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Abstract

Background: The physics of cancer dormancy, the time between initial cancer

treatment and re-emergence after a protracted period, is a puzzle. Cancer cells interact

with host cells via complex, non-linear population dynamics, which can lead to very

non-intuitive but perhaps deterministic and understandable progression dynamics of

cancer and dormancy.

Results: We explore here the dynamics of host-cancer cell populations in the

presence of (1) payoffs gradients and (2) perturbations due to cell migration.

Conclusions: We determine to what extent the time-dependence of the populations

can be quantitively understood in spite of the underlying complexity of the individual

agents and model the phenomena of dormancy.
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Background

Dormancy is the relatively long period between treatment for cancer and the progression

(return) and spreading of the cancer. After initial surgery and/or chemotherapy, the can-

cer apparently ceases to grow and is said to be in remission, or dormancy if the period is

substantially longer than typical progression times for that cancer and treatment. Unfor-

tunately often the cancer after this dormant period ends is resistant to the initial therapy

that was used. We do not address the emergence of resistance here but rather the dynam-

ics of dormancy and progression, although the emergence of resistance is a critical part

of cancer progression (Han et al. 2016).

The main focus of this work in connecting cancer emergence and dormancy is the pro-

posed phenomena of criticality in interacting cancer cell dynamics. Criticality has been

used to describe many slow-driven, interaction-dominated, threshold dynamical systems

(Jensen 1998) including evolution (Raup 1994) and morphogenesis (Krotov et al. 2014).

Near the threshold of criticality strong amplification of fluctuations emerges in response

to external perturbations (Sornette 2000). In a finite system exhibiting noncritical behav-

ior, the distribution of systematic response to external perturbation can be characterized

by the moments of mean and variance.. However, in critical systems, probability distribu-

tions of response follow power law decays, P(s) ∼ s−b. If the distribution has “thick tails”,

that is with power-law coefficients b < 3, then the mean and variance do not exist. In
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that case, external perturbation can lead to a response of any size (Yang 2004). We pro-

pose that dormancy and recurrence is a criticality problem, and use a game theoretical

approach to analytically describe the phenomena.

Methods

Simulations of Game Theory popualtion dynamics were run on a MacPro utilizing a 3.7

GHz Quad-Core Intel Xeon E5 processor. The coding was done using MaTLab 2016b.

Results: population dynamics in interacting Cancer/Host cell populations

In order to characterize mixed population dynamics some sort of simple model is nec-

essary, we have chosen game theory (Axelrod et al. 2006). Although game theory may

ignore many critical details (Adami et al. 2016), it is a beginning step towards address-

ing criticality in cancer. A simple evolutionary game model which includes the influence

of different cell types on each other involves coupled ordinary non-linear differential

equations (Maynard Smith 1982; Durrett and Levin 1994). First, we assume that when we

can break a heterogenous tumor up intoN small subpopulations and each subpopulationj

is locally homogeneous in 2 different cell types. The local population of cancer cells

(γj) and stromal cells (ηj) within the jth subpopulation can be described by the ordinary

non-linear differential equations:

dγj

dt
= (Ajpγ j + Bjpηj)γj (1)

dηj

dt
= (Cjpγ j + Djpηj)ηj (2)

where pγ j =
γj

γj+ηj
and pηj =

ηj
ηj+γj

. The payoff coefficients, Aj, Bj, Cj and Dj have very

transparent physical interpretations: they represent the result of pairwise interactions

between cells in lattice j. Since pγ j + pηj = 1, the dependence of the cancer cell fractional

population pγ j can be written as:

dpγ j

dt
= pγ j(1 − pγ j)

[

(Aj − Cj)pγ j + (Bj − Dj)(1 − pγ j)
]

(3)

There are two obvious fixed points in the flow of the fraction of γ cells versus time,

p∗
γ = 1, p∗

γ = 0, these two fixed points simply represent an initially pure γ or σ pop-

ulation which cannot change in composition. However, in general there are four more

principal end points for the progression of the tumor. Two of them are straightforward:

(1) If (Aj − Cj) < 0 and (Bj − Dj) < 0, host cells η win over cancer cells γ (this is

called prisoner’s dilemma in Game Theory jargon), in our case the cancer cells are out-

competed by the host cells, perhaps by immunosurveilance or impaired vascularization

amongst other reasons; (2) if (Aj − Cj) > 0 and (Bj − Dj) > 0, cancer cells γ win

over host cells η (this is called harmony in Game Theory jargon, but alas here the “har-

mony” means that cancer cells out-compete the host cells and then recurrence emerges).

