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Abstract—The most important application of microarray in gene expression analysis is to classify the unknown tissue samples

according to their gene expression levels with the help of known sample expression levels. In this paper, we present a nonparallel

plane proximal classifier (NPPC) ensemble that ensures high classification accuracy of test samples in a computer-aided diagnosis

(CAD) framework than that of a single NPPC model. For each data set only, a few genes are selected by using a mutual information

criterion. Then a genetic algorithm-based simultaneous feature and model selection scheme is used to train a number of NPPC expert

models in multiple subspaces by maximizing cross-validation accuracy. The members of the ensemble are selected by the

performance of the trained models on a validation set. Besides the usual majority voting method, we have introduced minimum

average proximity-based decision combiner for NPPC ensemble. The effectiveness of the NPPC ensemble and the proposed new

approach of combining decisions for cancer diagnosis are studied and compared with support vector machine (SVM) classifier in a

similar framework. Experimental results on cancer data sets show that the NPPC ensemble offers comparable testing accuracy to that

of SVM ensemble with reduced training time on average.

Index Terms—Cancer classification, classifier ensemble, combination of multiple classifiers, microarray data analysis, proximal

classifier.
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1 INTRODUCTION

THE microarray technique has led the scientists immense
opportunity to measure the expression levels of

thousands of genes simultaneously in a single experiment
[1], [2], [3]. The advantage of this method, namely to
monitor a large number of variables of a sample of tissue’s
state, however, often turns out to be difficult to analyze. The
most important application of the microarray technique is
to classify unknown samples according to their expression
profile, e.g., to discriminate cancerous or noncancerous
samples or to discriminate different types or subtypes of
cancer [4], [5], [6], [7], [8], [9]. The small number of samples
and the level of noise make the classification task of a test
sample challenging. To accomplish this, the first step of
processing the expression data is to identify a small subset
of genes that are primarily responsible for the disease [10],
[11], [12], [13]. This will serve the purpose of looking deep
insight into the nature of the disease, genetic mechanism
responsible for it [14], drug discovery for the disease [15],
[16], [17]. The small subset of genes will also provide
improved diagnostic accuracy and reduce the cost of
microarray array experiment by reducing the chip size,
manpower, and easier interpretable experiments [18].

In the literature, there are several methods of feature or
gene selection. All these methods can be divided into three
categories: filter methods, wrapper methods, and em-
bedded methods [19]. The filter methods are used to extract
those features which show dependences on the class labels
without explicitly relying on a classifier. Examples are
methods based on statistical ranking of individual genes,
such as, correlation coefficient [20], t-statistics [21], [22],
class seperability [23], or Fisher’s criterion, etc. [24], [25].
Additionally, there are methods which consider the mutual
information among the genes as well as the relevance of the
genes for classification [26]. All these methods are fast
compared to other two methods, i.e., wrapper and
embedded methods. The wrapper methods [27], [28], [29]
use a classifier as the objective function for the evaluation of
a subset of features. The classifier is obtained by a model
selection method which maximizes the classification accu-
racy on a validation set. This validation set is kept separated
from the training data. Typical classifiers used for this
purpose are Bayesian classifier [30], [31], K-nearest neigh-
bor [31], [32], support vector machine (SVM) [10], [33],
relevance vector machine [34], penalized kernel logistic
regression (PKLR) classifier [35], etc. The wrapper methods
are very slow as they search several combinations of genes
and optimal parameter set. In embedded method, the genes
are selected as part of the specific learning method.
Examples are one-norm SVM [36], logistic regression [37],
sparse logistic regression [38], [39], probit regression [40],
joint classifier and feature optimization (JCFO) [41],
methods based on regularization technique [42], etc.

All the above variations provide comparable feature
selection and classification accuracy. The most important
fact in a medical diagnosis system is the classification
accuracy of unknown samples (generalization performance).
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To improve the classification accuracy, the gene selection
should be a part of the learning procedure. But the large
number of classifiers required to build (train and test) makes
this method very slow. On the other hand, the genes selected
by the filter method may not be the optimal feature set for a
classifier to obtain high classification accuracy. Moreover,
the model parameter selection is another crucial point to
obtain high classification performance. Besides all these,
several research works were performed on selection of
optimal number of genes that are sufficient to classify a data
set accurately. Again, most of the papers reported cross-
validation (CV) testing accuracy of their methods which
suffers from the “selection bias” as the testing sample is not
excluded from the gene selection procedure [43]. In order to
evaluate the true performance of a computer-aided diag-
nosis (CAD) method, it is mandatory to exclude the testing
samples from the classifier building process, i.e., data
normalization, gene selection, and model parameter selec-
tion [43], [44].

