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A genomic era of cancer studies is developing rapidly, fueled by the emergence of next-generation sequen-
cing technologies that provide exquisite sensitivity and resolution. This article discusses several areas
within cancer genomics that are being transformed by the application of new technology, and in the process
are dramatically expanding our understanding of this disease. Although, we anticipate that there will be
many exciting discoveries in the near future, the ultimate success of these endeavors rests on our ability
to translate what is learned into better diagnosis, treatment and prevention of cancer.

INTRODUCTION

In this past year, remarkable advances in our understanding of
the mutational profiles and other disease-specific alterations of
cancer genomes have been reported. In general, the field
of cancer genomics has been impacted most profoundly by
the application of next-generation sequencing technology,
which has tremendously accelerated the pace of discovery
while dramatically reducing the cost of data production.
Hence, there has been a rapid progression from targeted
gene re-sequencing using PCR and Sanger sequencing to
either targeted, whole genome, or whole transcriptome
sequencing using these massively parallel sequencing plat-
forms, coupled with the requisite bioinformatics-based
approaches to analyze the data. Within this brief timeframe,
studies examining all known genes in a few samples to
those examining hundreds of genes in hundreds of samples,
to whole genome sequencing and analysis of a matched
tumor/normal pair have been reported. There remains much
to be learned about this complex disease, of course, but our
fundamental understanding of which genes are mutated in
cancer cells, the pathways that are impacted by these
mutations, and how these data inform our models of cancer
biology will undoubtedly evolve rapidly in the near future.

STRUCTURAL VARIATION STUDIES

A well-known characteristic of cancer genomes is that they are
frequently altered in their gross chromosomal structure by
amplification, deletion, translocation and/or inversion of
chromosomal segments. Such alterations often, of course, con-
comitantly alter genes in a number of ways that may be critical

to cancer onset or progression. As such, important develop-
ments in obtaining increasingly more detailed genome-wide
characterizations of structural variation (SV) in tumor
genomes have been described recently. Initially, these
studies were conducted using signal strength-based analyses
on high-density SNP array data sets, where tumor and
normal genomic DNA were compared and any large-scale
amplification or deletion signals were detected as continuous
blocks of SNPs with higher than (amplification) or lower
than (deletion) the normalized signal strength (1). The genes
in these regions often are re-sequenced to identify mutations
or are assayed for evidence of altered gene expression levels
that correlate with a detected copy number alteration. Weir
et al. (2) provided a powerful example of this approach
using 384 lung adenocarcinoma samples in which they ident-
ified a novel candidate proto-oncogene (NKX2-1/TITF1) in an
amplified region of chromosome 14.

Complementary to array-based methods, next-generation
sequencing-based approaches are being applied to the SV
problem at a higher level of resolution and complexity.
Korbel et al. (3) first demonstrated that paired-end reads
from next-generation sequencing platforms can be aligned to
the genome and examined algorithmically to identify putative
SV. Their approach was based on the identification of
anomalously mapping read pairs that align several standard
deviations outside the well-defined size range of the library
itself. Read pairs that mapped too close together, too far
apart, in an unpredicted orientation, or across chromosomes
gave the indication of potential insertions, deletion, inversions
or translocations in the sequenced genome. By these methods,
we can obtain a much more precise view of genome-wide SV
than by array-based analysis methods. Several groups have
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recently described advanced implementations of this
approach; utilizing low coverage of a cancer genome with
paired end reads (4,5). These methods fit nicely into a para-
digm of whole genome sequencing followed by mutation
discovery. Here, a small investment in paired end reads at
light coverage can profile the extent of SV across a large
number of tumor samples as a first step. This type of analysis
not only identifies common copy number and structural variant
loci, but can also allows a calculation of the deeper sequence
coverage that will be required to characterize focal mutations
(e.g. single nucleotide and small in/dels) in each tumor
genome, since large-scale amplification (for example) will
inflate the sequence coverage requirement. One can then
obtain this deeper coverage with the same libraries used to
produce the initial data set.

