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Abstract

Background: Metabolomics, the non-targeted interrogation of small molecules in a biological sample, is an ideal
technology for identifying diagnostic biomarkers. Current tissue extraction protocols involve sample destruction,
precluding additional uses of the tissue. This is particularly problematic for high value samples with limited
availability, such as clinical tumor biopsies that require structural preservation to histologically diagnose and gauge
cancer aggressiveness. To overcome this limitation and increase the amount of information obtained from patient
biopsies, we developed and characterized a workflow to perform metabolomic analysis and histological evaluation
on the same biopsy sample.

Methods: Biopsies of ten human tissues (muscle, adrenal gland, colon, lung, pancreas, small intestine, spleen,
stomach, prostate, kidney) were placed directly in a methanol solution to recover metabolites, precipitate proteins,
and fix tissue. Following incubation, biopsies were removed from the solution and processed for histology. Kidney
and prostate cancer tumor and benign biopsies were stained with hemotoxylin and eosin and prostate biopsies
were subjected to PIN-4 immunohistochemistry. The methanolic extracts were analyzed for metabolites on GC/MS
and LC/MS platforms. Raw mass spectrometry data files were automatically extracted using an informatics system
that includes peak identification and metabolite identification software.

Results: Metabolites across all major biochemical classes (amino acids, peptides, carbohydrates, lipids, nucleotides,
cofactors, xenobiotics) were measured. The number (ranging from 260 in prostate to 340 in colon) and identity of
metabolites were comparable to results obtained with the current method requiring 30 mg ground tissue.
Comparing relative levels of metabolites, cancer tumor from benign kidney and prostate biopsies could be
distinguished. Successful histopathological analysis of biopsies by chemical staining (hematoxylin, eosin) and
antibody binding (PIN-4, in prostate) showed cellular architecture and immunoreactivity were retained.

Conclusions: Concurrent metabolite extraction and histological analysis of intact biopsies is amenable to the
clinical workflow. Methanol fixation effectively preserves a wide range of tissues and is compatible with chemical
staining and immunohistochemistry. The method offers an opportunity to augment histopathological diagnosis
and tumor classification with quantitative measures of biochemicals in the same tissue sample. Since certain
biochemicals have been shown to correlate with disease aggressiveness, this method should prove valuable as an
adjunct to differentiate cancer aggressiveness.
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Background
The gold standard for diagnosis and staging of many dis-

eases is histopathology. Grading systems have been devel-

oped to predict tumor aggressiveness, and the pathologist’s

report often guides clinical treatment decisions. However,

all grading systems are subjective. Intra- and inter-observer

variability occur frequently as exemplified in renal cell

carcinoma, prostate cancer, and bladder cancer [1-6].

Discordance between biopsies and resected specimens also

occurs [5,7]. The development of molecular analytic tech-

niques such as immunohistochemistry and fluorescence

in situ hybridization (FISH) has enhanced microscopic

examination and has allowed for biomarker discovery.

Both techniques have been widely adopted into the prac-

tice of pathology [8,9]. More recently, high-throughput

molecular analytic techniques for non-targeted RNA, DNA

and protein determinations have been introduced. Comple-

mentary to those approaches is metabolomics, the process

of cataloging and quantifying the low molecular weight

(<1,500 Da) components of biologic material. Recent

reports have demonstrated that metabolomics can also

reveal disease-specific signatures that have the potential to

aid in disease diagnosis and management [10-14]. While

there are many efforts underway to discover and imple-

ment metabolomic biomarkers in blood and urine, tissue

remains a major focus for biomarker discovery and

implementation.

Historically, tissue metabolomics has been performed

using large pieces of tissue (>30 mg). In order to achieve

rapid, complete metabolite extraction, the tissue was

ground, destroying the cellular and tissue architecture that

are critical for pathological assessment, including immu-

nohistochemistry and FISH. These limitations largely pre-

vented the use of metabolomics for evaluating clinical

biopsies. Using a method of biopsy incubation in aqueous

alcohol [15], we describe and characterize a novel work-

flow that overcomes these limitations and can be imple-

mented in a standard clinical pathology practice. Alcohol

has, for many years, been the standard fixative for use in

cytology. As a less toxic alternative to formaldehyde, alco-

hol-based fixation is being increasingly used for routine

pathology. Analyzing the same biopsy using both histo-

pathology and metabolic profiles/biochemical biomarkers

could increase the accuracy of pathology-based diagnoses.

