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Chemotherapy has historically been the mainstay of cancer treatment, but our

understanding of what drives a successful therapeutic response remains

limited. The diverse response of cancer patients to chemotherapy has been

attributed principally to differences in the proliferation rate of the tumor cells,

but there is actually very little experimental data supporting this hypothesis.

Instead, other mechanisms at the cellular level and the composition of the

tumor microenvironment appear to drive chemotherapy sensitivity. In

particular, the immune system is a critical determinant of chemotherapy

response with the depletion or knock-out of key immune cell populations or

immunological mediators completely abrogating the benefits of

chemotherapy in pre-clinical models. In this perspective, we review the

literature regarding the known mechanisms of action of cytotoxic

chemotherapy agents and the determinants of response to chemotherapy

from the level of individual cells to the composition of the tumor

microenvironment. We then summarize current work toward the

development of dynamic biomarkers for response and propose a model for a

chemotherapy sensitive tumor microenvironment.
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Introduction

The discovery and development of cytotoxic chemotherapies

undoubtedly changed the landscape of cancer treatment. The

first indication that a chemotherapy, or a cytotoxic chemical,

could be a potential treatment for cancer was an incidental

observation made in individuals exposed to a biochemical

weapon, mustard gas. Soldiers exposed to mustard gas

experienced severe leukopenia and marked depletion of the

bone marrow and lymph nodes (1). This discovery was

translated to one of the commonly studied cancers of that

period, lymphoma, with the treatment resulting in significant,

albeit temporary, regression. This stimulated the development

and implementation of drug screening programs that tested

multiple compounds in vitro for anti-cancer properties (2).

Promising compounds were moved into animal cancer

models, clinical trials in patients and developed into our

current oncological treatment paradigm.

Despite the development of new treatment modalities,

including oncogene-targeted therapies such as tyrosine kinase

inhibitors, and immunotherapies such as immune checkpoint

inhibitors, chemotherapy remains the first-line treatment for

many cancers. In fact, despite the global search for new

therapies that work synergistically with immune checkpoint

blockade, combinations with classic chemotherapy so far have

shown the best results (3). In many localized cancers,

chemotherapy before or after surgery and/or combined with

radiotherapy can provide durable, long-term survival benefits

for many patients, such as chemoradiotherapy in esophageal

cancer (4) or adjuvant chemotherapy in colon cancer (5).

However, there are only a few scenarios in which

chemotherapy results in robust and durable cures for
Frontiers in Oncology 02
metastatic solid cancers, with testicular cancer being the

most important example (6–8). In almost all other metastatic

cancers, clinical responses to systemic chemotherapy are

partial at best, and then only in a subset of patients

(Figure 1). This variability in chemo‐responsiveness occurs

not only between patients with different tumor types, but also

within groups of patients with the same tumor type. For

example, in patients with esophageal cancer treated with

carboplatin/paclitaxel in combination with radiotherapy, 30%

have a histologically confirmed complete regression of their

tumor, while 20% display no clinical response (4). Similarly, in

early stage testicular cancer, adjuvant chemotherapy is curative

and induces a robust clinical response in all but a small subset

of patients (8). Also, in settings where chemotherapy rarely, if

ever, results in complete regression, such as in mesothelioma,

responses are still diverse, with approximately 40% of patients

displaying an objective clinical response (12). This

heterogeneity in response between patients with the same

cancer type is not well understood. Given the frequent and

sometimes severe toxicity of many chemotherapeutics, weighed

against a beneficial response in only a subset of patients, there

remains an urgent need for predictive biomarkers. However,

despite many attempts, there are no robust and validated pre-

treatment biomarkers that can guide clinical decision making.

In this review, we explore both the cell intrinsic (factors at

the individual cell level) and cell extrinsic (factors within the

tumor microenvironment) drivers of chemotherapy sensitivity

or resistance. We then summarize the literature regarding the

relationship between proliferation rate and chemotherapy

sensitivity. Lastly, we describe the components of the tumor

microenvironment and the roles they play in chemotherapy

efficacy and propose a model of a chemo-sensitive tumor.
FIGURE 1

Clinical responses to chemotherapy in a range of cancer types. Patients might experience no response (continuous progression) or a partial
response followed by progression [e.g. non-small cell lung cancer (9), colorectal cancer (10) breast cancer (11), mesothelioma (12) and
pancreatic cancer (13)]; a complete response followed by progression [e.g. small cell lung cancer (14) and acute myeloid leukemia (15)]; or a
complete durable response [e.g. germ cell tumors (16)].
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Mechanisms of inherent individual
cell sensitivity and resistance to
cytotoxic chemotherapy

Conventional chemotherapies are divided into several

classes based on their primary or ostensible mechanism of

action. They include alkylating agents and platinum analogues,

which induce inter- or intra- strand DNA crosslinks that

destabilize DNA and cause DNA breakage; antimetabolites

that inhibit the synthesis of DNA, RNA or their components;

topoisomerase inhibitors that block the DNA unwinding

enzymes; and microtubular poisons that act on tubulin,

impeding the mitotic spindle and stalling cell division

(Table 1; Figure 2A). These drugs also have known secondary

mechanisms of action, such as effects on mitochondrial

biogenesis (22) or the production of reactive oxygen species

(32), which contributes to their cytotoxicity (Figure 2B).

