Cancer Outcomes Among Parkinson's Disease Patients with Leucine Rich Repeat Kinase 2 Mutations, Idiopathic Parkinson's Disease Patients, and Nonaffected Controls

llir Agalliu, MD, ScD ${ }^{1,{ }^{*}}$, Roberto A. Ortega, MS ${ }^{2}$, Marta San Luciano, MD ${ }^{3}$, Anat Mirelman, PhD ${ }^{4}$, Claustre Pont-Sunyer, MD ${ }^{5,6}$, Kathrin Brockmann, MD ${ }^{7}$, Dolores Vilas, MD ${ }^{5,8}$, Eduardo Tolosa, MD, PhD ${ }^{5}$, Daniela Berg, MD ${ }^{7,9}$, Bjørg Warø, MD ${ }^{10}$, Amanda Glickman, MS 2, Deborah Raymond, MS ${ }^{2}$, Rivka Inzelberg, MD ${ }^{11}$, Javier Ruiz-Martinez, MD ${ }^{12}$, Elisabet Mondragon, MS ${ }^{12}$, Eitan Friedman, MD ${ }^{13}$, Sharon Hassin-Baer, MD ${ }^{11,14}$, Roy N. Alcalay, MD 15, Helen Mejia-Santana, MS ${ }^{15}$, Jan Aasly, MD ${ }^{10}$, Tatiana Foroud, PhD ${ }^{16}$, Karen Marder, MD, MPH ${ }^{15}$, Nir Giladi, MD ${ }^{4}$, Susan Bressman, MD ${ }^{2}$, Rachel Saunders-Pullman, MD ${ }^{2, *}$
${ }^{1}$ Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
${ }^{2}$ Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
${ }^{3}$ Department of Neurology, University of California San Francisco, San Francisco, California, USA
${ }^{4}$ Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
${ }^{5}$ Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain
${ }^{6}$ Neurology Unit, Hospital General de Granollers, Universitat Internacional de Catalunya, Granollers, Barcelona, Spain
${ }^{7}$ Hertie-Institut für klinische Hirnforschung, Tubingen, Germany
${ }^{8}$ Movement Disorders Unit, Neurology Service, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
${ }^{9}$ Department of Neurology, Christian-Albrechts-University, Kiel, Germany
${ }^{10}$ Department of Neurology, St. Olavs Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway

[^0]${ }^{11}$ Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University,
${ }^{12}$ Neurology Department, Donostia University Hospital, Biodonostia Institut Research, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, San Sebastian, Gipuzkoa, Spain
${ }^{13}$ The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer and the Departments of Internal Medicine and Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
${ }^{14}$ Parkinson's Disease and Movement Disorders Clinic and Department of Neurology, Sheba Medical Center, Tel Hashomer, RamatGan, Israel
${ }^{15}$ Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
${ }^{16}$ Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA

Abstract

Background: Increased cancer risk has been reported in Parkinson's disease (PD) patients carrying the leucine rich repeat kinase 2 ($L R R K 2$) G2019S mutation (LRRK2-PD) in comparison with idiopathic PD (IPD). It is unclear whether the elevated risk would be maintained when compared with unaffected controls.

Methods: Cancer outcomes were compared among 257 LRRK2-PD patients, 712 IPD patients, and 218 controls recruited from 7 LRRK2 consortium centers using mixed-effects logistic regression. Data were then pooled with a previous study to examine cancer risk between 401 LRRK2-PD and 1946 IPD patients.

Results: Although cancer prevalence was similar among LRRK2-PD patients (32.3\%), IPD patients (27.5%), and controls ($27.5 \% ; P=0.33$), LRRK2-PD had increased risks of leukemia (odds ratio $[\mathrm{OR}]=4.55 ; 95 \%$ confidence interval [CI], 1.46-10.61) and skin cancer ($\mathrm{OR}=1.61$; 95% CI, 1.09-2.37). In the pooled analysis, $L R R K 2-P D$ patients had also elevated risks of leukemia ($O R=9.84 ; 95 \% \mathrm{CI}, 2.15-44.94$) and colon cancer $(O R=2.34 ; 95 \% \mathrm{CI}, 1.15-4.74$) when compared with IPD patients.

