tumor may educate these cells to develop pro-tumorigenic properties [83]. For example, by
secreting an abundance of pro-tumorigenic proteases, cytokines and growth factors, TAMs
support a variety of behaviors within the primary tumor, such as growth, angiogenesis and
invasion (e.g., EGF, which participates in a paracrine signaling loop via tumor-secreted
CSF-1) [84]. Immune-suppressive cells, such as myeloid-derived suppressor cells (MDSCs)
and regulatory T (Treg) cells, are released into circulation as the tumors spread in response
to activated cytokine axes brought on by carcinogenesis (e.g., TGF-, CXCL5-CXCR2) [85–89].
Invading the expanding tumor, MDSCs and Treg cells interfere with immune surveillance
via a variety of means, such as by preventing DCs from presenting antigen, by preventing
T- and B-cell proliferation and activation or by preventing NK cytotoxicity [90–92]. CAFs,
which are activated by factors from the tumor (such as TGF-, FGF, PDGF, etc.) [93,94],
release ECM proteins and parts of the basement mem-brane, control differentiation, modify
immunological responses and contribute to dysregulated homeostasis [95,96]. Vascular
endothelial growth factor (VEGF) promotes angiogenesis during tumor growth and is
mostly derived from CAFs [97]. In addition to cellular influences, several extracellular
factors, such as low oxygen tension, high interstitial fluid pressure and modifications in
particular ECM components, aid in the tumor progression [98,99].

2.3. Markers Expressed in CAFs

There are few markers that need to considered within the tissue position and their
morphology to distinguish CAFs from normal fibroblasts, such as vimentin and platelet-
derived growth factor receptor-α (PDGFRα). For some fibroblast subtypes, such as those
that characterize bone and fat homeostasis, the markers include α-SMA and fibroblast
activation protein (FAP) [100]. According to various studies, there are several limitations in
the specificity and usability of CAF markers. Not only is there a lack of adequate exclusion
criteria between other mesenchymal lineages (such as pericytes or adipocytes) and an
unclear correlation with specific cancer types/positions, but the experimental studies
are also limited. Hence, the upcoming studies are not only focused on identifying new
markers but also novel methods for selecting CAFs, while analyzing them based on cellular
function [100–103].

Since CAFs are found in a wide range of tumors (Table 1), each CAF plays a specific
role. It is well established that CAFs amplify their heterogeneity. Thus, the markers are not
all expressed similarly or concurrently in CAFs.

The lack of specific markers for CAFs in numerous cancers is also the case for CRC.
However, the effort made over the recent decades has led to a progress in the development
of a few markers of CAFs in CRC and clarifying their relationship with tumor growth,
proliferation, migration and therapy resistance. Among others found in numerous cancers,
cell-surface molecules CD10 and IL-11 could be considered as markers of CAFs in CRC.
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Since the expression of these molecules is not at the same levels in CAFs and normal
fibroblasts, they might be used as biomarkers [104,105]. An entire set of proteins constitutes
the profile of CAFs as biomarkers, including LTBP2, CDH11, OLFML3 and FSTL1 [106].
Additionally, based on histological examination from samples of CRC patients, an increased
expression of disintegrin and metalloproteinases (ADAMs) has been detected [107]. Fur-
thermore, according to Herrera et al. [108], a major number of ncRNAs using NGS could
also be identified as biomarkers. Studying a set of proteins expressed in the specimens of
CRC patients and secreted into the extracellular space of CAFs and bone-marrow-derived
precursors, De-Boeck et al. [109] demonstrated a few possible biomarkers, such as tenascin
C, fibronecrin ED-A domain and stromal-derived factor-1 (SFD-1).

Table 1. Markers expressed in CAFs of different cancers.

Cancer Markers References

Lung
α-SMA, osteopontin

[63–66]VCAM-1
Stemness factors: nanog/Oct4

Breast α-SMA, FAP, PDGFR-α/β, CD29, NG2, FSP1,
vimentin, PDPN [67–71]

Gastrointestinal FAP, α-SMA, vimentin, FSP1, PDGFR-α/β, periostin [72–79]
Skin α-SMA, FAP, vimentin, PDGFRα [80–82]

Ovarian/Endometrial α-SMA, FAP, FSP1, FGF-1, vimentin [83–85]

Head and Neck α-SMA, PDPN, FAP, PDGFR-α, PDGFR-β,
FSP1, NG2

Genitourinary α-SMA, vimentin, FAP, FSP1, PDGFR-α, PDGFRβ,
CD90, MFAP5, POSTN [86–89]