Cancer cells experience different fates after drug exposure; some

cells are killed while others escape cell death and survive (33, 34).

Factors that contribute to the induction of apoptosis can act before

DNA damage occurs (at the level of uptake of drug into the cell and

the efflux of the drug out of the cell or the metabolism of drug to

active metabolites); be associated with DNA damage (at the level of

drug binding to target molecules, altered DNA repair enzymes or
Frontiers in Oncology 03
tolerance to DNA damage); or act after DNA damage has occurred

(due to altered sensitivity to apoptosis, altered cell signaling or

stochastic effects) and vary depending on the mechanism of action

of the chemotherapy. Despite our increased understanding of these

mechanisms of sensitivity and resistance this has not translated to

the clinical implementation of a predictive biomarker of response to

chemotherapy, nor the widespread use of combination therapies

that exploit these pathways to improve drug effectiveness.
Uptake and efflux of
chemotherapy drugs

While it is perhaps not surprising that cellular chemotherapy

uptake varies between patients and tumor types, large differences

in uptake are also observed in vitro between cells within the same

clonal culture, resulting in differential therapeutic sensitivity (35,

36). Cellular features that can modulate intracellular levels of

chemotherapy include efflux pumps which have been implicated

in chemotherapy resistance (37–39). These drug efflux pumps,

most notably p-glycoprotein, impede the transportation of

chemotherapy into the cell. There have been numerous studies

over the last few decades demonstrating that inhibition of these

pumps improves chemotherapy uptake and tumor sensitivity in

vitro (40–42) and in vivo (43–45).
TABLE 1 Mechanism of action of classic chemotherapies.

Chemotherapy
class

Examples Primary mechanism of action Additional mechanism
of action

Antimicrotubule
agents

Taxanes (paclitaxel, doxorubicin) Binding to interior surface of microtubules, impeding movement
and function (17)

Altering of cell signaling and
trafficking, slowing of cell cycle
progression, inhibiting cell
migration and invasiveness,
disrupting tumor vasculature
(18)

Vinca alkaloids (vinblastine, vincristine,
vinorelbine)

Depolymerizing microtubules, destroying mitotic spindles at high
concentrations and blocking mitosis at low concentrations (19)

Topoisomerase
(Top) inhibitors

Camptothecin analogues (irinotecan and
topotecan), anthracyclines (doxorubicin
and daunorubicin and their derivatives
epirubicin and idarubicin), mitoxantrone,
dactinomycin, etoposide and teniposide

Binding to Top by intercalating DNA to create a drug/enzyme
complex. When the replication fork reaches this complex the
collision causes double stranded DNA breaks (20)

Generation of oxygen free
radicals (21). Targeting of
Top 2b to impair mitochondrial
biogenesis and inducing cell
death in non-proliferating cells
(22).

Alkylating agents cyclophosphamide, mitomycin,
dacarbazine, procarbazine, temozolomide
and streptozocin

Inducing DNA damage by transferring alkyl groups to DNA,
generating covalent adducts that induce single or double stranded
DNA breaks (23)

Affect RNA, proteins, lipids and
mitochondrial DNA (24),
generate additional toxic
products and mutagenic lesions
(23)
Generation of reactive oxygen
species (25)

anthracyclines (doxorubicin and
daunorubicin and their derivatives
epirubicin and idarubicin)*

Intercalating with DNA (26, 27)

Platinum based chemotherapies (Cisplatin,
carboplatin and oxaliplatin)

Forming inter-,or intra-strand DNA crosslinks that induce DNA
damage and interfere with DNA repair, DNA replication and
DNA transcription (28)

Affect RNA and proteins,
generate DNA-protein
crosslinks (29). Generation of
reactive oxygen species (30)

Antimetabolites 5‐Flurouracil (5‐FU), cytarabine,
gemcitabine, the 6-thiopruines (comprising
of 6‐mercaptopurine and 6-thioguanine)
and clofarabine

Incorporated into DNA instead of regular nucleotides or
molecules, which inhibits of DNA synthesis and causes premature
chain termination (23) Gemcitabine, cytarabine and fludarabine
also inhibit DNA polymerase and ribonucleotide reductase to halt
DNA replication, chain elongation and DNA repair (31)
*Anthracyclines can be classed as both alkylating agents and topoisomerase inhibitors.
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Genetic variations

Cancer cells can harbor intrinsic mutations that render them less

sensitive to chemotherapy. It is important to distinguish these

inherent mutations that are present before treatment, from

acquired mutations that the cells gain after treatment which

provide a selective survival advantage (46, 47). For example, the

dysregulation of components of the apoptotic pathway that enhance

survival can increase drug resistance (48). Mutations in TP53, a key

tumor suppressor, are associated with resistance to DNA damage

induced by chemotherapy (49–52). Abnormalities in another tumor

suppressor commonly dysregulated in cancer, retinoblastoma

protein, is also associated with chemotherapy response in patients

with lung cancer (53), breast cancer (54, 55), non-small cell lung

cancer (56), and colorectal cancer (57) with the absence of

retinoblastoma protein correlating with improved survival.

