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Abstract

Drug combination trials are increasingly common nowadays in clinical research. However, very 

few methods have been developed to consider toxicity attributions in the dose escalation process. 

We are motivated by a trial in which the clinician is able to identify certain toxicities that can be 

attributed to one of the agents. We present a Bayesian adaptive design in which toxicity 

attributions are modeled via Copula regression and the maximum tolerated dose (MTD) curve is 

estimated as a function of model parameters. The dose escalation algorithm uses cohorts of two 

patients, following the continual reassessment method (CRM) scheme, where at each stage of the 

trial, we search for the dose of one agent given the current dose of the other agent. The 

performance of the design is studied by evaluating its operating characteristics when the 

underlying model is either correctly specified or misspecified. We show that this method can be 

extended to accommodate discrete dose combinations.
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1 Introduction

Cancer phase I clinical trials constitute the first step in investigating a potentially promising 

combination of cytotoxic and biological agents. Due to safety and ethical concerns, patients 

are sequentially enrolled in the trial, and the dose combinations assigned to subsequent 

patients depend on dose combinations already given to previous patients and their dose 

limiting toxicity (DLT) status at the end of the first cycle of therapy. The main objective of 

these trials is to estimate a maximum tolerated dose (MTD) that will be used in future 
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efficacy evaluation in phase II/III trials. The MTD is usually defined as any dose 

combination (x, y) that will produce DLT in a prespecified proportion θ of patients,

Prob(DLT ∣ dose = (x, y)) = θ . (1)

The definition of DLT depends on the type of cancer and drugs under study, but it is usually 

defined as a grade 3 or 4 non-hematologic toxicity (see the National Cancer Institute 

CTCAE v4.03 for the definition of the different grades of toxicity). The pre-specified 

proportion of DLTs θ, sometimes referred as target probability of DLT, also depends on the 

nature of the toxicity, but it usually take values between 0.2 and 0.4.

In the drug combination dose finding literature, designs that recommend a unique MTD (see 

e.g. Yin and Yuan (2009a,b); Wages et al. (2011a,b); Shi and Yin (2013); Riviere et al. 
(2014); Wheeler et al. (2017); Mu and Xu (2017)) or multiple MTDs (see e.g. Thall et al. 
(2003); Wang and Ivanova (2005); Yuan and Yin (2008); Braun and Wang (2010); Mander 

and Sweeting (2015); Tighiouart et al. (2014, 2016, 2017)) have been studied extensively. 

Most of these methods use a parametric model for the dose-toxicity relationship

Prob(DLT ∣ (x, y)) = F((x, y), ξ), (2)

where (x, y) represents the drug combination of two agents, F(.) is a known link function, 

e.g. a power model or a logistic model, and ξ ∈ Rd is a vector of d unknown parameters. 

Non-parametric designs have been proposed in the past, both in single agent and drug 

combination settings Mander and Sweeting (2015); Gasparini and Eisele (2000); Whitehead 

et al. (2010). These designs unique assumption is monotonicity, which is imposed either 

through the prior distribution (see Gasparini and Eisele (2000); Whitehead et al. (2010)), or 

by choosing only monotonic contours when escalating (see Mander and Sweeting (2015)).

Let S be the set of all dose combinations available in the trial, and C(ξ) be the set of dose 

combinations (x, y) such the probability of DLT equals a target risk of toxicity θ. Hence,

C(ξ) = {(x, y) ∈ S:F((x, y), ξ) = θ} . (3)

Equation (3) is the traditional definition of MTD set. When S is discrete, following 

Tighiouart et al. (2017), we can define the MTD as the set of dose combinations (x, y) that 

satisfy

∣ F((x, y), ξ) − θ ∣ ≤ δ, (4)
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since C(ξ) may be empty, i.e., when the MTD is not in S. The threshold parameter δ, 0 < δ < 

1, is pre-specified after close collaboration with the clinician.

This work is motivated by a cancer phase I trial a clinician at Cedars-Sinai Medical Center is 

planning. The trial involves the combination of Taxotere, a known cytotoxic agent, and 

Metformin, a diabetes drug, in advanced or metastatic breast cancer patients. According to 

the clinician, some DLTs can be attributable to either agent or both. For example, a grade 3 

or 4 neutropenia can only be attributable to Taxotere and not Metformin. Furthermore, for 

ethical reasons, if a patient has a DLT attributable to Taxotere when treated with dose level 

xT of taxotere, then xT cannot be increased for the next patient in the trial (see the dose 

escalation restriction in Section 2.2). Very few methods have been developed to incorporate 

toxicity attribution in the dose escalation process. Yin and Yuan (2009a) proposed a design 

that models the joint probability of toxicity with a copula model known as the Gumbel 

model Murtaugh and Fisher (1990). This model allows the investigator to compute the 

probability of DLT when the DLT is exclusively attributed to one drug, the other one, or 

both. However, they require all toxicities to be attributable, which is rare in practice. 