TARGETED GENE SEQUENCING STUDIES

The combination of PCR and Sanger sequencing to discover
mutations in tumor genomes has proven a powerful initial
approach, as evidenced by several recent studies that we
describe below. Although studies using this method have tar-
geted limited numbers of genes and successfully identified key
somatic mutations in cancer genomes, the method recently has
been applied to characterize hundreds of genes as well as the
entire ‘exome’ (all known protein coding exons). In particular,
two articles published in the same 2008 issue of Nature (6,7)
demonstrated how targeted gene re-sequencing and variant
detection can contribute significantly to our understanding of
the types of genes carrying somatic mutations in a given
cancer type [here, lung adenocarcinoma and glioblastoma
multiforme (GBM)] by discovering novel genes mutated in
each tumor type. In these studies, by virtue of sequencing
large numbers of the same tumor type (based on pathological
examination, tumor stage and grade), the results highlighted
the cellular pathways putatively impacted by these mutations.
Both articles arrived at important correlative conclusions by
integrating the somatic mutation data with the results from
other genome-wide characterizations of the same samples,
such as array-based gene expression data, genome structure
perturbation data [e.g. loss-of-heterozygosity (LOH), amplifi-
cation or deletion of large chromosomal segments], and
clinical data elements (e.g. outcome, response to therapy,
etc.). For example, MAPK signaling, P53 signaling, cell
cycle regulation and mTOR pathways are targeted in lung
adenocarcinoma samples by combinations of point mutation,
copy number amplification and deletion and LOH (7).

Similarly, Vogelstein and colleagues have extended their
initial efforts to characterize mutations by screening most of
the known coding genes in the genome in several tumor
types (8,9), to also include information about gene expression
using next-generation sequencing of serial analysis of gene
expression tags, and about genome copy number alterations
from genotyping arrays. Their analyses combine data about
somatically mutated genes with data about copy number
alterations to identify candidate cancer genes (‘CAN-genes’),
thereby generating evidence for mutations that are driving
carcinogenesis (‘drivers’) versus having no impact on
tumor growth (‘passengers’). Gene expression data inform

the pathways analysis, by reflecting epigenetic alterations
not detectable by sequencing or copy number analyses.

This combined approach, in a study of GBM samples,
resulted in the discovery of several commonly mutated
genes, some impacting novel pathways. Among these was
the surprising identification of an IDH1 mutation that was
found in 18/149 (12%) cases, all occurring at the same
residue (R132) (10). Using clinical data, several interesting
correlations regarding the IDH1 mutation were made;
namely that this mutation was more prevalent in younger
GBM patients (mean age of 33 versus 53 years of age),
more prevalent in patients developing secondary GBMs (that
develop from low grade gliomas) and predicted a significantly
improved prognosis (median overall survival of 3.8 versus 1.1
years). In a follow-on study, this group evaluated the IDH1
R132 and related IDH2 R172 mutation prevalence in a much
wider range of tumor types that included 445 central
nervous system (CNS) tumors and 494 non-CNS tumors
(11). Here, the previously observed improved outcome for
GBM patients carrying the IDH1 mutation was confirmed
and extended to those carrying mutated IDH2 (median
overall survival of 31 versus 15 months, at P ¼ 0.002), and
for patients with anaplastic astrocytomas (median overall sur-
vival of 65 versus 20 months, P , 0.001). An evaluation of the
impact of one IDH1 mutation (R132H) and three IDH2
mutations (R172G, K and M) on the function of the resulting
proteins showed severely diminished activity in NADPH pro-
duction relative to the wild-type enzymes.