In this paper, we have proposed a hybrid CAD method
of cancer classification taking the advantage of both filter
and wrapper methods. A fast dimensionality reduction step
is carried out by selecting a small set of genes by the MRMR
[26] ranking method. Then we used the wrapper method
(for improved classification accuracy) on this small set of
genes to reduce the computational burden. We have
selected nonparallel plane proximal classifier (NPPC) [45],
[46] as a part of the wrapper method. In our previous
research work, we have proposed NPPC [45], [46] for binary
data classification that provides comparable accuracy with
that of SVM classifiers [47], [48], [49] with a lower
computational cost. In [45], we have focused on the
chronological development of NPPC having its root from
SVM. For a binary data classification problem, SVM finds
an optimal hyperplane that maximizes the separation
between the two classes in Oðm3Þ iterations, where m is
the number of training data. The least-squares SVM (LS-
SVM) finds the same optimal hyperplane in less than
Oðm3Þ iterations. The proximal SVM (PSVM) finds two
parallel planes in Oðn3Þ iterations, where nð� mÞ is the
number of features. PSVM classifies the data according to
the proximity to these two planes. The generalized
eigenvalue proximal SVM (GEPSVM) [50] finds two
nonparallel planes such that the first plane is “closest” to
the positive examples and “furthest” from the negative
examples and the second plane has the opposite properties.
It then classifies according to proximity to these two
nonparallel planes. The twin SVM (TWSVM) [51] is an
alternative formulation of GEPSVM which can be solved in
Oðm3=4Þ training iterations given that positive and negative
data sets have approximately equal cardinality. NPPC
combines ideas from the TWSVM and PSVM. NPPC
generates two unity norm nonparallel planes [46] by solving
two equality-constrained (like PSVM) optimization pro-
blems. This idea of nonparallel plane classifier differs from
that of the classical SVM, which is based on the margin
maximization of two separating parallel hyperplanes [47],
[48]. But NPPC is computationally more efficient than SVM
classifier [46]. The equality constraints accomplish the
training task of the NPPC faster than its inequality counter-
part in TWSVM. On the other hand, it is experimentally
observed that the relaxation of the parallelism constraint of

the separating planes offers comparable classification
accuracy on the noisy data sets as compared to SVM [45],
[46].

The excellent performance of NPPC motivated us to
apply it on microarray data, which is inherently noisy, for
discrimination of cancerous and normal tissue samples. But
we have observed that the classification accuracy of a single
NPPC is not satisfactory on microarray data by using a
small set of informative genes selected by the filter method.
To improve the diagnostic accuracy, we have introduced
NPPC ensemble (in place of a single NPPC) that consists of
a number of experts trained with the best gene subset of
different cardinality. The classifier ensemble or committee
is a widely explored topic in machine learning applications
[52], [53], [54], [55]. Multiple classifiers are combined with
the expectation that it will perform better than (at least same
as) a single classifier. But the selection of optimal classifiers
in the ensemble [55, ch. 6], [56], [57], [58] and their
combination rule [59], [60] are still an active area of research
in the machine learning community. Additionally, the
model selection task of NPPC by a grid search method is
computationally intensive as it has four regularization
parameters for a linear classifier. As a result, the realization
of a number of best NPPC models with all possible gene
subsets to form the ensemble will be computationally
unrealistic. To overcome this drawback, we have intro-
duced a genetic algorithm (GA) [61] based simultaneous
feature (gene) and model parameter selection scheme to
train a number of experts with different cardinality. The
NPPC ensemble is formed by selecting the trained expert
models based on the performance on a validation set.
Besides the well-known majority voting scheme of decision
combination of ensemble, we have proposed a new decision
combination schemes for NPPC ensemble based on the
proximity profile of each test pattern. We have compared
our method with SVM classifier. Experimental results show
that the GA-based optimal model selection scheme is
computationally efficient than that of the conventional grid
search method. It has also been observed that both NPPC
and SVM ensembles perform better than the respective
single classifier. From the experimental results on bench-
mark microarray data sets, it is evident that both the NPPC
and SVM ensembles offer high classification accuracy, but
the training time for the NPPC ensemble is reduced by 40-
80 percent compared to that of the SVM ensemble. It is to be
noted that the NPPC ensemble does not address the small
sample problem of data sets. It only offers improved
classification performance on noisy microarray data sets.

