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Abstract

Biochemistry textbooks and cell culture experiments seem to be
telling us two different things about the significance of external
glutamine supply for mammalian cell growth and proliferation.
Despite the fact that glutamine is a nonessential amino acid that
can be synthesized by cells from glucose-derived carbons and
amino acid-derived ammonia, most mammalian cells in tissue
culture cannot proliferate or even survive in an environment that
does not contain millimolar levels of glutamine. Not only are the
levels of glutamine in standard tissue culture media at least ten-
fold higher than other amino acids, but glutamine is also the most
abundant amino acid in the human bloodstream, where it is
assiduously maintained at approximately 0.5 mM through a
combination of dietary uptake, de novo synthesis, and muscle
protein catabolism. The complex metabolic logic of the proliferat-
ing cancer cells’ appetite for glutamine—which goes far beyond
satisfying their protein synthesis requirements—has only recently
come into focus. In this review, we examine the diversity of
biosynthetic and regulatory uses of glutamine and their role in
proliferation, stress resistance, and cellular identity, as well as
discuss the mechanisms that cells utilize in order to adapt to
glutamine limitation.
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Introduction

With the exception of a few instances, such as cleavage divisions of

a fertilized zygote in early embryogenesis, cell proliferation is linked

to the biomass accumulation. In the past decade, studies in cancer

cell metabolism revealed the central role of numerous metabolic

pathways and metabolites in facilitating biosynthesis and bioener-

getics required for cell growth and proliferation. Thus, to ensure

accumulation of biomass necessary for proliferation, deregulated

pro-proliferative and pro-survival signals of cancer cells rewire

metabolism to support biosynthesis of proteins, nucleotides,

glycans, and lipids, as well as production of energy and NADPH.

In this review, we will first describe the many uses of glutamine

and its products in proliferating cells, including its role in supplying

carbon and nitrogen atoms for construction of a variety of macro-

molecular precursors, as well as its significance as a regulator of

biosynthesis and bioenergetics, anti-oxidative defense, and gene

expression. The consequence of the high demand of proliferating

cells for glutamine is the disproportionate depletion of the latter

from the surrounding environment. To this end, we will discuss the

adaptations that cells use to deal with glutamine limitation, includ-

ing de novo biosynthesis and proteolytic scavenging.

Glutamine utilization beyond protein synthesis

Along with the rest of the proteinogenic amino acids, glutamine is

incorporated into proteins. It is estimated that glutamine accounts

for approximately 4.7% of all amino acid residues in human

proteome, while in select proteins, for instance, in the structural

component of skin epidermal barrier, involucrin, the representation

of glutamine residues can reach 25%. However, consumption of

glutamine in proliferating cells far exceeds the demands imposed by

protein synthesis.

Amino acids contribute to the majority of biomass accumulation

in proliferating mammalian cells (Hosios et al, 2016). In contrast to

unicellular organisms, mammals cannot synthesize all the necessary

amino acids for protein synthesis, and must acquire nine out of 21

amino acids from the diet. Notably, the biosynthesis of the rest of

the amino acids, which are regarded to as nonessential, is heavily

dependent on glutamine. Thus, glutamine deamidation, performed

by numerous enzymes in the cells, yields glutamate, which can

further be transformed into proline through a series of reductive

steps, as well as into aspartate and asparagine, via the utilization of

oxidative reactions of the tricarboxylic acid (TCA) cycle. Glutamine-

derived glutamate also donates its amine nitrogen toward the

biosynthesis of alanine and serine and, by extension, glycine.

Glutamine as a nitrogen donor and amino acid precursor

Another dominant class of nitrogenous compounds that are required

for cell proliferation is nucleotides. Notably, glutamine is an indis-

pensable donor of reduced nitrogen for building both purine and

pyrimidine bases (Wise & Thompson, 2010). In purine biosynthesis,

two glutamine nitrogens are consumed in the biosynthesis of
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inosine monophosphate (IMP), which gives rise to both AMP and

GMP. A third nitrogen from glutamine is required to produce guano-

sine monophosphate (GMP) from inosine monophosphate (IMP).

Likewise, the initiating step of pyrimidine biosynthesis involves

condensation of glutamine-derived nitrogen with bicarbonate and

ATP to generate carbamoyl phosphate. Finally, one more glutamine

is consumed in the synthesis of cytidine triphosphate (CTP) from

uridine triphosphate (UTP).

Notably, the increased utilization of glutamine nitrogen in

nucleotide production is facilitated by the growth-promoting signals.

For instance, elevated levels of c-Myc induce the expression of a

number of enzymes in the nucleotide biosynthetic pathways, includ-

ing phosphoribosyl pyrophosphate synthetase 2 (PRPS2), carbamoyl

phosphate synthetase II (CAD), thymidylate synthase (TS), inosine

monophosphate dehydrogenase 1/2 (IMPDH1/2), and others

(Eberhardy & Farnham, 2001; Liu et al, 2008; Mannava et al, 2008;

Cunningham et al, 2014). Similarly, loss of Rb and E2F upregulation

induces nucleotide biosynthesis enzymes as well (Nicolay & Dyson,

2013). In addition, cancer cells display increased expression of

phosphoribosyl amidotransferase (PPAT), the enzyme that transfers

amide nitrogen from glutamine to 5-phosphoribosyl pyrophosphate

(PRPP), a key reaction in purine biosynthesis (Goswami et al,

2015). In addition to being a c-Myc target gene, the CAD enzyme,

which generates carbamoyl phosphate in the initiating reaction in

the pyrimidine biosynthesis cascade, is positively regulated via

phosphorylation by MAP kinase or by S6 kinase downstream of

mTORC1 (Graves et al, 2000; Ben-Sahra et al, 2013; Robitaille et al,

2013). The transcriptional induction of genes induced in nucleotide

biosynthesis is also observed in cancer cells harboring mutant p53

(Kollareddy et al, 2015).