Intrinsic mutations in the components of the apoptotic pathway

are also associated with reduced sensitivity to chemotherapy. Lastly,

genetic variations can occur in the proteins that some

chemotherapies, primarily antimetabolites, target. For example,

methotrexate binds to the enzyme DHFR to execute its anti-tumor

effect and mutations in DHFR can alter chemo-sensitivity (58, 59).
Altered DNA damage repair pathways

As highlighted, a key mechanism of action of many

chemotherapies is the induction of DNA damage which leads
Frontiers in Oncology 04
to the activation of cell death pathways. Acting against DNA

damage are multiple repair pathways; base excision repair,

mismatch repair, homologous recombination and non-

homologous end-joining (60). Increased expression of

nucleotide excision repair related genes correlates with

resistance to platinum-based drugs. For example high

expression of the excision repair cross-complementation group

1 factor is a known mechanism for cisplatin resistance in

numerous cancers (61). Another example is ribonucleotide

reductase subunit M1 which converts ribonucleotides into the

deoxyribonucleotides required for DNA replication and DNA

repair (62) and is inhibited by gemcitabine. Expression of RRM1

is inversely correlated with survival and sensitivity to platinum-

based chemotherapy and gemcitabine (63, 64) in lung cancer or

pancreatic cancer patients, though these findings vary with other

studies finding no association with survival (65, 66).
Cell cycle

The cell cycle is intrinsically linked to chemotherapy efficacy

because the primary mechanism of action of many drugs is to

affect components crucial to cell division such as DNA

replication or the formation of mitotic spindles. The cell cycle

specificity of chemotherapies has been demonstrated in vitro. In

the case of anti-mitotic chemotherapies, cytotoxicity is rarely

induced until the cell enters mitosis, where it is most vulnerable
A B

FIGURE 2

Mechanisms of action of conventional chemotherapies. (A) Primary mechanisms of action. Alkylating agents induce DNA breaks, anti-
metabolites are incorporated into DNA or RNA and interfere with DNA and RNA synthesis, topoisomerase (Top) inhibitors damage the Top I or
Top II enzymes halting DNA replication and anti-microtubule agents damage microtubules and affect mitosis. (B) Secondary mechanisms of
action of chemotherapies. Alkylating agents can bind to RNA or induce protein-DNA crosslinks, antimetabolites can inhibit enzymes crucial for
DNA or RNA synthesis and topoisomerase inhibitors can impair mitochondria biogenesis or generate reactive oxygen species. For more see
Table 1. Figure created with BioRender.com.
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(34). In vivo models to assess the effects of drugs on cell cycle

often utilize the Fluorescent Ubiquitination-based Cell Cycle

Indicator (FUCCI) system, in which cells express different

fluorescent proteins as they progress throughout the cell cycle

(67). In mice with orthotopic human gastric cancers, 68% of the

cells were in S, G2 or M phase before treatment and 32% in G1 or

G0 (68). After treatment with cisplatin or paclitaxel, more than

90% were in G1 or G0, indicating that the cells actively

undergoing proliferation (those in S, G2 or M) were selectively

targeted by the drugs. When cancer cells are treated with

Salmonella Typhimurium AR-1 or recombinant methionine,

trapping the cells in S/G2, they become more sensitive to

subsequent treatment with cisplatin or paclitaxel, further

demonstrating the cell cycle specificity of chemotherapy (69).
Cancer stem cells

Cancer stem cells (CSCs) are a small population of cancer cells

with the capability of self-renewal and have high tumorigenic and

metastatic potential (70). CSCs can be inherently resistant to

chemotherapy due to a multitude of factors such as their slow

proliferation rate and quiescent nature (71), active anti-apoptotic

machinery (72, 73), efficient DNA repair systems (74, 75), effective

modulation of reactive oxygen species (76) and their robust and

stable expression of drug efflux pumps (77).
Chemotherapy induced senescence

A wide range of chemotherapies spanning most of the

classes have been found to induce senescence both in vivo and

in patient samples collected after treatment (78). These cells

remain viable and metabolically active but are unable to

proliferate. The induction of senescence by chemotherapy

could be both beneficial and harmful to patient outcomes. As

these cells do not divide and remain arrested in G1 or G2/M and

can remain in this dormant state for an extended period of time,

there is some degree of disease control (79, 80). However, the

induction of senescence can be incomplete and is reversable,

with the treatment resistant clones escaping cell cycle arrest and

inducing disease relapse (81).
Stochastic differences affecting
chemotherapy sensitivity

Lastly, the sensitivity of individual cancer cells to

chemotherapy may differ due to stochastic differences. In vitro

studies using genetically identical clonal cell lines, exposed to

identical drug levels and corrected for cell cycle, found that there

were significant differences in chemotherapy sensitivity between

individual cells (33, 34, 82). This highlights that seemingly
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identical cancer cells differ in their chemo-sensitivity, even

when all external factors are controlled for. Cancer cells exist

in an equilibrium of pro- and anti- apoptotic proteins, where an

additional stimulus can easily induce apoptosis. These cancer

cells are termed ‘primed’ for apoptosis (83, 84) and are more

chemo-sensitive than ‘un-primed’ cells (85). Heterogeneity in

the chemotherapy response can be attributed to variability in the

expression of key proteins, whereby some cells are primed for

apoptosis and have a lower threshold of stimuli for the activation

of cell death pathways due to the up- or down-regulation of

specific pathways. For example, multiple myeloma is

characterized by the overexpression of the anti-apoptotic

proteins Bcl‐2 or Mcl-1 which favors cancer cell resistance to

chemotherapy (86).