Wheeler et al. (2017) proposed a semi-attributable toxicity design based on a trial with non-

concurrent drug administration. In their design, one drug is administered at the beginning of 

the treatment cycle and the other drug is administered at a much later time point if and only 

if the patient did not experience DLT. If a DLT occurs before the second drug is 

administered, then the DLT is attributed to the first drug. However, if the DLT occurs after 

the second drug has been administered, then the DLT could be caused by any of the drugs 

and therefore is not attributable. Iasonos and O’Quigley (2016) propose a method that 

reduces the effect of the bias caused by toxicity attribution errors by using personalized 

scores instead of the traditional binary DLT outcome. Lee and Fan (2012) considered the 

toxicity attribution problem for ruled-based designs with non-overlapping toxicities.

In this article, we propose a Bayesian adaptive design for drug combinations that allows the 

investigator to attribute a DLT to one or both agents in an unknown fraction of patients, even 

when the drugs are given concurrently.

We define toxicity attribution as a DLT caused by one drug and not the other when the type 

of DLT is non-overlapping, e.g., a grade 4 neutropenia is caused by taxotere but can never 

occur with metformin, or when the clinician judges that a type of DLT is caused by one drug 

and not the other, e.g., a grade 4 diarrhea is caused by taxotere but not metformin due to the 

low dose level of taxotere that was given in combination even though both drugs have this 

side effect in common.

The relationship between the dose combinations and the risk of toxicity is modeled using the 

same copula model used by Yin and Yuan (2009a). The design proceeds using a variation of 

the algorithm proposed in Tighiouart et al. (2017) where cohorts of two patients are 

allocated to dose combinations where, at each stage of the trial, we search for the dose of 

one agent given the current dose of the other agent. Our approach differs from the 

methodologies of Yin and Yuan (2009a) and Tighiouart et al. (2017) in three aspects; (i) a 

non-negative fraction of DLTs are attributable to either one or both agents, (ii) the dose 

combination allocated to patients uses the CRM scheme as opposed to escalation with 
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overdose control (EWOC) approach proposed by Babb et al. (1998), and (iii) if a current 

patient experiences DLT attributed drug D1 at dose level xD1, then the dose level of agent D1 

cannot be more than xD1 for the next cohort of two patients. At the end of the trial, an 

estimate of the MTD curve is proposed as a function of Bayes estimates of the model 

parameters. Last, we show that our method can be easily adapted from a setting with 

continuous dose combinations to discrete dose combinations by rounding up the estimated 

MTD curve to the nearest discrete dose combinations.

The rest of the manuscript is organized as follows. In Section 2, we describe the model for 

the dose-toxicity relationship and the adaptive design to conduct the trial for continuous 

dose combinations. In Section 3, we study the performance of the method in terms of safety 

and efficiency of the estimate of the MTD set. In Section 4, we adapt our proposal to the 

setting of discrete dose combinations. In section 5, we conduct a model misspecification 

evaluation. Discussion and practical considerations of the method are discussed in Section 6.

2 Method

2.1 Dose-Toxicity Model

Let Xmin, Xmax, Ymin, Ymax, be the minimum and maximum doses available in a trial that 

combines drugs with continuous dose combination levels. The doses are standardized to be 

in a desired interval, e.g., [0.05, 0.3], so that Xmin = Ymin = 0.05 and Xmax = Ymax = 0.3. Let 

Fα(·) and Fβ(·) be parametric models for the probability of DLT of drugs D1 and D2, 

respectively. We specify the joint dose-toxicity relationship using the Gumbel copula model 

(see Murtaugh and Fisher (1990)) as

π
(δ1, δ2)

= Prob(δ1, δ2 ∣ x, y) = Fα
δ1 (x) [1 − Fα(x)]

1 − δ1 × Fβ
δ2 (y) [1 − Fβ(y)]

1 − δ2

+ ( − 1)
(δ1 + δ2)

Fα(x) [1 − Fα(x)] Fβ(y) [1 − Fβ(y)] e−γ − 1
e−γ + 1

,

(5)

where x is the standardized dose level of drug D1, y is the standardized dose level of agent 

D2, δ1 is the binary indicator of DLT attributed to drug D1, δ2 is the binary indicator of DLT 

attributed to drug D2 and γ is the interaction coefficient. We assume that the joint 

probability of DLT, when one of the drugs is held constant, is monotonically increasing; that 

is Prob(DLT|x′, y) ≥ Prob(DLT|x, y) or Prob(DLT|x, y′) ≥ Prob(DLT|x, y), where x′ > x and 

y′ > y. A sufficient condition for this property to hold is to assume that Fα(·) and Fβ(·) are 

increasing functions with α > 0 and β > 0. In this article we use Fα(x) = xα and Fβ(y) = yβ. 