This paper is organized as follows: in Section 2, we briefly
describe the NPPC formulation. In Section 3, we describe the
development methodology of NPPC ensemble. Addition-
ally, we have introduced a new proximity profile-based
decision combiner for multiple classifiers. The experimental
results are presented in Section 4 and discussed in Section 5.
Finally, Section 6 concludes the paper.

2 NPPC FORMULATION

2.1 Basic Formulation for Binary Data Classification

In [46], we have formulated NPPC with unity norm
hyperplanes that overcome the drawback of classical NPPC
[45]. NPPC is a nonparallel plane classifier that classifies
binary data by its proximity to one of the two nonparallel
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planes. The two planes are obtained by solving two
nonlinear programming problems (NPPs) with a quadratic
form of the loss function. Each plane is clustered around a
particular class of data by minimizing the sum square
distances of patterns from it and considering the patterns of
the others class at a euclidean distance of 1 with errors.
Thus, the objective of NPPC is to find two hyperplanes

!T
1 xþ b1 ¼ 0 and !T

2 xþ b2 ¼ 0; ð1Þ

where !1; !2 2 <n and b1; b2 2 < are normal vectors and bias
terms of the hyperplanes 1 and 2, respectively. To obtain the
above two planes, NPPC solves the following pair of NPPs:

Min
ð!1;b1;�2Þ2<ðnþ1þm2Þ

J1ð!1; b1; �2Þ

¼
1

2
A!1 þ e1b1k k2þc1e

T
2 �2 þ

c2
2

�2k k2

s:t: � ðB!1 þ e2b1Þ þ �2 ¼ e2

and !1k k ¼ 1;

ð2Þ

Min
ð!2;b2;�1Þ2<ðnþ1þm1Þ

J2ð!2; b2; �1Þ

¼
1

2
B!2 þ e2b2k k2þc3e

T
1 �1 þ

c4
2

�1k k2

and s:t: ðA!2 þ e1b2Þ þ �1 ¼ e1

and !2k k ¼ 1;

ð3Þ

where matrices A 2 <m1�n and B 2 <m2�n contain the m1

and m2 training patterns of class 1 and class �1,
respectively, in n-dimensional space; e1 2 <m1 and e2 2
<m2 are vectors of ones and �1 2 <m1 ; �2 2 <m2 are error
variable vectors due to class 1 and class�1 data, respec-
tively; and c1; c2; c3; and c4 > 0 are four regularization
parameters of the NPPC. The first term of each objective
function minimizes the sum of the squared distances from
the hyperplane to the patterns of respective class and the
constraint requires that the patterns of opposite class are at
a euclidean distance of 1 from the hyperplane with errors.
The second and third terms of the objective functions
constitute the general quadratic loss function. The inclusion
of the constraints makes the problem nonlinear but reduces
it to a convex optimization problem of least-squares type.
We have replaced the original problems (2) and (3) by a
penalty function [62, pp. 497-527] approach and then
employed the quadratically convergent Newton’s method
[62, pp. 44-49] with Armijo steps [63], [64] to solve the
problem in finite number of iterations. The advantage of the
NPPC is that its training can be accomplished by solving
two-system of linear equations, instead of solving a
quadratic program as it requires for training standard
SVM classifiers [47], [48], [49]. For linear NPPC, it solves
two-system of linear equations in n-dimensional space,
where n is the number of attributes. Thus, the problem can
be solved very fast by using many sophisticated algorithms
that are used to solve system of linear equations. Here, we
have used the conjugate gradient method to solve the
system of linear equations in each iteration. Readers may
see [46] for a detail solution and implementation of NPPC.
Once the training of the classifier is accomplished, a new
data sample x 2 <n is assigned to a class l by comparing the
following distance measure of it from the two hyperplanes
given by (1), i.e.:

Class l ¼ arg Min
r¼1;2

!T
r xþ br

�

�

�

�

� �

: ð4Þ

3 NPPC ENSEMBLE FORMULATION

In this section, we have discussed the various steps of
formulation of NPPC ensemble. As we have pointed out
earlier that the computer-aided diagnosis of cancer or
cancer category discrimination should be bias-free, we
have preceded the formulation of NPPC ensemble by
separate training, validation, and testing set. The valida-
tion and testing set is normalized by subtracting the mean
and dividing the standard deviation of the training data.
The schematic block diagram of NPPC formulation is
shown in Fig. 1.