The influence of stochastic differences in chemotherapy

sensitivity is further demonstrated in the observation that

there is a moderate level of cell-cell variability in protein

abundance in untreated cells and only 20% of this variability

can be attributed to differences in cell cycle stage (33). When

protein levels were measured before and after chemotherapy

treatment, most of the profiles were similar before and after

chemotherapy exposure in each individual cell. Interestingly,

there was a small subset of proteins that displayed bimodal

behavior, with increased levels in a subset of cells and decreased

levels in others. Two of these proteins showed behavior that

correlated with cell fate, indicating that the stochastic differences

in protein expression between cells may contribute to the ability

to escape chemotherapy induced cell death. These studies also

demonstrated that the fate of individual sister cells can be

independent from each other (34) and that individual

subclones exhibit heterogeneity in the response to

chemotherapy (34, 82), further highlighting the role of

stochastically driven heterogeneity in the chemosensitivity of

cancer cells.
Approaches to target cellular
mechanisms of resistance to improve
chemotherapy efficacy

Since the identification of the mechanisms of inherent

cellular resistance to chemotherapy, novel drugs have been

developed to target and inhibit drivers of resistance to

improve chemotherapy efficacy. Targeting DNA repair

pathways using poly(ADP-ribose) polymerases (PARP)

inhibitors is one avenue that has shown promise. As PARP

acts to recruit DNA repair proteins to promote repair of DNA

breaks as well as homologous recombination, the inhibition of

PARP limits DNA repair after damage which could augment the

effects of chemotherapies that damage DNA (87). The addition

of PARP inhibitors to chemotherapy have shown some clinical

efficacy (Table 2) and work is ongoing to expand these findings

to other cancers and chemotherapy combinations (107).
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However, the expansion of this strategy to other pathways or

drugs has proven difficult with mixed results from clinical trials

and the discontinuation of studies due to excessive toxicity

(Table 2). One example relates to drugs that target drug efflux

pumps, particularly those mediated by p-glycoprotein. Clinical

trials have not found a significant survival benefit using

combination therapy with drug efflux pump inhibitors and

chemotherapy (89–91) or only a slight improvement in a

subset of patients (88), and development has been hindered by

the levels of toxicity associated with the dose required for a

clinical benefit to be achieved. Similarly, some drugs targeting

the WNT signaling pathway which is important in both

conventional stem cells and CSCs (108) have had to be

discontinued due to toxicity, primarily in the bone marrow

leading to increased incidence of fractures (105). Lastly, drugs

that inhibit or decrease the expression of the anti-apoptotic

protein Bcl-2 are well tolerated and induce substantial responses

when used as a monotherapy or combined with dexamethasone

in chronic lymphocytic leukemia or multiple myeloma (101,

102) or combined with azacytidine, decitabine or low-dose
Frontiers in Oncology 06
cytarabine in acute myeloid leukemia (99), the latter receiving

FDA approval.
Proliferation and chemotherapy
sensitivity-the proliferation rate
hypothesis

An underlying commonality between the classes of

chemotherapeutics discussed in this review is that their

mechanism of action primarily affects biological processes

associated with cell division, either by inducing DNA damage

or by directly inhibiting mitotic progression. Since a key

hallmark of cancer is rapid and uncontrolled cellular division,

cancer cells are therefore thought to be more sensitive to

chemotherapeutic drugs then normal tissues. This has led to

the general acceptance within the biomedical community that

the cancer specificity of chemotherapy comes from the

preferential killing of rapidly proliferating cells (109).
TABLE 2 Clinical studies that combine chemotherapy with agents that target cellular mechanisms of chemo-resistance. PARP, poly(ADP ribose)
polymerase.

Mechanism of
resistance

Molecular target Drug Disease Efficacy of combination with chemotherapy
compared to chemotherapy alone

Drug efflux pumps p-glycoprotein Verapamil Non-small cell
lung cancer

Improved survival (88)

Small cell lung
cancer

No improvement in survival or response rate (89)

Ovarian cancer No improvement in response rate and significant toxicity (90)

Quinine Acute myeloid
leukemia

No improvement in overall survival (91)

Dofequidar Breast cancer No significant improvement in survival or response rate (92)

DNA repair pathways Poly (ADP ribose) polymerase
(PARP) inhibitors

Rucaparbid Ovarian cancer Improved progression free survival in patients who responded to
initial treatment (93)

Veliparib BRCA+ Ovarian
cancer

No improved response rate or progression free survival (94)

Olaparib Ovarian cancer Improved progression free survival but no improvement in overall
survival (95)

Olaparib Gastric cancer No improvement in overall survival (96)

Anti-apoptotic proteins Bcl-2 inhibition or decrease in
expression

12-cis retinoic
acid and IFNa

Prostate cancer Indications of clinical activity (97)

Navitoclax Solid cancers Tolerated, did not compare to placebo (98)

Venetoclax Acute myeloid
leukemia

Improved overall survival (99)

No improvement in overall survival, increased rate of remission
and increased duration of response (100).