Using (5), if the DLT is attributed exclusively to drug D1, then
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π
(δ1 = 1, δ2 = 0)

= Prob(δ1 = 1, δ2 = 0 ∣ x, y) = xα (1 − yβ) − xα (1 − xα) yβ (1 − yβ) e−γ − 1
e−γ + 1

.

(6)

If the DLT is attributed exclusively to drug D2, then

π
(δ1 = 0, δ2 = 1)

= Prob(δ1 = 0, δ2 = 1 ∣ x, y) = yβ(1 − xα) − xα (1 − xα) yβ (1 − yβ) e−γ − 1
e−γ + 1

.

(7)

If the DLT is attributed to both drugs D1 and D2, then

π
(δ1 = 1, δ2 = 1)

= Prob(δ1 = 1, δ2 = 1 ∣ x, y) = xαyβ + xα (1 − xα) yβ (1 − yβ) e−γ − 1
e−γ + 1

. (8)

Equation (6) represents the probability that D1 causes a DLT and drug D2 does not cause a 

DLT. This can happen, for example, when a type of DLT of taxotere (D1), such as grade 4 

neutropenia, is observed. However, this type of DLT can never be observed with metformin 

(D2). This can also happen when the clinician attributes a grade 4 diarrhea to taxotere (D1) 

but not to metformin (D2) in the case of a low dose level of this later even though both drugs 

have this common type of side effect. The fact that dose level y is present in equation (6) is a 

result of the joint modeling of the two marginals and accounts for the probability that drug 

D2 does not cause a DLT. This later case is, of course, based on the clinicians judgment. 

Equations (7) and (8) can be interpreted similarly.

Following Yin and Yuan (2009a), it is easy to see that the total probability of having a DLT 

is calculated as the sum of (6), (7) and (8). Hence,

π = Prob(DLT ∣ x, y) = π
(δ1 = 1, δ2 = 0)

+ π
(δ1 = 0, δ2 = 1)

+ π
(δ1 = 1, δ2 = 1)

= xα + yβ − xαyβ

− xα (1 − xα) yβ (1 − yβ) e−γ − 1
e−γ + 1

.

(9)
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We define the MTD as any dose combination (x*, y*) such that Prob(DLT|x*, y*) = θ. We set 

(9) equal to θ and re-write it as a 2nd degree polynomial in yβ, and solve for the solutions. 

This allows us to define the MTD set C(α, β, γ) as

C(α, β, γ) = {(x∗, y∗): y∗ =
−(1 − x∗

α − κ) ± (1 − x∗
α − κ)2 − 4κ(x∗

α − θ)
2κ

1
β

}, (10)

where

κ = x∗
α (1 − x∗

α)e−γ − 1
e−γ + 1

.

Let T be the indicator of DLT, T = 1 if a patient treated at dose combination (x, y) 

experiences DLT within one cycle of therapy that is due to either drug or both, and T = 

0otherwise. Among patients treated with dose combination (x, y) who exhibit DLT, suppose 

that an unknown fraction η of these patients have a DLT with known attribution, i.e. the 

clinician knows if the DLT is caused by drug D1 only, or drug D2 only, or both drugs D1 and 

D2. Let A be the indicator of DLT attribution when T = 1. It follows that for each patient 

treated with dose combination (x, y), there are five possible toxicity outcomes: {T = 0}, {T = 

1, A = 0}, {T = 1, A = 1, δ1 = 1, δ2 = 0}, {T = 1, A = 1, δ1 = 0, δ2 = 1} and {T = 1, A = 1, 

δ1 = 1, δ2 = 1}. This is illustrated in the chance tree diagram in Figure 1. Using equations 

(6),(7),(8),(9) and Figure 1, the contributions to the likelihood from each of the five 

observable outcomes are listed in Table 1. The likelihood function is defined as

L(α, β, γ, η ∣ data) = ∏
i = 1

n
ηπi

(δ1i
, δ2i

) Ai

πi (1 − η)
−1 − Ai

Ti

(1 − πi)
1 − Ti, (11)

and the joint posterior probability distribution of the model parameters as

Prob(α, β, γ, η ∣ data) ∝ Prob(α, β, γ) × L(α, β, γ ∣ data) . (12)

With equation (12) we can easily sample and obtain MCMC estimates of α, β, γ and η.