The above results suggest a potential mechanism that proliferat-

ing cells use to coordinate growth-promoting signals with glutamine

utilization to drive nucleotide biosynthesis. Interestingly, the five

reactions in nucleotide biosynthesis that directly utilize glutamine

as a substrate exclusively use the c-nitrogen (amide group) of gluta-

mine (Fig 1A). In addition to nucleotide biosynthesis, the c-nitrogen
of glutamine in mammalian cells is also required to synthesize

NAD, glucosamine-6-phosphate, a precursor for protein glycosyla-

tion, and asparagine, another nonessential amino acid (Richards &

Schuster, 1998; Wellen et al, 2010; Fig 1B).

In addition to being incorporated into nucleotides, amino acids,

and glucosamine-6-phosphate, the c-nitrogen of glutamine is subject

to a direct cleavage by glutaminase (GLS) enzymes, producing gluta-

mate and free ammonia. GLS is frequently deregulated in cancer

(Gao et al, 2009; Hu et al, 2010; Suzuki et al, 2010; Lukey et al,

2016), and loss of a single copy of Gls1 delays tumorigenesis in a

mouse model of hepatocellular carcinoma (Xiang et al, 2015). It

was proposed that the deamidation of c-nitrogen by GLS contributes

to the major intracellular pool of glutamate, another NEAA that can

continue to supply both nitrogen and carbon for other biosynthetic

reactions. The existence of both mitochondrial and cytosolic

isoforms of GLS suggests the importance of compartmentalized

production of glutamate, such that the two segregated pools can be

used for distinct biosynthetic processes (Cassago et al, 2012). In this

regard, a number of glutaminase inhibitors have been developed

and show tumor-suppressive activities in preclinical models (Wang

et al, 2010; Gross et al, 2014; Shroff et al, 2015; Xiang et al, 2015).

However, in certain cases GLS inhibitors do not have a therapeutic

effect (Davidson et al, 2016). One possible interpretation is that

beside GLS-catalyzed reaction, other biochemical reactions that use

c-nitrogen of glutamine, described above, release glutamate as a

product as well. Thus, as GLS activity is inhibited, more glutamine

may become funneled into other glutamine-utilizing pathways.

Another explanation is that in certain cases, cancer cells may use

glucose-derived carbon to maintain TCA cycle intermediates and

produce glutamate, therefore diminishing the contribution of the

GLS-catalyzed reaction for these processes.

One advantage that proliferating cells that rely on GLS to produce

glutamate from glutamine may have is the ability to maintain a high

ratio of glutamate to a-ketoglutarate, which is necessary for driving

the biosynthesis of other NEAAs. To this end, the remaining nitro-

gen of glutamate, which resides at the a-position of glutamine

carbon chain (the amine group, Fig 1A), can be transferred to dif-

ferent a-ketoacids by a family of aminotransferases to produce other

NEAAs, among which are alanine, aspartate, serine, and ornithine.

Recently, alanine aminotransferase 2 (GPT2) has been found to be

upregulated by PIK3CA mutation in colorectal cancer, as well as by

liver receptor homolog 1 (LRH-1) in liver cancer (Hao et al, 2016a;

Xu et al, 2016). Hao et al (2016a) show that PIK3CA mutation

causes elevated expression of GPT2, an aminotransferase that trans-

fers amino group from glutamate to pyruvate to generate alanine.

Similarly, in liver cancer, both GPT2 and aspartate aminotransferase

1 (GOT1), which transfers an amino group from glutamate to

oxaloacetate to generate aspartate, are transcriptionally induced by

LRH-1 (Xu et al, 2016). Furthermore, phosphoserine aminotrans-

ferase (PSAT1) transfers amino group from glutamate to 3-phospho-

hydroxypyruvate to generate 3-phosphoserine, the precursor of

serine. Overexpression of PSAT1 has been found to confer growth

advantage and resistance to chemotherapy in colorectal cancer (Vie

et al, 2008). In addition, elevated expression of PSAT1 correlates

with poor prognosis in patients with esophageal squamous cell

carcinoma (ESCC) (Liu et al, 2016). Indeed, multiple studies show

that aminooxyacetate (AOA), a general inhibitor of cellular amino-

transferases, profoundly inhibits tumor growth in vitro and in vivo

(Thornburg et al, 2008; Korangath et al, 2015; Hao et al, 2016a).

Finally, glutamate supplies both the carbon backbone and the nitro-

gen for proline biosynthesis. Notably, oncogenic c-Myc induces the

expression of proline biosynthesis enzymes while suppressing

proline dehydrogenase (POX/PRODH), the first enzyme for proline

catabolism (Liu et al, 2012). These studies implicate glutamate as a

critical product of glutamine catabolism, which is used to synthesize

several other NEAAs.

Glutamine as a carbon donor

Beyond its role as a nitrogen donor, glutamine serves as an impor-

tant source of carbon for cellular bioenergetic and biosynthetic

needs. Indeed, cell proliferation is associated with the high influx

of glutamine-derived carbon into the TCA cycle (DeBerardinis

et al, 2007). Why do proliferating cells require the continuous

replenishing of the TCA cycle? Indeed, as demonstrated by

DeBerardinis et al, proliferating cells utilize the TCA cycle as the

source of not only bioenergetic NADH and FADH2 equivalents, but

also biosynthetic precursors as well. Thus, most of the citrate

generated in the TCA cycle in proliferating cells becomes exported

into cytosol, where it is converted into acetyl-CoA, a precursor for

the biosynthesis of fatty acids and cholesterol. Furthermore, TCA
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cycle-derived oxaloacetate is used to synthesize aspartate and

asparagine.