TRANSCRIPTOME CHARACTERIZATION

As more detailed profiling of the cancer genome has devel-
oped, the need for a full understanding of how these somatic
alterations are manifest in the genes expressed by tumors
has become pertinent. As in genome characterization, the
use of next-generation sequencing of RNA extracted from
tumor cells (‘RNA-seq’) produces a comprehensive data set
for complete transcriptome characterization, as well as corre-
lation to known genomic changes such as structural and
copy number alterations, focused in/dels and single nucleotide
mutations. Not only does this approach greatly expand the
dynamic range of gene expression level data beyond the sen-
sitivity limits of microarrays (12), but also it provides data
that can be further mined in a number of ways (13) to
enhance the understanding of the transcriptome in cancer.
For example, RNA-seq data can identify allele-specific
expression in the context of known mutations, verify the
impact of a nonsense mutation, or provide a means of
finding mutations in tumors as illustrated recently in ovarian
tumors (14). Here, four granulosa-cell tumors (GCT) of the
ovary were analyzed using whole transcriptome paired-end
RNA sequencing, demonstrating that all four GCTs had a mis-
sense point mutation in the FOXL2 gene. This gene encodes a
transcription factor known to be crucial in granulosa cell
development, and since the same mutation was determined
to be present in additional GCTs of the same adult-type
tumors, it is a potential driver mutation.

These data also can be analyzed to detect alternative splice
isoforms and fusion transcripts (15), as illustrated recently in a
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very clever approach by Maher et al. (16) that identified both
known and novel fusion transcripts in prostate cancer samples.
This approach utilized a combination of two next-generation
platforms to produce sequence reads that were combined to
identify fusion transcripts from cancer cell lines. In particular,
RNA-seq data from a longer-read technology (Roche/454) first
identified putative fusion transcripts by virtue of their align-
ment characteristics to the transcriptome, and then a second
RNA-seq data set from short read length platform (Illumina
Genome Analyzer) was aligned to the putative fusion tran-
script reads to provide support for their presence. Using this
paradigm, Maher et al. successfully identified known and
novel fusion transcripts in the prostate cancer cell lines
LnCaP and VCaP, and subsequently in RNA from several
prostate tumor samples.

RNA-seq also can build evidence for novel genes that
previously have not been annotated due to lack of ESTs or
were missed by in silico prediction (13,17). Hence, further
development of methods that elucidate the complexity of the
transcriptome in cancer will both support and enrich our
understanding of the cancer genome and cancer biology.

In addition to mRNA, the study of microRNAs (miRNAs)
and their roles in regulating the expression of specific genes
in both healthy and cancerous cells is rapidly expanding
our comprehension about this aspect of cell biology (18).
A recent study by Uziel et al. (19) demonstrated the inter-
action between miRNA overexpression and a well-
characterized signaling pathway, Sonic Hedgehog/Patched
(SHH/PTCH) in medulloblastoma (MB). Having determined
the overexpression of nine genes in the miR-17–92 cluster
in an MB mouse model with constitutively activated SHH/
PTCH signaling pathway, this group then tested and demon-
strated similar miR-17–92 cluster upregulation in a subset
of human MB tumors with constitutively activated SHH/
PTCH. This study provided the first evidence that the SHH/
PTCH signaling pathway and miR-17–92 functionally interact
and contribute to both murine and human MB development.

Similarly, Wyman et al. (20) and Nygaard et al. (21)
demonstrated detection of novel miRNAs and miRNAs with
differential expression in ovarian and breast cancer, respect-
ively, using Roche/454 sequencing and miRNA discovery
bioinformatics pipelines. Building upon these studies and
others, numerous groups are now proposing miRNAs as
prognostic or diagnostic markers for a variety of cancer
types (22–25).

WHOLE GENOME SEQUENCING

The most significant impact of next-generation sequencing on
cancer genomics has been the ability to re-sequence, analyze
and compare the matched tumor and normal genomes of a
single patient. With the significantly reduced cost of sequen-
cing and tremendously enhanced throughput, it is now
within the realm of possibility to sequence multiple patient
samples of a given cancer type. Such efforts require not
only data generation, but also the careful development of
analytical tools and pipelines, supported by validation efforts
that feedback into the analytical process, to enhance the sensi-
tivity and specificity of variant discovery. Due to the complex