CRC
α-SMA, FAP, FSP-1, PDFRα, PDFRβ, CD10, IL-11,

ADAMs, exosomal mcRNAs, Tenascin C, ED-A FN,
SDF1, LTBP2, CDH11, OLFML3, FSTL1

[86–89]

Collagen I, PDGFR-β and α-SMA play a significant well-known role in CRC progres-
sion, and in advanced stages, they are correlated with vessel markers CD31 and CD34 [110].
Furthermore, Sugai et al. [111] revealed the relationship between a few CAFs markers
(α-SMA, CD10, podoplanin and FSP1) and lymphatic metastasis in submucosal invasive
CRC. As these markers were expressed predominantly in stroma-high CRC samples, they
could have a valuable predictive and prognostic impact [112].

2.4. CAFs Implementation in Cancer
2.4.1. CAFs Promote Tumor Growth

As mentioned above, CAFs are a major component of stoma, and they participate in
cancerous conditions by the secretion of cytokines, growth factors and chemokines while
becoming activated by tumor and/or non-cancer cells (paracrine signaling). According
to studies, the interaction of tumor cells and CAFs represents an important role in the
tumor progression. This interaction activates CAFs via a number of factors and their own
receptors, such as the hepatocyte growth factor (HGF), transforming growth factor-beta
(TGF-β), stomal-derived factor 1 (SDF-1), interleukin 1β (IL-1β), PDGF, phosphatase and
tensin homolog (Pten) and Sonin Hedgehog (Shh) [113,114]. For that reason, CAFs are
considered as a tumor-promoting component, supporting the growth, proliferation and
migration while developing therapy resistance and excluding immunity. Additionally,
through the secretion of growth factors, an enhancement of stem-cell-like properties is
observed, which plays an important role in tumor formation. The conservation of these
properties participates in the regulation of differentiation and proliferation of cancer stem
cells by providing a supportive TME [115]. The tumor promotion function of CAFs has
been studied in numerous cancers; however, our knowledge is still limited. There are
various regulators and pathways that have been revealed in mice models. The AOM/DSS
mouse model, which is an initiation promotion model, was used by a few researchers in an
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effort to reveal the role of CAFs in oncogenesis [116–119]. Yuan et al. [120] described the
participation of MyD88 signaling in myofibroblasts in the activation of the STAT3/PPARγ
pathway and the resistance of the myofibroblasts. The MyD88-deficient mouse model
resulted in the induction of tumorigenesis. The activated STAT3 exhorted specific ECM
proteins to accelerate CRC development in the AOM/DSS mouse model. This played a
crucial role in tumor growth because it was found that its promotion was embedded with
the activation of STAT3 in CAFs in CRC [121]. Moreover, its inactivation restricted such
tumor promotion [122]. Additionally, the production of CAFs by activated transcriptional
factors (SOX2), as it was associated with the loss of PKCζ promoting intestinal tumor
growth, as described by Kasashima et al. [22], was involved in tumorigenesis. Furthermore,
specific genes were significantly correlated with CRC tumor development, as they regulated
specific signaling pathways [123].

2.4.2. CAFs and Angiogenesis

Another mechanism through which CAFs participate in tumor malignancy is by con-
ducting angiogenesis. They improve nutrient, oxygen and growth factor supplementation
of tumors through growing blood vessels. The expression of the connective tissue growth
factor (CTGF) and SDf-1/CXCL12 results in directly increased microvessel density and
recruitment of endothelial cells, respectively [124]. On the other hand, the expression of
MMPs (such as MMP9 and MMP3) results in the release of active growth factors, such as
VEGF, which indirectly increase the tumor angiogenesis [125,126].

Based on studies, the function of CAFs is controlled by the CAF-secreted chemokines,
and their chemokine co-receptors play an important role in tumor growth in numerous
cancers (breast, skin, head and neck, RCC, GI). In breast cancer, the CAF-secreted SDF-1
comes along with the loss of mDia2 protein expression, contributing to the acceleration
of tumor cell growth. This was found to modulate a function of CAFs, through which
they recruit endothelial progenitor cells into breast cancers. This results in the promotion
of vascularization [127,128]. Additionally, the CAF-secreted VEGF participates in the
formation of vascularization to further promote tumor growth and outspread [129].

