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Abstract

While tumor genome sequencing has become widely available in clinical and research settings, the interpretation

of tumor somatic variants remains an important bottleneck. Here we present the Cancer Genome Interpreter, a

versatile platform that automates the interpretation of newly sequenced cancer genomes, annotating the potential

of alterations detected in tumors to act as drivers and their possible effect on treatment response. The results are

organized in different levels of evidence according to current knowledge, which we envision can support a broad

range of oncology use cases. The resource is publicly available at http://www.cancergenomeinterpreter.org.

Background
The accumulation of so-called “driver” genomic alter-

ations confers on cells tumorigenic capabilities [1].

Thousands of tumor genomes are sequenced around the

world every year for both research and clinical purposes.

In some cases the whole genome is sequenced while in

others the focus is on the exome or a panel of selected

genomic regions. It then becomes necessary to annotate

which of the somatic mutations identified by the sequen-

cing have a possible role in tumorigenesis and treatment

response. This process, which we refer to as “the inter-

pretation of cancer genomes”, is currently tedious and

largely unsolved. One of its major bottlenecks is the

identification of the alterations driving the tumor. A

widely employed approach to solve this hurdle consists

in focusing on the mutations affecting known cancer

genes, i.e., tumor suppressors and oncogenes. These

were initially identified through experimentation, giving

rise over the past 40 years to a stable census of human

cancer genes [2]. More recently, projects re-sequencing

large cohorts of tumors have provided the opportunity

to systematically identify genes involved in tumorigen-

esis through the detection of signals of positive selection

in their alteration patterns across tumors of some two

dozen malignancies [3–6]. However, many of the som-

atic variants detected in tumors, even those in cancer

genes, still have uncertain significance and thus it is not

clear whether or not they are relevant for tumorigenesis.

Another hurdle in the interpretation of cancer genomes

concerns one of its crucial aims: the identification of

tumor alterations that may affect treatment options. Un-

structured information on the effectiveness of therapies

targeting specific cancer drivers is continuously generated

by clinical trials and pre-clinical experiments, and cur-

rently several resources are dedicated to gather and curate

these data, such as ClinVar [7], DoCM [8], OncoKB [9],

My Cancer Genome (https://www.mycancergenome.org),

PMKB [10], PCT (https://pct.mdanderson.org), CIViC

[11], and JAX-CKB (https://ckb.jax.org). Nevertheless,

none of these resources address the whole process of in-

terpretation and researchers and clinicians thus face a

challenging task to annotate the variants detected in a

newly sequenced cancer genome with their collective

information.

Here, we describe the Cancer Genome Interpreter

(CGI), a platform that systematizes the interpretation of

cancer genomes, the main hallmark of which is the

* Correspondence: nuria.lopez@irbbarcelona.org
1Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar

Medical, Research Institute and Pompeu Fabra University, Barcelona, Spain
2Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute

of Science and Technology, Barcelona, Spain

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Tamborero et al. Genome Medicine  (2018) 10:25 

https://doi.org/10.1186/s13073-018-0531-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-018-0531-8&domain=pdf
http://www.cancergenomeinterpreter.org
https://www.mycancergenome.org
https://pct.mdanderson.org
https://ckb.jax.org
mailto:nuria.lopez@irbbarcelona.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


streamlining and automatization of the whole process

(Additional file 1: Table S1). Specifically, the CGI ad-

dresses the two aforementioned challenges. On the one

hand, it identifies all known and likely tumorigenic

genomic alterations (point mutations, small insertions/

deletions, copy number alterations and/or gene fusions)

of a newly sequenced tumor, including the assessment of

variants of unknown significance. On the other, it anno-

tates all variants of the tumor that constitute state-of-

the-art biomarkers of drug response organized using

different clinical evidence. The CGI accepts several data

formats and its output reports are provided in a user-

friendly interactive framework that organizes the results

according to distinct levels of clinical relevance, which

may thus be used in a broad range of applications.

Construction and content
The CGI employs existing or newly developed re-

sources and computational methods to annotate and

analyze the alterations in a tumor according to dis-

tinct levels of evidence (Fig. 1a; details in Additional

file 2: Note I). The tool is freely available through an

API or a web interface at http://www.cancergen-

omeinterpreter.org, under an open license, with the

aim of facilitating its use by cancer researchers and

clinical oncologists (Fig. 1b–d). In the following sec-

tions we present the blueprint for the interpretation

of cancer genomes implemented by the CGI, describe

the resource, and discuss its utility.