Our results demonstrate that metabolic profiles could aug-

ment pathology reports by adding a quantitative biochem-

ical-based metric to the information obtained from patient

biopsies.

Methods
Sample collection

Human kidney tissue used for method optimization experi-

ments was obtained from nephrectomy patients according

to the Eastern Virginia Medical School Institutional Review

Board (08-11-WC-0213). Post-nephrectomy, kidney speci-

mens were transported immediately to the pathology suite

and sampled. Renal tumor tissue was readily identified and

could be separately sampled from the unaffected non-

tumor-containing kidney tissue. Normal tissue was flash

frozen, stored at -80°C, and processed as indicated below.

Adrenal gland, colon, lung, muscle, pancreas, small

intestine, spleen, and stomach tissues were obtained from

beating heart donors by LifeNet Health, Transplant

Services Division (1864, Concert Drive, Virginia Beach,

VA, USA). LifeNet is a federally designated Organ Pro-

curement Organization that coordinates the recovery and

transplantation of organs across Virginia, including the

city of Norfolk. The consent process for organ donation

includes the opportunity for next of kin to separately con-

sent to procurement and use of non-transplantable organs

and tissues for research. When such research consent

existed, 0.5 to 1 cm3 portions of tissue were obtained

following established protocols of the procurement team.

Tissue was collected just prior to the withdrawal of sup-

port and placed immediately in 80% methanol to fix the

tissue for histological analysis and to extract metabolites.

For case/control samples, core biopsies were obtained

post-operatively from six renal cancer patients and eight

prostate cancer patients. Kidney needle biopsies were

obtained from renal tumor tissue and benign kidney tissue

post-nephrectomy using an 18 gauge needle and placed

directly into methanol. Similarly, needle biopsies of pros-

tate tissue were obtained post-prostatectomy. After weigh-

ing and measuring the prostate, prior to inking, the

prostate was oriented posterior surface upwards with the

apex toward the operator. An 18 gauge biopsy gun was

used to acquire 12 cores distributed in a fashion that

mimics that utilized for in vivo ultrasound-directed core

biopsies (one each as left apex lateral, left apex transition,

left mid lateral, left mid transition, left base lateral, and left

base transition; the process was repeated for the right

prostate). The cores were then placed directly into metha-

nol. All samples were collected with informed consent by

approval of the Eastern Virginia Medical School Institu-

tional Review Board.

For the incubation time course, fresh frozen normal

human kidney tissue was purchased from Asterand

(Asterand, Inc., Detroit, MI, USA).

Sample preparation and metabolite extraction

Following sample collection, a single biopsy was placed

directly in a Nalgene cryovial containing 2 ml of solvent

(80% methanol, 20% ultra-pure water unless otherwise

noted). Samples were incubated for 24 h (unless otherwise

noted) at room temperature (22 to 24°C). After a 5 minute

spin at 2,000 rpm, the solvent extract was transferred

to a clean vial and evaporated to dryness under a stream

of nitrogen gas at 40°C in a Turbovap LV evaporator
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(Zymark, Hopkinton, MA, USA). The dried extracts were

reconstituted in 550 μl methanol:water (80:20) containing

recovery standards (D,L-2-fluorophenylglycine, D,L-4-

chlorophenylalanine, tridecanoic acid, D6 cholesterol). For

experiments where histology was performed on the biopsy,

the biopsy was removed from the solvent and processed

for histology as indicated below.

For optimization experiments using 30 mg tissue

pieces, tissue was cut, weighed directly in a vial, and the

weight was recorded. To each vial 600 μl of 80% metha-

nol (unless otherwise noted) containing recovery stan-

dards were added. The tissues were homogenized in a

Geno-grinder 2000 (SPEX, Metuchen, NJ, USA), and the

samples were spun for 1 minute at 2,000 rpm. The con-

centration of the ground extract was adjusted by adding

80% methanol to be equivalent to 32 mg of initial wet

weight per milliliter of methanol extract. Samples were

mixed, then spun for 5 minutes at 2,000 rpm to pellet

any particulate. Volumes of 550 μl (17.6 mg tissue

equivalent) of the reconstituted solution were analyzed

by metabolomics as described below. For experiments

analyzing ground biopsies and post-extraction ground

biopsies, 600 μl of indicated solvent containing recovery

standards were added to each biopsy. The tissue was

homogenized in a Geno-grinder 2000 (SPEX) and spun

down for 1 minute at 2,000 rpm. An additional 50 μl of

methanol containing recovery standards were added to

the samples. They were mixed and spun down for 5 min-

utes at 2,000 rpm. A 550 μl aliquot of the solution was

analyzed by metabolomics.