The limited data regarding head and neck cancer demonstrate that the CAFs are
associated with the formation of new blood vessels in nasopharyngeal carcinoma, as
elevated CAFs marker α-SMA levels were found in the stroma. The measurement of tumor
angiogenesis was higher in the stroma of the cancer tissue (as the positivity of CXCR4
(receptor of SDF-1) and CD133/VEGFR-2 cells points out). The existence of endothelial
progenitor cells in both the tumor tissue and stomal cells means that there is a form of
VEGF- and SDF-1-dependent vascularization [130].

Furthermore, limited to skin cancer, Erez et al. [131] demonstrated that CAFs are im-
plemented both directly and indirectly in neoangiogenesis—directly through the expression
of genes (such as CYRR2 and OPN) and indirectly through the expression of inflammatory
genes (such as CXCL10, CXCL2 and CXCL5). The accumulation of HIF-1a promotes the
activation of CAFs in hypoxic conditions via SDF-1 secretion by α-SMA-positive CAFs,
leading to angiogenesis in RCC [132,133]. In gastrointestinal cancers, and particularly in
hepatocellular carcinoma (HCC), increased levels of α-ASMA and THY1 expression in
stroma and peritumoral tissue are associated with enhanced levels of placenta growth
factor (PGF) expression, which, together with CD90, provide a strong correlation with
tumor angiogenesis markers (CD31, CD34, CD105) [134].

Comparing the secretome of CAFs and normal fibroblasts, it was demonstrated that
the strong involvement of CAFs in the proliferation of CRC cells promoted tumor growth
both in vitro and in vivo [14,135]. The secreted periostin, a multifunctional ECM protein,
the active participation of CAFs in the metabolism of tumor cells and the mediated IL-
6 could elucidate the malignant proliferation of CAFs [136–138]. Further indications of
the promoting proliferation functions of CAFs on CRC acting as mediators include the
microRNA-31, ncRNA UCA1 and a few signaling pathways, such as PI3K-Akt, FGF-1/-
3/FGFR4 and ERK5/PD-L1 [139–143]. As previously mentioned, tumor needs nutrients
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and oxygen to survive. It is well accepted that the vascularization of cancer plays a pivotal
role in this but also in its growth, proliferation and migration. In CRC, IL-6 participates in
angiogenesis via increased VEFG production, which is an important source of IL-6 [144].
Heichler et al. [145] revealed that the transcription patters regulated by IL-6-activated
STAT3 are of high importance in tumor vascularization and, by inhibiting this pathway,
could disrupt CRC growth [122]. Moreover, the Wnt signaling pathway promotes enhanced
tumor angiogenesis in CRC.

2.4.3. Invasion and Metastasis

In addition to the local mechanisms by which CAFs participate in tumor growth,
supplementation and vascularization, CAFs are responsible for facilitating metastases
to distant organs [114]. Both head-to-head cell interactions and secreted factors (cy-
tokines, chemokines, inflammatory mediators) can incite cancer invasiveness [115]. Cancer
cells lying in the stroma can migrate to other sites through paths and tracks that are
created by CAFs via proteolytic and structural amendment, mediated by proteins and en-
zymes [146,147]. Further detailing cancer invasiveness, the environmental factors (such as
proteins) are a component of stromal support for cancer cells that have spread throughout
the site of the primary tumor. The induction of such factors can accelerate metastatic colo-
nization of cancerous cells via cytokines signaling, which further enhance the metastatic
pattern through the induction of epithelial–mesenchymal transition via paracrine sig-
naling. This results in CAFs acquiring mesenchymal properties to invade and spread
elsewhere [148,149].

This is also the case in CRC patients [150]. The secretome of CAFs from distant
metastatic sites resulted in more adjectival characteristics of the tumor, such as epithelial-
to-mesenchymal transition, invasion and metastasis [151]. The variety of factors secreted
by CAFs disrupt the signal transduction pathways between the CAFs and CRC cells, as
was discovered in PDGF receptor signaling. Such signaling is mediated by a glycopro-
tein secreted by CAFs (stanniocalcin-1), resulting in increased invasion and migration of
CRC [152]. The secretion of the hepatocyte growth factor (HGF) mediated by Ras-related
protein Rab-31 could provide the migration of CRC [153]. The HGF participates in the
EMT via the CAFs’ secretome [154]. Additionally, the fibroblast growth factor-1 (FGF1) and
stomal-cell-derived factor-1 (SDF-1) could enhance CRC metastasis via FGFR3 signaling
and CXCR4 axis, respectively [35,155]. Among the other factors secreted by CAFs and
found to play a crucial role in tumor migration, invasion and EMT, CLEC3B, activin A and
Wtn2 have been recently recognized [156–158]. Interestingly, adjacent cancer cells could be
affected by exosomes, such as miR-15-5p and LINC00659, promoting metastasis, invasion
and migration of CRC cells [159,160].