A comprehensive catalog of cancer genes across tumor

types

One of the main aims of the interpretation of cancer ge-

nomes is to identify the alterations responsible for tumori-

genic traits. In the CGI, this process begins with a focus on

alterations that affect the genes capable of driving the

cancer hallmarks of a particular tumor type. Therefore, we

compiled a catalog of genes involved in the onset and pro-

gression of different types of cancer, obtained via different

methods and from different sources (Additional file 2: Note

II). First, from manually curated resources [2, 7, 8, 12, 13]

and the literature we collected genes that have been experi-

mentally or clinically verified to drive tumorigenesis.

Second, we incorporated the results of bioinformatics

a b

c

d

Fig. 1 Cancer Genome Interpreter. a Outline of the CGI workflow. With a list of genomic alterations as input, the CGI automatically recognizes the

format, remaps the variants as needed, and standardizes the annotation for downstream compatibility. All analyses are cancer-specific and thus

the tumor type of the sample(s) to analyze is also required. Next, the CGI identifies known driver alterations and annotates and classifies the

remaining variants of unknown significance. Finally, alterations that are biomarkers of drug effects are identified. b The CGI may be run via the web at

http://www.cancergenomeinterpreter.org (left panel) or through an API. The web results can be stored in a private repository (right panel) for their management.

The results of the CGI are provided via interactive reports. c An example of a mutation analysis report. This contains the annotations of all mutations, which

empowers the user’s review, and the labels for those known or predicted to be drivers by OncodriveMUT. d An example of a biomarker match report. This

contains the putative biomarkers of drug response found in the tumor organized according to distinct levels of clinical relevance. All these web reports are

interactive and configurable by the user. CNA copy number alteration
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analyses of large tumor cohorts re-sequenced by inter-

national initiatives such as The Cancer Genome Atlas

(http://cancergenome.nih.gov/abouttcga) and the Inter-

national Cancer Genome Consortium [14] (specifically,

we identified genes whose somatic alterations exhibit

signals of positive selection across 6729 tumors repre-

senting 28 types of cancer [4]). Each of these cancer

genes was annotated with their mode of action in

tumorigenesis (i.e., whether they function as oncogenes

or tumor suppressors), on the basis of either experi-

mentally verified sources, or in silico prediction [15]. The

resulting Catalog of Cancer Genes currently comprises

837 genes with evidence of a tumorigenic role in 193

different cancer types (Fig. 2a). Each entry in the catalog

thus includes, along with the name of the driver gene,

(i) the malignancies it drives, organized according to

available evidence; (ii) the types of alterations involved

(mutations, copy number alterations, and/or gene

translocations); (iii) the source(s) of this information;

(iv) the context (germline or somatic) in which these

alterations are tumorigenic; and (v) the gene’s mode

of action in cancer as appropriate. The catalog is

available for download through the CGI website

(https://www.cancergenomeinterpreter.org/genes).

Most mutations affecting cancer genes are of uncertain

significance

The focus on cancer genes described above is a neces-

sary but not sufficient to identify the tumorigenic vari-

ants in a tumor, since not all variants observed in a

cancer gene are necessarily capable of driving tumori-

genesis. Therefore, the CGI next focuses on annotating

and analyzing protein-affecting mutations (PAMs) that

occur in genes of the Catalog of Cancer Genes. First, val-

idated tumorigenic mutations may confidently be labeled

as drivers when detected in a newly sequenced tumor.