Histology

After methanol incubation, the needle biopsies were placed

in biopsy bags and cassettes, which were then transferred

to Molecular Fixative (UMFix, Sakura, Torrance, CA,

USA) until processed for histology. Biopsies were pro-

cessed on a Tissue-Tek Xpress x50 (Sakura) following the

manufacturer’s instructions with an approximate run time

of 1.5 h. All processing reagents were purchased from

Sakura (Sakura-Finetek, Torrance, CA, USA). Briefly, two

15 minute incubations at 40 to 44°C in an acetone/alcohol

solution with agitation were followed by a 15 minute incu-

bation at 64 to 66°C in a vacuum in a mineral oil paraffin

reagent and finally another 15 minute incubation at 64 to

66°C in a vacuum in a paraffin reagent. Tissues were

embedded immediately following processing and were

sectioned and placed on slides.

Sections were de-paraffinized and rehydrated by 3 × 3

minute incubations in xylene, 3 × 3 minute incubations

in 100% ethanol, 1 × 3 minute incubation in 95% etha-

nol, 1 × 3 minute incubation in 80% ethanol and 1 × 5

minute incubation in deionized water. Hematoxylin

stain was performed by a 3 minute incubation in hema-

toxylin, a rinse in deionized water, 5 minute incubation

in water, and 8 to 12 rapid dips in 0.3% acidified ethanol

(2,800 ml ethanol:1,200ml water:12 ml concentrated

hydrochloric acid) to de-stain followed by 2 × 1 minute

incubations in tap water and a 2-minute rinse in deio-

nized water. Slides were then placed in eosin for 30 s

followed by 3 × 5 minute incubations in 95% ethanol,

3 × 5 minute incubations in 100% ethanol, and 3 × 15

minute incubations in xylene. Coverslips were then

mounted onto slides using Permount (Fisher Scientific,

Waltham, MA, USA). All sections were examined and

analyzed by a board-certified pathologist (DAT).

For immunohistochemistry, PIN-4 pre-diluted cocktail

(P504S, HMW Cytokeratins, and p63; Cat # PPM 225DS)

was purchased from Biocare Medical (Concord, CA,

USA). The Ventana BenchMark XT Automated Slide

Preparation System (Ventana Medical Systems, Inc.,

Tuscon, AZ, USA) was used to process the samples.

Metabolomic profiling

Global metabolomic profiling was carried out on three

independent instrument platforms, one gas chromatogra-

phy/mass spectrometry (GC/MS) and two ultrahigh perfor-

mance liquid chromatography/tandem mass spectrometry

(UHLC/MS/MS2) platforms optimized for either basic

species or acidic species. Detailed descriptions of these

platforms, including instrumentation configurations and

conditions, data acquisition, and software approaches for

data handling, were previously described in detail [16,17].

The major components of the process are summarized

below.

Following metabolite extraction, samples were sepa-

rated into three equal aliquots, using an automated

MicroLab STAR® system (Hamilton Company, Salt Lake

City, UT, USA), for analysis on three independent plat-

forms as described below. The samples destined for GC/

MS analysis were dried under vacuum desiccation for a

minimum of 24 h and then derivatized under dried nitro-

gen using bistrimethyl-silyl-triflouroacetamide (BSTFA).

Samples were analyzed on a Thermo-Finnigan Trace

DSQ fast-scanning single-quadrupole mass spectrometer

using electron impact ionization. UHPLC/MS/MS2 was

carried out using a Waters Acquity UHPLC (Waters Cor-

poration, Milford, MA, USA) coupled to an LTQ mass

spectrometer (Thermo Fisher Scientific Inc., Waltham,

MA, USA) equipped with an electrospray ionization

source. Two separate UHPLC/MS/MS2 injections were

performed on each sample: one optimized for positive

ions and one for negative ions. Chromatographic separa-

tion followed by full scan mass spectra was carried out to

record retention time, molecular weight (m/z) and MS/

MS2 of all detectable ions presented in the samples.