Chronic
lymphocytic
leukemia

Tolerated, did not compare to placebo (101).

Multiple myeloma Tolerated, did not compare to placebo (102).

Inhibition of CSC
signaling pathways

Notch2/3 Tarextumab Pancreatic cancer No improvement in overall survival (103)

WNT signaling Ipafricept Ovarian cancer Toxicity (104)

Ipafricept Pancreatic cancer Toxicity (105)

Vantictumab Breast cancer Toxicity (106)
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However, the experimental results that support this notion are

relatively limited and mixed.

Firstly, the relationship between proliferation rates and

chemo-sensitivity in vitro is not straightforward. For example,

Kondoh et al. analyzed the correlation between doubling time

and sensitivity of anticancer drugs against the NCI-60 panel of

cancer cell lines (110). Although the authors found that majority

of anticancer drugs had higher efficacy in faster dividing cell

lines, this was not the case for all chemotherapeutics and not for

all cancer cell lines. These conflicting and varying results are also

evident from other studies (41, 111), including studies in which

the proliferation rate was modulated, through either

pharmacological means or gene silencing, showing varying

degrees of both decreased (110, 112) and increased sensitivity

to chemotherapy (113–116).

Secondly, there is limited in vivo validation of the increased

effect of chemotherapy in highly proliferating tumors. Many

studies measured proliferation at either a fixed timepoint within

the tumor or used in vitro rates of cell division and correlated

this with in vivo response. For example, Nakasone et al.

demonstrated that the in vivo difference in sensitivity between

different tumor models could not be attributed to differences in

in vitro proliferation rate (117). The development of intravital

fluorescent imaging, utilizing the FUCCI system (67) has made it

possible to assess proliferation over time within the tumor itself,

overcoming the caveats of previous studies. Yano et al. utilized

these methods to monitor the cell cycle progression in an

orthotopic model of liver cancer during chemotherapy

treatment (68). When tumors with most cells in S/G2/M phase

(an actively cycling or proliferating tumor) cisplatin or paclitaxel

treatment resulted in significant cancer cytotoxicity, while there

was little anti-tumor effect when cells were mainly in G0/G1

(69). Although these data suggest a correlation between cell cycle

stage (and by extension proliferation rate), clinical data to

substantiate this hypothesis are limited and mixed; the use of

proliferation rate as a biomarker for response to chemotherapy

varies greatly between cancers and is limited in its predictive

power. For example, there is a striking absence of any significant

and reproducible correlation between high expression of Ki67

and chemotherapy response in many cancer types (Figure 3). A

systematic review in breast cancer found a correlation between

Ki67 expression before neoadjuvant chemotherapy and overall/

progression-free survival in 10/20 and 17/33 studies, respectively

(118). Similarly, one meta-analysis found that high (>10%) Ki67

positivity is associated with decreased survival (119), while

another reported that high Ki67 could predict response and

clinical benefit from neoadjuvant chemotherapy (120).

For these reasons, others have previously critically

challenged the assumption that chemotherapy particularly

targets cancer cells because they are rapidly proliferating (18,

109, 121). Regardless, the inability to consistently correlate cell
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proliferation rate with chemotherapy response in patients

highlights that there are likely additional drivers of

chemotherapy sensitivity.
The tumor microenvironment: the
driver of chemotherapy sensitivity

Stroma and vasculature: a role in
chemotherapy resistance

A tumor is a complex and dynamic environment of immune

cells, extracellular matrix, fibroblasts and vasculature which

make up the tumor stroma, which can all influence

chemotherapy sensitivity (Figure 4).

Cancer associated fibroblasts (CAFs) are one of the key

components of the tumor stroma that have been implicated in

tumor progression and resistance to chemotherapy. CAFs are

phenotypically different from other fibroblasts and secrete

cancer-promoting factors including TGF‐b , vascular

endothelial growth factor, platelet-derived growth factor and

fibroblast growth factor 2 (122). The secretion of these factors

are associated with an enhancement in the invasive and

metastatic ability of cancer cells (123, 124), stimulation of

angiogenesis (125, 126),and expression of anti-apoptotic

proteins (127) and promote an immunosuppressive tumor

microenvironment (128) which modify the TME to support

tumor cell survival and chemotherapy resistance (129). In vitro

studies have confirmed that these soluble factors induce

chemotherapy resistance (130–133) and targeting of CAFs in

vivo enhances the anti-tumor effects of chemotherapy in animal

models (134–136). CAFs also contribute to desmoplasia which is

the formation of fibrotic tissue around tumor cells. This creates

not only a physical barrier around the tumor, limiting the

penetration of drugs, but also can increases interstitial pressure

which compresses blood vessels, also decreasing drug availability

within the TME (137, 138). Clinical studies found high levels of

CAFs were associated with poor PFS following chemotherapy

(139–142).