In many cell types, pyruvate carboxylation to oxaloacetate is

suppressed, thereby rendering them reliant on glutamine catabolism

to replenish the oxaloacetate that can condense with acetyl-CoA to

produce citrate and drive the TCA cycle (DeBerardinis et al, 2007).

The efflux of carbon precursors away from the TCA cycle must be

balanced by the influx of carbons elsewhere. A route of entry for the

glutamine-derived carbon into the TCA cycle is via the conversion

of glutamate into its a-ketoacid form, a-ketoglutarate (a-KG;
Fig 1C). In agreement with this notion, GLS1 expression itself is

under positive control by c-Myc (Gao et al, 2009). In addition, a

cell-permeable form of a-KG (dimethyl-a-KG) can completely

suppress glutamine-depletion-induced apoptosis in MYC-trans-

formed cells (Yuneva et al, 2007; Wise et al, 2008). As far as the

conversion of glutamate to a-ketoglutarate goes, this reaction can be

catalyzed either by glutamate dehydrogenase (GDH), which releases

free ammonia, or by a family of aminotransferases, which transfer

the a-amine to a-ketoacids, expanding the nonessential amino acid

pool. These aminotransferases may play a dominant role to replen-

ish the cellular pool of a-KG, as their inhibition induces cell death,

which can be rescued by dimethyl-a-KG (Wise et al, 2008).

However, when glycolysis is perturbed, GDH is required for cell

survival, suggesting a potential compensation due to the lack of

glucose-derived carbon influx into the TCA cycle (Yang et al, 2009).

In addition to its role in providing carbon and nitrogen toward

the biosynthesis of diverse biosynthetic precursors, glutamine

carbons also contribute to ATP production through their oxidation

in the TCA cycle. Indeed, in proliferating cells, glutamine depletion

markedly reduces NADH/NAD+ ratio and inhibits oxygen consump-

tion (Fan et al, 2013). This study concludes that glycolysis alone is

not sufficient to sustain ATP production, even though the inhibition

of complex I of the respiratory chain is not able to alter the cellular

ATP level when glucose is unlimited (Javeshghani et al, 2012).

However, whether ATP is a limiting factor for cell proliferation has

been controversial until recently. Two recent studies shed light on
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Figure 1. Glutamine supplies nitrogen and carbon for biosynthetic reactions.
(A) Chemical structure of glutamine. (B) Usage of c- and a-nitrogen of glutamine in mammalian cells. GLS: glutaminase; GDH: glutamate dehydrogenase; ATs:
aminotransferases. (C) Glutamine-derived carbon enters the TCA cycle through a-KG to supply anaplerotic substrates. Glucose-derived pyruvate can enter the TCA cycle
through OAA. This reaction is mediated by PC, which is suppressed when glutamine-derived carbon enters the TCA cycle. Gln: glutamine; a-KG: a-ketoglutarate; Suc: succinate;
Fum: fumarate; Mal: malate; OAA: oxaloacetate; Cit: citrate; Glu: glutamate; Asp: aspartate; Asn: asparagine; Glc: glucose; Pyr: pyruvate; Ac-CoA: acetyl-CoA; SDH: succinate
dehydrogenase; FH: fumarase; MDH: malate dehydrogenase; GOT: aspartate aminotransferase; ASNS: asparagine synthetase; PC: pyruvate carboxylase; IDH1/2: isocitrate
dehydrogenase 1/2. IDH1 is localized in cytosol.
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this question. Birsoy et al (2015) and Sullivan et al (2015) have

demonstrated that the inhibition of cell proliferation by oligomycin,

an ATP synthase inhibitor, can be rescued by an uncoupling agent

FCCP, which dissipates the electrochemical gradient across the mito-

chondrial membrane, resetting the NADH/NAD+ ratio to normal. In

this study, the authors show that it is not the mitochondrial ATP

production, but the uninterrupted flux through the TCA cycle,

enabled by the low NADH/NAD+ ratio, is the major limiting factor

for cell proliferation. Thus, continued transfer of electrons from

NADH to molecular oxygen is necessary for maintaining the low

NADH/NAD+ ratio, which, in turn, allows the TCA cycle flux

toward the biosynthesis of oxaloacetate. Oxaloacetate is an immedi-

ate precursor of aspartate, a proteinogenic amino acid, as well as a

precursor for the biosynthesis of nucleotides and asparagine.

Together, these results suggest that despite the fact that glutamine

carbons contribute to a significant fraction of cellular energy

production, the remaining ATP production via glycolysis is suffi-

cient to maintain the energy needed for a cell to proliferate even

when the electron transport is compromised.

Therapeutic application of glutamine catabolism in cancer

Given a versatile usage of glutamine in proliferating cells, a number

of glutamine-mimetic compounds, including 6-diazo-5-oxo-L-norleu-

cine (DON), acivicin, and azaserine, have been evaluated in pre-

clinical and clinical settings for their anti-tumor activities. Despite

their promising tumor-suppressive activities in vitro, all of these

compounds displayed significant toxicity toward the gastrointestinal

tract, immune cells, and central nerve system due to their nonselec-

tive inhibition of glutamine metabolism (Ahluwalia et al, 1990). In

search for more selective inhibitors of glutamine catabolism, exten-

sive efforts have been focused on glutaminase (GLS), the activity of

which is dysregulated in variety of cancers. In this regard, several

glutaminase inhibitors have been developed, including 968, BPTES,

and CB-389 (Le et al, 2012; Gross et al, 2014; Stalnecker et al,

2015). Among these, CB-389 is currently being tested in a number

of phase I clinical trials, where its efficacy is being evaluated in

patients with both solid tumors and hematological malignancies.