The training module of our proposed NPPC ensemble
technique consists of four steps.

1. Gene selection by the filter method,
2. formation of NPPC experts in different dimensions

by the wrapper method,
3. selection of expert models in the NPPC ensemble by

the performance of trained classifiers on validation
set, and

4. decision combination of the selected NPPC experts
in the ensemble. These steps are discussed as
follows:

3.1 Gene Selection by the Filter Method

The earlier filter-based methods, such as correlation-based
methods [20], t-statistics [21], [22], or F-statistics [23], [24],
[25], operate in isolation for ranking the genes and do not
consider the correlation among the features. Thus, the
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redundancy among the selected features is not used. To
overcome this difficulty, Ding and Peng [26] proposed the
minimum redundancy maximum relevance (MRMR) meth-
od of feature selection that utilizes the mutual information
criteria for selecting a set of most informative features. They
take into account the maximum relevance along with the
minimum redundancy criteria to choose the additional
features that are maximally dissimilar to the already
identified features.

We have randomly divided the available samples into
training and testing sets with a sample ratio 6:4. Then, the
MRMR method with the quotient scheme is applied to the
training data to select the highest ranked 25 genes. This
experiment is performed 100 times for each data set with
random permutation. We have observed that only few
particular genes repeatedly selected in the highest ranking
of 25 gene subset. We have chosen only those genes for a
data set which are selected at least 80 times (out of 100 test
runs) in the list of 25 highest ranked candidates. As an
example, the frequency distribution of selected genes in the
subset (25 in number) of MRMR ranking obtained in the
experiment for ALL_AML data set [4] is shown in Fig. 2.
This shows that only 13 genes hit more than 80 times in the
ranking. We have selected these 13 genes to construct the
NPPC ensemble. Thus, we preselected a few genes,
typically less than 15, using the filter method. This reduced
set of genes is used to construct NPPC ensemble in the next
stage. The lists of selected genes by this method for different
data sets are provided as supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2010.36) and
discussed in Section 5.

3.2 Formation of NPPC Experts by GA

Once the gene subset is selected by the filter method
containing n (¼ 13 for ALL_AML data set) best genes, we
frame ðn� 1Þ number of NPPC expert models, each of
dimensions i with 2 � i � n, by the wrapper method. We
have excluded the one-dimensional classifier model since
classification by one feature usually requires a threshold
which is beyond the scope of this NPPC. Since NPPC

classifies by two nonparallel planes with unity norm, the
classifier in one dimension chooses the same hyperplanes
with !1 ¼ 1 and !2 ¼ 1. Thus, we have intended at
searching the discrimination ability of NPPC in different
subspaces with the best gene subset fsig in the
ith dimension for i ¼ 2; 3; . . . ; n. For this purpose, we have
used GA [61] to simultaneously choose the best set of genes
and the four tuning parameters c1; c2; c3, and c4 of the NPPC
by maximizing the k-fold cross-validation accuracy [65]. GA
has the potential to simultaneously generate both optimal
feature subset and tuning parameters [66], [67]. For the
selection of NPPC expert models in any subspace, we have
used the system architecture as shown in Fig. 3. The authors
of [28] used a similar type model selection scheme for SVM.

As shown in Fig. 3, the algorithm starts with the various
initial values of GA parameters and the number of features
to select for developing a classifier. For linear kernel NPPC,
the chromosome comprises five parts: c1; c2; c3; c4, and the
feature musk of size n. The structure of a chromosome for
linear NPPC is shown in Fig. 4. Each parameter is
represented by a gene of r bits, which can be selected
according to the calculation precision required. The mini-
mum and maximum values of the parameters are decided
by the users. Feature musk consists of n-bits. A value of 1 in
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Fig. 2. Frequency of genes selected in the ranking by the MRMRmethod
for ALL_AML data set.