As chemotherapy is typically administered systemically, it is

essential that the drug reaches the tumor at a sufficient

concentration. Therefore, tumor vasculature is not only

essential for cancer growth, but also for the distribution of

chemotherapy to the tumor. Patients with tumors exhibiting a

lower density of blood vessels indeed have a poorer response to

chemotherapy (143, 144). However, tumor vasculature is often

disorganized and characterized by neo-angiogenesis and the

modification of existing vessels within the tissue stroma which

can impede the distribution of chemotherapy. Strategies to

‘normalize’ tumor vasculature and reverse the dysfunctional

structure have proven to be effective in murine studies (145–
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148). When drugs targeting tumor vasculature are combined

with chemotherapy, both the chemotherapeutic dose reaching

the tumor and subsequent anti-tumor response is more effective

compared to chemotherapy alone (145, 146, 149). Clinical

studies have demonstrated primarily positive results. For

example, the addition of bevacizumab (a VEGF-A inhibitor) to
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chemotherapy regimens lead to an increase in both progression

free and overall survival in mesothelioma (150) and ovarian

cancer (151, 152). No clinical benefit was seen when combined

with chemotherapy in early stage NSCLC (153) while in colon

cancer bevacizumab improved survival in the metastatic but not

adjuvant setting (154, 155).
FIGURE 3

Reported clinical studies testing a correlation between Ki67 expression and chemotherapy response. Number of studies assessing Ki67
expression using immunohistochemistry with reported correlation between Ki67 expression and response rate or survival. Full dataset in
Supplementary Table 1.
FIGURE 4

Characteristics of a chemotherapy sensitive TME. An inflammatory, immune infiltrated ‘hot’ tumor is associated with response to classical
chemotherapies. These tumors are characterized by the infiltration of immune cells, particularly increased CD8+ T cells. release of inflammatory
mediators such as IFNs and TNFa and decreased levels of immunosuppressive cells. Additionally, tumor vasculature can have both positive and
negative effects on chemotherapy response while CAFs are primarily associated with chemotherapy resistance. Figure created with
BioRender.com.
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Immunity, inflammation and
chemotherapy efficacy

Spurred on by the emergence and success of immunotherapy,

the role of the immune system within the tumor stroma is now a

key focus of research into chemotherapy efficacy. However, because

chemotherapy is leukodepleting, it was historically thought to be

predominantly immunosuppressive. The important role of immune

cells in the efficacy of chemotherapy has been highlighted in recent

years, first demonstrated by Schwartz in 1973 (156) and more

recently driven by the work of Nowak (157, 158) and Zitvogel and

Kroemer (159, 160). The latter group compared the response to

chemotherapy in immunodeficient (predominantly either Nu/Nu

or Rag1-/- mice which lack functional T cells and functional T and

B cells respectively) and immunocompetent mice (159, 161).

Chemotherapy was significantly less effective in mice lacking an

intact immune system, while these drugs were extremely effective in

the wildtype counterparts. The requirement of an intact immune

system for chemotherapy to induce an effective anti-tumor response

has been tested using numerous cancer models and chemotherapies

(Table 3). Genetic mouse models did not provide the same

convincing results as transplantable models, which tend to be

more immunogenic (165).

Studies using depleting antibodies against specific immune

cells and cytokines or the knockout of specific genes or cellular

receptors have helped to define the cell types and pathways that
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play an important role in the chemotherapy response (Tables 4,

5). Experiments where IFNg was neutralized using knock‐out

mouse models found that the absence of signaling decreased

chemotherapy efficacy in vivo (162, 167, 173, 174). The idea of an

immunostimulatory ‘hot’ TME has been popularized in the

context of immunotherapy: highly immune infiltrated,

inflammatory tumors with increased expression of IFN-related

genes are associated with improved response to immune

checkpoint therapy (179–181). Indeed, several studies suggest

an inflammatory, immune infiltrated TME is associated with

chemotherapy sensitivity, with complete responders to

chemotherapy having increased immune infiltration (178,

182–184). In particular, responders to chemotherapy have

increased levels of CD8+ T cells (182, 185, 186) and the

upregulation of IFN related genes (178, 182). The presence of

immunosuppressive cells like regulatory T cells (Treg) or

myeloid suppressor cells (MDSC) are associated with a

decreased response to chemotherapy, presumably due to the

promotion of an immunosuppressive TME (187–191). The

contribution of other immune cells to chemotherapy

sensitivity is less well characterized and may vary depending

on drug or tumor model (Table 3) and further studies are

required to fully elucidate their role in chemotherapy‐driven

anti-tumor immunity.

It is evident from the above studies in mouse models and

patients that the composition of the TME plays a critical role in
TABLE 3 Effect of chemotherapy in immunodeficient Nude/Rag mice compared to immunocompetent wildtype (WT) mice.