Conclusions: The increased risks of leukemia as well as skin and colon cancers among LRRK2$P D$ patients suggest that $L R R K 2$ mutations heighten risks of certain cancers.

Keywords

LRRK2 gene; G2019S mutation; Parkinson's disease; leukemia; colon cancer; pooled analysis

Although Parkinson's disease (PD) and cancer have seemingly opposite biological mechanisms, recent studies indicate a potential link. ${ }^{1-3}$ Epidemiological and family-based studies have reported that PD patients have increased risk of melanoma ${ }^{4-7}$; however, they have 40% and 25% lower relative risks for smoking-related and other cancers, ${ }^{8}, 9$ respectively, when compared with the general population. Recent studies have reported
increased risks of various cancers among PD patients carrying leucine rich repeat kinase 2 (LRRK2) mutations. ${ }^{10-15}$ The LRRK2G2019S mutation, with a prevalence ranging from 1% to 40% depending on ethnicity and age at PD onset, ${ }^{16}$ has been associated with increased risks of nonskin cancers ${ }^{11,14,15}$ and breast cancer, ${ }^{11,14,15}$ whereas the R1441C/G mutation, which has a higher prevalence in the Basque population, ${ }^{17}$ has been associated with colon cancer ${ }^{13}$ and hematologic cancers. ${ }^{10}$

We recently performed a pooled meta-analysis among 1549 PD patients (11.4% were LRRK2G2019S carriers) and reported statistically significant increased risks of nonskin cancer (odds ratio [OR] = 1.62; 95\% confidence interval [CI], 1.04-2.52), hormone-related cancers ($\mathrm{OR}=1.87 ; 95 \% \mathrm{CI}, 1.07-3.26$), and breast cancer $(\mathrm{OR}=2.34 ; 95 \% \mathrm{CI}, 1.05-5.22)$ among LRRK2-PD in comparison with idiopathic PD (IPD). ${ }^{15}$ However, it is unclear whether the increased risk among $L R R K 2$-PD patients would be observed when compared with unaffected controls who are noncarriers of the G2019S mutation.

Therefore, the goal of this analysis was to compare the prevalence of cancer outcomes among LRRK2-PD patients, IPD patients, and controls using a standardized questionnaire across several international $L R R K 2$-PD research centers. Furthermore, we also combined data collected in this study with previously published data from our meta-analysis ${ }^{15}$ and examined the associations of $L R R K 2$ G2019S mutation with various cancers among 2365 PD patients.

Materials and Methods

Participants included in this analysis were 969 PD patients ($257 L R R K 2-P D$ and 712 IPD) and 218 genetically unrelated controls aged 35 years or older who were recruited from 7 Michael J. Fox Foundation LRRK2 sites in Europe, Israel, and the United States. All of the participants completed a detailed health questionnaire, which collected information on demographic, lifestyle, and reproductive factors; self-reported cancer history; personal health-related histories; and family histories of PD and cancer. (Details about participants' recruitment and data collection methodology are provided in the supporting information materials.) Genetic testing for LRRK2G2019S mutation was performed in all PD patients and controls. Genotyping for other LRRK2 mutations: R1441G/C and I2020T was performed only in 2 centers in Germany and Spain. Therefore, the focus of this analysis is only on G2019S mutations (carriers vs. noncarriers). The study was approved by the respective institution review boards of all participating sites, and all participants provided written informed consent.

We compared demographic and lifestyle characteristics as well as prevalence of various cancers among LRRK2-PD patients, IPD patients, and controls using one-way analysis of variance models (for continuous normally distributed variables) and χ^{2} tests (for categorical variables); all tests were 2 -sided ($P<0.05$). The associations of various cancer outcomes among $L R R K 2$-PD patients, IPD patients, and controls were examined using mixed-effect logistic regression to estimate ORs and 95% CIs adjusting for age, sex, and Ashkenazi Jewish (AJ) ethnicity as fixed effects and study center as the random effect. ${ }^{18}$ Multivariate models for all cancers combined, smoking-related cancers, and colon and kidney cancers
were additionally adjusted for smoking status and body mass index, whereas body mass index and reproductive factors were included in multivariate models for hormone-related cancers and breast cancer. We also investigated whether the associations between LRRK2 G2019S mutation and cancer outcomes varied by ethnicity (AJ vs. others) in stratified analyses. ${ }^{19}$