Fig. 3. System architecture of the proposed GA-based simultaneous
feature and model selection.



any bit selects the corresponding feature and a value of 0
disables the same. To develop a model in a d-dimensional
subspace (d 2 f2; 3; . . . ; 13g for ALL_AML data set), only
d number of bits are set at 1 out of n-bits of the feature mask.
For each chromosome representing the parameters and
selected features, k-fold CV testing accuracy on the training
data set is selected as the fitness function to be maximized.
Depending upon the fitness value of the chromosomes, it
selects the parents for crossover, mutation, etc. to generate a
new population. After the termination of the GA process,
we trained the final NPPC model in d-dimension with the
selected d features and four optimal tuning parameters
c1; c2; c3, c4.

3.3 Selection of Expert Models in the NPPC
Ensemble

The idea of combining classifiers in an ensemble or
committee is based on the expectation that the committee
can take better decision than that of its individual member.
This can be true if the effective member classifiers are
selected to form the classifier ensemble. Several researchers
have focused on different methods for combining multiple
classifiers [52], [55], [56], [57]. The formulation of NPPC
ensemble is described as follows: we have a set of ðn� 1Þ
number of trained expert models of dimensions 2; 3; . . . ; n.
Among these expert models, we have to choose ZðZ �
ðn� 1ÞÞ members such that their combined decisions
reduce the generalization error.

Among the several methods of classifier selection, it is
difficult to choose a particular method which will outper-
form others for all applications. Here, in this work, we
adopt a simple method of classifier selection (as a member
of ensemble) by their performance on the validation data.
Once the expert models are trained for different dimen-
sions, we test their performance on a validation set to
choose the best experts to be included in the ensemble. The
validation set is normalized by subtracting the mean and
dividing the standard deviation of the training data. Only a
few expert models are selected to form the ensemble which
exceeds a predefined threshold pth (in percentage) of the
validation accuracy.

3.4 Decision Combination of the Selected NPPC
Experts in the Ensemble

The research focus of combination of multiple experts (CME)
is to find a combination function fðE1; E2; . . . ; EZÞ that will
produce the best identity of a new test pattern, where
Ei; i ¼ 1; 2; . . . ; Z, is the ith expert classifier. The possible
ways of combining the outputs of Z experts in an ensemble
depend on the information available from the individual
member expert Ei. There are many CME-based approaches,
among which majority voting, weighted majority voting,
Bayes combination, behavior knowledge space methods,
Dempster-Shafer (DS) combination methods, etc. are the
most representative [55, ch. 4, and 5] combination methods.

In this work, we have studied two combination schemes
for NPPC ensemble. The first one is the majority voting
method. The other one, we have proposed, is the minimum
average proximity of a pattern for combining decisions of
NPPC ensemble. Since NPPC classifies a pattern by its
proximity to one of the two hyperplanes, we exploit this
measurement level output of NPPC for decision combina-
tion. Let x 2 <n be a test pattern in n-dimensional subspace.
NPPC assigns a class label to it by comparing its distance
from the two hyperplanes. Thus, instead of deriving the
absolute class labels from each expert Ei, we have calculated
the proximity profile (in absolute sense) of the test pattern
from the hyperplanes. Different experts derive the proxi-
mity of the test pattern in different subspaces. So, each
expert Ei 2 E in the ensemble E ¼ fE1; E2; . . . ; EZg outputs
two proximity values of a test pattern. The smaller the
proximity, more likely is the class label. The output of E ¼
fE1; E2; . . . ; EZg for a particular test pattern x 2 <n can be
organized in a proximity profile matrix (PP ðxÞ 2 <Z�2) as
shown in Fig. 5. The entries in columns 1 and 2 of PP ðxÞ are
individual proximity figures for class labels 1 and 2,
respectively. Thus, each column develops an overall
proximity vector dj, j ¼ 1; 2, for the jth class obtained from
different subspace experts Ei of the ensemble E ¼
fE1; E2; . . . ; EZg. Finally, the output class of a test pattern
x by this method is decided by the minimum of average
column-sum of PP ðxÞ, i.e.,

clðxÞ ¼ arg min
2

j¼1

X

Z

i¼1

dij=Z

 !

: ð5Þ

The testing of a new pattern by NPPC ensemble is

summarized in Fig. 6. To test a new pattern, the preselected

(by MRMR during training) n number of genes are chosen.

Then this chosen n-dimensional vector is normalized by

subtracting the mean and dividing the standard deviation

of the training data.
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Fig. 4. Structure of chromosome for simultaneously selecting optimal features and parameters.