Cancer cell metabolism constitutes another aspect of the mechanisms that participate
in CRC progression. It is known that the activated CAFs use glutamine as an energy source
in CRC cells, which results in multiple organ metastases [161]. Additionally, CAFs activate
fatty acid oxidation and regulate glycolysis, both playing a role in peritoneal metastasis
and promoting migration and invasion of CRC cells [162].

2.4.4. CAFs and Cancer Cell Metabolism

The Warburg effect, as described by Warburg et al. [163,164], demonstrates an in-
crease in glucose consumption by the tumor cells and a preferential production of lactate,
even in the presence of oxygen. Based on this, numerous studies described that cancer
cells are able to synthesize lipids, amino acids and nucleotides while facilitating tumor
cell growth, proliferation and migration [163,164]. The discovery of signal transduction
pathways between the CAFs and cancer cells, based on an increased knowledge of cancer
metabolomics, revealed different metabolic pathways across cancers, implying ECM stiffen-
ing and autophagy. The suggestion that CAFs also exhibit the Warburg effect comes from a
number of studies in CAFs isolated from different cancer types (such as breast, colon cancer,
pancreatic cancer, melanoma, lung cancer). The cancer cells provide aerobic glycolysis
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in CAFs, which produce increased levels of pyruvate and lactate to be used as an energy
source [165–168]. Isolated CAFs from various cancers demonstrate that there are further
metabolic processes in which a different source of carbon is used to facilitate tumor growth
and proliferation. For instance, in pancreatic adenocarcinomas, glutamine is used as an
energy source by CAFs to replace tricarboxylic acid cycle substrates [168]. Nonetheless,
in ovarian and head and neck cancers, the study of different CAF populations among the
same cancer types suggests a strong dependence on oxidative phosphorylation. This also
supports the existence of metabolic heterogeneity [169,170]. Cells act on fibroblasts within
the TME to indulge their needs for glutamine carbons, leading to an increased purine
and pyrimidine biosynthesis, which further supports cancer growth. Analogously, the
malignant cells supply lactate and glutamine to CAFs, resulting in the amplification of the
TCA cycle and in enhancing the production of glutamine by CAFs [171]. Glycolysis and
mitochondrial respiration in CAFs are promoted through a YAP/TAZ-dependent pathway,
which represents a metabolic remodeling induced by ECM stiffening [164]. The high energy
requirements of CRC cells are met by CAFs by overexpressing FASN and undergoing
lipidomic reprograming, according to new research by Zhao et al. from 2020 [172]. A total
of nineteen lipids that were generated and released by CAFs and ingested by CRC cells
have been specifically identified [172]. The precise processes that trigger this lipidomic
reprograming in CAFs and the manner in which cancer cells make use of the de novo lipids,
however, require further investigation [173].

2.4.5. Treatment Resistance

The application in CRC cells of the previously mentioned stimulation of cancer stem-
ness through the paracrine interplay among CAFs and cells of numerous cancers revealed
that CAFs can increase their stemness both in vitro and in vivo, according to mouse models,
through the upregulation of netrin-1 as well as by transferring exosomal IncRNA H19
(acting as an inhibitor on stemness) [174].

Cancer stem cells play an important role both in tumor resistance and relapse. It has
been revealed that increased secretion of cytokines by CAFs after chemotherapy resulted in
enhanced resistance [175]. Specific chemotherapeutical regimes were found to be associated
with higher resistance, such as oxaliplatin, 5-fluoracil and methotrexate, in CRC specimens
where the increased presence of CAFs and CAF-derived exosomal miR-24-3p were demon-
strated [176–178]. The existence of CAFs resulted in decreased sensitivity of malignant
cells to cetuximab, which helps in the secretion of CAFs’ EGF, leading to resistance, as it is
used in the treatment of metastatic CRC patients in combination with chemotherapy [179].
In addition to chemotherapy resistance, it has been found that CAFs-derived exosomes
are responsible for resistance to radiotherapy, including exosomal miR-93-5p or miR-590-
3p, which prevent malignant cells from apoptosis via radiotherapy. Additionally, these
CAFs-derived exosomes also participate in advanced CRC stemness [180–182].