Metabolites were identified by automated comparison of

the ion features in the experimental samples to an in-

house reference library composed of more than 3,000
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authentic chemical standard entries that included reten-

tion time, molecular weight (m/z), preferred adducts, and

in-source fragments as well as their associated MS/MS2

spectra. This library allowed the rapid identification of

metabolites in the experiment with high confidence.

Statistical analysis

Missing values for a given metabolite were imputed with

the observed minimum detection value based on the

assumption that they were below the limits of instru-

ment detection sensitivity. All comparisons were per-

formed using log-transformed data. Welch’s two sample

t-tests were used for all comparisons unless otherwise

noted. Multiple comparisons were accounted for with

the false discovery rate (FDR) method, and each FDR

was estimated using q-values [18]. For convenience of

data visualization, raw area counts for each biochemical

were re-scaled by dividing the value for a specific bio-

chemical in each sample by the median value for that

specific biochemical.

Hierarchical clustering based on Euclidean distances was

performed with all metabolites determined to be statisti-

cally significant (P ≤ 0.05) when comparing cancer tumor

to benign. Principal components analysis was performed

using the correlation matrix from significant metabolites

in order to graphically illustrate structure in the metabolo-

mic data. Due to the potential for false positives in this

subset of significant metabolites, this approach results in a

slight over-fitting of the data. Random forest analysis [19]

was used for classification of samples into groups (for

example, cancer tumor or benign). Random forests give an

estimate of how well individuals in a new data set can be

classified into each group, in contrast to a t-test, which

tests whether the unknown means for two populations are

different or not. Random forest analyses were performed

to classify cancer tumor and benign samples (prostate and

kidney). All statistical analyses were generated using Array

Studio software. Array Studio, Array Viewer and Array

Server and all other Omicsoft products or service names

are registered trademarks or trademarks of Omicsoft Cor-

poration, Research Triangle Park, NC, USA.

Results and discussion
Method validation

To compare this method with current metabolomic

extraction techniques, we prepared ex vivo biopsy sam-

ples (3 to 5 mg of tissue) from freshly collected human

kidney. In order to assess the extraction efficiency of the

biopsy method, three sampling strategies were com-

pared: intact extracted biopsies, ground biopsies, and

30 mg pieces (Figure 1). We identified 299 metabolites

in ground human kidney samples, and >92% of these

compounds were also identified in the intact biopsy

samples (Figure 2). Thus, despite the ten-fold less tissue

and the absence of tissue disruption, the intact biopsy

extraction method is comparable to standard metabolo-

mic extraction techniques. We obtained similar results

when using 70% methanol (Additional file 1).

To determine the efficiency of intact biopsy extraction,

we first extracted metabolites from intact biopsy samples

and then ground the tissue and performed a second

extraction. Only 143 metabolites were detected following

this secondary extraction, and the levels were reduced by

an average of 81% (median reduction of 93%) compared

to the level in the initial extract (Additional file 2), indi-

cating near complete extraction using this method.

To assess the histopathology of post-extraction biopsy

tissue, we transferred prostate biopsy tissue from the

extraction solvent (methanol or ethanol) directly into

Molecular Fixative and followed a formalin fixation work-

flow. We compared these results with biopsy tissue that

was fixed directly in formalin. Hematoxylin and eosin

Figure 1 Schematic outline of method workflow. Flow diagram of the intact biopsy extraction protocol and tissue grinding protocol for a

tissue biopsy and a 30 mg tissue piece. RT, room temperature.
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staining revealed minor differences between alcohol and

formalin fixed tissues, but the tissue architecture was

equally well-preserved in all cases (Figure 3). We also per-

formed immunohistochemical analysis of prostate tissue

prepared with this workflow using the PIN4 antibody

cocktail. Appropriate staining of prostatic adenocarcinoma

and benign glands can be seen (Figure 4), validating a pre-

vious observation [15]. This result suggests that antigen

retrieval is not substantively altered by the workflow and

demonstrates the potential utility of this workflow in stan-

dard histology practice.

While we have shown that this method is compatible

with one antibody cocktail, we acknowledge that fixation

in alcohol is not the standard method and that additional

validation may be needed for additional antibodies. We

have shown that metabolites can be readily extracted from

tissue biopsies by soaking in aqueous alcohol. Formalin

fixation protocols include aqueous alcohol incubation

steps, so one approach could be to perform metabolomics

analysis on the extract from this first alcohol incubation.

This modification would allow for tissues to be processed

using formalin fixation, minimizing the deviation from

standard pathology practice. Studies are ongoing to assess

the feasibility of this approach.