Finally, we pooled data collected in this study with our previously published data ${ }^{15}$ and compared the risk of various cancers between 401 LRRK2-PD and 1964 IPD patients using mixed-effect logistic regression models adjusted for age, sex, and AJ ethnicity as fixed effects and study center (random effect). For 83 over-lapping PD patients between the 2 datasets, the most recent data were used. We excluded 70 LRRK2-PD patients from this analysis who carried only the $R 1441 G / C$ mutation as screening for this mutation was not performed in all participating centers. All statistical analyses were performed using STATA version 15 (College Station, TX).

A total of 257 LRRK2-PD patients, 712 IPD patients, and 218 genetically unrelated controls aged 35 years or older were included in this analysis (Table 1). The controls were on average younger, more likely to be women, and less likely to be of AJ ethnicity in comparison with both $L R R K 2$-PD and IPD patients. With regard to lifestyle factors, when compared with controls, both the $L R R K 2$-PD and IPD patients were significantly less likely to be cigarette smokers and alcohol drinkers, but there was no difference in body mass index among the 3 groups (Table 1). In comparison with female patients with $L R R K 2$-PD or IPD, unaffected female controls had on average a fewer number of pregnancies (1.4 vs. 2.1 and $2.6 ; P<$ 0.0001), and a slightly higher proportion were in menopause (94% vs. 90% and $83 \% ; P=$ 0.004).

Overall self-reported cancer prevalence was similar among $L R R K 2-P D$ patients (32.3\%), IPD patients (27.5%), and controls ($27.5 \% ; P=0.22$; Table 1). However, the LRRK2-PD patients reported a higher prevalence of leukemia (1.9\%) in comparison with both IPD patients and controls, where no leukemia was reported ($P<0.0001$). Interestingly, when compared with IPD patients and controls, the $L R R K 2$-PD patients also reported a higher proportion of multiple cancers: 8.6% vs. 6.6% and 3.7%, respectively. However, these differences were not statistically significant (Table 1).

Although cancer prevalence was similar among the 3 groups, the IPD patients had an overall lower cancer risk ($\mathrm{OR}=0.68 ; 95 \% \mathrm{CI}, 0.45-1.01$) in comparison to controls in multivariateadjusted models (Table 2). With regard to specific cancers, there was a significant increased risk of leukemia ($\mathrm{OR}=4.55$; $95 \% \mathrm{CI}, 1.46-10.61$) when comparing $L R R K 2-\mathrm{PD}$ patients to either the IPD patients or controls. Skin cancer was also significantly higher among the LRRK2-PD patients when compared with IPD patients ($\mathrm{OR}=1.61$; $95 \% \mathrm{CI}, 1.09-2.37$), but there was no difference when compared with controls ($\mathrm{OR}=0.99 ; 95 \% \mathrm{CI}, 0.57-1.71$; Table 2). There was also suggestive evidence of increased risks of colon and kidney cancers among $L R R K 2$-PD patients; however, these associations were not statistically significant. Because 77% of all participants were of AJ ethnicity, we carried out a separate analysis in
this group; the overall results were similar to the main analysis (see Supporting Information Table S1).

Finally, the results of the pooled analysis (Table 3), which combined the data from this study with our previously published paper ${ }^{15}$ and included 401 LRRK2-PD and 1964 IPD patients, showed statistically significantly increased risks of leukemia ($\mathrm{OR}=9.84 ; 95 \% \mathrm{CI}, 2.15-$ 44.94) and colon cancer $(\mathrm{OR}=2.34 ; 95 \% \mathrm{CI}, 1.15-4.72)$ when comparing the $L R R K 2-\mathrm{PD}$ with IPD patients.