In both the prisoners’s dilemma and harmony outcomes, at infinite time only one cell

type remains.
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There are two other fixed points with non-zero numbers of both γ cells and η cells

which give rise to stationary values. The fraction of cancer cells γ at this fixed point is:

p̃∗
γ j =

1

1 −
Aj−Cj

Bj−Dj

(4)

However, If Aj − Cj > 0,Bj − Dj < 0 this is an unstable fixed point and sensitive

to perturbations. Since this point is unstable there is no residence time of the system at

this point (this is known as a stag-hunt in Game Theory jargon). If (Aj − Cj) < 0, (Bj −

Dj) > 0 the fixed point is stable. This case is called the hawk-dove game in Game Theory

jargon, it is the only one allowing for stable coexistence of two populations. In terms

of cancer population dynamics you would like to have coefficients such that optimally

(Aj − Cj) < 0, (Bj − Dj) < 0, or at least (Aj − Cj) < 0, (Bj − Dj) > 0 so that the γ /η ratio

does not diverge. Figure 1 presents graphically these population stability landscapes as a

function of the pay-off matrix values.

It is a reasonable assumption that payoffs at neighboring subpopulations (j vs. j + 1)

change incrementally. Experimental evidence of payoff gradients has been demonstrated

in a co-culture system of multiple myeloma and stromal cells within a linear drug gra-

dient landscape (Wu et al. 2014). Here we will discuss two game transition scenarios

across the landscapes of payoffs: (1) from cancer wins to stable coexistence, (2) from

host wins, unstable bifurcation to cancer wins. First, as shown in Fig. 2a, the payoffs

A,B,C,D are equal to 0.3, 0.2,−0.3,−0.2 at position 0, and the payoffs change linearly

to −0.1, 0.4, 0.1,−0.3 at position 1. Based on the payoffs coefficients at each position j, we

can calculate which quadrant (the type of game) in Fig. 1 can represent the lattice j. The

phase plane of cancer cell density vs. host cell density in Fig. 2b and the dynamics of can-

cer fraction in Fig. 2c shows cancer cells win at position 0 and 0.5 and coexist with host

cells at position 1 independent of initial population densities. Secondly, in Fig. 3, the pay-

offs A,B,C,D are equal to 0.1,−0.3, 0.4, 0.1 at position 0, and the payoffs change linearly

to 0.3, 0.2,−0.3,−0.1 at position 1. Since we sweep through the unstable bifurcation zone

Fig. 1 A 3D stability plot. The vertical axis encodes initial fraction of γ cells. The 2 planar axes are A − C

and B − D parameters. The planar part shows the division into four quadrants which give rise to different

scenarios for the fixed points. The blue surface represents the surfaces of unstable fixed points, and the

brown surface represents the surfaces of stable fixed points
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Fig. 2 Payoffs Cancer wins (CW) to stable coexistence (SC) Blue: cancer wins (case 1), light blue: cancer wins

(case 2), orange: stable coexisistence. a Payoffs vs. position. b The phase plane of cancer cell density vs. host

cell density. The arrows indicate the fitness at given populations and payoffs. c Cancer fraction vs. time. Solid

line: initial cancer fraction is 0.02. Dotted line: initial cancer fraction is 0.85

in this case, whether cancer will win becomes sensitive to initial population fraction, as

shown black lines in Fig. 3b and c.

Integration of Eq. (3) yields the equilibration time τ it takes for these fixed points to be

approached:

τ =

∫ pfin

pin

dp

p(1 − p)((A − C)p + (B − D)(1 − p))
(5)

ba

c

Fig. 3 Unstable bifurcation (UB) to cancer wins (CW) Red: host wins, black: unstable bifurcation, blue: cancer

wins. a Payoffs vs. position. b The phase plane of cancer cell density vs. host cell density. The arrows indicate

the fitness at given populations and payoffs. c Cancer fraction vs. time. Solid line: initial cancer fraction is 0.02.

Dotted line: initial cancer fraction is 0.85
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Near the stable and unstable fixed points τ diverges, the systems slows down and crit-

icality may occur. In the case of the unstable fixed point (the stag-hunt), we can identify

the dormancy period as the time spent in the vicinity of the unstable fixed point, and the

recurrence of the cancer as the population moves away from the unstable fixed point. On

the other hand, if the system has matrix elements such that we are in a hawk-dove quad-

rant the cancer while not “cured” (which is the prisoner’s dilemma end-point) but rather

the cancer cells are in a stable equilibrium: chronically present but not life threatening, a

region of permanent dormancy.

In the basic model presented above, we assumed each lattice j of tumor is a closed

and homogenous region, no exchange of cells is involved. To gain more physiological

relevance, we introduce cancer cell migration between lattices as a perturbation to the

system. Such perturbation can also be a format of temporal varying payoffs, which are not

discussed in this work.