Optimization and implementation of workflow

With the validated method, we sought to test parameters

of the workflow. As formalin fixation time can vary by

investigator protocol, we performed a time course (ranging

from 0.5 to 48 h) to determine the optimal methanol incu-

bation time. Metabolites were extracted within 0.5 h of

methanol incubation, and the number (Table 1) and iden-

tity (Additional file 3) of the metabolites detected at each

time point remained consistent. To assess changes in the

levels of metabolites throughout the timecourse, relative

metabolite levels at each timepoint were compared to the

24 h timepoint, which was the incubation time used in the

method validation studies. The number of significantly

altered metabolites for each comparison is presented in

Table 2. Differences were seen between the metabolite

levels at the shorter (0.5 to 4 h) incubation times com-

pared to the 24 h time point, but these differences were

not observed following 8 h incubation (Table 2). Based on

these results for kidney tissue, there is no clear optimal

incubation time. These data suggest that as long as the

incubation time is consistent, this method is amenable to

the investigator’s protocol.

To assess this workflow in the clinical setting, we ana-

lyzed a panel of eight tissues obtained from consented

Figure 2 Number and identity of metabolites obtained with intact biopsy method and the standard ground tissue extraction method.

The total number of metabolites detected using each sampling and extraction protocol (30 mg tissue, intact biopsy, ground biopsy) is shown in

the rectangles at the bottom of the figure. The Venn diagram represents the overlap in the identity of metabolites detected using each method.
The vast majority (266) of metabolites are detected using all three methods. Metabolites were extracted from intact biopsies with 80% methanol.
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donors prior to withdrawal of support (beating heart

donors). For all cases, fresh tissue was placed directly in

80% methanol to extract metabolites, then the biopsy

was removed for histological processing and analysis.

Between 260 and 340 metabolites across all major bio-

chemical classes were measured in the tissues profiled

(Table 3; Additional file 4). Hematoxylin and eosin

staining shows the tissue architecture was retained

(Additional file 5). These results demonstrate the utility

of this workflow in an array of tissue types within a clin-

ical setting. Moreover, these metabolomic inventories of

histologically normal human tissues serve as a baseline

Figure 3 Histochemical staining of biopsy samples treated with methanol or ethanol as the extraction solvent. Human prostate biopsies

from benign or cancer tumor tissue were processed using the intact biopsy method in either 80% methanol or 70% ethanol or fixed in formalin

followed by paraffin embedding and sectioning. The resulting sections were then stained with hematoxylin and eosin.

Figure 4 Histology of prostate biopsy samples. Human prostate biopsy samples were processed using the intact biopsy method in 80%
methanol followed by paraffin embedding and sectioning. (a) Prostate section processed for immunohistochemistry using PIN4 stain where red

indicates racemase and brown indicates p63 and basal keratin. (b) An immediately adjacent section stained with hematoxylin and eosin (H & E).

Black arrows indicate prostatic adenocarcinoma and blue arrows indicate benign glands.
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for future studies of both normal human variation and

disease-induced alterations in tissue metabolism. In

addition, this is the first reported metabolomic catalog

of small intestine, adrenal gland and spleen from

humans.

Clinical application of workflow in disease state

To demonstrate the utility of the workflow in a clinical

diagnostic setting, we processed patient-matched benign

and cancer tumor-containing kidney biopsy samples from

six nephrectomy patients. Post-extraction biopsy sections

were classified by a board-certified pathologist, and repre-

sentative histology images are shown in Figure 5. We also

Table 1 Number of metabolites detected following

various incubation times

Incubation time (hours) Metabolites detected

0.5 292

1 293

4 293

8 294

16 293

24 292

48 292

Biopsy samples from normal human kidney tissue were incubated in 80%

methanol for 0.5 h, 1 h, 4 h, 8 h, 16 h, 24 h, and 48 h. The extracts were

processed for metabolomics analysis. The number of metabolites detected

following each incubation time is shown.

Table 2 Statistical summary for methanol incubation time course

Summary of altered biochemicals (Welch’s two-sample t-test) 0.5H/24H 1H/24H 4H/24H 8H/24H 16H/24H 48H/24H

Total number of biochemicals with P ≤ 0.05 28 50 30 0 0 0

Biochemicals (increased|decreased) 11|17 25|25 18|12 0|0 0|0 0|0

q-value 0.09 0.09 0.10 N/A N/A N/A

Biopsy samples from normal human kidney tissue were incubated in 80% methanol for 0.5 h, 1 h, 4 h, 8 h, 16 h, 24 h, and 48 h. The solvent extracts were

processed for metabolomics analysis. The summary of the number of biochemicals significantly (P ≤ 0.05, q ≤ 0.1) altered for the indicated comparison, as

determined by Welch’s two-sample t-test, is shown.