3. CRC-Associated Fibroblasts and Anti-Tumor Immune Response
3.1. CAFs and Tumor Immunity

CAFs, as major components of the stroma, remodel immunity, contributing to a chronic
inflammatory state of cancer cells and modulating the immune responses to the tumor.
This is fundamental for a tumor to survive [115,183]. The release of pro-inflammatory
cytokines facilitates the macrophages, neutrophils and lymphocytes to be placed in tumor
stroma. As they undergo differentiation into tumor-associated macrophages (TAMs) and
tumor-associated neutrophils, within the TME, they release endothelial and growth factors
(e.g., interleukins) [184,185]. In skin cancer, studies suggest that CAFs expressing the
fibroblast activation protein (FAP)-positive marker diminish the cytotoxic function of T-
lymphocytes [186] throughout the signaling pathways and tracks. This is followed by the
lack of reaction to these factors, as mentioned above, eventually resulting in poor ability to
regulate the immune responses. There is also a strong relationship between the presence of
CAFs and tumor-infiltrating immune markers in various cancers, such as head and neck
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and lung cancer—for instance, the correlation between CAF and CD16-positive TAMs in
α-SMA positive stained and CAFs marker FAP and CD14, respectively [43,187].

On the other hand, in mice models, by subtracting the FAP-positive CAFs and by
inhibiting cytokines, such as SDF-1, the resulting immune control of tumor growth and the
efficacy of immunotherapy are accelerated in pancreatic cancer [188]. In oral squamous
cell carcinoma, cancer cells co-cultured with CAFs presented a higher expression of cancer-
associated markers, which were used to identify neoplasms with macrophage lineages.
Additionally, they were expressed by malignant cells from other lineages (e.g., antigens,
such as CD68, CD163, CD14, CD200R, HLA-G, CD80 and CD86) supplementary to the
expression of genes, such as ARG1, IL-10 and TFG-1β. These cells are revealed to suppress
T-cell proliferation [189]. In esophageal cancers, Kato et al. [190] demonstrated with a
series of in vivo and in vitro models that IL-6 mediates both the CAFs suppression of CD8+

and the promotion of FoxP3+ tumor-infiltrating lymphocytes, resulting in experimental
blockage of IL-6, suggesting a promising efficacy of immunotherapy.

In CRC, the increased expression of specific CAF markers reflects their relationship
with immune cells. CAFs play a significant role in tumor immunity; a-SMA expression
has been found in greater quantities in CRC than in physiologic colonic mucosa, and
their relation with tumor-infiltrating lymphocytes was found to be negatively correlated,
whereas a different marker, called fibronectin, together with a-SMA was positively cor-
related in CRC [182]. An interrelationship with CD8 T cells and CAF phenotypes that
substantiates the importance of CAFS was observed in CRC [191]. Confirming the positive
correlation between PD-L1 in CRC, CAFs via the CXCL5 secretion participated in the PD-L1
expression [192].

Moreover, CAFs also promote the adhesion of monocytes by upregulating ICAM-1
and VCAM-1 expression in CRC cells [193]. A further immunosuppressive activity of
CAFs is the secretion of IL-8, which brings monocytes to CRC tissues. Additionally, CAFs
promoting macrophage M2 polarization lead to the suppression of natural killer (NK) cell
activity [194].

3.2. Alternation of the Antitumor Immune Response by CAFs

CAFs, as a major component of the TME, modify the TME and affect both the innate
and adaptive anti-tumor immune response as a result of their release of the mentioned
cytokines, chemokines or other soluble substances [106,195–197]. The cytotoxic func-
tion and cytokine production of NK cells, as well as the susceptibility of tumor cells to
NK-mediated lysis, are all affected by CAFs [198–200]. Additionally, CAFs promote the
recruitment of innate immune cells, such as tumor-associated macrophages (TAM) [201] or
potentially tumor-associated neutrophils (TAN) [202] and their acquisition of an immuno-
suppressive phenotype (M2 and N2, respectively) [201,203], and activate mast cells with a
potential immunosuppressive phenotype [204]. CAFs interfere with the maturation and
function of dendritic cells while favoring the recruitment and development of MDSCs and
Tregs [205–207]. Additionally, CAFs may affect CD4+ T-helper (TH) lymphocytes, favoring
tumor-promoting TH2 and TH17 responses, and inhibit CD8+ cytotoxic T-cell activation,
function and survival [207–210]. CAFs appeared to extend the enlistment of monocytes
into the CRC TME by means of different mechanisms. At first, the ICAM-1 expression and
affinity for monocytes are elevated in CRC CAFs, which increases their interaction and
prolongs monocyte residence in CRC tissues [193]. Moreover, through increasing VCAM-1
expression in CRC cells, CRC CAFs aid in the adherence of monocytes. Additionally, by
secreting IL-8, CAFs can also draw monocytes [194]. Then, CAFs encourage macrophages
to become M2 polarized to reduce the activity of natural killer (NK) cells in CRC, favoring
the tumor immunity’s ability to defend itself [194].

