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International initiatives such as the Cancer Genome Atlas (TCGA) and the International

Cancer Genome Consortium (ICGC) are collecting multiple datasets at different

genome-scales with the aim of identifying novel cancer biomarkers and predicting

survival of patients. To analyze such data, several statistical methods have been

applied, among them Cox regression models. Although these models provide a good

statistical framework to analyze omic data, there is still a lack of studies that illustrate

advantages and drawbacks in integrating biological information and selecting groups

of biomarkers. In fact, classical Cox regression algorithms focus on the selection of

a single biomarker, without taking into account the strong correlation between genes.

Even though network-based Cox regression algorithms overcome such drawbacks, such

network-based approaches are less widely used within the life science community. In

this article, we aim to provide a clear methodological framework on the use of such

approaches in order to turn cancer research results into clinical applications. Therefore,

we first discuss the rationale and the practical usage of three recently proposed

network-based Cox regression algorithms (i.e., Net-Cox, AdaLnet, and fastcox). Then,

we show how to combine existing biological knowledge and available data with such

algorithms to identify networks of cancer biomarkers and to estimate survival of

patients. Finally, we describe in detail a new permutation-based approach to better

validate the significance of the selection in terms of cancer gene signatures and

pathway/networks identification. We illustrate the proposed methodology by means of

both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly,

to show how network-based Cox regression models can be used to integrate biological

knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide

a clear methodological and computational approach for investigating cancers regulatory

networks.
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INTRODUCTION

Recent developments in high-throughput technology have
produced a huge amount of multiple and diverse genome-
scale data to deal with biological and clinical questions
in cancer. For example, genomics, transcriptomics, and
epigenomics information is nowadays publicly available for
tens of different cancer cell lines from thousands of patients
in The Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov/). Mutations data over one million tumor samples are
also reported in Cosmic (http://cancer.sanger.ac.uk/cosmic), the
world’s largest and most comprehensive resource for exploring
the impact of somatic mutations. Other valuable databases
include The Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/gds) among others. Such amount of data is likely
to revolutionize genetics and biomedical cancer research, but a
thorough integration of all these different types of information
is necessary. Indeed, cancer is a “multi-factorial” disease caused
by a combination of genetic, environmental, and lifestyle factors.
Such factors play an important role in discovering prognostic
and diagnostic cancer gene signatures opening a new way toward
the so called “personalized medicine.” The term refers to a
new type of therapy that is essentially based on the features
of each patient. For instance, the anticancer drug Cetuximab
(Karapetis et al., 2008) inhibits cells proliferation by binding to
the EGF receptor and, consequently, preventing activation of
the downstream signaling pathway. However, it has been found
that Cetuximab can work only if the K-RAS gene is not mutated.
Another example is the anti-cancer drug Trastuzumab (Hudis,
2007), which is effective only in patients that highly express the
human epidermal growth factor (HER2) at the cell surface, to
which the antibody binds. These examples highlight the need of
identifying stable and interpretable biomarkers able to predict
patient survival and characterize a patient-personalized therapy.
In addition, the knowledge of complex cancer processes and
networks is important to optimize the use of technology within
health care (Raghupathi and Raghupathi, 2014). By discovering
associations within the data, big data analytics has the potential
to improve care, save lives, and lower costs.

As a consequence, in the last years, there has been a growing
interest in developing methods that integrate different genome-
scale data into regression models for survival data to create a
comprehensive view of human biology and disease (Wang et al.,
2014). A popular used approach for the integration of genomic
and clinical information is the Cox proportional hazard model
(Cox, 1972). The main goal of such method is investigating
the connection between gene expression data and survival
information to predict cancer survival, assess cancer outcomes,
and identify new gene markers. However, since gene expression
data are usually characterized by a number of covariates p
much larger than the sample size n, the traditional Cox model
cannot be applied. Hence, several penalized Cox regression
methods have been developed to identify core pathways and
biomarkers involved in cancer progression, e.g., the Cox model
based on Lasso penalty (Tibshirani, 1996, 1997; Gui and Li, 2005).
Alternative penalized Cox regression models based on variable
selection include the SCAD (Fan and Li, 2001), the adaptive Lasso

(Zou, 2006), the elastic net model (Zou and Hastie, 2005; Simon
et al., 2011a; Wu, 2012), and the Dantzig selector (Candes and
Tao, 2007) among others. These methods are able to cope with
the high-dimensionality of gene expression data, thus solving
the “p ≫ n” issue (Engler and Li, 2009). All these penalized
models are statistically efficient in high-dimensional regression,
but they perform poorly on data with high collinearity. Moreover,
no biological knowledge is taken into account. Indeed, they
are simply based on statistical frameworks completely ignoring
biological regulatory network, protein–protein interaction (PPI),
signaling pathways, and well-known relationships among genes.
In such models, the lack of biological information produces
instability in predictors reducing the predictive ability of the
models. Hence, in order to provide more reliable and biologically
meaningful results, the inclusion of a-priori biological knowledge
into the models is mandatory. To address this issue, new
penalized Cox methods based on the integration of genomic
information have been recently proposed (Zhang et al., 2013;
Gong et al., 2014; Sun et al., 2014). In such models, the genomic
information is encoded by a network whose graph structure
identifies a given relation (edges) between genes (nodes). The
resulting Laplacianmatrix is then integrated as penalty in the Cox
regression models. In particular, the network can represent the
correlation between genes (Zhang et al., 2013), KEGG pathways
identification (Sun et al., 2014), functional interaction network
(Huttenhower et al., 2009), or PPI. These Cox models based
on a-priori biological network are called “network-based Cox
regression.”

The network-based Cox regression methods provide an
efficient tool to perform Cox regression on high-dimensional
data incorporating genes network information. In literature,
there are some recent approaches that analyze different Cox
methods. For instance, an accurate review of eight different
methods that integrate network information into multi-variable
Cox models is presented to study the risk prediction in
breast cancer and the integrated Brier score is used as a
performance measure (Fröhlich, 2014). However, the study
performed enrichment analysis on the signatures genes selected
by the comparedmodels without showing any survival prediction
analysis in terms of Kaplan–Meier curves. A network-based
Cox regression model that explores gene-to-gene connections in
multiple cancer datasets is also performed for maximizing the
overall association of the sub-network with clinical outcomes
(Martinez-Ledesma et al., 2015). A potential limitation of
these conventional networks is that the edges only reflect the
information of within-features or within-relations, and do not
consider the association between features and outcomes, which
may be useful in improving the predictive power. Therefore,
an alternative network construction method for the outcome-
guided gene-interaction network has to be introduced in order to
improve the performance of survival analysis in network-based
Cox regression (Jeong et al., 2015).

In this work, we present a methodological framework for
the analysis of molecular and survival data through a cross-
validated approach of network-based Cox regression algorithms
(Net-Cox, Adalnet, and fastcox, see Section Methods). The
method starts from the analysis of raw data and, through a
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cross-validated penalty approach, it guides the reader to the
interpretation of the final results. As shown in Figure 1, the
general steps of our approach are the following: (i) defining
the biological question and the experimental design using
microarray data, then integrating a-priori biological information
using functional map of the human genome such as HEFalMp
(Huttenhower et al., 2009) and KEGG; (ii) performing biological
screening of the data for selecting relevant features through cross-
validated penalization (Simon et al., 2011b); (iii) implementing
network-based Cox regression models for the analysis of cancer-
related genes; (iv) evaluating survival models to predict cancer
patient prognosis and exploring cancer associated pathways. The
presented approach provides a new methodological framework
for the study and the interpretation of regression methods
through gene-network and pathways analyses and it can be easily
adapted to incorporate other network-based Cox regression
algorithms.