2.2 Trial Design

Dose escalation/de-escalation proceeds using the algorithm described in Tighiouart et al. 
(2017) but univariate continual reassessment method (CRM) is carried out to estimate the 

next dose instead of EWOC. In a cohort with two patients, the first one would receive a new 
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dose of agent D1 given the dose y of agent D2 that was previously assigned. The new dose of 

agent D1 is defined as xnew = argminu ∣ Prob(DLT ∣ u, y) − θ ∣, where y is fixed and 

Prob(DLT ∣ u, y) is computed using equation (9) with α, β, γ replaced by their posterior 

medians. The other patient would receive a new dose of agent D2 given the dose of agent D1 

that was previously assigned. Specifically, the design proceeds as follows:

1. Patients in the first cohort receive the same dose combination (x1, y1) = (x2, y2) = 

(Xmin, Ymin).

2. In the i-th cohort of two patients,

• If i is even,

– Patient (2i−1) receives doses (x2i−1, y2i−1), where 

x2i − 1 = argmin
u

Prob(DLT ∣ u, y2i − 3) − θ , and y2i−1 = y2i−3. If a 

DLT was observed in the previous cohort of two patients and 

was attributable to drug D1, then x2i−1 is further restricted to 

be no more than x2i−3.

– Patient 2i receives doses (x2i, y2i), where 

y2i = argmin
v

Prob(DLT ∣ x2i − 2, v) − θ , and x2i = x2i−2. If a DLT 

was observed in the previous cohort of two patients and was 

attributable to drug D2, then y2i is further restricted to be no 

more than y2i−2.

• If i is odd,

– Patient (2i−1) receives doses (x2i−1, y2i−1), where 

y2i − 1 = argmin
v

Prob(DLT ∣ x2i − 3, v) − θ , and x2i−1 = x2i−3. If a 

DLT was observed in the previous cohort of two patients and 

was attributable to drug D2, then y2i−1 is further restricted to 

be no more than y2i−3.

– Patient 2i receives doses (x2i, y2i), where 

x2i = argmin
u

Prob(DLT ∣ u, y2i − 2) − θ , and y2i = y2i−2. If a DLT 

was observed in the previous cohort of two patients and was 

attributable to drug D1, then x2i is further restricted to be no 

more than x2i−2.

3. Repeat step 2 until the maximum sample size is reached subject to the following 

stopping rule.

4. We would stop the trial if, Prob(Prob(DLT|x = Xmin, y = Ymin) ≥ θ + ξ1|data) > 

ξ2, i.e. if the posterior risk of toxicity at the lowest combination significantly is 

high. ξ1 and ξ2 are design parameters tuned to obtain the best operating 

characteristics.
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In step 2 of the algorithm, any dose escalation is further restricted to be no more than a pre-

specified fraction of the dose range of the corresponding agent. At the end of the trial, we 

obtain the MTD curve estimate Ĉ = C(α̂, β̂, γ̂), where α̂, β̂ and γ̂ are the posterior medians 

of the parameters α, β and γ, given the data.

3 Simulation Studies

3.1 Simulation set up and Scenarios

In all simulated trials, the link functions Fα(x) = xα and Fβ(y) = yβ are used. To evaluate the 

performance of our proposal, the DLT outcomes are generated from the true model showed 

in (9). We used this model in 3 different scenarios to study the behavior of our design when 

the prior distribution of the model parameters is both well and poorly calibrated. Let αtrue, 

βtrue and γtrue represent the true parameter values we use in (9) to generate DLT outcomes. 

In each scenario we select different values for αtrue, βtrue, but the prior distribution for α and 

β, P(α) and P(β), as well as γtrue, do not vary. In scenario 1, we choose values for αtrue and 

βtrue such that αtrue < E[P(α)] and βtrue < E[P(β)]. In scenario 2, we choose values for αtrue 

and βtrue such that αtrue = E[P(α)] and βtrue = E[P(β)]. Last, in scenario 3, we choose values 

for αtrue and βtrue such that αtrue > E[P(α)] and βtrue > E[P(β)]. Figure 2 shows the MTD 

curves with the true parameter values described here and their contours at θ ± 0.05 and θ 
± 0.1. We evaluate the effect of toxicity attribution in these 3 scenarios using 4 different 

values for η: 0, 0.1, 0.25 and 0.4. These values are reasonable because higher values of η in 

practice are very rare. Data is randomly generated using the following procedure:

• For a given dose combination (x, y), a binary indicator of DLT T is generated 

from a Bernoulli distribution with probability of success computed using 

equation (9).