Discussion

We report the findings from a primary analysis of cancer outcomes among 257 LRRK2-PD patients, 712 IPD patients, and 218 unaffected controls, which used a standardized questionnaire to collect demographic and lifestyle factors as well as cancer outcomes across 7 participating sites from the largest international LRRK2-PD consortium. The results showed that the LRRK2-PD patients had a statistically significant 4.6-fold increased risk of leukemia in comparison with the IPD patients and controls. In additional support, the findings from the pooled analysis demonstrated a stronger risk of leukemia ($O R=9.84 ; 95 \%$ CI, 2.15-44.94) when comparing $L R R K 2$ G2019S mutation carriers with IPD patients, although this was based on a small number $(\mathrm{n}=5)$ of leukemia reports. The observed positive association with leukemia in this study also supports the finding of Ruiz-Martinez and colleagues, ${ }^{10}$ who reported an OR $=7.1$ for myeloproliferative cancers among their PD patients carrying the $R 1441 G$ mutation. Both studies also show that IPD patients have a lower frequency of hematologic cancers, which has been previously reported. ${ }^{20,21}$

In our primary analysis, we also observed a 61% increased risk of nonmelanoma skin cancer when comparing $L R R K 2$-PD patients with IPD patients, although in the pooled analysis the strength of this association was attenuated $(\mathrm{OR}=1.36)$ and was no longer statistically significant. These findings need to be interpreted with caution as nonmelanoma skin cancers tend to be misreported by participants. ${ }^{22,23}$ Although LRRK2-PD patients had also suggestive evidence of an increased risk of colon cancer in the primary analysis (albeit not statistically significant because of the small numbers), in the pooled analysis we observed a significant 2.34 -fold increased risk of colon cancer (95% CI, 1.15-4.72) when comparing LRRK2-PD with IPD patients. The increased risk of colon cancer has also been reported among PD patients with LRRK2 R1441C mutations from a large pedigree of 190 individuals in western Nebraska. ${ }^{13}$

Despite the associations with the specific cancers mentioned previously, we did not observe increased risks of hormone-related cancers and breast cancer, as reported in our previous study. ${ }^{15}$ Two other studies ${ }^{14,24}$ also reported increased risks of breast cancer among LRKK2-PD patients, and these populations were in part included in the pooled analysis. One of the differences is that the numbers of self-reported cancers were much lower in the international LRRK2-PD consortium. Moreover, the effect of LRRK2 mutations on cancer might vary among different populations, and other studies from Italy ${ }^{25}$ or the United Kingdom ${ }^{26}$ did not observe an overall increase in hormone-related cancers with LRRK2 mutations.

Our study has strengths and limitations that should be carefully considered. A strength is the use of a detailed questionnaire that collected demographic, lifestyle, and reproductive factors and cancer outcomes in a standardized manner, which minimized biases as a result of data acquisition across international $L R R K 2$-PD centers. In addition, the pooled analysis included 2365 PD patients with 502 cancer outcomes collected across several sites, which represent the largest cohort of PD patients with genetic screening for $L R R K 2$ mutations. Although self-reports of major cancers (eg, breast, prostate, colon, lung, etc.) have been shown to be valid and reliable, ${ }^{22,23,27}$ a limitation is that self-reported cancers from PD patients and controls were not validated systematically with medical records or cancer registry reports in participating centers. Another limitation is the relatively small sample size for comparisons of rare cancers among $L R R K 2$-PD patients, IPD patients, and controls. We also did not have information on the tumor grades or stages for various cancers in this study, and because genetic associations might vary by cancer clinical phenotypes, the inclusion of cancer survivors might have affected the results. Finally, the potential for selection bias in using spouse controls and recall bias particularly among elderly PD patients as a result of the increased risk of dementia might have affected the results of this study. Nevertheless, the advantages of using spouse controls are time-and cost-efficiency and their ability to provide proxy lifestyle or health-related data for their affected relatives. ${ }^{28}$

In conclusion, the results of this study showed significantly increased risks of leukemia and colon cancer among the $L R R K 2$-PD patients when compared with the IPD patients, which suggest that $L R R K 2$ mutations can lead to multiple cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments:

> Ilir Agalliu and Rachel Saunders-Pullman had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. This work was supported by the Michael J. Fox Foundation, the Bigglesworth Family Foundation, and the National Institutes of Health/National Institute of Neurological Disorders and Stroke (Grants: NS073836 and NS094148 to R.S.P.). The funding agencies had no role in the design and conduct of the study; data collection, management, analysis, and interpretation of the data; as well as in preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.
> Funding agencies: This work was supported by the Michael J. Fox Foundation, the Biggles worth Family Foundation, and the National Institutes of Health/National Institute of Neurological Disorders and Stroke (Grants: NS073836 and NS094148 to R.S.P.).