Fig. 5. Proximity profile (PP) matrix of the test pattern x.



4 EXPERIMENTS

We have conducted numerous assessments of the proposed

NPPC ensemble for the discrimination of cancer and

normal tissue samples. We provided a comprehensive

study on the performance of our method and compared

the results with SVM in a similar framework. After a brief

introduction of the data sets in this section, we have

described the design of experiment followed by the

comparison of performances.

4.1 Data Sets

We have selected seven public domain microarray data sets

for experimental study. The details of the data sets, e.g.,

their availability, number of samples, number of genes, and

partition for the experiment, are given in Table 1. We have

omitted the detailed discussion and sources of the data sets,

as these are described in [44] and [71]. A k-nearest neighbor

algorithm [72] has been applied to fill the missing values of

the Lymphoma and Liver cancer data sets. To honestly

evaluate the performance of NPPC ensemble, we have

separated the training and testing samples at first. We have

divided the available samples randomly into training and

testing in a ratio of 6:4. Further, we separate the validation

set from the training set by taking 20 percent samples from

the training set. All the data set is normalized (featurewise)

by subtracting the training mean and then dividing by the

standard deviation of the same training data.

4.2 Experiment Design

In order to test the performance of the NPPC ensemble, we
have implemented it in MATLAB 7 [73] in Windows XP
running on a PC with system configuration Intel P4
processor (3.06 GHz) with 1 GB of RAM. To compare the
performances of the NPPC classifier with SVM in a similar
programming environment, we have used the Gunn SVM
toolbox [74] implemented in MATLAB. We have performed
all the experiments with linear classifiers only. To honestly
evaluate the performance of the NPPC ensemble, we have
utilized the strategy to select genes only from the training
sample. The testing and the validation samples are totally
excluded from the classifier building process, e.g., data
normalization, gene selection and simultaneous feature
subset, and parameter selection by GA. In all the experi-
ments, the search regions of the regularization parameters
of NPPC are taken as [0 10.0] for c1 and c3 and [10�8 10] for
c2 and c4. For SVM, the regularization parameter is selected
in the range [10�8 500]. To construct the linear NPPC
ensemble for each data set in different subspaces, we have
initialized the parameters randomly within the above limits
and considered initial population of 20. We set the GA to
run for 100 iterations. The iteration stops if the fitness value
remains constant for �gen ¼ 25 generations or reaches at the
maximum cross-validation accuracy of 100. The best
solution at each generation is updated if the minimum
change of fitness value is 10�6. As the fitness function, we
have considered 10-fold cross-validation (CV10) accuracy of
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Fig. 6. Decision combination of the NPPC ensemble by the minimum average proximity of a test pattern.

TABLE 1
Cancer Data Sets Used for the Experimental Study



training data. CV10 accuracy is preferred to leave-one-out
cross-validation (LOOCV), as the former has lower var-
iance. Previous study has shown that the CV10 is more
appropriate when considering the compromise between
bias and variance [43], [65]. Moreover, CV10 is computa-
tionally lucrative than that of LOOCV. We have selected
only those models in the ensemble for which the validation
accuracy is greater than 80 percent. In order to assess the
statistical significance of the proposed ensemble method,
we repeated the experiment for each data set 30 times with
the same selected few genes by the MRMR method as
discussed in Section 3. The average test error rates and their
standard deviations over the 30 experiments are reported
for each data set.

4.3 Results

In this section, the experimental results are presented to

establish the contribution of each factor used to form the

NPPC ensemble. First, we have pointed out the reason for

using the GA for the model selection of a single NPPC.

Table 2 shows the comparison between grid search and

GA-based model selection method of NPPC in terms of

average CPU time and testing accuracy. We have selected

the 13 grid values of the four regularization parameters of

NPPC as ½2�8; 2�7; . . . ; 24�. Thus, to select four optimal

parameters c1; c2; c3, c4, it evaluates 134 possible combina-

tion of parameters. It has been observed that several

combinations may offer same validation accuracy. Any

one of them can be used to train the final model. On the

other hand for GA-based model selection, we have used the

experimental setup as described in the pervious section.