nature of genome variation, the entire spectrum of potential
mutations requires consideration, including germline suscepti-
bility loci, somatic single nucleotide and small indel
mutations, copy number alterations and structural variants.
To-date, one publication has outlined such a study, describing
the results obtained from sequencing and analysis of an acute
myeloid leukemia genome (26). Several key concepts have
emerged from this approach, including the use of high-density
SNP genotype data to estimate genome sequence coverage by
tracking the accuracy of sequence-based SNP calls at hetero-
zygous loci, a step-wise approach to somatic single nucleotide
variant discovery, and the use of read counts to establish the
prevalence of somatic variants in the tumor cell population.
The basic analytical approach aligned tumor (�21-fold
haploid coverage) and normal (�14-fold haploid coverage)
sequence reads to the reference human genome using the
Maq alignment algorithm (27). As coverage accumulated
during the generation of tumor and germline reads, Maq was
used to call variant positions across the genome, and those
calls were compared with the heterozygous loci determined
from the overlapping set of SNP array genotype calls ident-
ified by both Illumina and Affymetrix genotyping arrays.
Sequence coverage was considered sufficient for mutation dis-
covery once heterozygous calls from sequence data were made
for .95% of these orthogonally determined heterozygous
SNP positions. This approach toward monitoring genome
coverage is now a cornerstone of our cancer genome
re-sequencing pipeline.

Somatic mutation discovery requires a number of steps to
eliminate from consideration all known sequence variants,
typically by (1) comparison with other sequenced genomes
(via dbSNP) and to other resources for variant discovery
such as the 1000 Genomes Project (www.1000genomes.org),
followed by (2) comparison at remaining variant sites
between the tumor and the normal genome. The approach
also takes into consideration two primary measures of
quality in order to distinguish high- from low-quality variants
in the latter comparison. These primary measures include first,
a cumulative base-calling quality value that is summed from
the individual quality values of each base identifying the puta-
tive variant (assigned by the Illumina analysis pipeline) and
second, a mapping quality value assigned by Maq that
indicates the genome-wide uniqueness of each aligned read.
Nonetheless, false positives do occur in this analysis, as do
false negatives. False positives tend to result from incorrect
interpretation of one or more data elements considered by
the multicomponent analysis algorithm, often due to non-
unique read placement or to a missing variant call in the
matched normal sequence. The false negatives are harder to
evaluate, but mainly appear to be due to lack of sufficient
read support for a true variant in the tumor. On one hand a
reasonably high false positive rate is desired so true mutations
are not missed, but on the other it is important to known which
predictions are incorrect. Because of this, performing an
orthogonal validation step using PCR-directed sequencing or
genotyping to establish false from true positives for all puta-
tive somatic variants in genes or in regulatory/conserved
regions of the genome should be done.

One of the key aspects of evaluating somatic mutations in
cancer genomes is that the collective sequencing read pool
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represents a census of the genomic DNA contributed from all
cancer cells used for DNA isolation. One challenge of this
pooled approach is to determine what proportion of those
cells carried each identified mutation. Information about the
prevalence of any mutation in a cell population allows one
to infer how early in the path toward cancer development
that particular mutation occurred. The digital nature of next-
generation sequencing allows us to evaluate this prevalence,
since each read in the sequenced pool of fragments represents
a single original DNA fragment from that cancer cell census.
For example, since many mutations will present as heterozy-
gous, we expect that 50% of the reads in a pure tumor cell
population will contain the variant. Obviously, this proportion-
ality will be influenced by the percentage of tumor cells in a
sample, so a correction factor is applied based either on esti-
mates from pathology review or by a more precise measure
that calculates the percentage of normal reads present in the
tumor read population at known/validated somatic sites in
that tumor genome (L. Ding, personal communication). This
type of analysis was applied to the first AML genome sequence,
demonstrating that all somatic mutations were found in virtually
all of the cells of the tumor, except for the FLT3 internal
tandem duplication (Fig. 1), which is known from mouse
models to not be an initiating mutation in AML (28).

We recently published our findings from sequencing a
second AML genome and matched normal (29), where we
employed the aforementioned concepts, identifying nine
single nucleotide somatic variants in genes, two genic
indels, and 54 somatic single nucleotide variants in known
regulatory or highly conserved regions of the genome.
Although none of the novel somatic variants identified in the
first AML genome were recurrent among 187 other AML
tumor genomes tested, one mutation found in the second
AML genome analysis proved to be recurrent in 8.2% of

those samples. This gene was IDH1, mutated at the exact
R132 site also identified in GBM (10), as described earlier.
Unlike Parsons et al., however, our correlation analysis
among the 187 AML patients, combined with the clinical
data, indicated that in AML, the IDH1 mutations portend a
significantly worse outcome by Kaplan–Meier analysis for
those patients who have normal cytogenetics and lack the
NPMc and FLT3 mutations (Fig. 2). This finding demonstrates
the power of the genomics approach, and highlights how new
insights into cancer biology will result from further cancer
genome sequencing.