Chemotherapy Cell Line Effect in Nude/Rag compared to WT Ref

Oxaliplatin EL4 Lymphoma Decreased (162)

CT26 Slight decrease (163, 164)

MMTV-NeuT * No difference (165)

K14cre;CdhIflox/flox;Trp53flox/flox * No difference (165)

GOS Decreased (166)

Mitoxantrone CT26 Decreased (161, 163)

MCA205 Decreased (163)

Cisplatin CT26 Decreased (164)

MMTV-NeuT * No difference (165)

K14cre;CdhIflox/flox;Trp53flox/flox * No difference (165)

Doxorubicin MMTV-NeuT No difference (165)

CT26 Decreased (159)

Cyclophosphamide AB1-HA Decreased (167)

Etoposide Eu-MYC No difference (168)

Irinotecan GOS No difference (166)

Docetaxel PO3 No difference (166)

Gemcitabine TC-1 Decreased (169)

AB12 Decreased

EJ-6-2 Decreased

Cyclophosphamide/gemcitabine CT26 Decreased (170)

Oxaliplatin/cyclophosphamide KP NSLC Decreased (171)
front
Effects are reported as decreased (effiacy decreased in immunodeficient mouse), no difference (efficacy the same in immunodefcient and wildtype mice) or increased (efficacy is increased in
immunodeficient mouse). *genetically engineered mouse cancer model
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chemotherapy efficacy. It must also be noted that chemotherapy

has numerous positive and negative effects on immune cells,

which have been reviewed in detail previously (160, 192). The

fact that chemotherapy is one of the most efficacious

combinatorial treatments with immune checkpoint therapy,

suggests at the very least that chemotherapy treatment is not

an immunological null-event, and that its beneficial

immunological effects can be exploited therapeutically (3,

193, 194).
Tracking dynamic changes in the tumor
microenvironment correlating with
treatment outcome

Increased understanding of the role of the TME in the response

to chemotherapy has led to a large body of work on identifying

predictive biomarkers from the TME. A detailed understanding of

the effects of chemotherapy on the various components of the TME

would help with the selection of cell populations, genes or proteins
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for use as a predictive biomarker. While there has been a significant

amount of work in this field, there has been little progress of

integrating the use of pre-treatment biomarkers into routine use

within the clinic that could predict response. It must be noted that

whether a patient achieves a pathological complete response when

chemotherapy is used in a neoadjuvant setting is a robust indicator

of clinical outcome, as for most cancers, these patients have

increased disease-free survival and overall survival compared to

patients with residual disease at surgery (195).

One of the limitations of the most common approach to

biomarker discovery is that tumor or blood samples are only

collected at a single timepoint, usually before treatment. This only

gives a ‘snapshot’ of the tumor microenvironment, or the systemic

environment in the case of blood sample. Taking serial samples

would allow the effects of chemotherapy to be monitored

throughout therapy. Whether a patient is responding or not

would be able to be determined earlier, allowing physicians to

make a more informed decision on whether to continue with the

current treatment or not. Moreover, it would allow a deeper

understanding of the biological mechanisms that are responsible
TABLE 4 Effect of chemotherapy in immune cell depleted mice compared to immunocompetent wildtype mice.

Depletion Chemotherapy Cell Line Effect on response compared to WT Ref

CD8+ T Cells Oxaliplatin EL4 Decreased (162)

K14cre;CdhIflox/flox;Trp53flox/flox * No difference (165)

Cisplatin TC-1 Decreased (172)

C3 Decreased (172)

Doxorubicin AT3 Decreased (173)

H2N100 Decreased (173)

EO771 Decreased (173)

MCA205 Decreased (173)

MCA2 Decreased (173)

CT26 Decreased (159)

Cyclophosphamide CT26 Decreased (174)

AB1-HA Decreased (167, 175)

Paclitaxel RENCA + Decreased (176)

Oxaliplatin/cyclophosphamide KP Decreased (171)

CD4+ T Cells Cisplatin TC-1 No difference (172)

Cyclophosphamide CT26 No difference (174)

AB1-HA No difference (175)

Paclitaxel RENCA + Increased (176)

NK Cells Cisplatin TC-1 No difference (172)

Doxorubicin CT26 Decreased (159)

Cyclophosphamide CT26 No difference (174)

DC and Macrophages Cisplatin TC-1 Slight decrease (172)

B cells Doxorubicin MMTV-pyMT Decreased (177)

Doxorubicin 4T1 Slight decrease

Cisplatin 4T1 Slight decrease

Tregs (aCD25) Cyclophosphamide CT26 No difference (174)

Paclitaxel RENCA No difference (176)
front
Effects are reported as decreased (effiacy decreased in immune depleted mouse), no difference (efficacy the same in immune cell depleted and wildtype mice) or increased (efficacy is
increased in immune cell depleted mouse). *genetically engineered mouse cancer model +metastatic tumor model
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for an effective chemotherapy response, allowing the development

of novel rational combination therapies. Measuring the changes

within the tumor that are induced by chemotherapy is hindered by

the inability to obtain serial tumor samples from patients

throughout the course of their therapy, primarily due to the

location of the cancer and invasive procedures required to

retrieve a biopsy. Often clinical studies use peripheral blood (196,

197) or effusions as a surrogate for the tumor microenvironment,

however it is not clear whether these samples provide a meaningful

representation of the events occurring within the tumor itself (198).