The results show that the GA-based model selection scheme

of NPPC is very effective in terms of both computational

time and classification performance. We have also reported

p-values of the testing accuracy figures in 5-percent

significance level, in Table 2. The p-values were calculated

by performing a paired t-test [75] comparing the model

selection by GA to grid search method with the assumption

of the null hypothesis that there is no difference between

the test set accuracy distributions of the two methods. The

significant results are marked bold face in Table 2. The

results show that the p-values are much less than 0.05 for

all the data sets except for lung and liver cancer. This

indicates that there is a significant difference in mean of the

two methods. Also the time required by the GA-based

model selection is approximately 10 times less than that of

the grid search method. Obviously, this may vary depend-

ing upon the grid density as well as the selection of the

termination criteria of the GA-based search technique.

Thus, the results indicate that GA-based tuning of the

model parameters of NPPC is more suitable than the tuning

at discrete point by the grid search method. These results

justify the use of GA for simultaneous feature and model

parameter selection of NPPC.

In order to compare the performance of our NPPC

ensemble, we have investigated results in terms of average

accuracy and execution time required to develop an

ensemble. We have compared NPPC ensemble with SVM

ensemble implemented in a similar framework. The accu-

racy and time figures are the average of 30 independent tests

with different training, testing, and validation sets. In each

test, the same set of training, testing, and validation data are

used for ensemble classifiers of SVM and NPPC. The single

classifiers for both the cases are implemented by GA using

all the genes selected by the MRMR method. Table 3 shows

the improvement of the classification accuracy by ensemble

classifiers than their respective single classifier for both SVM

and NPPC ensembles. We have also reported the p-values of

the testing accuracy figures in 5 percent significance level.

Here, the p-values were calculated by performing a paired t-

test comparing the ensemble method to a single classifier

with the assumption of the null hypothesis that there is no

difference between the test set accuracy distribution of the

two methods.
From Table 3, we observe that the performances of both

SVM and NPPC ensembles improve the respective single
classifier. As an example, NPPC ensemble with both types
of decision combination performs significantly better than
the single classifier in the case of ALL_AML, lung, breast,
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lymphoma, liver, and prostate cancer data sets as p-values

are less than 0.05 for these cases. Only for colon cancer data

set, the improvement is not significant in 5 percent

significance level. On the other hand, SVM ensemble also

performs significantly better than a single SVM classifier for

the lung, lymphoma, and prostate cancer data sets. For

other four data sets, the improvement is not statistically

significant by SVM ensemble. Additionally, it is observed

from Table 3 that the average time required to develop a

NPPC ensemble is much less than that required to develop

SVM ensemble in a similar frame work and programming

environment. This is due to the computational efficiency of

the linear NPPC algorithm [46].
In Table 4, we have provided the p-values of the testing

accuracies by comparing the ensemble methods in the

5 percent significance level. The statistically significant

results are in bold face. From the table, we observed that the

overall performance of NPPC ensemble with minimum

average proximity is better than both NPPC and SVM

ensembles with majority voting scheme.

5 DISCUSSION

Here, we have presented a novel cancer classification

method based on NPPC ensemble. The experimental results

on seven data sets have demonstrated the strength of our

proposed algorithm in classifying different types of cancer.

Although the NPPC ensemble algorithm is assessed

favorably in most cases, a drawback of the method is that

there are more parameters to tune than that of SVM. But

this drawback is satisfactorily removed by the GA-based

tuning method.

5.1 The Effect of GA-Based Simultaneous Feature
and Parameter Selection on Class Separability

In our NPPC ensemble method, we have effectively

combined a wrapper method of simultaneous feature subset

and model parameter selection followed by the filter

method of feature selection. This offers enormous savings

of computational cost of wrapper method-based feature

selection. Additionally, the genes, selected by a filter

method, may not be the optimal in terms of classification

performance. Furthermore, for a parametric classifier, the

performance is highly dependent on the selection of

parameters [76]. Our NPPC is a parametric classifier and

has four regularization parameters c1; c2; c3, and c4. Our

goal is to assemble a number of expert classifiers in

different subspaces by maximizing the 10-fold cross-

validation accuracy on training data only. It is possible that

the trained models may produce high cross-validation

accuracy on training data. However, the question is

whether the GA-based simultaneous feature and parameter

selection technique can select the best combination of gene

subset that retains the separability of the testing data. We
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TABLE 4
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have illustrated the effect of this method on training and

testing data with two-dimensional embedding of the data

points. Figs. 7a and 7b show the two-dimensional linear

expert models selected in the ensemble for ALL-AML and

lung cancer data sets, respectively, in experiment run 1. The

two features selected for the best two-dimensional classifier

are not necessarily the first two genes selected in the

ranking as seen from Fig. 7. Fig. 7 also indicate that by the

GA-based searching technique, the class separability of the

test data may be substantially improved together with that

of the training data, although the classifier building process

is performed only with the training data.