A preliminary study for the comparison of penalized Cox
models was presented in Iuliano et al. (2014), where the analysis
was limited to cancer survival prediction using top ranked
genes. No simulation studies, extensive pathways analysis or
validation of the data were performed in that study. On the
contrary, this article presents a more accurate and complete
analysis based on a cross-validated approach (Simon et al.,
2011b), the overall workflow (see Figure 2) that includes both
simulation studies and novel real cancer datasets (see Section
Data Analysis). Simulated data have been used to perform a

statistical comparison of the methods in terms of sensitivity,
specificity, number of selected genes, false positive rates, and
Matthews correlation coefficient in two simulation settings with
different genetic effects. On the other hand, real datasets analysis
was performed to assess the relevance of the selected genes in
the training dataset and to test the survival prediction accuracy
of each model. Cross-validated Kaplan–Meier curves for survival
analysis and pathway analysis were also computed (see Section
Results). The novelty of the current study consists in the
integration of a cross-validated approach (Simon et al., 2011b)
to obtain an accurate survival prediction even when the number
of cases is relatively small for an effective sample splitting (see
Figure 2). Cross-validation methods have been largely applied
in Cox regression models to estimate prediction errors and for
model parameters tuning (Vasselli et al., 2003; Molinaro et al.,
2005; Simon et al., 2011b). Some of the most relevant cross-
validation approaches include leave-one-out cross-validation
(LOOCV; Kearns and Ron, 1999), k-fold (Refaeilzadeh et al.,
2009), and bootstrap algorithms (Kohavi, 1995). However, all
these methods do not provide a good estimation if the data
available are limited for an effective division in training and test
sets. On the contrary, the cross-validation method used in our
analysis (Simon et al., 2011b) is based on a re-sampling algorithm
that allows an accurate prediction of the survival risk model
regardless the data size. Therefore, in this work, we first present a
novel statistical approach to infer pathway interaction networks
from gene expression data that relies on a new mathematical

FIGURE 1 | The pipeline of network-based Cox models approach for cancer survival analysis in four general steps. (1) Define the biological question and

the experimental design and then, integrate a-priori biological information using functional map of the human genome; (2) perform biological screening of the data in

order to select IN variables to use in the analysis; (3) implement network-based Cox regression models with the integration of a re-sampling method based on a

cross-validated approach; (4) apply survival analysis to predict cancer patients and pathway analysis to explore groups of genes associated to the disease.
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FIGURE 2 | Workflow of prognostic model building by using gene expression profile in cancer. The method starts from the analysis of raw data and, through

a cross-validated penalty approach, it leads to the interpretation of the final results. Step (1) includes the input data for the survival analysis: gene expression data,

(Continued)
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FIGURE 2 | Continued

cancer-related genes, pathway information, and overall survival (OS) times. Step (2) illustrates the novelty of the work based on a k-fold cross-validation Kaplan–Meier

procedure by integrating network-regularized Cox models for selecting significant genes and pathways structures. The Prognostic Index (PI) has been used to divide

the patients in high-risk and low-risk groups. Then, the union of these two groups is done to plot single cross-validated Kaplan–Meier curves and to calculate the

p-value permutation test. Step (3) shows the survival prediction to test how well the models generalize across independent cancer datasets.

concept (based on the biological screening and network-based
Cox regression methods) for understanding pathways’ activity
and relationships. Second, we provide a methodological strategy
to researchers for the use of network-based Cox regression
models in order to turn cancer research results into clinical
applications.

METHODS

Network-Regularized Cox Regression
Models
The Cox Proportional hazards model (Cox, 1972) is the most
widely used model to describe the relationship between survival
times and predictor covariates.

Given a sample of n subjects, let Ti and Ci be the survival time
and the censoring time, respectively, for subject i = 1, . . . , n. Let
ti = min {Ti,Ci} be the observed survival time and δi = I(Ti ≤
Ci) the censoring indicator, where I(·) is the indicator function
(i.e., δi = 1 if the survival time is observed and δi = 0 if the
survival time is censored). We denote by Xi = (Xi1, . . . ,Xip)′

the regression vector of p-variables for the ith subject (i.e., the
gene expression profile of the ith patient over p genes). The
survival time Ti and the censoring time Ci are assumed to be
conditionally independent given Xi. Furthermore, the censoring
mechanism is assumed to be non-informative. The observed data
can be represented by the triplets {(ti, δi,Xi) , i = 1, ..., n}. The
Cox regression method assumes that the hazard function h(t|Xi),
which is the risk of death at time t for the ith patient with gene
expression profile Xi , can be written as

h(t|Xi) = h0(t) exp
(

X′
iβ

)

where h0(t) is the baseline hazard and β = (β1, . . . , βp)′ is the
column vector of the regression parameters.

In the classical setting, the regression coefficients are estimated
by maximizing the Cox’s log-partial likelihood

pl(β) =
n

∑

i=1

δi







X′
iβ − log





∑

j∈R(ti)
exp(X′

jβ)











, (1)

where ti is the survival time (observed or censored) for the ith
patient, R(ti) is the risk set at time ti (i.e., the set of all patients
who still survived prior to time ti).

However, in the analysis of gene expression data, the number
of genes p is usually larger than the sample size n and the
standard Cox-model cannot be directly applied. To cope with
the curse of dimensionality (p ≫ n), a variety of penalization
approaches have been proposed for achieving good prediction
performance and easy interpretation of the data. Although these

regularization methods induce sparsity into the solution by
shrinking some estimates to zero, the biological relationship
of gene expression profiles is not taken into account. Hence,
in order to integrate information from molecular interactions
between genes, network-based constrained methods for high-
dimensional Cox regression have been introduced.

In this context, the regression coefficients are estimated by
maximizing the penalized Cox’s log-partial likelihood function

plpen(β) =
n

∑

i=1

δi







X′
iβ − log





∑

j∈R(ti)
exp(X′

jβ)











−Pλ(β), (2)

where Pλ(β) is a network-constrained penalty function on the
coefficients β .

Such penalty function describes the existing relationships
among the covariates (genes) specified by a network G =
(V,E,W) (weighted and undirected graph), where V =
{

1, . . . , p
}

is the set of vertices (genes/covariates), an element
(i, j) in the edge set E ⊂ V × V indicates a link between vertices
i and j and W = (wij), (i, j) ∈ E is the set of weights associated
with the edges. These weights are usually used to represent the
relations between genes in terms of gene–gene interaction, KEGG
pathway analysis or PPI. Hence, the network structure plays
an important role since it incorporates prior gene regulatory
information often ignored.

The three regularized network-based Cox regression models
used in our study are presented below and differ in the form of
the penalty function Pλ(β).

Net-Cox method
Net-Cox regression (Zhang et al., 2013) is an extension of the
L2-Cox model and uses the following penalty function

Pλ,α(β) = λ
[

α ‖β‖22 + (1− α)8(β)
]

, (3)

where λ > 0 and α ∈ (0, 1] are two regularization parameters in
the network constraint. and

8(β) =
∑

(i,j)∈E
wij(βi − βj)

2. (4)

The penalty (3) consists of two terms: the first one is an L2-norm
of β that regularizes the uncertainty in the network constraint;
the second term is a network Laplacian penalty 8(β) that
encourages smoothness among correlated gene in the network
and encode prior knowledge from a network.