• If {T = 1}, we generate the attribution outcome A using a Bernoulli distribution 

with probability of success η.

• If {T = 1, A = 1}, we attribute the DLT to drug D1, D2, or to both drugs with 

equal probabilities.

We assume that the model parameters α, β, γ and η are independent a priori. We assign 

vague prior distributions to α, β and γ following Yin and Yuan (2009a), where α ~ 

Uniform(0.2, 2), β ~ Uniform(0.2, 2) and γ ~ Gamma(0.1, 0.1). These prior distributions 

correspond to the ones used by Yin and Yuan (2009a) for the main analysis. The prior 

distribution for the fraction of attributable toxicities η is set to be Uniform(0, 1). With these 

prior distributions, the true parameter values for each scenario are as follows. In scenario 1, 

α = β = 0.9 and γ = 1. In scenario 2, α = β = 1.1 and γ = 1. Last, in scenario 3, α = β = 1.3 

and γ = 1. For each scenario, m = 1000 trials will be simulated. The target risk of toxicity is 

fixed at θ = 0.3, the sample size is n = 40, and the values for ξ1 and ξ2 will be 0.05 and 0.8 

respectively. All simulation are done using the software R version 3.3.1.

3.2 Design Operating Characteristics

We evaluate the performance of the design by assessing its safety and its efficiency in 

estimating the MTD curve.

Jimenez et al. Page 8

Biom J. Author manuscript; available in PMC 2019 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For trial safety, we employ the average percent of DLTs, the percent of simulated trials with 

DLT rate greater than θ ± 0.05 and θ ± 0.10.

For efficiency, we employ the pointwise average relative minimum distance from the true 

MTD curve to the estimated MTD curve. This measure of efficiency is well described in 

Tighiouart et al. (2014, 2017) and can interpreted as a pointwise average bias in estimating 

the true MTD curve. We also consider the pointwise percent of trials for which the minimum 

distance of the point (x, y) on the true MTD curve to the estimated MTD curve is no more 

than (100 × p)% of the true MTD curve. This measurement will give us an estimate of the 

percent of trials with MTD recommendation within (100 p)% of the true MTD. This 

measure of efficiency can be interpreted as the pointwise percent of correct MTD 

recommendation. In this paper we select p = 0.1, 0.2. For a detailed explanation of these 

measures of efficiency, see Tighiouart et al. (2014, 2017).

3.3 Results

In general, increasing the value of η until 0.4 generates estimated MTD curves closer to the 

true MTD curve. Figure 3 shows the estimated MTD curves for each scenario as a function 

of η. In terms of safety, overall we observe that increasing the fraction of toxicity 

attributions η reduces the average percent of toxicities and percent of trials with toxicity 

rates greater than θ + 0.05 and θ + 0.10. Table 2, shows the average percent of toxicities as 

well as the percent of trials with toxicity rates greater than θ + 0.05 and θ + 0.1 for scenarios 

1–3.

Figure 4 shows the pointwise average bias of the 3 proposed scenarios for each value of η. 

Overall, increasing the value of η until 0.4 reduces the pointwise average bias. In any case, 

the pointwise average bias is around 10% of the dose range of either drug and practically 

negligible for η = 0.25, 0.4. For instance, under scenario 3, the maximum absolute value of 

the pointwise average bias when η = 0.40 is about 0.01, which corresponds to 0.3% of the 

dose range, which is practically negligible.

Figure 5 shows the pointwise percent of MTD recommendation of the 3 proposed scenarios 

for each value of η. In general, increasing the value of η increases the pointwise percent of 

MTD recommendation, reaching up to 80% of correct recommendation when p = 0.2, and 

up to 70% of correct recommendation when p = 0.1. Based on these simulation results, we 

conclude that in continuous dose setting the approach of partial toxicity attribution generates 

safe trial designs and efficient estimation of the MTD.

4 Discrete Dose Combinations

4.1 Approach

Dose escalation follows the same procedure described in section 2.2. The only difference is 

that, in step 2, the continuous doses recommended are rounded to the nearest discrete dose 

level. For a detailed explanation of this procedure see Tighiouart et al. (2017).
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4.2 Illustration

We study the performance of our proposal in a discrete dose level setting where the 

probability of toxicity of each dose level is generated from the working model. We employ 6 

scenarios with 4 dose levels respectively in each drug for scenarios 1 – 3, and 4 and 6 dose 

levels respectively in each drug for scenarios 4 – 6. The target probability of toxicity is 

always θ = 0.3 and, for each scenario, we simulate m = 1000 trials using the same vague 

priors for α, β and γ specified in section 3.1. The maximum sample size in all scenarios is 

again n = 40. The performance of the method is evaluated using the percent of MTD 

selection statistic proposed by Tighiouart et al. (2017).