References

1. Devine MJ, Plun-Favreau H, Wood NW. Parkinson's disease and cancer: two wars, one front. Nat Rev Cancer 2011;11(11):812-823. [PubMed: 22020207]
2. D'Amelio M, Ragonese P, Sconzo G, Aridon P, Savettieri G. Parkinson's disease and cancer: insights for pathogenesis from epidemiology. Ann N Y Acad Sci 2009;1155:324-334. [PubMed: 19250224]
3. West AB, Dawson VL, Dawson TM. To die or grow: Parkinson's disease and cancer. Trend Neurosci 2005;28(7):348-352. [PubMed: 15913799]
4. Gao X, Simon KC, Han J, Schwarzschild MA, Ascherio A. Family history of melanoma and Parkinson disease risk. Neurology 2009; 73(16):1286-1291. [PubMed: 19841380]
5. Liu R, Gao X, Lu Y, Chen H. Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 2011;76(23): 2002-2009. [PubMed: 21646627]
6. Kareus SA, Figueroa KP, Cannon-Albright LA, Pulst SM. Shared predispositions of parkinsonism and cancer: a population-based pedigree-linked study. Arch Neurol 2012;69(12):1572-1577. [PubMed: 22945795]
7. Inzelberg R, Rabey JM, Melamed E, et al. High prevalence of malignant melanoma in Israeli patients with Parkinson's disease. J Neural Transm (Vienna) 2011;118(8):1199-1207. [PubMed: 21298300]
8. Bajaj A, Driver JA, Schernhammer ES. Parkinson's disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control 2010;21(5):697-707. [PubMed: 20054708]
9. Rugbjerg K, Friis S, Lassen CF, Ritz B, Olsen JH. Malignant melanoma, breast cancer and other cancers in patients with Parkinson's disease. Int J Cancer 2012;131(8):1904-1911. [PubMed: 22278152]
10. Ruiz-Martinez J, de la Riva P, Rodriguez-Oroz MC, et al. Prevalence of cancer in Parkinson's disease related to R1441G and G2019S mutations in LRRK2. Mov Disord 2014;29(6):750-755. [PubMed: 24357540]
11. Saunders-Pullman R, Barrett MJ, Stanley KM, et al. LRRK2 G2019S mutations are associated with an increased cancer risk in Parkinson disease. Mov Disord 2010;25(15):2536-2541. [PubMed: 20818610]
12. Sierra M, Gonzalez-Aramburu I, Sanchez-Juan P, et al. High frequency and reduced penetrance of LRRK2 G2019S mutation among Parkinson's disease patients in Cantabria (Spain). Mov Disord 2011; 26(13):2343-2346. [PubMed: 21954089]
13. Strongosky AJ, Farrer M, Wszolek ZK. Are Parkinson disease patients protected from some but not all cancers? Neurology 2008; 71(20):1650; author reply 1650-1651. [PubMed: 19001259]
14. Inzelberg R, Cohen OS, Aharon-Peretz J, et al. The LRRK2 G2019S mutation is associated with Parkinson disease and concomitant nonskin cancers. Neurology 2012;78(11):781-786. [PubMed: 22323743]
15. Agalliu I, San Luciano M, Mirelman A, et al. Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson disease: a pooled analysis. JAMA Neurol 2015;72(1): 58-65. [PubMed: 25401981]
16. Healy DG, Falchi M, O'Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol 2008;7(7):583590. [PubMed: 18539534]
17. Gorostidi A, Ruiz-Martinez J, Lopez de Munain A, Alzualde A, Marti Masso JF. LRRK2 G2019S and R1441G mutations associated with Parkinson's disease are common in the Basque Country, but relative prevalence is determined by ethnicity. Neurogenetics 2009;10(2):157-159. [PubMed: 19020907]
18. McCulloch CE, Searle SR, Neuhaus JM. Generalized, Linear, and Mixed Models. 2nd ed Hoboken, NJ: Wiley; 2008.
19. Kleinbaum DG, Kupper LK, Nizam A, Muller KE. Applied Regression Analysis and Other Multivariable Methods. 4th ed Belmont, CA: Thompson; 2007.
20. Inzelberg R, Jankovic J. Are Parkinson disease patients protected from some but not all cancers? Neurology 2007;69(15):1542-1550. [PubMed: 17699801]
21. Becker C, Brobert GP, Johansson S, Jick SS, Meier CR. Cancer risk in association with Parkinson disease: a population-based study. Parkinsonism Relat Disord 2010;16(3):186-190. [PubMed: 19945903]
22. Cho S, Shin A, Song D, et al. Validity of self-reported cancer history in the health examinees (HEXA) study: A comparison of self-report and cancer registry records. Cancer Epidemiol 2017;50(Pt A):16-21. [PubMed: 28763723]
23. Loh V, Harding J, Koshkina V, Barr E, Shaw J, Magliano D. The validity of self-reported cancer in an Australian population study. Aust NZJ Public Health 2014;38(1):35-38.
24. Waro BJ, Aasly JO. Exploring cancer in LRRK2 mutation carriers and idiopathic Parkinson's disease. Brain Behav 2018;8(1):e00858.
25. Allegra R, Tunesi S, Cilia R, Pezzoli G, Goldwurm S. LRRK2-G2019S mutation is not associated with an increased cancer risk: a kincohort study. Mov Disord 2014;29(10):1325-1326. [PubMed: 25048644]
26. Mortiboys H, Cox A, Brock IW, Bandmann O. The common PARK8 mutation LRRK2G ${ }^{2019}$ S is not a risk factor for breast cancer in the absence of Parkinson's disease. J Neurol 2013;260(8): 2177-2178. [PubMed: 23824357]
27. Nash SH, Day G, Hiratsuka VY, Zimpelman GL, Koller KR. Agreement between self-reported and central cancer registry-recorded prevalence of cancer in the Alaska EARTH study. Int \mathbf{J} Circumpolar Health 2019;78(1):1571383.
28. Verhage BA, Aben KK, Straatman H, Verbeek AL, Beaty TH, Kiemeney LA. Spouse controls in family case-control studies: a methodological consideration. Fam Cancer 2003;2(2): 101-108. [PubMed: 14574159]
Author Manuscript