Given a normalized graph weight matrix W, we assume that
co-expressed (related) genes are assigned similar coefficients by
defining the cost term 8(β) as reported in Equation (4). 8(β)
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can be also written as 8(β) = β ′(I −W)β = β ′L̄β where L̄ is a
positive semi-definite matrix derived from network information
(weight matrix W) and I is an identity matrix. Hence, the
objective function will result in a significant cost in the network
if any pair of genes is connected by an high weight edge and the
difference between their coefficients is large.

Note that to identify the signature genes classified by Net-Cox,
which is a ridge regression based method, we create a consensus
ranking of the relevant cancer genes.

AdaLnet Method
Adaptive Laplacian net (Sun et al., 2014) is a modified version
of a network-constrained regularization procedure for fitting
linear models and for variable selection (Li and Li, 2008, 2010)
where the predictors are genomic data with graphical structures.
AdaLnet is based on prior gene regulatory network information,
represented by an undirected graph for the analysis of gene
expression data and survival outcomes.

Denoting with di =
∑

i:(i,j)∈E wij the degree of vertex i,
AdaLnet defines the normalized Laplacian matrix L = (lij) of the
graph G by

li,j =
{ 1, if i = j and di 6= 0,
−wij/

√

didj, if(i, j) ∈ E,

0, otherwise.
(5)

Note that L is positive semi definite. The network-constrained
penalty in Equation (2) is given by

Pλ,α(β) = λ
[

α ‖β‖1 + (1− α)9(β)
]

, (6)

with

9(β) =
∑

(i,j)∈E
wij

(

sign(β̃i)βi/
√

di − sign(β̃j)βj/

√

dj

)2
. (7)

Equation (6) is composed by two penalty terms. The first one
is an L1-penalty that induces a sparse solution, the second
one is a quadratic Laplacian penalty 9(β) = β ′L̃β that
imposes smoothness of the parameters β between neighboring
vertices in the network. Note that L̃ = S′LS with S =
diag(sign(β̃1), . . . , sign(β̃p)) and β̃ = (β̃1, . . . , β̃p) is obtained
from a preliminary regression analysis. The scaling of the
coefficients β respect to the degree allows the genes with more
connections (i.e., the hub genes) to have larger coefficients.
Hence, small changes of expression levels of these genes can lead
to large changes in the response.

An advantage of using penalty (6) consists in representing the
case when two neighboring variables have opposite regression
coefficient signs, which is reasonable in network-based analysis
of gene expression data. Indeed, when a transcription factor (TF)
positively regulate gene i and negatively regulate gene j in a
certain pathway, the corresponding coefficients will result with
opposite sign.

Note that in Net-Cox and AdaLnet, λ is the parameter
controlling the weight between the likelihood and the network
constraint and α ∈ (0, 1] is the parameter weighting the network
constraint.

Fastcox Method
The penalty function of fastcox (Yang and Zou, 2012) computes
the solution paths of the elastic net penalized Cox’s proportional
hazards model (Wu, 2012). In this method the penalty function
in Equation (2) is given by

Pλ,α(β) = λ

[

αw‖β‖1 +
1

2
(1− α)‖β‖22

]

,

where the non-negative weights w allow a more flexible
estimation. In particular, setting wj = 0 implies no shrinkage
and the variable j will be always included in the final model.
Default is 1 for all variables. α ∈ (0, 1] is the elastic net trade
off. This regularization technique is a combination of the lasso
and ridge penalty that produce a sparse model (given by the
L1-penalty) with good prediction accuracy, while encouraging a
grouping effect. It is worthy to note that this method does not
include any gene network information. It has been used in our
study to obtain pathways investigation and survival prediction
from a relevant method that is simply based on statistical
framework.

Tuning Parameters by Five-Fold
Cross-Validation
For all the methods, we estimated the regularization parameters
using cross-validation. Four-folds of data are used to build a
model for validation on the fifth fold, cycling through each of
the five-folds in turn. Then, the (λ,α) pair that minimizes the
cross-validation log-partial likelihood (CVPL) are chosen as the
optimal parameters. CVPL is defined as

CVPL(λ, α) = − 1

n

K
∑

k=1

{ℓ(β̂(−k)
(λ, α))− ℓ(−k)(β̂

(−k)
(λ, α))},

(8)

where β̂
(−k)

(·) is the estimate obtained from excluding the kth
part of the data with a given pair of (λ, α), ℓ(·) is the Cox log-
partial likelihood on all the sample and ℓ(−k)(·) is the log-partial
likelihood when the kth fold is left out (van Houwelingen et al.,
2006).

General Algorithm: A Re-Sampling Method
for Survival Prediction
The prediction capabilities of a given method are usually
evaluated using a training set to select the markers and a testing
set to measure the goodness of the prediction. In several cases
training and test sets are obtained splitting a given dataset in two
parts. However, findings could be over optimistic depending on
the specific split. To further understand the role of the network
information in cross-validation and to overcome the drawbacks
of investigating only one split, each network-based model was
validated with the re-sampling procedure suggested by Simon
et al. (2011b). This method is based on a cross-validated estimate
of the survival distribution of the risk groups and provide a more
efficient use of data than fixed sample splitting (see Figure 2).
The steps of the re-sampling algorithm for survival prediction
are presented below.
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Procedure 1: k-fold Cross-validated Kaplan–Meier survival
method

1. The full dataset D is partitioned into K approximately equal
parts D1, . . . ,DK .

For each k = 1, . . . ,K
2. Set Tk = D− Dk as the training set and Dk as the testing set.
3. Perform network-based Cox regression on Tk and select high-

risk cancer genes Gk. Denote the parameter estimate by β̂Tk .
4. Calculate the prognostic index (PI) for each patient ik in Dk as

PI
Dk
ik

= x
′
ik
β̂Tk ,

where xik is the vector of gene expression value associated
to the ik-th patient into the k-fold. Each patient ik in Dk is
assigned into the high/low-risk group if its prognostic index

PI
Dk
ik

is above (or below) a fixed threshold PI∗,Tk defined
adaptively on Tk.

5. All the patients classified as low-and-high risk in any of the
folds are grouped together and a single Kaplan–Meier curve is
computed as the union of the risk groups defined in each fold.
The set of predictive genes is selected as the union of Gk, for
k = 1, . . . ,K.

6. Compute the log-rank χ2
0 statistic under the null hypothesis

that survival is independent of expression profile.
7. Calculate a permutation p-value as follows:

(i) from the m-th permutation data (m = 1, . . . ,M),
compute the log-rank χ2

b
statistic using the cross-

validation procedure (1–6),
(ii) compute the permutation p-value, p̂, as

p̂ = M−1
M

∑

i=1

I(Pm ≥ P0).

For our analysis, the estimate β̂Tk in step 4 was computed by using
five-fold cross-validation (i.e., K = 5) to select the optimal tuning
parameter values (λ̂Tk , α̂Tk ), that we used to fit the corresponding

penalized function P
λ̂Tk

,α̂Tk
(β̂Tk ) on Tk. In particular, we first set

α to a sufficiently fine grid of values on [0, 1]. For each fixed α, λ
was chosen from {10−5, 10−4, 10−3, 10−2, 10−1, 1} for Net-Cox,
while it was set λ to a decreasing sequence of values λmax to λmin

automatically chosen for AdaLnet and fastcox.
In step 5, we selected PI∗,Tk as the optimal cut-off in terms of

PIDk . By using the PI
Tk
ik
, it was possible to split the patients in two

subgroups, i.e., high-risk and low-risk prognosis groups. Thus, the
patient ik in Tk was assigned to the high-risk (or low-risk) group

if his prognostic index PI
Tk
ik

was above (or below) the quantile
selected on a grid of given values that spans from 30 to 70%. The
cut-off PI∗,Tk was chosen in correspondence to the lowest p-value
in a log rank test on this grid.