We compiled an inventory that currently contains 5314

such validated mutations, including cancer-predisposing

variants, from dedicated resources [7–9, 12, 13, 16] and

the literature (Fig. 2b; Additional file 2: Note III). This

Catalog of Validated Oncogenic Mutations is available

for download through the CGI website (https://www.

cancergenomeinterpreter.org/mutations). Across a pan-

cancer cohort of 6792 tumors sequenced at the whole-

exome level (mostly at diagnosis) [4] we observed that

only 5360 (916 unique variants) of the 44,601 PAMs found

in cancer genes appear in this catalog. In other words,

88% of all PAMs that affect cancer genes in this cohort are

currently of uncertain significance for tumorigenesis, a

a

c

b

d

Fig. 2 Annotating mutations in cancer genes. a Catalog of Cancer Genes. Genes that drive tumorigenesis via mutations, copy number alterations,

and/or translocations are annotated with their mode of action (MoA). b Catalog of Validated Oncogenic Mutations. Clinically or experimentally

validated driver mutations were gathered from manually annotated resources and the cancer literature. c Proportion of validated mutations

observed across the cancer genes of 6792 tumors. Cancer types: ALL acute lymphocytic leukemia, AML acute myeloid leukemia, BLCA bladder

carcinoma, BRCA breast carcinoma, CLL chronic lymphocytic leukemia, CM cutaneous melanoma, COREAD colorectal adenocarcinoma, DLBC

diffuse large B cell lymphoma, ESCA esophageal carcinoma, GBM glioblastoma multiforme, HC hepatocarcinoma, HNSC head and neck squamous

cell carcinoma, LGG lower grade glioma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, MB medulloblastoma, MM multiple

myeloma, NB neuroblastoma, NSCLC non-small cell lung carcinoma, OV serous ovarian adenocarcinoma, PA pilocytic astrocytoma, PAAD pancreas

adenocarcinoma, PRAD prostate adenocarcinoma, RCC renal clear cell carcinoma, SCLC small cell lung carcinoma, STAD stomach adenocarcinoma,

THCA thyroid carcinoma, UCEC uterine corpus endometrioid carcinoma. d OncodriveMUT schema to estimate the oncogenic potential of the

variants of unknown significance. A set of heuristic rules combines the annotations obtained for a given mutation with the knowledge about the

genes (or regions thereof) in which it is observed, as retrieved from the computational analyses of sequenced cohorts
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proportion that varies widely per gene and tumor type

(Fig. 2c; Additional file 2: Note VII). It is therefore crucial

to assess the tumorigenic potential of these variants, espe-

cially when they affect genes that are—or may be—thera-

peutic targets. We reasoned that several features of each

specific mutation as well as of the genes they affect could

help address this question. Moreover, we propose that

some of these features of interest can be extracted from

the analyses of large sequenced cohorts of healthy and

tumor tissue [4, 17]. Examples of relevant attributes in-

clude the following: i) the mode of action of the gene in

the cancer type (oncogene or tumor suppressor); ii) the

consequence type of the mutation (e.g., synonymous, mis-

sense, or truncating); iii) its position within the transcript;

iv) whether it falls in a mutational hotspot or cluster; v) its

predicted functional impact; vi) its frequency within the

human population; and vii) whether it occurs in a domain

of the protein that is depleted of germline variants. The

CGI assesses the tumorigenic potential of the variants of

unknown significance via OncodriveMUT, a newly devel-

oped rule-based approach that combines the values of

these features (Fig. 2d; Additional file 2: Note IVa). We

assessed the performance of OncodriveMUT in the task

of classifying driver and passenger mutations, using the

Catalog of Validated Oncogenic Mutations (n = 5314) and

a collected set of likely neutral—i.e., non-tumorigenic—

PAMs affecting cancer genes (n = 1676). We found that

OncodriveMUT separated the variants of these two data

sets with 86% accuracy (Matthews correlation coefficient,

0.64), out-performing other methods employed for this

goal (Additional file 2: Note IVb). In addition, for several

features, the variants classified as drivers by Oncodrive-

MUT followed the trend expected for oncogenic muta-

tions (e.g., they exhibited larger clonal fractions among all

mutations in cancer genes), and OncodriveMUT’s predic-

tions on a set of recently probed uncommon cancer muta-

tions exhibited a high concordance with experimental

evidence [18–21] (Additional file 2: Note IVb). Of note,

the attributes employed by OncodriveMUT to classify

each variant are detailed in the CGI output, which facili-

tates the user’s review of the results. In summary, the CGI

annotates the mutations affecting cancer genes with fea-

tures relevant to their potential role in cancer, identifying

validated oncogenic events and identifying the most likely

drivers among the variants of unknown significance.

