
Cancer Prevention with Promising Natural Products: 
Mechanisms of Action and Molecular Targets

Poyil Pratheeshkumar, Chakkenchath Sreekala, Zhuo Zhang, Amit Budhraja, Songze Ding, 
Young-Ok Son, Xin Wang, Andrew Hitron, Kim Hyun-Jung, Lei Wang, Jeong-Chae Lee, and 
Xianglin Shi*

Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA

Abstract

Cancer is the second leading cause of death worldwide. There is greater need for more effective 

and less toxic therapeutic and preventive strategies. Natural products are becoming an important 

research area for novel and bioactive molecules for drug discovery. Phytochemicals and dietary 

compounds have been used for the treatment of cancer throughout history due to their safety, low 

toxicity, and general availability. Many active phytochemicals are in human clinical trials. Studies 

have indicated that daily consumption of dietary phytochemicals have cancer protective effects 

against carcinogens. They can inhibit, delay, or reverse carcinogenesis by inducing detoxifying 

and antioxidant enzymes systems, regulating inflammatory and proliferative signaling pathways, 

and inducing cell cycle arrest and apoptosis. Epidemiological studies have also revealed that high 

dietary intakes of fruits and vegetables reduce the risk of cancer. This review discusses potential 

natural cancer preventive compounds, their molecular targets, and their mechanisms of actions.
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INTRODUCTION

Cancer is one of the leading causes of death worldwide and the incidence is on the rise in 

both developing and developed countries. Cancer prevention may be more effective and less 

costly because cancer is closely associated with lifestyle factors [1]. Natural products have 

been used for the treatment of various diseases and are becoming an important research area 

for drug discovery. These products, especially phytochemicals have been extensively studied 

and have exhibited anti-carcinogenic activities by interfering with the initiation, 

development and progression of cancer through the modulation of various mechanisms 

including cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis [2]. 
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Many successful anti-cancer drugs now available are phytochemicals or their analogues [3], 

and some are in human clinical trials [4].

Phytochemicals obtained from vegetables, fruits, spices, teas, herbs, and medicinal plants, 

such as flavanoids, carotenoids, phenolic compounds, and terpenoids, have been extensively 

investigated for their anti-cancer activities due to their safety, low toxicity, and general 

availability [1, 5]. It has been estimated that more than two-third of human cancers could be 

prevented through appropriate lifestyle modification including dietary habits [6]. Recent 

studies have indicated that a high intake of fruit and vegetables is associated with a 

decreased risk of human malignancies, including colon, breast, lung, laryngeal, pancreatic, 

bladder, stomach, esophageal, and oral cancers [5, 7]. Population studies also suggest that a 

reduced risk of cancer is associated with a high consumption of vegetables and fruits.

Chemoprevention, a means of cancer control by which the occurrence of the disease can be 

entirely prevented, slowed down, or reversed by use of nontoxic natural or synthetic 

products, has emerged as a promising and pragmatic medical approach to reduce the risk of 

cancer. This concept is gaining increasing attention because it is a cost-effective alternative 

to cancer treatment [1, 8]. Cancer treatment with commercially available synthetic 

chemotherapeutic agents is limited because of their severe side effects. Various plant 

products have been reported to possess substantial chemopreventive properties [8]. 

Approximately, 20% of cancer incidents are preventable by consuming more vegetables and 

fruits and may potentially prevent approximately 200,000 cancer-related deaths annually [1].

Carcinogenesis is a multi-step process (Fig. 1) which begins with initiation followed by 

promotion and progression that involve a series of epigenetic and genetic alterations 

affecting oncogenes and tumor suppressor genes [9]. Tumor initiation is a rapid and 

irreversible process. This process involves an initial uptake of or exposure to a carcinogenic 

agent including a distribution of this agent to organs and tissues where metabolic activation 

and detoxification can occur. Finally this agent and its possible metabolic derivatives 

covalently interact with target-cell DNA, leading to genotoxic damage [10]. Phytochemicals 

can prevent these multi-step processes by exerting anti-inflammatory and anti-oxidative 

stress effects which are mediated by integrated Nrf2, NF-κB, and AP-1 signaling pathways 

[9]. Many of the antioxidant compounds present in foods of plant origin protect against 

genotoxicity and other cancer-initiating or -promoting processes [11].

In this review we focus on (a) the usefulness of some promising phytochemicals (Fig. 2), 

including curcumin, resveratrol, epigallocatechin gallate (EGCG), apigenin, quercetin, 

genistein, lycopene, ursolic acid, isothyocynates, and perillyl alcohol, and (b) their 

mechanism of actions as well as molecular targets (Fig. 3 & Table 1), such as antioxidant 

properties, inhibition of cell cycle, induction of apoptosis, regulation of angiogenesis, 

inhibition of cyclooxygenase (COX)-2, signal transducers and activator of transcription 3 

(STAT3) inhibition, and down-regulation of nuclear factor-kappaB (NF-κB), activator 

protein-1, and mitogen-activated protein kinases (MAPKs).
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CURCUMIN

Curcumin (diferuloylmethane), a yellow pigment belongs to the class of polyphenols present 

in the rhizomes of turmeric (Curcuma longa L.), is used in cooking in India and other 

regions of Asia. It is also used as a cosmetic and in some medical preparations. It has a long 

history as herbal remedy for a variety of diseases and has been used in Indian and Chinese 

traditional medicine since 700 AD [12]. Curcumin has been demonstrated to have a wide 

spectrum of pharmacological properties. Multiple therapeutic activities of curcumin have 

also been considered to be associated with its antioxidant and anti-inflammatory properties. 