In step 7, we setM equal to 500.

Survival Analysis
Network-based Cox regression model was used to discover
significant variables, i.e., genes, correlated with death risk.

Overall survival (OS) curves were estimated using the Cross
Kaplan–Meier estimator and compared using the two-sided
log-rank test as implemented in the R package survival. The
statistical significance of the log-rank statistic related to the
cross-validated Kaplan–Meier curves was obtained through a
permutation distribution (Simon et al., 2011b) as described
in the previous section. Permutation test was used to test
the association between high-risk or low-risk groups and p <

0.05 were considered statistically significant. A simple scheme
of the applied procedure for OS estimation is reported in
Figure 2.

Furthermore, we also validated the predictive performance
of the three methods using independent dataset for training
and testing. In this context, we used the largest dataset as
training set to identify the gene expression signatures (see
Figure 2, step 2). Then, the second independent dataset was
considered as test set in order to analyze the survival prediction
of the models. We used Kaplan–Meier survival curves and
log-rank test to perform the analysis (see Figure 2, step
3).

Pathway Analysis
We performed pathway analysis based on KEGG database and
on the Human Experimental/Functional Mapper (Huttenhower
et al., 2009). In particular, we focused on a gene–gene interaction
analysis developing gene-networks that describe the relations
between genes in terms of KEGG pathways. Each node in the
network represents a gene and an edge between two nodes means
that the two genes belongs to the same pathway. Different colors
are used for different pathways. The color of each node indicates
how strong is the relationship between the gene and the disease
under analysis (ovarian and breast cancer; Huttenhower et al.,
2009). The p-value chosen within the interval [0, 0.1] represents
the node color intensity. Red color, that is p = 0, means that
there is a high significant gene-disease relation, while green color,
that is p = 0.1, means that not exist a relevant gene-disease
relation.

Gene networks have been computed by considering only the
not isolated genes in the intersection between KEGG pathways
and the set of genes selected by each method. Given a set of
genes G and the set of all the KEGG pathways K, we defined a
gene g as not isolated if G ∩ K ! {g}. Namely, g is not isolated
if there is at least another gene g′ ∈ G belonging to the same
pathways of g.

Software
The methodological approach presented in Figure 2 has been
implemented as an integrative R script that allows to run
the different algorithms under the same R environment. Net-
Cox, which is a Matlab toolbox (http://compbio.cs.umn.edu/Net-
Cox/), AdaLnet, available as an R code and sent us upon request
and fastcox, which is an R package (http://code.google.com/p/
fastcox/) were merged together by using R.matlab, https://cran.
r-project.org/web/packages/R.matlab/index.html. The script also
includes the implementation of the re-sampling permutation
approach (Simon et al., 2011b) and the cross-validation method
for parameters estimation. Both simulated and real data can
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be used to run the script which can be easily adapted for the
integration of new Cox models.

For real data analysis, the microarray data were preprocessed
using R packages available in Bioconductor. First, we selected
from the initial dataset the genes that were more likely to be
involved in cancer by using a functional map summarizing
the most relevant interactions in the cancer area of interest
(Huttenhower et al., 2009). Then, we used HEFaIMp tool
(Huttenhower et al., 2009) to build the genes network and
identify the weight of the edges between the selected genes.
Finally, Net-Cox, AdaLnet, and fastcox were implemented
integrating a cross-validation method for selecting the optimal
tuning parameters λ and α and a re-sampling based procedure
(Simon et al., 2011b), see Procedure 1.

The scripts are available upon request from the first two
authors.

DATA ANALYSIS

Simulation Scheme
We used the three methods in two different simulation settings
(Wu and Wang, 2013; Sun et al., 2014) in order to investigate
the performances and the properties of the three models and
to facilitate the interpretation of results. We considered two
scenarios that are likely to be encountered in genomic studies
and we simulated gene expression data as network constrained.
Both the two settings consist of 100 regulatory networks. Each
regulatory network is composed by one transcription factor (TF)
that regulates 10 genes resulting in a total of 1100 genes. Detailed
settings are given below.

Scenario 1: Not-Overlapped Networks
The first setting simulates a scenario with not-overlapped
networks, which means that the 100 regulatory networks are
disjoint each other and each gene is linked to only one TF. Under
this assumptions, the degree di of each TF= 10 and di = 1 for the
regulated genes. The edges’ weight wij = 1 between the TFs and
their regulated genes, wij = 0 otherwise. The expression value of
each TF was generated from a normal standard distribution. The
expression values of the ten regulated genes were generated from
a conditional normal distribution with positive correlation (ρ =
0.7) between the expression of five genes and the corresponding
TF, and negative correlation (ρ = −0.7) for the remaining five
genes. This simulates the activation or repression of each gene
under the effect of the corresponding TF. The failure times were
generated from the Cox model

λ(t|X) = λ0(t) exp
(

88
∑

j=1

βjXj

)

which includes only s = 88 relevant genes (i.e., eight regulatory
networks). The baseline hazard function λ0(t) was specified
by a Weibull distribution with shape parameter 5 and scale
parameter 2. Censoring times were generated from U(2, 15) with
a censoring rate of about 30%. The sample size was fixed at
n = 200 and the simulation were replicated 100 times. In this
setting of not-overlapped genes, the coefficients βj, j=1, . . . , 44

were generated from the uniform distributionU(0.1, 1), while βj,
j=45, . . . , 88 were generated from U(−1.5,−0.1).

For each of the settings above, we quantified the noise as the
mean between the variance of each transcription factor (TF) and
the variance of the 10 corresponding regulated genes.

Scenario 2: Overlapped Networks
The second setting simulates a scenario with overlapped
networks, where four regulatory networks (i.e., 44 genes) are
connected to the other four networks. This mimics the fact that
some genes can belong to different pathways regulating different
biological processes, as often observed in cancer. For the sake of
simplicity, we assume that all the genes (including the TF) in the
networks P3, P4, P5, and P6 are connected to the genes in the
remaining four network P1, P2, P7, and P8 which are maintained
disjointed and independent each other. The expression values
of the TFs and the regulated genes were generated from a
multivariate normal distribution with cov(Xi,Xj) = 0.5|i−j|.
The coefficients βj, j = 1, . . . , 22, corresponding to P1 and
P2, were generated from the uniform distribution U(0.1, 0.5),
the coefficients corresponding to the 44 common genes βj, j =
23, . . . , 66 were generated fromU(−0.1, 0.1) and the coefficients
βj, j = 67, . . . , 88, corresponding to P7 and P8, were generated
from the uniform distribution U(−1,−0.5). Survival times were
generated as reported in the first setting with the same censoring
rate.

Statistical Measures
The performance of each method is summarized by four
measures: sensitivity, specificity, number of genes selected, and
the Matthews correlation coefficient (MCC). The sensitivity or
true positive rate (TPR) and specificity or true negative rate (TNR)
are given by

TPR = TP

TP + FN
, TNR = TN

TN + FP
,

where TP, TN, FP, and FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively. A
test with high sensitivity (few false negative) has a low type II
error rate, while a test with a high specificity (few false positive)
has a low type I error rate. The number of genes selected refers
to the genes identified as relevant by each method in the training
set. The analysis of these genes gives information on prediction
accuracy.