A database of genomic determinants of anti-cancer drug

response

The second major aim of the effort to interpret cancer

genomes is to identify which tumor alterations may

shape the response to anti-cancer therapies. Knowledge

on the influence of genomic alterations on drug response

is continuously generated and reported through publica-

tions, clinical trials, and conference communications.

Nevertheless, collecting and curating relevant information

into an easy-to-use resource supporting the comparison

with newly sequenced tumors and organize the results

according to the needs of different users is challenging.

The CGI employs two resources to explore the associa-

tions between gene alterations and drug response. The

first is the Cancer Biomarkers database, an extension of a

previous collection of genomic biomarkers of anti-cancer

drug response [12] which currently contains information

on 1624 genomic biomarkers of response (sensitivity,

resistance, or toxicity) to 310 drugs across 130 types of

cancer. Negative results of clinical trials, e.g., the unsuc-

cessful use of BRAF V600 inhibitors as a single thera-

peutic agent in colorectal cancers bearing that mutation,

are also included in the database. Importantly, these bio-

markers are organized according to the level of clinical

evidence supporting each one, ranging from results of

pre-clinical data, case reports, and clinical trials in early

(I/II) and late phases (III/IV) to standard-of-care guide-

lines. The database is continuously updated by a board of

medical oncologists and cancer genomics experts (Fig. 3a;

Additional file 2: Note V). As explained in the “Introduc-

tion”, the Cancer Biomarkers database is only one of the

resources currently annotating the biomarkers of tumor

response to drugs (Additional file 1: Table S1). The leading

institutions developing these knowledgebases were re-

cently integrated into the Variant Interpretation for

Cancer Consortium (http://cancervariants.org/) under the

umbrella of the Global Alliance for Genomics & Health

[22]. Besides the aggregation of the data collected by each

individual resource, the aim of this project will be to

establish community standards to represent and share this

information.

The second resource is the Cancer Bioactivities data-

base, which currently contains information on 20,243

chemical compound–protein product interactions that

may support novel research applications. We built this

database by compiling a catalog of available results from

bioactivity assays of small molecules interacting with can-

cer proteins. This information was obtained by querying

several external databases (Additional file 2: Note VI). The

CGI matches the alterations observed in newly sequenced

tumors to the biomarkers or target genes in these two

databases. This process supports the identification of bio-

markers at different levels of gene resolution, ranged from

variants affecting a gene region to specific amino acid

changes. Of note, the CGI also reports co-occurring alter-

ations that affect the response to a given treatment as ap-

propriate. This includes the co-existence of biomarkers of

resistance and sensitivity to the same drug, and bio-

markers of drug sensitivity that depend upon simultan-

eous genomic events. In summary, these two databases

constitute comprehensive repositories of genome-guided

therapeutic actionability in cancer according to current
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supporting evidence. Both resources are available for

download through the CGI website (https://www.cancer

genomeinterpreter.org/biomarkers, https://www.cancerge

nomeinterpreter.org/bioactivities).

Utility and discussion
The CGI (and the databases created to support its

implementation) are distributed under an open li-

cense, and the resource can be accessed via its web

a b

c d

Fig. 3 Cancer Biomarkers Database. a A board of clinical and research experts gather the genomic biomarkers of drug response to be included in the

Cancer Biomarkers database through periodic updates. The upper panel displays the simplified schema of the data model. The clinical/research

community is encouraged to provide feedback to edit an existing entry or add a novel one by using the comment feature available in the web service.

Any suggestion is subsequently evaluated by the scientific team and incorporated as appropriate. A semi-automatic pipeline annotates any novel entry

to ensure the consistency of the attributes, including variant re-mapping from protein to genomic coordinates when necessary. The lower panel displays

some of the 1574 biomarkers that have been collected in the current version of the database, and the pie charts summarize the content. CNA copy

number alteration. b CGI analyses detect putative driver mutations in individual tumors that are rarely observed in the corresponding cancer type. When

these variants are known targets of anti-cancer therapies, they may constitute tumor type re-purposing opportunities. The graph summarizes some of

these potential opportunities detected by the CGI on 6792 pan-cancer tumors with exome-sequencing data, which are currently unexplored. The

barplots display the overall number of tumor samples (separated by cancer type) in which they were observed. The acronym of the cancer type in which

the genomic event is demonstrated to confer sensitivity to the drug is shown in parentheses following the name of the drug, and the

clinical evidence of that association is represented through color circles (note that the clinical guidelines/recommendations label refers to