The ability of CAFs to control the immune checkpoints in CRC is important. Notably,
the CD73 expression in CAFs is increased via an A2B-mediated feedforward circuit trig-
gered by tumor cell death, which enforces the CD73 immune checkpoint and subsequently
blocks antitumor immunity in CAF-rich CRC. CAFs are the majority of cells expressing
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CD73 in human CRC tissues, a molecule acting as an immune checkpoint to suppress
immune activation through the A2A receptor [211]. When considered collectively, these
CAFs’ immunosuppressive effects on CRC have important clinical ramifications, making
them prospective therapeutic biomarkers, as well as CRC targets.

4. CRC-Associated Fibroblasts—Therapeutic Implications and Clinical Outcomes
4.1. CAFs’ Prognostic Value in CRC

It is reasonable to assume that as long as CAFs play an important role in tumor growth,
invasion, migration and metastasis, they will probably be a significant prognostic tool [8].
Different research groups have tried to prove this hypothesis in various cancers.

In CRC, CAFs promote invasion and metastasis through different pathways. Back in
2014, Berdiel-Acer et al. [212,213] demonstrated that the functional heterogeneity of CAFs,
derived from the differences of CAFs with the normal colonic fibroblasts, may be of prog-
nostic significance. The five genes derived from CAFs (CCL11, PDLIM3, AMIGO2, SLC7A2
and ULBP2) were associated with higher relapse risk in CRC [212,213]. Another pathway
of great significance is the TGF-β signaling pathway [9]. High stroma-to-tumor ratio and
high stromal gene expression in CRC have been linked to poor prognosis [214]. Moreover,
high abundance of CAFs is associated with the tumor stage. It has been shown that the
CAFs’ negative prognostic significance is mainly associated with stage III CRC [215].

CAFs in CRC secrete exosomes that can lead to proliferation and chemoresistance
through different ways [4]. Exosomes seem to drive the proliferation and growth of
cancer stem cells (CSCs), which are targetable by 5-fluorouracil (5-Fu) and oxaliplatin
(OXA) [216]. The production of exosomes with elevated miR-92a-3p by CAFs is another
way of chemoresistance, through enhancement of the epithelial-mesenchymal transition
(EMT). This enhancement is achieved via the activation of the Wnt/β-catenin pathway [217].
Long non-coding RNA (lnRNA) H19 overexpression and exosomal transfer seem to be
related to stromal stiffness and chemoresistance [218]. Additionally, CRC-associated lncR-
NAs contribute to resistance to OXA via CAFs expression and their exosomal transfer by
activating the β-catenin pathway [219]. The exosomal transfer of miR-21 and Wnt ligands
expressed by CAFs is related to invasion and chemoresistance [220,221].

Other mechanisms have also been correlated with cancer invasion, metastasis and poor
prognosis in CRC. Expression of endoglin, Wnt2 and Wnt5a by CAFs has been correlated
with poor prognosis through different mechanisms, such as promotion of angionegene-
sis [145,158,222,223]. Furthermore, the differentiation of mediated hepatic stellate cells
into CAFs through the CXCR4/TGF-β1 pathway has been linked to liver metastasis [224].
Heichler et al. [122] suggested another way of promoting tumor growth through the STAT3
activation into CAFs by IL-6/IL-11. Zheng et al. [225] revealed the prognostic significance
for CRC patients of a single-cell and bulk RNA sequencing, which identifies CAFs’ related
signature. Generally, the expression of a-SMA, FSP1, FAP, ubiquitin carboxyl-terminal
hydrolase L1 (UCH- L1), lysyl oxidase-like 2 (LOXL2), CD70 and c-type lectin domain
family 3 member B (CLEC3B) is correlated to poor prognosis [156,226–229].