The Matthews correlation coefficient (MCC) is defined as

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

The MCC measure is an global measure of accuracy, and a larger
MCC indicates a better performance.

Real Data Applications
We applied the three network methods on different real datasets
containing large-scale microarray gene expressionmeasurements
from ovarian and breast cancer including survival information
(see Table 1) in order to facilitate the detection of molecular
biomarker and pathway analysis with clinical utility.
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TABLE 1 | Microarray Dataset Summary (OS = overall survival).

Datasets Ref. Sample Platform Genes Survival Cancer

number number data type

GSE26712 Bonome et al., 2008 185 Affymetrix U133A 13104 OS Ovarian

OV-TCGA The Cancer Genome Atlas Research Network, 2011 578 Affymetrix U133A 13104 OS Ovarian

GSE20685 Kao et al., 2011 327 Affymetrix U133Plus2 21686 OS Breast

GSE7390 Desmedt et al., 2007 198 Affymetrix U133A 13718 OS Breast

Ovarian Datasets
We downloaded the first ovarian dataset from NCBI Gene
Expression Omnibus as raw .CEL files (Bonome: GSE26712).
The data contain gene expression profiling for extensive set of
185 primary ovarian tumors untreated late-stage (III–IV) high-
grade (2,3) patients hospitalized at the Memorial Sloan-Kettering
Cancer Center between 1990 and 2003. The Affymetrix human
U133A microarray platform was used. The second ovarian
dataset, the ovarian TCGA, was downloaded from The Cancer
Genome Atlas data portal (The Cancer Genome Atlas Research
Network, 2011). It was obtained at the gene level (level 3) using
the Affymetrix human U133A microarray from 578 samples. All
patients were diagnosed with high-grade serous carcinoma and
were in an advanced stage. We noted that such datasets are very
similar in terms of type of patients, platforms, and cancer disease.
Therefore, they can be also used for validation.

Breast Datasets
The breast cancer microarray datasets were downloaded from
NCBI GEO database as raw .CEL files (Kao: GSE20685 and
Desmedt: GSE7390). Gene expression profiling of the first
dataset was conducted on fresh frozen breast cancer tissue
collected from 327 patients diagnosed and treated between 1991
and 2004 at the Koo Foundation Sun-Yat-Sen Cancer Center.
Hybridization targets were prepared from total RNA according
to the Affymetrix U133 plus 2.0 platform. The second breast
cancer dataset was chosen on gene expression profiling of frozen
samples from 198 N—systemically untreated patients at the
Bordet Institute. It was based on the Affymetrix U133 platform.

Preprocessing
All the raw files were processed and normalized by RMA package
available in Bioconductor (Gentleman et al., 2004). Between
arrays normalization was carried out by using the preprocessCore
package available in Bioconductor (Gentleman et al., 2004).
Survival data (OS, i.e., overall survival), censoring indicator and
time to death, for each patients in every dataset were also given
(Figure 2, step 1).

Cancer Genes and Related Functional Networks
Following our previous study (Iuliano et al., 2014), in order
to better analyze real datasets, we first applied a biologically
inspired size reduction of the dataset, then we built an a-priori
network information for the type of cancer under investigation
(see Figure 2, step 1). For a better focus on genes that are
more likely to be relevant in cancer, we selected the high-risk
cancer genes using the Human Experimental/Functional Mapper

TABLE 2 | Significant genes number selected using HEFaIMp tool.

Datasets Genes number

GSE26712 1068

OV-TCGA 1068

GSE20685 536

GSE7390 536

(Huttenhower et al., 2009), which is based on a regularized
Bayesian integration system. This mapper provides a p-value for
each gene describing the significance of the relation between
the gene and the disease of interest (breast and ovarian cancer,
respectively). In our analysis, we selected only the genes with p
< 0.05. A summary of the final number of the genes selected
from each dataset is reported in Table 2. The network matrices
used to test the network-based Cox models in our analysis
were also derived from the Human Experimental/Functional
Mapper which provides maps describing the genes functional
activity and interaction networks in over 200 areas of human
cellular biology with information from 30,000 genome-scale
experiments. This functional network summarizes information
from a variety of biologically informative perspectives: prediction
of protein function and functional modules, cross-talk among
biological processes, and association of novel genes and pathways
with known genetic disorders (Huttenhower et al., 2009). The
edges of the network are weighted between [0, 1] and express the
functional relation between two genes. Note that the functional
linkage network includes more information than Human PPI,
frequently used as the network prior knowledge. It is clear
that taking into account such biological knowledge helps in
identifying significant genes that are functionally related in order
to obtain important results biologically interpretable.

In order to adapt the gene network to the different methods,
the final weight matrix was slightly different from method to
method. In particular, since AdaLnet requires a weight matrix
consisting of 0 and 1, eachmatrix element was set equal to 0 (or 1)
if the weight value was below (or above) a fixed threshold equals
to 0.5. On the other hand,Net-Cox uses the original weightmatrix
as obtained in the original paper (Huttenhower et al., 2009).

RESULTS

In our study, we analyzed three network-based Cox regression
methods described in Section Methods both on simulated
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TABLE 3 | Simulation results for Not-Overlapped settings. Sensitivity, specificity, number of selected genes, false positive rates, and MCC were averaged

over the 100 replications.

Sensitivity Specificity No. genes No. FP MCC

Net-Cox

No. genes = 44 0.240 (0.042) 0.977 (0.004) 44.000 (0.000) 22.910 (3.677) 0.300 (0.063)

No. genes = 88 0.489 (0.071) 0.956 (0.006) 88.000 (0.000) 44.940 (6.233) 0.445 (0.077)

No. genes = 176 0.737 (0.087) 0.890 (0.008) 176.000 (0.000) 111.180 (7.692) 0.464 (0.070)

AdaLnet

General setting 0.444 (0.250) 0.792 (0.170) 249.360 (193.786) 210.330 (172.384) 0.190 (0.059)

No. genes ≤ 100 0.200 (0.085) 0.967 (0.021) 51 (27.256) 33.395 (21.227) 0.220 (0.064)

No. genes > 100 0.627 (0.160) 0.660 (0.099) 399 (113.254) 343.807 (100.118) 0.166 (0.041)

fastcox

General setting 0.141 (0.117) 0.970 (0.037) 42.62 (46.613) 30.19 (37.833) 0.160 (0.082)

No. genes ≤ 10 0.017 (0.017) 0.999 (0.0002) 1.524 (1.486) 0.048 (0.216) 0.099 (0.07)

No. genes > 10 0.231 (0.063) 0.949 (0.036) 72.379 (40.331) 52.017 (36.492) 0.204 (0.054)

The table reports three consensus rankings for Net-Cox obtained selecting 44, 88, and 176 genes. For AdaLnet and fastcox, we show the results related to the general setting, and

the statistical measures obtained when the number of selected genes is higher (or lower) of a fixed threshold (threshold was set equal to 100 for AdaLnet and equal to 10 for fastcox).

Standard deviation is reported in brackets.

TABLE 4 | Simulation results for overlapped settings.