In Table 3 we present the 6 mentioned scenarios we use to illustrate the implementation of 

our design with discrete dose levels. Moreover, in Figure 6 we show the dose-toxicity 

surface of these 6 scenarios, where we observe that all of them have a flat (near-constant) 

surface.

In Table 4 we show the percent of times that at least 25%, 50%, 75% or 100% of 

recommended MTDs belong to the true MTD set. Using vague prior distributions, the 

scenario where toxicity attribution has the strongest effect is scenario 2. In scenarios 1,4 and 

5, we observe a slight effect but it does not make a big difference.

5 Model Misspecification

In the previous sections, all the simulated scenarios are generated with the model showed in 

(9). However, in practice we do not know the underlying model that generates the data and 

therefore we need to assess the performance of our design under model misspecification. We 

employ the same toxicity scenarios used by Yin and Yuan (2009a), which are shown in Table 

5. Moreover, In Figure 7 we show the dose-toxicity surface of these scenarios. Scenario 1 

presents a very constant surface gradient. The rest of the scenarios present surface gradients 

that vary as we increase the dose combination levels. However, scenarios 3, 4 and 6 vary 

more abruptly than scenarios 2 and 5. Scenario 6 is a particular case because the lowest dose 

combination level has a probability of DLT that is already higher than the target risk of 

toxicity θ + 0.1. Therefore, for this scenario, instead of presenting the percent of correct 

recommendation we present the percent of times the trial is stopped due to safety using the 

stopping rule in Section 2.2 with ξ1 = 0.05 and ξ2 = 0.8. For each scenario, we simulate m = 

1000 trials with a target risk of toxicity of θ = 0.30, a sample size of n = 40 and we use the 

same prior distributions for α, β and γ as in section 3.1.

In terms of safety, in general we observe that toxicity attributions reduce the average percent 

of toxicities and percent of trials with toxicity rates greater than θ+0.05 and θ+0.10. Table 6 

shows the average percent of toxicities as well as the percent of trials with toxicity rates 

greater than θ + 0.05 and θ + 0.1.

In Table 7, we show the percent of times that at least 25%, 50%, 75% or 100% of 

recommended MTDs belong to the true MTD set. In scenario 1 we observe a positive effect 

of the toxicity attributions, improving the percent of times at least 75% and 100% of 

recommended MTDs belong to the true MTD set in to 5% when η = 0.25. In scenario 2 we 
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observe a positive effect of the toxicity attributions improving the percent of times at least 

25% and 50% of recommended MTDs belong to the true MTD up to 5% and 4% 

respectively. In scenarios 3, 4 and 5 we do not observe any positive effect when attributing 

toxicities. However, these scenarios are particularly difficult for our design given the 

rounding up procedure we follow with discrete dose combinations. In scenario 6 we observe 

a positive effect of the toxicity attributions, improving the percent of times the trial is 

stopped due to safety by almost 4% when η = 0.40. Based on these simulation results under 

model misspecification, we conclude that the partial toxicity attribution method has good 

operating characteristics in recommending dose combinations of which, at least 50% are the 

true MTDs; these percent of correct recommendations vary between 65% to 98% depending 

on the scenario. Moreover, there is a high probability of stopping the trial if there is evidence 

that the minimum dose combination in the trial has high probability of DLT.

However some of the scenarios showed in Table 5 have a true set of MTDs that include a 

large number of dose combinations. For this reason, we implemented our design in 6 extra 

scenarios taken from Yin and Yuan (2009a,b). These scenarios are presented in Table S1 at 

the supplementary material, where the set of true MTDs contains a much more restricted 

number of dose combinations. Also, since the scenarios showed in Table 5 where generated 

with a logistic model, we selected the scenarios to observe how robust is our proposal in 

scenarios generated with other models, such us the Clayton Copula, and scenarios that are 

arbitrarily generated. Moreover, since we are using the same set of true MTDs as Yin and 

Yuan (2009a,b), we use these methods to make a performance comparison in terms of 

percent of correct MTD selection.