In addition to the GLS-targeted compounds, inhibitors that target

the conversion of glutamate to a-KG have also been tested in

preclinical models of breast cancer and neuroblastoma (Qing et al,

2012; Korangath et al, 2015). In this regard, green tea catechin

EGCG, which is a GDH inhibitor, and aminooxyacetate (AOA), a

nonselective aminotransferase inhibitor, have been evaluated. The

anti-tumor efficacy of these inhibitors may depend upon the relative

dependency of a tumor on the activity of GDH or on aminotrans-

ferases as means of replenishing the intracellular pool of a-KG from

glutamate. Indeed, AOA has been approved for the treatment of

tinnitus (Guth et al, 1990). Its application in cancer deserves further

exploration in light of the critical role of aminotransferases in medi-

ating glutamine-dependent biosynthesis.

Role of glutamine in redox control

Tumor cells encounter oxidative stress during their initiation,

progression, metastatic colonization, and following the exposure to

anti-tumor therapeutics, which increases their dependence on anti-

oxidative responses (Gorrini et al, 2013). Products of glutamine

metabolism in particular play an essential role in facilitating cellular

anti-oxidative defenses. First, glutamine-derived glutamate is

utilized in the de novo biosynthesis of glutathione, a primary

cellular antioxidant. Glutathione is a tripeptide comprised of three

NEAAs: glutamate, cysteine, and glycine (Lu, 2009). Glutamate–

cysteine ligase (GCL) condenses glutamate with cysteine in an ATP-

dependent manner to generate c-glutamylcysteine, which is further

condensed with glycine through glutathione synthetase (GS), gener-

ating glutathione (Fig 2). In agreement with glutamine being the

primary source of glutamate in the cell, exposure of cells to the

uniformly labeled 13C-glutamine shows a pattern of enrichment of

five 13C carbons in glutathione. Glutamine starvation of transformed

cells reduces their glutathione pool (Yuneva et al, 2007). Human

primary acute myeloid leukemia (AML) and metastatic liver cancer

are characterized by significant elevation of the enzymes for

glutathione biosynthesis, including GCL and GS (Pei et al, 2013;

Nguyen et al, 2016a), suggesting that these tumors might be

sensitive to inhibitors of glutathione biosynthesis.

A second way in which glutamine-derived glutamate contributes

to glutathione biosynthesis is through facilitating the uptake of

cystine via the xCT transporter, which is coupled to the efflux of

glutamate (Fig 2). Once inside the cell, cystine is converted to

cysteine, which can then be incorporated into glutathione. Gluta-

mine-starved breast cancer cells display a defect in cystine uptake

through the xCT antiporter (Timmerman et al, 2013). In addition,

pharmacological inhibition of xCT elevates cellular reactive oxygen

species (ROS) levels and suppresses tumor growth, making it a

potential therapeutic target (Timmerman et al, 2013; Lanzardo et al,

2016; Tsuchihashi et al, 2016). Interestingly, cysteine itself can be

synthesized in the cell from homocysteine, an intermediate of

methionine catabolism (Lu, 2009). It will be interesting to know

whether the resistance of some tumor cells to xCT inhibitors is at

least partially due to their capacity to synthesize cysteine de novo.

The third way in which glutamine contributes to the cellular

redox balance is via support of NADPH production. In a proliferating

cell, reducing equivalent donor NADPH is utilized not only in the

biosynthesis of fatty acids and cholesterol, but also to revert oxidized

glutathione (GSSG), as well as thioredoxins, a class of cysteine-

containing antioxidant proteins, back to their reduced states. Son

et al showed that pancreatic ductal adenocarcinoma (PDAC) cells

rely on glutamine to maintain the cytosolic NADPH pool (Son et al,

2013). In this paper, the authors show that glutamine-derived aspar-

tate is converted to oxaloacetate (OAA) in the cytosol through GOT1,

which is transcriptionally induced by mutant KRas, a common onco-

genic lesion in PDAC. Subsequently, OAA is converted to malate

by malate dehydrogenase 1 (MDH1), and malate is converted to

pyruvate to generate NADPH through malic enzyme 1 (ME1).

Glutamine metabolism contributes to chromatin organization

Multiple lines of evidence indicate that select cellular metabolites

are not only used to generate macromolecular building blocks or

extract energy, but also serve as co-factors or substrates in a vari-

ety of cellular regulatory cascades, including those that directly

modify histones and DNA. Thus, levels of certain metabolites are

continuously monitored by a cell, directly informing cellular deci-

sions on gene expression, affecting cellular differentiation as a

result (Pavlova & Thompson, 2016). The glutamine-derived

metabolite a-KG has been implicated in modulating cellular histone

and DNA methylation levels. a-KG serves as a co-substrate for a

class of dioxygenase enzymes, among which are Jumonji C
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domain-containing histone demethylases and TET family DNA

demethylases, which catalyze the oxidation of methyllysine resi-

dues of histones to hydroxymethyllysine and oxidation of 5-

methylcytosine to 5-hydroxymethylcytosine, respectively (Fig 3). In

these reactions, a-KG itself is oxidized to succinate, and the rising

levels of the latter can inhibit the progression of a-KG-dependent
histone or DNA demethylase reactions. Indeed, in murine embry-

onic stem cells (mESC), elevated a-KG/succinate ratios are associ-

ated with the naı̈ve pluripotent state, and the direct manipulation

of intracellular a-KG by either addition of cell-permeable form of

a-KG or via glutamine withdrawal is sufficient to modulate

H3K27me3 and TET-dependent DNA methylation and affect dif-

ferentiation (Carey et al, 2015). Glutamine depletion can also

promote differentiation of naı̈ve CD4+ T cells into immunosuppres-

sive Foxp3+ regulatory T (Treg) cells even in the presence of

cytokines that typically promote the induction of T helper 1 (TH1)

cells (Klysz et al, 2015). Accordingly, addition of dimethyl-a-KG
restores the intracellular a-KG levels and enables TH1 cell differen-

tiation under glutamine deprivation. In cancer cells, loss-of-

function mutations of succinate dehydrogenase (SDH) subunits

have been found in familial paragangliomas and pheochromocy-

tomas, as well as in a subset of sporadic gastrointestinal stromal

tumors (Astuti et al, 2001; Janeway et al, 2011). Accumulation of

intracellular succinate in these tumors as a consequence of SDH

loss is associated with a global inhibition of DNA demethylation,

which contributes to their tumorigenic state (Xiao et al, 2012;

Killian et al, 2013; Letouze et al, 2013). Recently, Pan et al (2016)

showed that glutamine deficiency in the core region of solid

tumors correlates with histone hypermethylation, dedifferentiation,

and therapeutic resistance in a melanoma model.