The co-expression of a-SMA, FSP1, FAP and CD163 in DCSIGN (M2 macrophage
markers) seem to have a prognostic role, whereas CAFs-related genes, such as osteo-
pontin (OPN), GREM1 and ISLR, showed a predictive value for FOLFIRI/bevacizumab
therapy, negative and positive prognostic value, respectively [229–232]. Moreover, Ferrer-
Mayorga et al. [233] reported a better outcome in CRC, and it is believed that this was
mainly due to the protective effect of the active vitamin D metabolite 1,25(OH)2D3. At last,
different prognosis has been associated with different CAFs’ expression, such as a-SMA,
podoplanin and S100A4 [234]. Regarding rectal cancer, CAFs radiotherapy activated or
detected after neoadjuvant radiotherapy is linked to poor prognosis and seems to be an
independent negative prognostic factor [161,235,236].
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4.2. Therapeutic Implications

All the pathways implicated in the role of CAFs and their prognostic significance
could be a possible therapeutic target in various cancers. Their role could be summarized in
six basic parts: tumorigenesis, proliferation, angiogenesis, immune response, stemness and
resistance and metastasis [229]. Some of the pathways that are followed to achieve these
six functions include: MyD88 signaling, STAT3 activation, PI3K-Akt, FGF-1/-3/FGFR4,
HGF-MET, ERK5/PD-L1 and Wnt2 signaling [229].

CAFs-related tumorigenesis is the target of MyD88 signaling inhibitor, BMP signaling
inhibitor, STAT 3 inhibitor, DNA aptamer targeting periostin, NF-κB signaling agonist,
PKCζ agonist, function-blocking integrin antibodies and their conjugation [9,229,237]. M2
macrophage polarization is induced by MyD88 signaling in CAFs, leading to colitis-related
CRC tumorigenesis [120]. On this basis, Xie et al. [238] attempted to use TJ-M2010-5, an
inhibitor of this pathway, to prevent colitis-related CRC in mice. STAT3 inhibition in CAFs
has also demonstrated an anti-tumor effect on CRC [239]. Regarding breast cancer, DNA
aptamers targeting periostin seem to limit tumorigenesis [240].

Anti-CAF-related proliferation therapies include IL-6 antagonists, PI2K-Akt inhibitors,
DNA aptamers targeting periostin, ERK5/PD-L1 inhibitors, FDF-1/-3/FGFR4 inhibitors
and HGF-MET inhibitors [229].

Angiogenesis is targeted by VEGF antagonists, STAT3 inhibitors, IL-6 antagonists,
Wnt2 neutralizing antibodies and FAP-targeted chimeric antigen receptor T cells [229,241].
Wnt2 neutralizing antibodies seem to recall the immune response to the tumor through
the activation of dendritic cells [242] and FAP-targeted chimeric antigen receptor T cells,
leading to depletion of FAP + CAFs, revoking the pro-angiogenic CAFs-related effect [241].

The reduced immune response to cancer through CAFs could be restored with PD-L1
inhibitors, CD70 neutralizing antibodies, CD73 neutralizing antibodies, Wnt2 neutraliz-
ing antibodies and/or T-cell-based immunotherapy [229,242,243]. Anti-CD70 antibodies
reverse immunosuppression, which is caused by Tregs on tumor stroma. Tregs abundance
is correlated with CD70 expressed by CAFs [244]. Regarding the role of FGFR in the inter-
action of tumor cells and TME, including CAFs, it is also reasonable to assume that FGFR
inhibitors could indirectly target CAFs [245,246]. Data have shown that FGFR inhibition,
for example FGFR1 inhibitors, can lead to immunomodulation by triggering T-cell-based
antitumor activity [247].

The phenotype of stemness and subsequent chemoresistance can be reversed by
targeting netrin-1, EGF, IL-17A and exosomal miR- 24-3p, lncRNA H19, miR- 93-5P,
miR- 590- 3p, the axis CXCL12, CXCR4 and TGFβ, mainly by avoiding the EMT phe-
notype [8,229,248,249]. Finally, the inhibition of metastasis pathways related to CAFs might
be a therapeutic option. Targeting PDGF receptor signaling, FGF1/FGFR3, FAK pathway,
HGF secretion, endoglin, activin A, Wnt2 and fatty acid oxidation, matrix metalloprotease
9 (MMP9) and hedgehog (Hh) signaling could delay tumor growth.

However, no treatment has succeeded in showing a clear statistical or clinical benefit
for any cancer type until now, and further research is necessary [8,229].