In Tables S2 and S3, in the supplementary material, we present operating characteristics in 

term of safety and efficiency for each of the 6 proposed scenarios. In general, we observe 

that the design behaves in a similar way as with the scenarios presented along this 

manuscript. In terms of safety, toxicity attributions reduce the average percent of toxicities 

and the percent of trials with toxicity rates greater than θ + 0.05 and θ + 0.10. In terms of 

efficiency, we only observe a positive effect in scenarios with a relatively flat dose-toxicity 

surface. In terms of performance comparison, our proposed method is competitive with other 

standard designs for drug combinations such us Yin and Yuan (2009a,b), and achieves better 

percent of correct MTD recommendation in 4 out of the 6 used scenarios.

Another issue that is relevant to the methodology we present in this manuscript is the errors 

in the attribution of toxicities by the treating investigators. Our design does not include a 

parameter to control the uncertainty around the decision made by the investigator when 

attributing the the DLT, which could be an extension of this work. However, in the 

supplementary material, in order to assess the impact of these kind of errors, we present 

simulation from 3 scenarios taken also from Yin and Yuan (2009a,b) where we introduce 

10% and 50% of errors in the attribution of DLTs, and compare it to the case where we 

correctly attributes 100% of the DLTs. In Tables S4 and S5, we present the simulated results 

in terms of safety and efficiency. Overall we do not observe any major difference when 

incorrectly attributing 10% and 50% of the DLTs with respect to correctly attributing 100% 

of the DLTs.
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6 Conclusions

In this paper we proposed a Bayesian adaptive design for cancer phase I clinical trials using 

drug combinations with continuous dose levels and attributable DLT in a fraction of patients. 

A copula-type model was used to describe the relationship between dose combinations and 

probability of DLT. The trial design proceeds by treating cohorts of two patients, each 

patient with a different dose combination estimated using univariate CRM for a better 

exploration of the space of doses. Treating cohorts of two patients will allow trial conduct to 

be completed in a reasonable amount of time. Although the two patients in a cohort are 

allocated to different dose combinations, a patient in the current cohort can be treated at a 

dose (x, y) if and only if a patient in the previous cohort was treated at a dose on the same 

horizontal or vertical line within our dose range, that is was treated with either dose x or 

dose y. The use of continuous dose levels is not uncommon in early phase trials, particularly 

when the drugs are given as infusions intravenously. For instance, a drug combination trial 

of cabazitaxel and cisplatin delivered intravenously was recently designed for advanced 

prostate cancer patients where the dose levels are continuous and the protocol was approved 

by the scientific review at Cedars-Sinai. For ethical reasons, we further imposed dose 

escalation restrictions for one of the drugs when a DLT is attributable to that drug.

We studied the operating characteristics of the design under various scenarios for the true 

location of the MTD curve. In general, we observed that the trial is safe and as the 

proportion of attributed toxicities increases, the average proportion of toxicities decreases 

when we attribute toxicities. To assess the efficiency when estimating the MTD curve, we 

employed the pointwise average bias and average percent selection. In general the method is 

efficient although the results varied depending on the proportion of attributed toxicities. 

Note that the operating characteristics were evaluated under vague prior distributions of the 

model parameters and no toxicity profiles of single agent trials were used a priori. We also 

showed how the method can be adapted to the setting of discrete dose combinations.

We also performed a model misspecification evaluation in scenarios with different dose-

toxicity surfaces. We only observed a positive effect in terms of percent of correct MTD 

recommendation in scenarios with flat surfaces. In scenarios with non-flat dose-toxicity 

surfaces we observed a decline in performance of percent selection consistent with the 

findings by Riviere et al. (2014) when working with copula regression models. We also 

observed a positive effect in scenarios where the lowest dose combination has an excessively 

high probability of DLT. In this case, toxicity attributions improves the percent of times the 

trial was stopped due to safety. In all cases, safety of the trial is not compromised by 

accounting for a partial toxicity attribution. Clearly, there is a trade-off when increasing the 

fraction of DLT attribution to one or more drugs. The design is more conservative in future 

escalations, lowering the in-trial DLT percentages and reducing how quickly the MTD 

contour is reached, by favoring experimentation over recommendation.