The central role of glutamine-derived a-KG in modulating histone

and DNA methylation is also exemplified by the gain-of-function

mutations in IDH1 and IDH2, which have been identified in glioma,

chondrosarcoma, cholangiocarcinoma, acute myeloid leukemia

(AML), and a small portion of adult T-cell acute lymphoblastic

leukemia (T-ALL) (Balss et al, 2008; Parsons et al, 2008; Mardis

et al, 2009; Paschka et al, 2010; Borger et al, 2012; Cohen et al,

2013; Van Vlierberghe et al, 2013). The mutations of IDH1 or IDH2

exhibit a neomorphic activity by converting glutamine-derived a-KG
to 2-hydroxyglutarate (2-HG), which competitively inhibits a-KG-
dependent histone and DNA demethylases (Dang et al, 2010;

Figueroa et al, 2010; Ward et al, 2010; Lu et al, 2012; Turcan et al,

2012; Fig 3). Consistently, glioma cells with mutant IDH1 display an

elevated dependency on glutamine, rerouting the entry of pyruvate

into the TCA cycle through PC (Seltzer et al, 2010; Izquierdo-Garcia

et al, 2014). In a mouse model of T-ALL, mutation of IDH1 increases

the sensitivity of leukemic cells to glutamine depletion (Hao et al,

2016b), indicating a potential therapeutic vulnerability in tumors

harboring IDH mutations.

In addition to dioxygenase enzymes that drive histone and DNA

demethylation, a-KG also serves as a substrate for a class of prolyl

4-hydroxylase enzymes, which mediate the ubiquitination and

degradation of hypoxia-inducible factor 1 a (HIF1a), a key transcrip-

tion factor that facilitates the cellular adaptation to low oxygen

levels (Fig 3). Despite the fact that IDH1 mutations were originally

found to result in an increased level of HIF1a (Zhao et al, 2009),

Kuivonen et al showed that prolyl 4-hydroxylases are only sensitive

to the L-enantiomer (Koivunen et al, 2012). Further exploration is

necessary to determine the contribution of glutamine to the gene

expression as a consequence of the alteration of intracellular a-KG,
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Figure 2. The key role of glutamine-derived glutamate in glutathione biosynthesis.
Glutamine-derived glutamate is a necessary substrate to synthesize glutathione. In addition, glutamate functions as an exchanging counter ion to import extracellular cystine
through the xCT transporter. In the cell, cystine is converted to cysteine that is used as a second substrate for glutathione biosynthesis. Gln: glutamine; Glu: glutamate; Gly:
glycine; GSH: glutathione; GSSG: glutathione disulfide; a-KG: a-ketoglutarate: Ser: serine; Met: methionine; HomoCys: homocysteine; GCL: glutamate–cysteine ligase; GS:
glutathione synthetase; CBS: cystathionine beta-synthase; PSAT1: phosphoserine aminotransferase 1.

The EMBO Journal Vol 36 | No 10 | 2017 ª 2017 The Authors

The EMBO Journal Glutamine metabolism in cancer Ji Zhang et al

1306



2-HG, and succinate, which can affect global chromatin modification

patterns or levels of specific transcriptional regulators, such as HIF,

depending on the cellular context.

Cellular adaptations to glutamine limitation

Increased consumption of glutamine by proliferating tumor cells,

coupled with inadequacies of tumor vascular supply, results in

selective depletion of glutamine from the microenvironment (Vaupel

et al, 1989). In tumors, glutamine levels can be profoundly reduced

when compared to the surrounding normal tissues and plasma

(Roberts et al, 1956; Rivera et al, 1988; Marquez et al, 1989). In

addition, a spatial examination of amino acid levels in cancer cell

xenografts has found glutamine to be among the most depleted in

the xenograft core, when compared to the periphery of the tumor

(Pan et al, 2016). Furthermore, metabolomic analysis from primary

human pancreatic ductal adenocarcinoma (PDAC) tissue revealed a

significant reduction of glutamine and several other NEAAs in

the tumor tissues relative to the adjacent normal tissues as well

(Kamphorst et al, 2015). These findings warrant further investiga-

tion of the adaptations that various tumors may employ to augment

limited glutamine levels. Understanding these adaptations may not

only uncover tumor metabolic vulnerabilities that can be exploited

in anti-tumor therapy, but also provide guidance for more effective

immunotherapy as well, as the tumor-associated T lymphocytes

may compete with tumor cells for glutamine.

Glutamine uptake

One way to increase glutamine acquisition within the tumor envi-

ronment is through the induction of glutamine uptake. In most cells,

ASCT2 is the major transporter for glutamine uptake. Its expression

is upregulated by oncogenic MYC or E2F3, consistent with the

role of these signaling molecules in directly increasing glutamine

uptake (Wise et al, 2008; Reynolds et al, 2014). Elevated expression

of ASCT2 was found in triple-negative breast cancer patients,

correlating with poor survival in xenograft mouse models (van

Geldermalsen et al, 2016). Gamma-L-glutamyl-p-nitroanilide (GPNA),

an ASCT2 inhibitor, has been shown to suppress glutamine uptake

and cell growth in lung cancer cells (Hassanein et al, 2013). In mice,

ASCT2 deficiency impairs the induction of TH1 and TH17 cells, due

to a defect of glutamine uptake and mTORC1 activation (Nakaya

et al, 2014). However, ASCT2 is not the only transporter for gluta-

mine uptake. It was recently reported that depletion of ASCT2 leads

to the induction of SNAT1 and SNAT2, two other sodium-neutral

amino acid transporters, which is sufficient to compensate for gluta-

mine uptake (Broer et al, 2016; Fig 4A). Glutamine transporters are

potential cancer therapeutic targets, but the therapeutic effects

associated with their inhibition may be affected by the effects of this

inhibition on the transport of other amino acids as well.