Table 3 Number of metabolites in the major biochemical classes detected in various human tissues

Tissue type

Biochemical super
pathway

Adrenal gland
(1)

Colon
(4)

Lung
(1)

Muscle
(4)

Pancreas
(3)

Small intestine
(4)

Spleen
(1)

Stomach
(4)

Prostate
(8)

Kidney
(3)

Amino acid 69 80 71 77 71 74 62 80 70 81

Peptide 35 40 36 37 42 43 38 42 6 24

Carbohydrate 25 26 27 28 26 25 23 27 21 19

Energy 8 8 8 8 8 8 8 8 10 7

Lipid 102 129 112 122 117 124 90 125 101 107

Nucleotide 23 28 24 25 26 26 24 27 20 22

Cofactors and vitamins 8 12 9 10 8 9 7 10 13 13

Xenobiotics 13 17 12 15 13 15 10 15 17 20

Total 283 340 299 322 311 324 262 334 260 293

Adrenal gland, colon, lung, muscle, pancreas, small intestine, spleen, and stomach samples were collected from beating heart donors just prior to the withdrawal

of support, placed immediately in 80% methanol and incubated for 24 to 72 h at room temperature. Prostate refers to benign human tissue biopsy samples

collected post-prostatectomy from regions of the prostate that did not contain cancer and processed in 80% methanol as described. Kidney refers to the fresh

frozen normal human kidney tissue analyzed in the incubation time course experiment reported in Table 1. The number of metabolites detected in each

biochemical class is indicated. The number of samples analyzed for each tissue type is indicated in parentheses.

Figure 5 Representative histology images from kidney biopsies show tissue structure is retained. Patient-matched (a) benign and (b)

cancer tumor kidney biopsies were processed using the intact biopsy workflow and stained with hematoxylin and eosin. Scale bars, 50 μm.

Brown et al. Genome Medicine 2012, 4:33
http://genomemedicine.com/content/4/4/33

Page 7 of 12



Figure 6 Cancer tumor and benign kidney samples can be separated using hierarchical cluster analysis. The 69 metabolites identified as

significantly different (P ≤ 0.05) between cancer tumor and matched benign kidney tissue from six patients were used to generate the cluster

based on Euclidean distance. Cancer tumor or benign samples were determined by histopathology evaluation. Metabolites are listed on the y-
axis. Each patient is represented by a number (1 to 6) on the x-axis. Cancer tumor (C) and matched benign (B) samples were used for the

analysis. Four of six cancer tumor samples were assigned to the same major cluster and five of six benign samples were assigned to the same

major cluster.
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performed metabolomics analysis on the methanol

extracts from these same patient-matched benign and can-

cer tumor-containing biopsy samples. This represents the

first biopsy-derived metabolomic signature of cancer in

the human kidney. Sixty-nine metabolites distinguished

cancer tumor from benign samples (Additional file 6).

These changes are indicative of altered amino acid meta-

bolism, oxidative stress and pyrimidine turnover in the

transformed kidney.