FDA-approved or international guidelines). Targeted drugs and chemotherapies are shown separately. Cancer acronyms that are not

included in the Fig. 2 legend: RA renal angiomyolipoma, BCC basal cell carcinoma, GCA giant cell astrocytoma, G glioma, MCL mantle cell

lymphoma, MRT malignant rhabdoid tumor, R renal, CH chollangiocarcinoma. c Therapeutic landscape of 6792 tumors with exome-sequencing data.

Fraction of tumors with genomic alterations that are biomarkers of drug response in each cancer type. Colors in the bars denote the clinical evidence

supporting the effect of biomarkers in that disease (see evidence colors in b). Note that the event with evidence closest to the clinical evidence is

given priority when several biomarkers of drug response co-occur in the same tumor sample. The lower part of the graph indicates the total number

of samples per cancer type, detailing the number of samples in which mutation, CNA, and/or fusion data were analyzed. Cancer acronyms as in the

Fig. 2 caption. d Same as c for a cohort of 17,462 tumors sequenced by targeted panels and gathered by the GENIE project. Tumors were grouped

according to the most specific disease subtype available in the patient information. Cancer acronyms that are not included in the Fig. 2 legend are

detailed in Additional file 2: Supplementary content
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site at https://www.cancergenomeinterpreter.org and

through an Application Programming Interface (API;

Additional file 2: Notes Ic and Id). The use of the CGI

to automatically interpret cancer genomes has broad

potential applications, ranging from basic cancer gen-

omics to the translational research setting. One fea-

ture of the CGI that makes it particularly suitable for

different types of applications is its usability. The user

can input the tumor alterations to be analyzed by

uploading files following different standards and/or by

typing them in a free-text box. The system is prepared

to automatically recognize and re-map as necessary [23]

different formats, such as genomic, transcript, or protein-

based coordinates for mutations [23] (Additional file 2:

Note Ib). The use of the CGI can help addressing ques-

tions raised in different oncology research settings. A

newly sequenced group of tumors may be readily inter-

preted, and systematic analyses of large sample sets are

supported as exemplified with the 6729 pan-cancer cohort

presented in this article. The application of the CGI to the

mutations profiled across the whole exomes of these

tumors delivered a catalog of putative driver alterations

across its 28 cancer types (made available through http://

www.intogen.org; Additional file 2: Note VII). The poten-

tial of a comprehensive analysis of individual alterations is

illustrated by the identification of uncommon events in a

tumor cohort that may be exploited by drug re-purposing

opportunities (Fig. 3b; Additional file 2: Note VII). Overall,

the CGI identified 5.2 and 3.5% of the tumors with gen-

omic alterations that are biomarkers of drug response

used in the clinical practice (FDA-approved or inter-

national guidelines) or reported in late phase (III–IV) clin-

ical trials, respectively. When considering biomarkers

supported by lower levels of clinical relevance, a total of

62% of the tumors exhibited at least one biomarker with

increased response to an anti-cancer drug according to

findings in early clinical trials, case reports, or pre-clinical

assays. These numbers varied greatly across tumor types,

partially explained by the relevance of cancer-recurrent

alterations in shaping the response to drugs, such as

inhibitors of the BRAF V600 mutated form in cutaneous

melanoma (clinical guidelines), certain chemotherapies

administered for DNMT3A or NPM1 mutant acute mye-

loid leukemias (clinical guidelines), PIK3CA mutation in-

hibitors in breast cancer (early clinical trial results [24]),

and WEE1 inhibitors in TP53 mutated ovary tumors

(early clinical trial results [25]) (Fig. 3c; Additional file 2:

Note VII). However, this cohort mostly includes samples

sequenced at diagnosis and thus they may not reflect the

type of tumors that are evaluated by molecular oncol-

ogy boards at present. We therefore also applied the

CGI to the sequencing data of 17,642 tumors recently

released by the GENIE project, which profiled more

clinically advanced cancers using targeted panels [26].

The CGI identified a larger percentage of tumors bearing

potential actionable genomic alterations in that cohort.