Sensitivity Specificity No. genes No. FP MCC

Net-Cox

No. genes = 44 0.156 (0.043) 0.970 (0.004) 44.000 (0.000) 30.240 (3.766) 0.175 (0.064)

No. genes = 88 0.288 (0.044) 0.938 (0.004) 88.000 (0.000) 62.620 (3.842) 0.227 (0.048)

No. genes = 176 0.386 (0.044) 0.860 (0.003) 176.000 (0.000) 142.010 (3.860) 0.182 (0.035)

AdaLnet

General Setting 0.262 (0.178) 0.879 (0.144) 145.280 (160.666) 122.240 (145.679) 0.166 (0.067)

No. genes ≤ 100 0.141 (0.064) 0.977 (0.020) 35.635 (24.760) 23.206 (20.296) 0.196 (0.060)

No. genes > 100 0.467 (0.106) 0.713 (0.105) 331.973 (114.325) 290.865 (106.135) 0.114 (0.043)

fastcox

General setting 0.098 (0.099) 0.974 (0.039) 34.55 (47.732) 25.89 (39.807) 0.134 (0.061)

No. genes ≤ 10 0.019 (0.015) 0.999 (0.0001) 1.679 (1.281) 0.0178 (0.134) 0.115 (0.065)

No. genes > 10 0.199 (0.061) 0.942 (0.040) 76.386 (45.224) 58.818 (40.830) 0.158 (0.044)

Sensitivity, specificity, number of selected genes, false positive rates and MCC were averaged over the 100 replications. The table reports three consensus rankings for Net-Cox obtained

selecting 44, 88, and 176 genes. For AdaLnet and fastcox, we show the results related to the general setting, and the statistical measures obtained when the number of selected

genes is higher (or lower) that a fixed threshold (threshold was set equal to 100 for AdaLnet and equal to 10 for fastcox). Standard deviation is reported in brackets.Standard deviation

is reported in brackets.

and real data. Here, the major interest is the association of
genomic features with clinical outcomes under specific scenarios.
Simulation studies were based on two different biological
scenarios and were introduced to show the performance of
the selected network methods. While, real data analysis was
performed in order to provide a better understanding of the
outcomes in terms of predictive/prognostic biomarkers and
to demonstrate their validity and clinical utility. In particular,
we first investigated the three methods in terms of survival
prediction performances and then, a pathway analysis was carried
out focusing on the relevance in cancer of the selected genes.

It is important to note that the goal of this study is not to
provide a rank list of the analyzed methods, but to present a
accurate study for the identification of new cancer related genes
and core pathways in order to make available such information

to biomedical community in the form of a comprehensive
methodological procedure (see Figure 1).

Simulation Studies
We analyze the performance of the three analyzed methods in
two simulation settings where the number of relevant genes
is fixed a-priori to 88 genes. The first setting simulates a
scenario with not overlapped pathways, which means that
each gene in the network belongs to only one pathway (not-
overlapped pathways). The second setting represents a more
realistic scenario with a set of genes shared among different
pathways (overlapped pathways). In both cases, a five-fold cross
validation was conducted on the full dataset in order to select the
tuning parameters (λ, α) and to obtain the coefficient estimates
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TABLE 5 | Optimal α cross-validated value calculated on the k training sets.

Datasets k Partitions Net-Cox AdaLnet fastcox

α Genes selected α Genes selected α Genes selected

GSE26712 5 0.2 101 0.5 23 0.01 453

OV-TCGA 5 0.5 99 0.5 38 0.1 623

GSE20685 5 0.5 76 0.5 28 0.01 298

GSE7390 5 0.5 89 0.5 14 0.01 423

by using the three methods. The details of the simulation data are
reported in Section Methods.

The performance of each method is summarized by several
statistical measures: sensitivity, specificity, number of selected
genes, false positive rates, and Matthews correlation coefficient
(MCC). Simulation results for both the models are reported
in Tables 3, 4, respectively (standard deviation is reported
in brackets). To analyze the signature genes identified by
Net-Cox, which is a method based on ridge regression, we
considered three different consensus rankings where the number
of significant genes selected by the method was fixed to 44, 88,
and 176 genes, respectively. The selected genes were classified
in descending order according to the absolute value of the
regression coefficients. On the other hand, to better highlight the
variable selection performance of AdaLnet and fastcox, we split
the 100 iterations in two groups based on the number of genes
selected at each iteration. We fixed 100 genes as threshold for
AdaLnet and 10 genes for fastcox, then we computed again the
statistical measures based on the two groups.

In the not-overlapped setting, Net-Cox performed better than
the other two methods as showed by the MCC, which provides
an overall measure of accuracy. In particular, when considering
44 and 88 genes, the false positive rate in Net-Cox was 22.910
and 44.940, respectively, with MCC equals to 0.300 and 0.445.
Sensitivity and specificity were, respectively, 0.240 and 0.977 in
the first case, 0.489 and 0.956 in the second case study. When the
number of selected genes was increased to 176, even if the false
positive rate increased resulting in a lower specificity (0.890), the
sensitivity reached its highest values producing the highest MCC
(0.464).

Since the majority of the selected genes were irrelevant and
both AdaLnet and fastcox resulted in sparse models, specificity
was much higher than sensitivity and was comparable between
the two variable selection methods. In particular, in the not-
overlapped setting, AdaLnet selected in average 249.360 genes
with a false positive rate equals to 210.330. Sensitivity and
specificity were equal to 0.444 and 0.792 resulting in a MCC of
0.190. On the other hand, fastcox selected in average 42.62 genes
with a false positive rate of 30.19. MCC was equal to 0.160 with
sensitivity 0.141 and specificity 0.970.

AdaLnet had the best performance when the number of
selected genes was below 100, while fastcox exhibit the best
performance when the number of genes was above 10. This
means that in the other cases the methods fail in the execution
of the cross-validation (see Supplementary Image 1).

In the overlapped-pathways setting, Net-Cox obtained the
highest MCC overall when considering 88 genes (MCC equals
to 0.227) with a false positive rate equals to 62.620, sensitivity
0.288 and specificity 0.938. However, even if the specificity
levels of the three consensus rankings were almost equal to the
previous setting (specificity for 44, 88, and 176 genes equals
to 0.970, 0938, and 0.860, respectively), in this setting Net-Cox
sensitivity decreased resulting in lower MCC compared to the
not-overlapped case (MCC for 44, 88, and 176 genes equals to
0.175, 0.227, and 0.182, respectively). AdaLnet and fastcox also
reported lower MCCs compared to the not-overlapped setting
(MCC equals to 0.166 in AdaLnet and 0.134 in fastcox). In
particular, both AdaLnet and fastcox showed an higher specificity
than before (0.879 and 0.974, respectively) but a lower sensitivity
(0.262 and 0.098). Further analysis showed that AdaLnet had the
highest MCC when the number of selected genes was below 100
(MCC 0.196), while fastcox had the highest MCC (0.158) when
the number of selected genes was above 10, in accordance with
the previous results (see Supplementary Image 2).

Real Data Analysis
In order to evaluate the performance of the three Cox models in
terms of survival analysis, we used cross-validated Kaplan–Meier
curves (Simon et al., 2011b) for overall survival (OS) both on
ovarian and breast microarray studies (see Figure 2, step 2). Note
that p-value was estimated within the same dataset but the cross-
validation approach is used to correct over optimistic conclusions
due to the lack of independence between samples.

Moreover, since the ovarian datasets are comparable in terms
of types of patients, platforms and cancer disease, Kaplan–Meier
curves and two-side log-rank test were used to estimate the
survival time and stratify the low-risk and high-risk groups on
the independent test set (see Figure 2, step 3).