5.2 The Effect of Classifier Ensemble on
Classification Accuracy

The idea of combining more classifiers has been used

extensively in the machine learning literature, especially for

improving the classification accuracy by combining the

outcome of the several classifiers. Examples are well-known

bagging and boosting techniques [55, ch. 7, pp. 203-235].

However, what is innovative here is that multiple learning

algorithms are not used for the purpose of improving the

classification accuracy by combination or averaging but the

same algorithm is used to develop best expert models in

different subspaces. We have proposed a new proximity

profile-based decision combination method for NPPC

ensemble. The effectiveness of the proposed CME is shown

in Fig. 8. The ensemble testing accuracy has been compared

to the testing accuracy of each individual expert of the

ensemble. We have only given the results of experiment run

1 for NPPC ensemble with the minimum average proximity

method of decision combination. From Fig. 8, we observed

that the individual testing accuracy of member classifiers

may vary, but the ensemble accuracy is at least equal to the

highest accuracy among the individual expert of the

ensemble. This proves the effectiveness of the proposed

combination of multiple classifiers by the minimum average

proximity of the test pattern to a class.

5.3 Biological Relevance of the Selected Genes

To select a small subset of genes by the filter method, we
have used the MRMR method of feature or gene selection.
But our experimental design strategy evaluates several
alternative training sets in order to be confident that the
selected genes are statistically significant and not due to
fluctuations and noise effects. We have selected those few
genes which repeatedly decided on the MRMR feature
ranking. To verify the biological relevance of the selected
genes that are differentially expressed by this procedure, we
have enlisted selected genes for the data sets in the
supplemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2010.36. Among the seven data sets, we
have verified the biological relevance of the selected genes
from the breast cancer data set. Out of the nine genes selected
for this data set, we have found the strong biological
relevance of six genes with the initiation and progression
of the disease. For example, very recent research shows that
the loss of expression of the transcription factor GATA3 in
breast tumors has been linked to aggressive tumor develop-
ment and poor patient survival [77], [78]. TFF secretory
protein may have a role in bone metastasis in breast cancer
[79], [80]. Genes encoding Y-box binding protein-1 (YB-1)
[81], [82], [83] and C-myb [86] are oncogenes, while altered
expression of oestrogen receptor (ER) [84], [87] and RSU-1/
RSP-1 [85] have been shown to critically influence the
cellular proliferation and cell-cycle regulation in breast
cancer. Thus, our experimental procedure is able to find
the genes that are relevant to the disease and can facilitate
early discovery as well as prognostic and therapeutic
diversification of cancer patients.

6 CONCLUSION

We have proposed a novel binary NPPC ensemble for gene
microarray expression analysis. The new proximity profile-
based CME method is found to be effective for NPPC
ensemble. As a result, the NPPC ensemble technique shows
good discriminating power in gene expression analysis. The
NPPC ensemble provides better classification accuracy than
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Fig. 7. The effect of the GA-based simultaneous feature and optimal parameter selection method on training and testing data. Two-dimensional
NPPC expert model selected in the ensemble for (a) ALL-AML data and (b) lung cancer data. The “+” and “*” signs represent the training data of two
subclasses and the circled patterns are the corresponding test data. The solid and the dotted lines represent the two hyperplanes learned from the
training data.



that of SVM ensemble in a similar frame work with lesser

computational time. The NPPC ensemble method can be

easily extended for nonlinear classifier using kernel trick.

Additionally, multiclass cancer classification is possible in

this frame work by extending the binary NPPC to multiclass

NPPC. The proposed NPPC ensemble framework may well

be of interest to others for noisy data sets in the fields of

machine learning and computational biology, such as

detection of horizontal gene transfer in bacterial genomes
[88], classification of functional classes of proteins [89],

classification of the nature of the infectious diseases [90],

diagnosis of the genetic abnormalities [91], and other

important areas of medical diagnostics.

APPENDIX

Appendix A is submitted as supplemental material, which

can be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TCBB.

2010.36.
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