\footnotetext{
Demographic and lifestyle factors and cancer outcomes among Parkinson's Disease patients with $L R R K 2$ G2019S mutation (LRRK2-PD), idiopathic PD
patients (IPD) and genetically unrelated controls

Characteristic Reproductive factors-women	Controls, $\mathrm{N}=218$		LRRK2-PD, $\mathrm{N}=257$		IPD, $\mathrm{N}=712$		P^{*}
	$\mathrm{N}=148$		$\mathrm{N}=134$		$\mathrm{N}=271$		
Age at menarche, y; mean (SD)	12.84	(1.51)	12.85	(1.54)	12.84	(1.53)	0.99
Ever pregnant, n (\%)	132	(89.2)	123	(91.8)	252	(93.0)	0.40
No of pregnancies, mean (SD)	1.43	(1.30)	2.06	(1.58)	2.63	(1.93)	<0.0001
Menopausal status, n (\%)	139	(93.9)	121	(90.3)	226	(83.4)	0.004
Age at menopause, n (\%)	49.4	(5.9)	50.7	(4.9)	49.5	(5.6)	0.12
Ever HRT use, n (\%)	34	(23.0)	41	(30.6)	91	(33.6)	0.15
	Controls, $\mathrm{N}=218$		LRRK2 PD, N = 257		IPD, $\mathrm{N}=712$		P^{*}
Cancer outcomes	n	\%	n	\%	n	\%	
All cancers	60	27.5	83	32.3	196	27.5	0.33
Age at first cancer, mean and SD	55.3	12.6	58.9	12.9	59.3	12.9	0.22
No of all cancers							0.24
1	52	23.9	61	23.7	149	20.9	
2	8	3.7	18	7.0	42	5.9	
3 or 4	-	-	4	1.6	5	0.7	
Skin cancer	30	13.8	52	20.2	109	15.3	0.11
Melanoma	7	3.2	14	5.4	27	3.8	0.40
All nonskin cancers	35	16.1	43	16.7	115	16.2	0.97
Head and neck cancer	1	0.5	1	0.4	4	0.6	0.94
Lung cancer	-	-	2	0.8	4	0.6	0.47
Esophageal cancer	-	-	1	0.4	-	-	0.16
Colon cancer	2	0.9	6	2.3	6	0.8	0.15
Liver cancer	-	-	-	-	1	0.1	0.72
Pancreatic cancer	-	-	1	0.4	2	0.3	0.68
Thyroid cancer	1	0.5	1	0.4	7	1.0	0.55
Kidney cancer	1	0.5	4	1.6	6	0.8	0.43
Bladder cancer	1	0.5	1	0.4	3	0.4	0.99
Brain cancer	-	-	2	0.8	2	0.3	0.31
Leukemia	-	-	5	1.9	-	-	<0.0001