CANCER GENOME SEQUENCING: THE FUTURE

One clear trend in cancer genome sequencing is that the con-
tinuing advance of next-generation technology in terms of data
capacity per instrument run and read length will accelerate the
rate of sequencing whole genomes, at ever-decreasing costs.
Since next-generation platforms can produce data to character-
ize gene expression, methylation, histone packaging, transcrip-
tion factor and other regulatory protein binding positions, and
so on, we can build data sets that quite comprehensively
characterize a broad spectrum of genomic alterations among
sets of tumor samples.

A key question is what the planned sequencing of hundreds
of tumors might reveal? For example, it is not yet clear
whether the cancer-critical somatic alterations we identify
will be found to recurrently affect specific genes, or if the
combination of recurrent and ‘private’ mutations will define
each cancer genome and hence, its treatment. We also need
to understand the potential role of inherited genomic variation
in shaping the onset of cancer and its outcomes, which is one
reason sequencing a matched normal sample from each patient

Figure 1. Summary of readcount data obtained for ten somatic mutations and two validated SNPs in the AML primary tumor, AML relapse tumor and normal
skin specimens. As described in the text, all heterozygous mutations were determined by readcount data to be present at around 50% prevalence in the tumor cells
with the exception of the FLT3 internal tandem duplication mutant. The variant alleles in the primary and relapse tumor samples are statistically different from
that of the skin sample for all mutations. Note that the normal skin sample was contaminated with leukemic cells containing the somatic mutations, as the
patient’s white blood cell count was 105 000 when the skin punch biopsy was obtained.
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is so important. Determining the genomic landscape of
hundreds of tumors ultimately will dictate whether each
cancer genome will require a full genome variation profile
as a diagnostic component of individualized treatment. It is
imperative also to focus some genome characterization
efforts toward elucidating the genomic changes that dis-
tinguish primary from metastatic disease.

Once we understand the genomic landscape of cancer, what
should follow? Whereas genome-wide characterization of
tumors likely will yield important clues about the genes that
play a role in carcinogenesis or metastasis, we must be pre-
pared to follow-up on these clues by carrying out functional
screens of altered genes with commensurately high-throughput
capabilities. Functional screening would aim to identify those
somatic alterations that are initiating carcinogenesis, or pro-
moting metastasis, thereby establishing candidate genes and
their protein products for targeted therapy development or
testing, as well as for diagnostic/prognostic assay develop-
ment. Luo et al. (30) have published such one approach,
employing pooled short hairpin RNA (shRNA) screening para-
digms of cancer cell lines that identified genes essential for
growth and related phenotypes in these cells, as well as
genes involved in the response of cancer cells to tumoricidal
agents. Lynda Chin and colleagues (31) recently published
an elegant example of a complete genomics-to-function
paradigm, first identifying a genomic region at 5p13 that
was commonly amplified in several cancer types (lung,
ovarian, prostate, breast, melanoma), and then using integrated
analysis of this region to pinpoint the Golgi-associated protein
GOLPH3 for further study. Using a variety of clues from the
results of in vitro shRNA knock-down of GOLPH3 in cell
lines that either did or did not contain the 5p13 amplification,

to in vivo GOLPH3 overexpression in these same cell lines,
to clues from yeast genetics that linked GOLPH3 to the trans-
Golgi network and ultimately as a determinant of rapamycin
sensitivity as a regulator of mTOR, the study established
GOLPH3 as a first-in-class Golgi oncoprotein. This result
further emphasizes the need for multiple lines of evidence to
support functional and mechanistic roles for the genomic
alterations we are finding in cancer genomics today.
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