In addition to its therapeutic implications, the increased uptake

of glutamine by some tumors provides a unique potential for tumor

imaging. Indeed, glucose-based [18F] fluorodeoxyglucose positron

emission tomography (FDG-PET) has been used for thirty years to

detect and monitor tumors in clinic, exploiting the phenomenon of

the markedly elevated uptake of glucose by a wide variety of tumors

(Kelloff et al, 2005). However, FDG-PET imaging is not effective in

brain tumors, as normal brain tissue takes up large quantities of

glucose as well. In contrast to FDG-based imaging, [18F] fluorinated

glutamine (18F-FGln) displays low background uptake in brain

tissues, and has been successfully used for tumor detection in

mouse models of glioma and in glioma patients (Lieberman et al,

2011; Ploessl et al, 2012), validating it as a diagnostic tool (Venneti

et al, 2015).
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Figure 3. Glutamine-derived a-KG is a substrate for a-KG-dependent dioxygenases.
a-KG is the substrate of Jumonji C histone demethylases (JHDM) and TET DNA demethylases and therefore mediates histone and DNA demethylation. In addition, a-KG is the
substrate of prolyl hydroxylase (PHD) that mediates HIF1a ubiquitination and degradation. These a-KG-dependent dioxygenases convert a-KG to succinate that can feedback
inhibit their dioxygenase activity. Either cancer-associated IDH1/2 mutations or oxygen limitation can cause accumulation of 2-HG, which can competitively inhibit a-KG-
dependent dioxygenases.
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Glutamine biosynthesis de novo

The fact that most cancer cells cannot proliferate or even survive in

the absence of exogenous glutamine is surprising, because mamma-

lian cells possess all the necessary enzymatic machinery to synthe-

size glutamine de novo. In particular, glutamine synthetase (GLUL)

enzyme catalyzes the condensation reaction between glutamate and

ammonia in an ATP-dependent manner, which generates glutamine.

In mammalian tissues, GLUL is ubiquitously expressed but is partic-

ularly enriched in the liver, brain, and muscle (Haberle et al, 2006).

Multiple growth factors and oncogenic signals positively regulate

GLUL transcription (van der Vos et al, 2012; Bott et al, 2015; Cox

et al, 2016), and exogenous glutamine was found to directly destabi-

lize GLUL protein through facilitating its ubiquitination and degra-

dation (Nguyen et al, 2016b). Elevated GLUL expression was found

to be an early marker of hepatocellular carcinoma (Long et al,

2010), and is a predictor of poor survival in patients with glioma

and liver cancer (Osada et al, 2000; Rosati et al, 2013). However,

despite expressing GLUL, most cancer cells in culture require exoge-

nous glutamine for growth and survival. One simple interpretation

is that at least in tissue culture, de novo biosynthesis of glutamine is

not sufficient to accommodate the demands of the great variety of

glutamine-utilizing enzymes. However, the limiting factors for cellu-

lar adaptation to the deficit of exogenous glutamine have yet to be

elucidated. One potential lead is a recent report demonstrating that

mESC can proliferate without exogenous glutamine when treated

with both a MEK and a GSK-3b inhibitor (Carey et al, 2015). The

fact that the MEK pathway and/or GSK-3b are activated in most

malignant cells suggests that their activation may be responsible for

the inhibition of cancer cell to upregulate glutamine synthesis to

levels that support cell growth.

Second, tumors have been reported to synthesize some gluta-

mine. Kung et al (2011) showed that luminal breast cancer cells are

resistant to glutamine-depletion-induced growth inhibition and

apoptosis, when compared to the basal breast cancer cells. Consis-

tently, luminal breast cancer cells display high levels of GLUL

expression. In a mutant KRas-driven mouse pancreatic tumor model,

oncogenic MYC enhances GLUL expression (Bott et al, 2015). In this

study, the authors show that inhibition of GLUL suppresses tumor

growth in vivo. Furthermore, glioma cells were shown to utilize

glucose carbons to maintain TCA cycle anaplerosis, and conse-

quently, glutamate and glutamine biosynthesis under glutamine

limitation (Tardito et al, 2015; Fig 4A). However, the source of the

free ammonia that is necessary for glutamine biosynthesis through

the GLUL remains more of a mystery. Together, these studies

suggest that the dependency of tumor cells on glutamine can be

dictated both by the oncogenic signals and by the tissue of origin.

In some cell types, asparagine is sufficient to suppress glutamine-

depletion-induced apoptosis (Zhang et al, 2014). However, despite

the fact that most cells synthesize asparagine from glutamine

(Balasubramanian et al, 2013), its catabolism has only been reliably

reported in unicellular organisms (Peterson & Ciegler, 1969; Jones &

Mortimer, 1970; Dunlop & Roon, 1975; Fig 4B). Recently, it was
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Figure 4. Glutamine uptake and de novo biosynthesis.
(A) Glutamine uptake can be mediated by ASCT2 and SNAT1/2 transporters, allowing the application of 18F-FGln-based PET imaging as a diagnostic tool for brain tumors.
Furthermore, glucose-derived carbon can be used as precursors to synthesize glutamine de novo. (B) A potential mechanism for asparagine as the nitrogen source for
glutamine biosynthesis. However, this activity has only been reliably observed in unicellular organisms thus far. GLUL: glutamate-ammonia ligase (glutamine synthetase);
MSO: methionine sulfoximine.
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reported that asparagine may rescue cells by replacing a required

role for glutamine as a counter ion in the import of extracellular

amino acids, which is essential to maintain mTOR activation and

protein translation (Nicklin et al, 2009; Krall et al, 2016). Whether

asparagine also supplies reduced nitrogen for glutamine biosynthe-

sis, or plays other regulatory roles to mediate cellular adaptation to

glutamine limitation in mammalian cells remains to be determined.