Table 5 reports the number of genes selected by the three
Cox regression methods for each OS and the optimal tuning
parameter α. Interestingly, the optimal α was often equal to
0.5, indicating that there was a good balance between statistical
constraints and network information. These results confirm that
the network carries important information useful for improving
survival analysis. Moreover, since Net-Cox is a method based on
ridge regression, the genes are only shrunk and it is necessary
to fix a threshold for selecting the most relevant cancer genes.
Hence, within each fold, we ordered the genes according to the
absolute value of the corresponding regression coefficients, then
we considered the union of the top 50 genes selected in each fold.
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FIGURE 3 | Cross-validated Kaplan–Meier curves of the prognostic

models on GSE26712 dataset. The patients are divided in high-risk and

low-risk groups based on the pathways and genes selected by each methods

for overall survival (OS). The survival probabilities of these two groups are

compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and

fastcox (C).

In the following, we present the main results obtained.

Results on the Ovarian Datasets
Figures 3, 4 show the cross-validated Kaplan–Meier curves for
high-and-low risk groups patients selected in the ovarian datasets
(Benome: GSE26712 and OV TCGA datasets, respectively).

FIGURE 4 | Cross-validated Kaplan–Meier curves of the prognostic

models on OV TCGA dataset. The patients are divided in high-risk and

low-risk groups based on the pathways and genes selected by each methods

for overall survival (OS). The survival probabilities of these two groups are

compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and

fastcox (C).

Figure 3 shows that in the Bonome dataset the gap between the
survival curves of the two risk groups inNet-Cox (Figure 3A) and
fastcox (Figure 3C) is wider compared to AdaLnet (Figure 3B).
In particular, in predicting survival probabilities, fastcox
(permuted p < 0.05) seem to discriminate the risk groups better
than Net-Cox and AdaLnet where the permuted p > 0.05. These
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FIGURE 5 | Kaplan–Meier curves for validation test on GSE26712

ovarian dataset. The curves show the patients stratified by using the genes

selected in the OV TCGA dataset by Net-Cox, AdaLnet, and fastcox [(A), (B),

and (C), respectively] with threshold p < 0.05.

findings confirm the results previously obtained in Iuliano et al.
(2014), in relation to the survival curves for each method. This
was mainly due to the cross-validation approach used in this
analysis to overcome the sample splitting problem with too small
dataset.

On the other hand, in the OV TCGA dataset (Figure 4), the
survival curves for high-and-low risk patients are not significantly
separated. In particular, fastcox is the only method with a

FIGURE 6 | Cross-validated Kaplan–Meier curves of the prognostic

models on GSE20685 dataset. The patients are divided in high-risk and

low-risk groups based on the pathways and genes selected by each methods

for overall survival (OS). The survival probabilities of these two groups are

compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and

fastcox (C).

significant difference (permuted p < 0.05) in the OS between the
high-and-low-risk groups.

Finally, to test the survival prediction across independent
datasets, we used the ovarian OV TCGA dataset as training set,
and the Benome dataset as the test set to predict the risk scores
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FIGURE 7 | Cross-validated Kaplan–Meier curves of the prognostic

models on GSE7390 dataset. The patients are divided in high-risk and

low-risk groups based on the pathways and genes selected by each methods

for overall survival (OS). The survival probabilities of these two groups are

compared using the log-rank test by using Net-Cox (A), AdaLnet (B), and

fastcox (C).

of the patients (see Figure 2, step 3). Figure 5 shows the Kaplan–
Meier curves for the two risk groups (high-and-low risk groups)
in the Benome dataset obtained byNet-Cox (Figure 5A),AdaLnet
(Figure 5B), and fastcox (Figure 5C). All the three methods gave
a significant p-value at the 5% significance level (log-rank test,
p < 0.05).

Results on Breast Datasets
Figures 6, 7 show the cross-validated Kaplan–Meier curves for
high-and-low risk groups patients selected in the breast datasets
(Kao: GSE20685 and Desmedt: GSE7390, respectively). In the
Kao dataset, the permuted p-value related to Figure 6A (Net-Cox)
and Figure 6C (fastcox) was smaller than 0.05, which means the
high-risk and low-risk groups were significantly separated and the
selected pathways and genes were related to survival times. In
Figure 6B (AdaLnet), a patient of the high-risk group fell in the
low-risk group and the permuted p-value is not significant.

We performed the same analysis for high-and-low risk
patients in the Desmedt dataset. Also in this case, there was
a significant difference in OS between the two risk groups as
shown in Figure 7A (Net-Cox) and Figure 7C (fastcox) where the
permuted p-value is smaller than 0.05. In Figure 7B (AdaLnet)
the permuted p-value is not significant.

Identified Pathways
In this section, we present the results of the analysis in terms of
KEGG pathways analysis based only on not-isolated genes (see
section Methods for details). We report here only the networks
related to AdaLnet and Net-Cox since all the networks related
to fastcox have more than 100 node and 2000 edges and a clear
visualization would not be possible. However, the lists of the
genes selected by fastcox and the related pathways are reported
in Supplementary Table 1 (ovarian datasets) and Supplementary
Table 2 (breast datasets).

Figures 8, 9 show the gene-networks obtained for the Bonome
dataset (GSE26712) built on the genes identified by Net-Cox and
Adalnet, respectively. From the color of the nodes, we can infer
that all the selected genes have a significant relation with ovarian
cancer. Indeed, almost all the genes are close to red except for
AKT3 which has a p-value correlation equal to 0.039. Indeed,
AKT3 is usually involved in prostate and breast cancer (Nakatani
et al., 1999). However, since it was selected both by Net-Cox and
fastcox, a possible significant relation between AKT3 and ovarian
cancer could be inferred as indeed confirmed by literature (Liby
et al., 2012). In particular, AKT3 has a specific role in the genesis
of ovarian cancer through modulation of G2-M phase transition
(Cristiano et al., 2006). As showed in Figure 8, AKT3 is also
involved in many cancer pathways, such as KEGG basal cell
carcinoma, KEGG prostate cancer, and KEGG melangiogenesis. It
is worthy to note that this gene was also selected in our previous
study (Iuliano et al., 2014) by all the analyzed methods and it was
also involved in the same cancer related pathways. These findings
confirm the importance of AKT3 in ovarian cancer as confirmed
indeed by literature (Cristiano et al., 2006).

In the Bonome dataset (GSE26712), Adalnet selected only two
not-isolated genes (RB1 and BRCA2) involved in two different
cancer pathways (Figure 9). Both the genes have been frequently
observed in epithelial ovarian cancer (Flesken-Nikitin et al.,
2003; Dinulescu et al., 2005; Naora and Montell, 2005) and
several studies report their stable correlation (Flesken-Nikitin
et al., 2003; The Cancer Genome Atlas Research Network, 2011).
Moreover, the strong interaction between RB1 and the tumor
protein TP53 (Dong et al., 1997; Schuijer and Berns, 2003) has
been identified by Net-Cox and fastcox (Figure 8).
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FIGURE 8 | Gene-network of not isolated genes selected by Net-Cox in the Bonome ovarian dataset (GSE26712). Each node represents a gene and an

edge between two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents

the p-value of the interaction between the gene and ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

FIGURE 9 | Gene-network of not isolated genes selected by Adalnet in

the Bonome ovarian dataset (GSE26712). Each node represents a gene

and an edge between two nodes means that the two genes belongs to the

same pathway. Different colors are used for different pathways. The color of

each node represents the p-value of the interaction between the gene and

ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are

represented in green.