To determine how the metabolomic profiles of these

samples compared with histologic classification, we per-

formed various statistical analyses of the metabolomic

data. Hierarchical clustering analysis split the kidney

biopsy samples into two major clusters, with one cluster

containing four cancer tumor samples and one benign

sample, and the other cluster containing five benign and

two cancer tumor samples (Figure 6). This analysis sug-

gests that disease-free tissue from the same patient may

be an integral component of interpreting metabolomic

data from diseased tissue. For example, based upon the

metabolomic signature, the histologically benign biopsy

from nephrectomy patient 1 was in the same major

cluster with cancer tumor biopsies (Figure 6). Similarly,

the cancer tumor samples from patients 4 and 5 were in

the main cluster with five benign samples. In all three

cases, the matched cancer and benign samples from each

of those patients group into the same terminal cluster. In

contrast, the tumor samples from patients 2, 3, and 6 do

not fall into the same major cluster or terminal cluster as

the matched benign samples. It is tempting to speculate

that these results reflect a difference in the metabolism in

the tissue biopsies that may be indicative of the stage or

aggressiveness of the cancer tumor. For instance, in

patient 1, although the sample appears histologically

benign, the metabolomic signature in the benign biopsy

may be indicative of a more aggressive cancerous state

since it groups with the cancer cluster. In patients 4 and

5, the metabolomic signature for tumor samples groups

with the benign cluster, indicating the signature resem-

bles that of benign samples, which could indicate that the

cancer was less advanced or less aggressive. Thus, distinct

metabolic signature-based groupings of cancer tumor tis-

sue may indicate not only early stage cancer but could

distinguish a more aggressive from a less aggressive can-

cer. More extensive studies with detailed histological

assessments would be needed to substantiate these

hypotheses.

Random forest analysis classified the kidney biopsy

samples based on their metabolomic profiles into cancer

tumor or benign groups. All six benign samples were cor-

rectly classified and four of the six cancer tumor samples

were correct, which gives a predictive accuracy of 83%

(Table 4). We also examined these samples using princi-

pal components analysis. For five of the six cases

examined, there was a significant positive displacement

along the first principal component when the cancer

tumor biopsy was compared to the patient-matched

benign sample (Figure 7). Performing this workflow with

a larger cohort is necessary to determine the true clinical

effectiveness of the data, but taken together these data

suggest that metabolomic profiles obtained using this

workflow have the potential to guide and/or augment

diagnosis and patient management.

Table 4 Classification of kidney biopsy samples based on

metabolites extracted from intact biopsies

Predicted

Benign Cancer

Actual Benign 6 0

Cancer 2 4

The random forest confusion matrix demonstrates that benign samples can

be distinguished from cancer tumor samples by using kidney biopsy samples.

The prediction accuracy was 83% and provides an estimate of how accurately

new observations can be predicted using the random forest model (for

example, whether a sample contains cancer tumor or is benign).

Figure 7 Principal components analysis of kidney biopsies to

distinguish cancer tumor from benign biopsies. The metabolites

identified as significant (P ≤ 0.05) between cancer tumor-containing

and benign kidney biopsies by matched pairs t-test were used to
construct the principal components analysis. Blue, cancer tumor

samples; yellow, benign samples. The six nephrectomy patients are

each indicated by a shape: circle, patient 1; square, patient 2;
upward triangle, patient 3; downward triangle, patient 4; left

pointing triangle, patient 5; right pointing triangle, patient 6.
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Figure 8 Hierarchical cluster analysis of cancer tumor and benign prostate samples. The 83 metabolites determined to be significantly

different (P < 0.05) between cancer tumor and matched benign tissue from eight patients were used to generate the cluster based on

Euclidean distance. Metabolites are listed on the y-axis. Each patient is represented by a number (1 to 8) on the x-axis. Histologically determined
cancer tumor (C) and matched benign (B) samples were used for the analysis. Cancer tumor and benign biopsies fall into two major clusters.

Seven of eight cancer tumor and seven of eight benign samples clustered as predicted by the histological analysis of the biopsy.
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The workflow was also used to assess the metabolo-

mic signature of human prostate cancer and to demon-

strate the metabolomic classification of patient-matched

benign and cancer tumor-containing prostate biopsy

samples from eight prostatectomy patients. Post-extrac-

tion biopsy sections were classified by a board-certified

pathologist. Amino acid, nucleotide and lipid abundance

profiles were markedly altered in the transformed tissues

as reported [15]. These results are consistent with pre-

vious studies using 100 mg of post-prostatectomy tissue

[10], confirming that despite the 20- to 50-fold reduc-

tion in material, the metabolic signature is essentially

retained.

To visualize the relationship between significantly

altered metabolites in the prostate biopsy samples, we

used hierarchical clustering (Figure 8). The two main

clusters separated seven benign and one cancer tumor

sample from seven cancer tumor and one benign sample.

Matched samples were in the same terminal cluster for

patients 1 and 4, with the samples from patient 1

grouped in the benign major cluster and those from

patient 4 in the cancer major cluster. As discussed above,

these results could indicate differences in cancer stage

and aggressiveness for these patients. Random forest ana-

lysis classified these samples into cancer tumor or benign

groups based on their metabolic profiles with 81% pre-

dictive accuracy (Table 5). Analysis of a larger cohort of

samples will be necessary to determine whether there are

gradations in metabolic profiles across disease severity,

but these data demonstrate the sensitivity of metabolo-

mics to further inform histological diagnosis.