Author Manuscript
Author Manuscript

TABLE 2.
Comparisons of cancer outcomes among $L R R K 2$-PD patients, IPD patients, and controls in newly collected data $(\mathrm{N}=1187)$

Cancer Outcomes	Controls,$\mathrm{N}=218$		$\begin{gathered} \text { LRRK2-PD, } \\ \quad \mathrm{N}=257 \\ \hline \end{gathered}$		LRRK2-PD vs. Controls		$\begin{gathered} \text { IPD, } \\ \mathrm{N}=712 \\ \hline \end{gathered}$		$\begin{gathered} \text { IPD } \\ \text { vs. Controls } \\ \hline \end{gathered}$		$\begin{aligned} & \text { LRRK2-PD } \\ & \text { vs. IPD } \end{aligned}$	
	N	\%	N	\%	OR*	95\% CI	N	\%	OR*	95\% CI	OR*	95\% CI
All cancers	60	27.5	83	32.3	0.86	0.55-1.35	196	27.5	0.68	0.45-1.01	1.29	0.91-1.81
Skin cancer	30	13.8	52	20.2	0.99	0.57-1.71	109	15.3	0.62	0.37-1.03	1.61	1.09-2.37
Melanoma	7	3.2	14	5.4	1.22	0.47-3.14	27	3.8	0.80	0.33-1.94	1.54	0.79-3.04
Nonskin cancer	35	16.1	43	16.7	0.87	0.51-1.47	115	16.2	0.88	0.55-1.40	1.00	0.66-1.50
Smoking-related cancers ${ }^{a}$	2	0.9	4	1.6	1.26	0.22-7.18	10	1.4	1.21	0.24-6.01	1.02	0.31-3.40
Colon cancer	2	0.9	6	2.3	2.15	0.41-11.31	6	0.8	0.75	0.14-4.09	2.71	0.85-8.61
Kidney cancer	1	0.5	4	1.6	2.59	0.28-23.91	6	0.8	1.10	0.1-9.87	2.20	0.58-8.29
$\text { Leukemia }{ }^{b}$	0	-	5	1.9	4.55	1.46-10.61	0	-		-	4.55	1.46-10.61
Lymphoma	5	2.3	3	1.2	0.44	0.1-1.97	8	1.1	0.45	0.13-1.52	0.51	0.22-1.21
Hormonal cancer, women and men ${ }^{c}$	25	11.5	22	8.6	0.55	0.30-1.04	77	10.8	0.74	0.43-1.24	0.76	0.46-1.27
Breast cancer, women	14	9.5	11	8.2	0.61	0.26-1.43	24	8.9	0.65	0.31-1.35	0.86	0.40-1.86
Prostate cancer, men	6	8.6	10	8.1	0.92	0.29-2.93	46	10.4	1.27	0.47-3.47	0.73	0.34-1.54

[^1]Id!̣っsnuew 」Oułn \forall
Comparisons of cancer outcomes between $L R R K 2$-PD and IPD patients in the pooled analysis of 1 newly collected and previously published data $(\mathrm{N}=$ 2365)*