Glutamine catabolism in vivo

As mentioned above, the ability of some tumors to synthesize gluta-

mine de novo to meet biosynthetic needs suggests that exogenous

glutamine may not be required by all proliferating cells in vivo. In

an orthotopic mouse model of primary human glioma and in a

mouse model of lung cancer driven by mutant KRas, it has been

shown that the tumor cells can utilize glucose as a preferred

anaplerotic entry port into the TCA cycle via the action of pyruvate

carboxylase (PC; Marin-Valencia et al, 2012; Davidson et al, 2016).

However, PC was found to be dispensable for the cancer cells

in vitro, when glutamine is supplied in the culture medium. These

two studies challenge the importance of glutamine catabolism in

replenishing the TCA cycle intermediates, a phenomenon observed

in most of the cultured cells. These results also put into question the

broader applicability of the therapeutics that target glutamine entry

into the TCA cycle or its catabolism via glutaminase. Further explo-

ration of other in vivo tumor models as well as clinical studies is

necessary to determine whether the limited dependence of some

tumor cells on glutamine anaplerosis is associated with select onco-

genic contexts or tissues of origin, or whether it reflects glutamine

availability in the specific tissue environments.

As mentioned above, availability of glutamine in the milieu of

the tumor is often limited (Roberts et al, 1956; Rivera et al, 1988).

The fact that cancer cells can use glutamine-derived carbons to fuel

the TCA cycle, or use glucose-derived carbons to both replenish the

TCA cycle and synthesize glutamine may reflect a certain degree of

metabolic plasticity of tumor cells, aimed at optimizing their growth

in shifting nutrient conditions. Furthermore, investigating the rela-

tive degree of tumor dependency on exogenous glutamine at distinct

stages of tumorigenesis—that is, in the primary tumor initiation and

expansion, local tissue invasion, survival in the circulation and

seeding, and colonization of distant organs—may provide further

insights into the therapeutic potential of targeting glutamine

metabolism in cancer therapy.

To evaluate how tumor glutamine dependency is influenced by

the concentration of amino acids and other nutrients that are typi-

cally encountered by cells in vivo, Tardito et al have designed a

serum-like modified Eagle’s medium (SMEM), which contains nutri-

ent concentrations at levels close to those found in human plasma,

and assessed the response to glutamine limitation of glioma cells

under these conditions. Indeed, they found that the cell proliferation

in SMEM medium was largely unaffected by the presence or absence

of exogenous glutamine; furthermore, GLUL was found to be both

necessary and sufficient for the proliferation in the absence of

exogenous glutamine (Tardito et al, 2015). In turn, newly synthe-

sized glutamine was then utilized for nucleotide biosynthesis to

support the growth of glioma cells. This study is consistent with the

fact that glucose-derived carbon is the main supply of the TCA cycle

intermediates in vivo, which can be used as precursors to synthesize

glutamine and other NEAAs. However, the source of reduced

nitrogen for the de novo glutamine biosynthesis remains more of a

mystery. As glutamine biosynthesis through GLUL enzyme requires

free ammonia, which is maintained at rather low levels in plasma

(less than 35 lM), and is absent in standard tissue culture media

formulations, ammonia can be generated through the catabolism of

glutamate, glycine, serine, methionine, threonine, histidine, and

tryptophan (Fig 4A); however, the relative contribution of these

sources to the ammonia supply for glutamine biosynthesis is in need

of further investigation. Insights into the sources of ammonia for the

de novo glutamine biosynthesis may unveil novel therapeutic targets

aimed at the inhibition of glutamine biosynthesis.

Protein and cell corpses can supply glutamine

In addition to the upregulation of uptake from the extracellular fluid

and de novo biosynthesis in cell, some tumor cells can use alterna-

tive ways to obtain glutamine and other amino acids via the break-

down of engulfed extracellular proteins, apoptotic bodies, or even

living cells. Such unconventional nutrient acquisition strategies can

play a critical adaptive role in conditions when glutamine is limited.

For example, extracellular proteins are abundant in plasma and

tumor environment, but are not typically considered as a nutrient

source. However, it was demonstrated that extracellular proteins

can be taken up by cells through macropinocytosis, a process that

involves a nonselective engulfment of the extracellular fluid phase,

which gives rise to giant vesicles termed macropinosomes (Kerr &

Teasdale, 2009). Engulfed proteins, as well as larger macromolecu-

lar structures, can then be digested through the action of lysosomal

proteases as means of recovering free amino acids (Fig 5).

Macropinocytosis has been described in normal, growth factor-

stimulated cells, but it becomes markedly enhanced by oncogenic

Ras signaling (Bar-Sagi & Feramisco, 1986). Indeed, incubation of

KRas-transformed cells with 13C-labeled soluble proteins under low

glutamine conditions restored labeled free amino acids and TCA

cycle intermediates, indicating a recovery of sufficient quantities of

glutamine to replenish the TCA cycle (Commisso et al, 2013). In this

study, the authors show that soluble albumin can rescue prolifera-

tion of KRas-transformed cells in glutamine-limited conditions.