Specifically, 8 and 6% of GENIE tumors exhibited bio-

markers of drug response used in clinical practice or re-

ported in late clinical trials, and overall 72% of these

tumors exhibited at least one alteration reported as a bio-

marker of drug response supported by any level of clinical

evidence (including pre-clinical data; Fig. 3d; Additional

file 2: Note VII). These percentages do not include cases

in which a tumor exhibits co-occurring alterations that

confer resistance to a given drug, in which the therapy

was not in silico prescribed accordingly. Of note, the

GENIE cohort exhibited a larger number of genomic bio-

markers of drug resistance (to both targeted therapies and

immune checkpoint blockade agents), as expected of

tumors with a higher proportion of recurrence/relapse pa-

tients (Additional file 2: Note VII). These analyses provide

a comprehensive state-of-the-art snapshot of the putative

genomic drivers of cancer and the landscape of genomic-

guided therapies according to our current knowledge. In

addition, the application of the CGI to analyze the results

of drug responses observed in tumors with different

genomic architecture can facilitate the discovery of novel

genomic biomarkers of drug sensitivity or resistance. The

distinction between driver and passenger events recently

contributed to the development of better predictive

models to identify novel genomic markers of drug re-

sponse in cancer cell lines [27].

In previous examples, the systematic analysis of large

datasets was facilitated by the automatic classification of

cancer variants that CGI provides. However, the detailed

review of these results is empowered by the inclusion in

the output reports of all the annotations employed by

the CGI. The ability to review these data is especially

critical in the clinical research setting. In this case, the

use of the CGI to analyze the list of alterations de-

tected in a patient’s tumor could support decision-

making in multiple scenarios, assessing variants of

unknown significance that may have implications for

response to therapy. Early clinical adopters of the CGI

have used the resource to support final decisions

about the most appropriate genomic-guided clinical

trial to enroll cancer patients or explore potential drug

re-purposing opportunities for pediatric tumors unre-

sponsive to standard-of-care therapy (see these use

cases in Additional file 2: Note VIII).

Crucial to the performance of the CGI are the mainten-

ance and further development of its two distinct types of

resources: the repositories of accumulated knowledge,

which are continuously generated, and the bioinformatics

methods to estimate the relevance of those events that are

not yet validated. As new tumor cohorts are re-sequenced

and analyzed, more comprehensive catalogs of cancer

genes and oncogenic mutations will be obtained, including
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both new malignancies and new genomic elements. In

particular, the possibility to identify non-coding cancer

drivers [28] from currently generated whole-genome se-

quencing data will open up the opportunity to explore the

actionability of non-coding genomic alterations (https://

dcc.icgc.org/pcawg). With respect to the aggregation,

curation, and interpretation of the relevance of cancer var-

iants, our team follows the standard operating procedures

developed under the umbrella of the H2020 MedBioinfor-

matics (http://www.medbioinformatics.eu/) project, thus

ensuring the mid-term maintenance of these resources.

Feedback from the community is also facilitated through

the CGI web interface. Access to this type of cancer data

is crucial for the advance of precision medicine, but is

highly complex for a single institution to comprehensively

manage and update. We envision that individual databases

will continue to be maintained to fulfill specific needs

[11], but our long-term impact will largely rely, first, on

the establishment of international standards for the collec-

tion of data relevant to associations between cancer vari-

ants and clinical outcomes and, second, on our collective

success in encouraging the community to share and

harmonize such knowledge.

Conclusions
The CGI is a versatile platform that automates the steps

proposed here for the interpretation of cancer genomes.

It annotates the alterations detected in human tumors

with features that may inform about their involvement

in tumorigenesis. It also highlights the alterations of the

tumor that constitute biomarkers of response to anti-

cancer drugs, according to current levels of evidence.

The CGI is easy to use, and will improve with new

knowledge extracted from the study of thousands of

tumors. We envision that it will become established as a

useful tool in both the basic and translational cancer re-

search settings.

Additional files

Additional file 1: Table S1. The features provided by different

resources/methods and details about which of them are employed by

the CGI. (XLS 21 kb)

Additional file 2: Supplementary methods, use cases description, Table

S2. and Figures S1–S3. (PDF 6267 kb)
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