At each time point, we assume cancer cells migrate with probabilities m+ (to the right

neighboring lattice) and m− (to the left neighboring lattice), and the migration of host

cells are negligible. The equation of cancer cell density γ becomes:

γj(t + 1) = γj(t) + dt
[

Ajpγ j(t) + Bjpηj(t)
]

γj(t) + Mj(t) (6)

where migration term is:

Mj(t) = −

[

m−
j (t) + m+

j (t)
]

Cj(t) +

[

m−
j+1(t)Cj+1(t) + m+

j−1(t)Cj−1(t)
]

(7)

We assume here weak migration: that is we assume m+ and m− are normal random

distributed with a mean equal 0 and standard deviation equal 0.03. That means 99.7%

of simulated migration rates (percentage of cells migrate to neighboring lattices) is less

than 9%. The effect of migration on spatio-temporal dynamics of cancer is shown in

Figs. 4 and 5.

Discussion

In Fig. 4a and b, the payoffs A,B,C,D are equal to 0.22,−0.1,−0.22, 0.06, respectively at

x = 0.6 (where host wins, cancer fraction p → 0), and the payoffs change linearly to

0.28, 0.15,−0.23,−0.06 at x = 0.9 (where cancer wins, cancer fraction p → 1). As the

position is close to the vicinity of bifurcation regime (x = 0.65 in Fig. 4a), equilibration

time to reach stationary state (τ in Eq. 5) increases. For example, τ = 15 at x = 0.9 as

cancer fraction reaches stationary state p∗ = 1, while τ = 30 at x = 0.7. The migration

of cancer cells is simulated in Fig. 4b, resulting a noisy pattern which is similar to Fig. 4a.

In Fig. 4c and d, the payoffs A,B,C,D are equal to 0.08, 0.32,−0.06,−0.22, respectively

at x = 0.6 (where cancer wins, cancer fraction p → 1), and the payoffs change linearly

to −0.08, 0.38, 0.06,−0.28 at x = 0.9 (where host and cancer stably coexist, cancer frac-

tion p → 0.825). Likewise, same perturbation due to cancer cell migration as shown in

Fig. 4d results in a noisy pattern similar to Fig. 4c.

Figure 5 demonstrate the effect of migration on spatio-temporal dynamics of can-

cer in a critical state near the vicinity of unstable equilibrium (p ≈ 0.5). The payoffs

A,B,C,D are equal to 0.14,−0.11,−0.01, 0.04 at x = 0.6, and the payoffs change linearly

to 0.26, 0.01, 0.11, 0.16 at x = 0.9. First of all, the system slows down near the equilibrium.

After 40 generations, cancer fraction slightly changes from 0.51 to 0.67 in Fig. 5a and from

0.49 to 0.33 Fig. 5c. After perturbation is introduced in Fig. 5b and c, we observe the
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Fig. 4 Cancer fraction vs. space and time: a and c no migration, b and d with migration. The initial cancer

fraction is 0.02. Initial cancer fraction: 0.02. a and b Transitions from “host wins” to “unstable bifurcation” to

“cancer wins.” c and d Transitions from “cancer wins” to “stable coexistence”

a c

b d

Fig. 5 Cancer fraction vs. space and time in the vicinity of the unstable fix point (unstable bifurcation): a and

c no migration, b and dwith migration. a and b Initial cancer fraction: 0.51. c and d Initial cancer fraction: 0.49
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amplification of fluctuation near the equilibrium. Within 40 generations, neighboring

lattices can be dominated by either cancer p → 1 or host cells p → 0, exhibiting the

critical behavior, a perturbation response of any size.

Conclusions

Cancer dormancy is a slow-driven, interaction-dominated threshold system. Frequency

of breast cancer recurrence rate indicates while non-metastatic instance follows expo-

nential decay, metastatic instance may be a critical system which follows power

law. We modeled cancer dormancy inspired by evolutionary game theory, and found

that the payoffs modulated by microenvironmental factors (such as drug, oxygen,

nutrients) dictate the dynamics of cancer cells vs. host cells (including stromal and

immune cells). Perturbation (due to cancer cell migration) in the vicinity of equi-

librium is associated with the loss of global stability and may lead to recurrence of

metastatic cancer.

Much work remains to be done to map the landscape of the interaction coefficients and

classify between stable regime and unstable regime, here we provide a first step towards

identifying the dynamical signatures that could be used for prediction of emergence from

dormancy.

We hope that this work will inspire more measurements, improve predictive power of

cancer recurrence, and assist the control of cancer progression.
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