Furthermore, 5-(N-ethyl-N-isopropyl) amiloride (EIPA), an inhibitor

of macropinocytosis, suppresses xenograft tumor growth, indicating

a critical role of macropinocytosis to supply amino acid in vivo

(Commisso et al, 2013). While not specific for glutamine, the cata-

bolism of proteins increases not only glutamine but other amino

acids essential and nonessential as well (Kamphorst et al, 2015;

Palm et al, 2015).

In addition to the extracellular proteins, the engulfment and

digestion of entire living cells or apoptotic cells can be also

employed as a way of recovering free amino acids (Fig 5). Thus, the

growth of MCF10A mammary epithelial cells under amino acid-free

conditions can sustain through the engulfment of living cells via the

process of entosis, and this effect can be reversed by blocking of

lysosomal-mediated digestion (Krajcovic et al, 2013). In this study,

similar effect was observed in macrophages engulfing apoptotic

bodies (Krajcovic et al, 2013). Notably, entosis represents an inter-

esting example of oncogene-driven cell–cell competition, as KRas-

transformed cells were found to be more likely to consume their

nontransformed neighbors than be engulfed themselves (Sun et al,

2014). Amino acids can also be recovered from the intracellular

sources, such as proteins and organelles, via a process of autophagy
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(Jiang et al, 2015). During autophagy, intracellular proteins and

organelles are enwrapped by a double-membrane structure that is

eventually fused with the lysosome for digestion (Fig 5). Since

autophagy recycles intracellular materials, it cannot give rise to the

biomass accumulation that is necessary for proliferation; however,

it can sustain energy production to support long-term cell survival

(Lum et al, 2005). Similar to the other amino acid scavenging path-

ways, autophagy recycles intracellular amino acids nonselectively.

Summary

Glutamine has been the most widely studied nutrient other than

glucose in the field of cancer cell metabolism during the past

decade. The central function of glutamine in cell proliferation can

be attributed to its role in numerous biological processes, including

its role in biosynthesis and bioenergetics, anti-oxidative defense,

chromatin modification/gene transcription, facilitation of transport

of other amino acids across the plasma membrane, and regulation

of cell signaling (Gonzalez & Hall, 2017). The relative effects of

glutamine as well as glutamine-derived metabolites can be dictated

by both the tissue and the oncogenic context. A number of pharma-

cological inhibitors of glutamine uptake and catabolism have been

developed. Some of them have entered clinical trials or have been

FDA-approved to be used in patients with cancer or other diseases

(Altman et al, 2016). One of the first successful metabolic therapies,

L-asparaginase has been used in the clinic to treat acute

lymphoblastic leukemia (ALL) for close to three decades. L-aspara-

ginase functions by depleting plasma asparagine and glutamine,

such that the ALL cells, which are auxotrophic for asparagine and

require large amounts of glutamine, are selectively affected by this

treatment (van den Berg, 2011). However, L-asparaginase has only

been proven to be effective in ALL and some NK/T-cell lymphomas.

Its application in AML, non-Hodgkin’s lymphoma (NHL), and solid

tumor has not been found to be successful (Clarkson et al, 1970;

Jaffe et al, 1971). Its use in other cancers has been limited by its

immunogenicity (van den Berg, 2011).

On the other hand, growing evidence suggests that various tumor

types may reside in an environment where glutamine is profoundly

limited. Therefore, tumor cells have to develop adaptive strategies

that would allow them to sustain their growth and survival. In this

regard, induction of de novo biosynthesis of glutamine or acquisition

of glutamine through catabolism of extracellular and intracellular

proteins has been shown to provide a source of missing glutamine

for cells. For example, in a KRasG12D-driven mouse pancreatic

cancer model, inhibition of mTORC1 remarkably enhances the

capacity of tumor cells to use extracellular protein to restore their

amino acid pools, leading to increase in the tumor burden (Palm

et al, 2015). Even though the phenotype is unlikely to be solely due

to the augmented glutamine acquisition, this study revealed a

fundamentally opposing strategy of nutrient acquisition in amino

acid-replete and amino acid-starved settings, which warrants recon-

sideration of the current therapeutic approaches that are based on

mTORC1 inhibition in at least some oncogenic contexts.

In addition, tumor cells can adapt to the limitation of glutamine

through the inhibition of global protein translation. In yeast and in

mammalian cells alike, glutamine was shown to activate mTORC1

in a RagA/B-independent manner (Stracka et al, 2014; Jewell et al,

2015). Accordingly, depletion of glutamine may result in suppressed

mTORC1 signaling, especially when other amino acids are limiting,

too. In addition, depletion of glutamine, along with other amino

acids, triggers the inhibitory eIF2a phosphorylation through GCN2
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Figure 5. Glutamine acquisition through proteolytic scavenging.
Extracellular proteins (macropinocytosis) and live/dead cells (entosis and phagocytosis) can be engulfed and digested in lysosomes to release free amino acids, including
glutamine. In addition, intracellular proteins and organelles can also be digested in lysosomes to release free amino acids via macroautophagy.
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kinase (Harding et al, 2000). Both of these signaling modulations

result in the inhibition of translation initiation, acting together to

preserve the amino acid pools while allowing selective translation

of proteins necessary for the adaptive responses. For instance, the

eIF2a phosphorylation promotes the translation of the transcription

factor ATF4, which functions as a master regulator of a set of genes

involved in adaption to starvation. Accordingly, the inhibition of

GCN2 or of ATF4 prevents xenograft growth in vivo (Ye et al, 2010;

Horiguchi et al, 2012), suggesting a potential to target this pathway

as a cancer therapeutic.

In conclusion, glutamine metabolism is key to the survival,

proliferation, differentiation state, and stress resilience in normal

proliferating cells as well as in the context of tumorigenesis. Further

exploration of the ways in which cellular glutamine status affects

these diverse processes, as well as the investigation of strategies that

cells may adopt to withstand glutamine limitation, may uncover

new intersections between metabolism and disease, revealing novel

opportunities for therapeutic intervention.
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