Conclusions
We report a workflow that uses histologic and metabolo-

mic analysis on a single core needle biopsy to aid in dis-

ease diagnosis in a clinical setting. This method will

facilitate the translation of discovery studies into clinically

accepted diagnostic tests, and these tests have the poten-

tial to bring additional resolving power to current histo-

pathology-based diagnoses. In prostate cancer, for

example, a common question is whether a patient with a

clinical Gleason Score of 6 or 7 should undergo radical

prostatectomy. With 60 to 70% of the approximately

220,000 prostate cancer cases presenting in this Gleason

Score range [20], further evidence regarding whether a

tumor is aggressive would help inform the physician-

patient discussion regarding the choice between expectant

management and definitive therapy, including radical

radiotherapy or radical surgery. Beyond prostate cancer,

there are many other cancers (and potentially other dis-

eases) where biochemical data could supplement histo-

pathology, enhancing diagnostic and prognostic utility.

Given the prevalence of cancer in the human population,

application of this workflow has the potential to better

inform cancer management options for millions of

patients worldwide.

Additional material

Additional file 1: Number and identity of metabolites obtained with

the intact biopsy extraction method and the standard ground

tissue extraction method. We used 70% methanol for intact biopsy
extraction. The total number of metabolites detected with each method
is shown in the rectangles at the bottom. The Venn diagram illustrates
the overlap in the identity of metabolites detected using each sampling
strategy (30 mg tissue, intact biopsy, and ground biopsy). The vast
majority of metabolites (273) can be detected using any of the methods.

Additional file 2: Efficiency of intact biopsy extraction. Heatmap view
of metabolites remaining in the biopsy following intact biopsy extraction.
Biopsy samples were methanol extracted, then the intact biopsy tissue
was removed, ground and re-extracted to determine the efficiency of
the metabolite extraction using this method. Most metabolites (156 of
299) were fully extracted from the intact biopsy and the vast majority of
metabolites detectable in the secondary extraction (132 of the 143) were
significantly reduced, typically by more than 80%. Colored cells indicate
statistically significant changes, blue indicates metabolites that were
significantly higher (N = 1), yellow indicates metabolites that were
significantly lower (N = 131) in the secondary extraction of the ground
tissue relative to the intact biopsy extract.

Additional file 3: Incubation time course of metabolites detected in

kidney tissues using intact biopsy extraction method. Biopsy samples
from normal human kidney tissue were incubated in 80% methanol for
0.5 h, 1 h, 4 h, 8 h, 16 h, 24 h, and 48 h. The extracts were processed for
metabolomics analysis. The identity of metabolites detected following
each incubation time are listed and grouped by biochemical pathway.
An ‘X’ indicates that the biochemical was detected.

Additional file 4: Metabolites detected in various tissues. Metabolites
detected using the intact biopsy method are listed and grouped by
biochemical pathway. Adrenal gland, colon, lung, muscle, pancreas, small
intestine, spleen, and stomach tissue were obtained with consent from
beating heart donors according to guidelines. Prostate metabolome is
reported for benign prostate tissue from prostatectomy patients
obtained with consent according to guidelines. An ‘X’ indicates that the
biochemical was detected.

Additional file 5: Representative histology images of tissue biopsies

show tissue architecture is retained. Adrenal gland, colon, lung,
muscle, small intestine, spleen, and stomach tissue biopsies were
processed using the intact biopsy workflow and stained with
hematoxylin and eosin. The tissues were obtained with consent from
beating heart donors according to guidelines.

Additional file 6: Metabolites significantly changed in cancer tumor

compared to benign kidney biopsies. Heatmap view of metabolites
significantly altered when comparing kidney cancer tumor-containing
biopsies to matched benign biopsies. All samples were processed with
the intact biopsy workflow. Matched pairs t-test was used to identify 69
biochemicals meeting the significance criteria (P ≤ 0.05, q ≤ 0.1).

Table 5 Classification of prostate biopsy samples based

on metabolites extracted from intact biopsies

Predicted

Benign Cancer

Actual Benign 7 1

Cancer 2 6

The random forest confusion matrix demonstrates that prostate biopsy cancer

tumor samples can be distinguished from benign samples. The prediction

accuracy was 81% and provides an estimate of how accurately new

observations can be predicted using the random forest model (for example,

whether a sample contains cancer tumor or is benign).
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