Studies that do examine the changes within the TME during

therapy differ in the parameters measured, often only measuring

a selection of markers, making it difficult to compare between

studies, and likely resulting in an incomplete representation of what

happens throughout the whole TME.
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The few studies that investigated changes in the TME during

chemotherapy and correlated these changes with clinical

response highlight the importance of serial measurements

instead of pre- or post- treatment snapshots. Many studies

found no difference between responders and non-responders

when baseline levels of their chosen markers were compared

(Supplementary Table 2). However, when the change in

expression from pre-treatment to post-treatment was

interrogated, the differences between responders and non-

responders became apparent (199–202). Molecules involved in

chemotherapy resistance, for example GSTP1 (an enzyme

associated with decreased sensitivity to cytotoxic agents

including anthracyclines (203)) or ALDH1 (an enzyme

involved in detoxifying aldehydes into weaker metabolites),

decrease in patients whose tumors respond to chemotherapy
TABLE 5 Effect of chemotherapy in knock out mice compared to immunocompetent wildtype mice.

Knockout Depletion Chemotherapy Cell Line Effect in K/O compared to WT Ref

IFNg -/- IFNg Oxaliplatin EL4 Decreased (162)

Oxaliplatin EG7 Decreased (162)

Cyclophosphamide AB1-HA Decreased (167)

Cyclophosphamide CT26 Decreased (174)

Doxorubicin E0771 Decreased (173)

IL12RB2-/- IL12 Receptor Oxaliplatin EL4 No change (162)

Tnfsr10-/- TNF Receptor Oxaliplatin EL4 No change (162)

Prf1-/- Perforin Oxaliplatin EL4 No change (162)

Pfp-/- Perforin Cyclophosphamide AB1-HA No change (167)

IFNyR1-/- IFNg Receptor Oxaliplatin EL4 Decreased (162)

Oxaliplatin EG7 Decreased (162)

P2RX7-/- Oxaliplatin EL4 Decreased (162)

NLRP3-/- Oxaliplatin EL4 Decreased (162)

CASP1-/- Caspase 1 Oxaliplatin El4 Decreased (162)

Jh-/- B cells Doxorubicin E0771 Decreased (177)

Docetaxel E0771 Decreased

TRAIL -/– Cyclophosphamide AB1-HA Decreased (167)

Tlr4-/- Cisplatin TC-1 No change (172)

CD80/CD86-/- Cisplatin TC-1 Decreased (172)

CD70/CD80/CD86-/- Cisplatin TC-1 Decreased (172)

IL-1B -/- Doxorubicin AT3 Decreased (173)

E0771 Decreased (173)

IL17A -/- Doxorubicin AT3 Decreased (173)

E0771 Decreased (173)

IL-23p19 -/- Doxorubicin No Change (173)

TCRJa18 NKT Doxorubicin MCA205 No Change (173)

AT3 No Change (173)

TCRd -/- Gd T Cells Doxorubicin MCA205 Decreased (173)

AT3 Decreased (173)

Anti-IFNAR Doxorubicin MCA205 Decreased (178)
frontiersi
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(200, 204). Decreased GSTP1 expression after chemotherapy, is

more prominent in tumors of patients with breast cancer that

respond to doxorubicin and cyclophosphamide chemotherapy

and is associated with improved progression free survival (204).

Similarly, decreased tumor expression of biomarkers associated

with tumorigenesis (COX-2) or immune evasion (PD-L1) is

noted throughout treatment, with the decrease more prominent

in responders (199, 205). The primary limitation of these studies

is that they only assessed a small number of markers or cell

populations, using immunohistochemistry or flow cytometry.

This makes it difficult to capture the complexity of the TME. The

increasing ability to obtain high dimensional biological data

using for example single cell RNAseq or spatial transcriptomics

provides an avenue for a deeper characterization of the TME

during chemotherapy treatment.

Summary and key outstanding
questions

Based on the available data, an incomplete picture emerges

of a chemotherapy-sensitive TME, which includes CD8 T cell

infiltration, activation of inflammatory pathways such as IFNs,

low levels of CAFs and a normalized vasculature (Figure 4).

An added complexity is the wide range of chemotherapeutics

used in the clinic, spanning different classes with vastly different

mechanisms of action and immune effects. Uncovering what

drives chemotherapy efficacy opens the door to the development

of predictive biomarkers and novel combination treatments.

While immune checkpoint therapy has shown promise in a

multitude of cancer types, like chemotherapy, it is not effective in

all patients. Having a predictive biomarker for a robust response

to chemotherapy, either on its own or in combination with

immunotherapy, would significantly improve the potential of

clinical decision making, allowing patients to stratified based on

their likelihood of a beneficial response to either treatment.

An additional question is whether the TME can be

modulated and transformed from chemotherapy-resistant to

chemotherapy-sensitive. Pre-treating a patient to induce a

sensitive TME phenotype has improved the response to

immunotherapy in preclinical models (206, 207). The

dependence of chemotherapy efficacy on the immune system

and early indications of synergy between chemotherapy and

immune checkpoint therapy (208–210) highlights the
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opportunity to alter the tumor immune milieu to improve the

anti-tumor immune response generated by chemotherapeutics.
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