All cancers	113	28.2	389	19.8	1.25	$0.94-1.64$	0.12
Skin cancer	60	15.0	148	7.5	1.36	$0.96-1.95$	0.09
Melanoma	18	4.5	43	2.2	1.55	$0.86-2.81$	0.15
Nonskin cancers	68	17.0	270	13.7	1.12	$0.81-1.55$	0.49
Smoking-related cancers $^{\text {a }}$	6	1.5	27	1.4	1.16	$0.44-3.07$	0.77
Lung cancer $^{\text {Bladder cancer }}$	4	1.0	11	0.6	1.75	$0.49-6.27$	0.39
Colon cancer	1	0.2	13	0.7	0.53	$0.1-4.37$	0.55
Kidney cancer	$\mathbf{1 2}$	$\mathbf{3 . 0}$	$\mathbf{3 2}$	$\mathbf{1 . 6}$	$\mathbf{2 . 3 4}$	$\mathbf{1 . 1 5 - 4 . 7 2}$	$\mathbf{0 . 0 1 8}$
Leukemia	5	1.2	13	0.7	2.22	$0.74-6.66$	0.15
Lymphoma	$\mathbf{5}$	$\mathbf{1 . 2}$	$\mathbf{3}$	$\mathbf{0 . 2}$	$\mathbf{9 . 8 4}$	$\mathbf{2 . 1 5 - 4 4 . 9 4}$	$\mathbf{0 . 0 0 3}$
Brain cancer	3	0.7	12	0.6	0.82	$0.22-3.10$	0.77
Hormonal cancer		1.0	11	0.6	2.18	$0.62-7.69$	0.23
Breast cancer, women	37	9.2	146	7.4	1.00	$0.66-1.51$	0.99
Prostate cancer, men	21	10.0	51	6.4	1.22	$0.69-2.14$	0.46

[^2]* Data from Agalliu et al. ${ }^{15}$ LRRK2 R1441G mutation carriers ($\mathrm{N}=70$) were excluded from this analysis.
${ }^{\prime}$ OR and 95% CI were estimated from mixed-effect logistic regression models adjusted for age, sex, and Ashkenazi Jews ethnicity (fixed effect) and study center (random effect).
${ }^{a}$ Smoking-related cancers included lung, bladder and head and neck cancers.
${ }^{b}$ Hormonal cancers include prostate cancer in men and breast, endometrial, and ovarian cancers in women.
Abbreviations: PD, Parkinson's disease; LRRK2-PD, Parkinson's Disease patients with LRRK2 G2019S mutation; IPD, idiopathic PD patients; OR, odds ratio; CI, confidence interval.

[^0]: Correspondence to: Dr. llir Agalliu, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Ave., Belfer Bldg Room 1315-B, Bronx, NY 10461; ilir.agalliu@einstein.yu.edu., Dr. Rachel Saunders-Pullman, Department of Neurology, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center, 10 Union Square East, Suite 5J, New York, NY 10003; rachel.saunders-pullman@mountsinai.org.
 Relevant conflicts of interests Nothing to report.
 financial disclosures: Full financial disclosures and author roles may be found in the online version of this article.
 Supporting Data
 Additional Supporting Information may be found in the online version of this article at the publisher's web-site.

[^1]: * OR and 95% CI were estimated from mixed-effect logistic regression models adjusted for age, sex, and Ashkenazi Jews ethnicity (fixed effect) and study center (random effect). Multivariate models for all cancers, smoking-related cancers, colon cancer, kidney cancer, and hormone cancer also included smoking status and body mass index.
 ${ }^{a}$ Smoking-related cancers included lung, bladder, and head and neck cancers; these models were also adjusted for smoking status.
 expected cases ($\mathrm{n}=0.8$) among $L R R K 2$-PD.
 ${ }^{c}$ Hormone-related cancers include prostate cancer in men and breast, endometrial, and ovarian cancers in women. For breast cancer, body mass index and reproductive factors were also included in multivariate models.

 Abbreviations: PD, Parkinson's disease; LRRK2-PD, Parkinson's Disease patients with LRRK2 G2019S mutation; IPD, idiopathic PD patients; OR, odds ratio; CI, confidence interval.

[^2]: Bold font represents results that are statistically significant at $P<0.05$.