Our design is practically useful when the two drugs do not have many overlapping toxicities, 

see e.g. Miles et al. (2002) for some examples of drug combination trials with these 

characteristics. In cases where we expect a high percent of overlapping DLTs, designs that 

do not distinguish between drug attribution listed in the introduction may be more 
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appropriate. Our method relies on clinical judgment regarding DLT attribution. In many 

phase I trials, such decisions are subject to error classifications and a possible extension is to 

introduce a parameter to account for errors in toxicity attribution as in Iasonos and 

O’Quigley (2016) for single agent trials. We also plan to study the performance of this 

design using other link functions under different copula models, and extend this method to 

early phase cancer trials with late onset toxicity and by accounting for patient’s baseline 

characteristic by extending the approaches in Tighiouart et al. (2014, 2012) to the drug 

combination setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A chance tree illustrating the 5 possible outcomes we can find in a trial.
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Figure 2. 
Contour plots for the working model in scenarios 1, 2 and 3. The black dashed curve 

represents the true MTD curve and the gray dashed lines represent the contours at θ ± 0.05 
and θ ± 0.10.
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Figure 3. 
Estimated MTD curves for m=1000 simulated trials. The black dashed curve represents the 

true MTD curve, the gray dashed lines represent the contours at θ ± 0.05 and θ ± 0.10, and 

the solid curves represent the estimated MTD curves at each value of η.
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Figure 4. 
Pointwise average bias in estimating the true MTD in m=1000 simulated trials.
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Figure 5. 
Pointwise percent of MTD recommendation for m=1000 simulated trials. Solid lines 

represent the pointwise percent of MTD recommendation when p=0.2 and dashed lines 

represent the pointwise percent of MTD recommendation when p=0.1.
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Figure 6. 
Probability of DLT surfaces of the 6 scenarios from Table 3.
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Figure 7. 
Probability of DLT surfaces of the 6 scenarios from Table 5.
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Table 1

Contributions to the likelihood function based on the observed outcomes: toxicity, attribution, attribution to 

drug 1 (δ1) and attribution to drug 2 (δ2) for each patient.

Toxicity Attribution δ1 δ2 Likelihood

0 - - - 1 − π = 1 − xα + yβ − xα × yβ − xα (1 − xα) yβ 1 − yβ e−γ − 1
e−γ + 1

1 0 - - π × (1 − η) = xα + yβ − xα × yβ − xα (1 − xα) yβ 1 − yβ e−γ − 1
e−γ + 1

× (1 − η)

1 1 1 0 π × η × π(1, 0)
π = η × xα (1 − yβ) − xα (1 − xα) yβ 1 − yβ e−γ − 1

e−γ + 1

1 1 0 1 π × η × π(0, 1)
π = η × yβ(1 − xα) − xα (1 − xα) yβ 1 − yβ e−γ − 1

e−γ + 1

1 1 1 1 π × η × π(1, 1)
π = η × xα × yβ + xα (1 − xα) yβ 1 − yβ e−γ − 1

e−γ + 1
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Table 2

Operating characteristics summarizing trial safety in m = 1000 simulated trials.

Average % of toxicities % of trials with toxicity rate > θ + 0.05 % of trials with toxicity rate > θ + 0.10

Scenario 1

η = 0.00 33.62 25.90 4.10

η = 0.10 32.67 22.60 4.80

η = 0.25 31.55 17.60 2.70

η = 0.40 30.70 13.30 2.00

Scenario 2

η = 0.00 30.64 9.40 0.90

η = 0.10 29.69 7.30 0.40

η = 0.25 28.76 5.00 0.20

η = 0.40 28.04 4.10 0.30

Scenario 3

η = 0.00 27.47 2.00 0.00

η = 0.10 26.80 1.80 0.00

η = 0.25 25.99 1.30 0.00

η = 0.40 25.37 0.70 0.00
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Table 6

Operating characteristics summarizing trial safety for model misspecification in m = 1000 simulated trials.

Average % of toxicities % of trials with toxicity rate > θ + 0.05 % of trials with toxicity rate > θ + 0.10

Scenario 1

η = 0.00 32.99 22.90 4.20

η = 0.10 32.19 18.50 2.90

η = 0.25 31.43 15.80 2.60

η = 0.40 30.58 12.90 2.50

Scenario 2

η = 0.00 29.85 6.60 0.20

η = 0.10 29.14 4.10 0.10

η = 0.25 28.20 3.10 0.30

η = 0.40 27.90 2.30 0.00

Scenario 3

η = 0.00 36.53 40.70 16.40

η = 0.10 35.13 33.90 12.50

η = 0.25 33.94 28.60 11.00

η = 0.40 32.94 23.40 9.50

Scenario 4

η = 0.00 22.43 0.00 0.00

η = 0.10 21.83 0.00 0.00

η = 0.25 21.39 0.00 0.00

η = 0.40 20.87 0.00 0.00

Scenario 5

η = 0.00 30.43 6.60 0.30

η = 0.10 29.48 3.30 0.10

η = 0.25 28.60 3.60 0.00

η = 0.40 27.60 2.30 0.00
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