5. In Vitro and In Vivo Models to Study CAFs

The current models include in vivo and two- and three-dimensional in vitro models
(Matrigel, hydrogels, co-cultures with tumor organoids) (Table 2). In vivo, a set of all RNA
transcripts of CAFs is not enough to restate the CAFs heterogeneity in the two-dimensional
cultures [250–252]. Although three-dimensional matrices are significantly useful in the
enrichment of our knowledge about the transcriptomes and phenotypes of CAFs [252–255],
there are several limitations. By using such matrices, the identification of CAFs may not be
entirely recapitulated. This leads to a limited investigation of the crosstalk between different
cell populations in vitro. Models that use the ECM produced by CAFs [256] or maintain all
cell populations within the tumor (such as the liquid–air interface) and microfluidic culture
(such as organs-to-chips) could be used in a study of CAFs in vivo [257–261].
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In terms of the in vivo models, although GEMMs for lineage tracing help us demon-
strate the origin, heterogeneity, plasticity and roles of fibroblasts in wound healing and
normal and inflammatory tissues, they fail in CAFs demonstration [262–267]. In addition,
the dissection of CAFs by recombinase-based models could be useful in the study of CAFs
in vitro [268]. The application of microscopy imaging techniques in GEMMs for CAFs
could also play a part in understanding the origin and dynamics of CAFs [254,269].

Using publicly available information, a recent study examined the quantity and
phenotype of cells marked by ASMA, PDGFR and FSP1 to investigate the relationship
between CAF marker expression in tumors from MMTV-PyMT mice and humans in breast
cancer. In human tumors, the expression of each CAF marker was heterogeneous and
varied from patient to patient. However, there was a striking resemblance between the
tumors from MMTV-PyMT mice and the consensus staining pattern for ASMA, PDGFR
and FSP1. Cells expressing ASMA and PDGFR were found in fibrotic streaks with a
spindle-shaped morphology, whereas FSP1+ cells had a rounded shape and were found
in both the overt stroma and tumor cell clusters. Overall, none of the markers utilized in
this study identified all CAF subsets. However, it was discovered that the distribution
and morphology of stromal fibroblasts expressing ASMA, PDGFR and FSP1 in mouse and
human breast tumors were strikingly similar [270].

Table 2. Culture models for studying CAFs.

Culture Model References

Generation of cancer spheroid and 3D mucosal sheet model [271–276]
Cell viability assays
Visualization of hypoxia in the 3D cell-sheet model
Green fluorescent protein gene transfection
Reverse transcription-quantitative polymerase chain reaction and immunoblotting

CAFs sources

Primary CAFs (mouse/human) [277,278]
LX-2 [279–286]
Primary HSCs [287,288]
3T3-NIH [288]

Cell lines

HCT-116 [224,279]
LS174T [279]
HT-29 [224,289]
CT-26 [287,288]

6. Conclusions

Although a great therapeutic progression has been achieved in the cancer field, and the
screening methods are more widespread, it remains one of the major health issues. Tumor
stroma has been examined for tumor growth, invasion, metastasis and resistance to therapy.
An important component of tumor stroma are CAFs. CAFs, along with the rest of the TME,
interact with cancer cells, leading mainly to tumor progression. This interaction occurs
through many ways, such as exosomal transfer. EMT transformation is one of the main
ways by which normal cells turn to different CAFs types. Different CAFs have different
functions, promoting tumor progression through various pathways.

CRC, in comparison to other malignancies, has a better prognosis and treatment
response. However, in recent years, little progress has been made in therapeutic op-
tions, especially in the metastatic setting. In addition, only <15% of CRC is characterized
as metastatically high and can earn the benefit from the immune checkpoint inhibitors.
Regarding the molecular classification of CRC, CMS4 has been correlated with a worse
prognosis. CMS4 is linked to mesencymal transformation and high stromal gene expression.
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According to the above and taking into consideration the role of CAFs in CRC develop-
ment, growth, invasion, metastasis and treatment resistance, their detection, characteriza-
tion and functional understanding is of great significance for reversing tumor growth and
chemoresistance, leading to greater treatment options. Different markers have been used
for the detection and characterization of CAFs in the CRC setting, and different targeted
therapeutic molecules are under evaluation. However, there is no consensus for their use,
and no benefit has been proven.

More preclinical and clinical research remains to be performed to clarify the CAFs’
mechanisms of action and their role as a potential therapeutic target in CRC.
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