Figures 10, 11 show the gene-networks obtained for the OV
TCGA ovarian dataset built on the genes identified by Net-Cox
and Adalnet, respectively. As already observed in the Bonome
dataset analysis, all the selected genes in the OV TCGA dataset
resulted strongly correlated with ovarian cancer. Indeed, almost
all the genes are close to red. The only gene with a slightly

different color is FZD3 which has a p-value of 0.049 and was
selected by all the three methods. Hence, even if this gene has
been mainly classified as gastric-cancer-related (Katoh, 2005),
our results prove that it also has a relevant effect in ovarian
cancer as confirmed by literature (Tapper et al., 2001). It is also
important to note that other genes have been selected by all
the three methods (i.e., GMPR, ENPP1, and APC). Such genes
have been already classified as ovarian-related in cancer literature
(Gayther et al., 1997; Kikuchi et al., 2007; Rikova et al., 2007),
but, in our analysis, the pathways involved in such relation are
also investigated. For example, while GMPR and ENPP1 interact
simply through the KEGG purine metabolism pathway, the APC-
FZD3 interaction involves three different pathways: KEGG basal
carcinoma, KEGG pathways in cancer, and KEGG wnt signaling
pathway.

It is worthy to note that some of the genes selected by the three
methods (e.g.,NPY, COL5A1, EGFR, and FBL1) have been already
reported in literature (Zhang et al., 2013) where an analysis of
subnetwork signatures in ovarian cancer based on Cox model is
presented. Moreover, our approach selected new genes, such as
AKT3 and RB1, which are also related to ovarian cancer (Flesken-
Nikitin et al., 2003; Cristiano et al., 2006). These results show that
our findings are consistent with the previous ones including, at
the same time, other gene signatures.

Figures 12, 13 report the gene-networks selected in the Kao
dataset (GSE20685) byNet-Cox andAdalnet, respectively. FGFR2
and BCL2 were again selected in this dataset confirming the
strong relevance of the two genes in breast cancer. Moreover,
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FIGURE 10 | Gene-network of not isolated genes selected by Net-Cox in the TCGA ovarian dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

FIGURE 11 | Gene-network of not isolated genes selected by Adalnet in the TCGA ovarian dataset. Each node represents a gene and an edge between two

nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of the

interaction between the gene and ovarian cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

BRCA2 (Wooster et al., 1995) was selected byNet-Cox and fastcox
confirming the accuracy of our analysis. It is also worthy to note
that in all the breast cancer gene-networks the KEGG prostate
cancer is always recurrent. This is mainly due to the common
biomarkers between the two diseases (Yang et al., 1998; Mattie

et al., 2006) and through our analysis new common biomarkers
can be identified.

In the Desmedt dataset (GSE7390), all the genes selected by
Adalnet were isolated and no network was built in this case.
A list of the genes selected is reported in Table 6. Figure 14

Frontiers in Physiology | www.frontiersin.org 16 June 2016 | Volume 7 | Article 208

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Iuliano et al. Network-Based Cox Regression

FIGURE 12 | Gene-network of not isolated genes selected by Net-Cox in the GSE20685 breast dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

FIGURE 13 | Gene-network of not isolated genes selected by Adalnet in the GSE20685 breast dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

reports the gene-network related to the genes selected by Net-
Cox. All the selected genes show a strong relation with the
disease, such as FGFR2 and BCL2, which were selected by
both Net-Cox and fastcox and are involved in KEGG prostate
cancer and in KEGG pathways in cancer. Both the genes are
largely known as independent prognostic marker in breast
cancer (Hunter et al., 2007; Thomadaki et al., 2007; Callagy
et al., 2008). Both Net-Cox and fastcox selected UGT2B15,
which has a breast-cancer-correlation p = 0.049. This gene

has been usually involved in prostate cancer (Gsur et al.,
2002), but recent works highlight its role also in breast cancer
(Wegman et al., 2007).

In the analysis of the breast datasets, there was no overlap
with our previous study (Iuliano et al., 2014). This was mainly
due to the different datasets analyzed here potentially (different
cancer subtype and different types of conditions) and to the more
sophisticated procedures followed in this analysis. Indeed, in our
previous work, we split the dataset in training and test set only
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FIGURE 14 | Gene-network of not isolated genes selected by Net-Cox in the GSE7390 breast dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

TABLE 6 | List of genes selected by Adalnet in the breast dataset

GSE7390.

Genes p-values

BRCA1 0

GYPB 0.0489

MYBL2 0.0026

ADH6 0.0259

GHRHR 0.0007

GUCY2C 0.0323

PPP2R1B 0.0321

SLC1A2 0.0450

SLC12A3 0.0483

LIPF 0.0449

TRIP13 0.0001

PPM1E 0.0026

CEP152 0.0064

PSPC1 0.0475

The second column reports the breast-cancer correlation p-value of each gene

accordingly (Huttenhower et al., 2009). All the selected genes resulted isolated and no

network was built in this case.

once, while here we used a cross-validation procedure that is
expected more robust results.

DISCUSSION AND CONCLUSIONS

A key issue in cancer survival analysis is uncovering the relation
between gene expression profiles and cancer patients survival in
order to identify biomarkers for disease diagnosis and treatment.
In the last years, there has been a growing interest inmethods that
incorporate network information into classification algorithms
for genes signature discovery. The main aims are to identify
molecular biomarkers that reliably predict patient’s response to
therapy and to avoid ineffective treatment for reducing drug
side-effects and associated costs. For this purpose, prognostic
and diagnostic biomarker signatures need to be derived from
omics data for various disease entities in order to offer useful

methodological and practical strategy in research and clinical
settings.

Here, we presented an extended methodological strategy for
the analysis of gene signatures and survival prediction (see
Figure 1). We integrated a new cross-validation method (Simon
et al., 2011b) with the most recent network penalized Cox
models (Yang and Zou, 2012; Zhang et al., 2013; Sun et al.,
2014) to obtain an effective multi-splitting of the data and
achieve an accurate survival prediction (see Figure 2). The
analysis of the models was based both on simulated and real
datasets in order to provide an accurate analysis in terms
of statistical and biological investigation. Indeed, we showed
that, given a number of variables not extremely high, all the
analyzed methods were able to select the altered genes under
different simulation settings. On the other hand, the analysis
on real cancer datasets showed that through the integration
of network information into Cox regression methods it is
possible to identify cancer gene signatures with an accurate
prognostic performance. Therefore, the contribution of this
study is two-fold. Firstly, to obtain an integrative analysis of
cancer genes networks and survival prediction. Secondly, to
provide a computational and methodological framework for
better investigating cancers regulatory networks and facilitating
the management of patients in terms of prognosis, diagnosis and
treatment.

The findings of this study have a number of important
implications for future practice. Firstly, a practically appealing
study based on a fast screening procedure (Fan and Lv, 2008;
Fan et al., 2010) could be introduced in order to reduce
the size of the feature space to a moderate scale. In fact,
several types of screening procedures could be combined
to integrate biological information into statistical screening
analysis and provide more definitive understanding of the
gene-regulatory networks. Secondly, the integration of clinical
information and data from different omics (e.g., epigenomics or
metabolomics) into the screening procedure could also provide
a more accurate investigation and prevent the drawbacks of
the current methods. Moreover, a more accurate biomarkers
investigation could be performed using a number of high-quality
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binary PPIs available in literature (Rolland et al., 2014) where
a proteome-scale map of the human binary interactome is
compared to alternative network maps in order to give a
deeper insight into genotype-phenotype relationships. Finally,
it will be necessary to develop an user-friendly interface
to turn this methodological framework into a practical
tool.
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