The anti-inflammatory effect of curcumin is most likely mediated through its ability to 

inhibit cyclooxygenase-2 (COX-2), lipoxygenase (LOX), and inducible nitric oxide synthase 

(iNOS) [13]. Curcumin likely exerts its inhibitory effect on cancer development by several 

mechanisms such as inhibition of carcinogen activation and stimulation of carcinogen 

detoxification, prevention of oxidative DNA damage, and its capacity to reduce 

inflammation [8]. Studies revealed that curcumin mediates its anti-inflammatory effects 

through the downregulation of inflammatory transcription factors (such as NF-κB), enzymes 

(such as COX-2 and 5 LOX) and cytokines (such as tumor necrosis factor, interleukin 1 and 

interleukin 6) [14]. Curcumin has also been shown to be beneficial in all 3 stages of 

carcinogenesis. Much of its beneficial effect is found to be due to its inhibition of the 

transcription factor NF-κB and subsequent inhibition of proinflammatory pathways [15]. 

Curcumin has the potential to inhibit the NF-κB and AP-1, the major transcription factors 

that regulate inflammation, cell proliferation, differentiation and even apoptosis. It has 

promising chemopreventive and therapeutic potential for various cancers including 

leukemia, lymphoma and cancers of the gastrointestinal tract, genitourinary system, breast, 

ovary, head and neck, lung and skin [16]. It has also shown to affect a variety of other key 

players involved in carcinogenesis, such as cyclooxygenase-2, matrix metallopeptidases 2 

and 9, and tumor necrosis factor α-induced vascular cell adhesion molecules [17].

Curcumin inhibits pancreatic tumor growth through mitotic catastrophe by increasing the 

expression of RNA binding protein CUGBP2, thereby inhibiting the translation of COX-2 

and VEGF mRNA [18]. It enhances the effect of cisplatin in suppression of head and neck 

squamous cell carcinoma via inhibition of IKKβ protein of the NF-κB pathway [19]. 

Curcumin induces cell cycle arrest at the G2/M phase by decreasing the Cdc2 expression 

[20]. It inhibits cell proliferation, tumor growth, invasion and in vivo metastasis, and 

stabilizes the expression of the tumor suppressor Pdcd4 in colorectal cancer [21]. It has been 

shown to protect against skin, oral, intestinal, and colon carcinogenesis and also to suppress 

angiogenesis and metastasis in a variety animal tumor models. It also inhibits the 

proliferation of cancer cells by arresting them in the various phases of the cell cycle and by 

inducing apoptosis. Curcumin has a capability to inhibit carcinogen bioactivation via 

suppression of specific cytochrome P450 isozymes, as well as to induce the activity or 

expression of phase II carcinogen detoxifying enzymes [8]. Combination of phenethyl 

isothiocyanate and curcumin caused suppression of epidermal growth factor (EGF) receptor 

phosphorylation and inhibition of EGF-induced phosphorylation of Akt and induction of 

phosphatidylinositol 3-kinase (PI3K) in PC-3 cells [22]. Menon et al first reported that 

curcumin inhibits the invasion of B16F10 cells by suppressing MMP-2, thereby inhibiting 
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lung metastasis in an animal model [23]. It has also been shown to suppress the production 

of cytokines such as interferon-γ (IFN-γ), interleukins, and tumor necrosis factor-α (TNF- 

α); to inhibit the inducible nitric oxide synthase (iNOS); and to suppress the activation of 

NF-κB [24, 25]. Curcumin-induced inactivation of NF-κB DNA-binding activity was 

potentially mediated by Notch-1 signaling pathway [26]. Curcumin regulates tumor cell 

growth through multiple cell signaling pathways including cell proliferation pathway (cyclin 

D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation 

pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway 

(DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK) 

[27]. Curcumin also inhibited migration of Colo205 cells through the inhibition of NF-κB 

and the down-regulation of COX-2 and MMP-2 expression [28]. Curcumin upregulated the 

expression of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21/WAF1, and p27/KIP1, and 

inhibited the activation of NF-κB and its gene products in xenografted tumors [29]. 

Curcumin suppressed the expression of human epidermal growth factor receptor (HER) 2 

and the activity of p21-activated kinase (PAK) 1, a downstream protein of EGFR, to inhibit 

the proliferation and invasion of gastric cancer cells [30]. Curcumin induces caspase-3-

mediated cleavage of β-catenin, leading to inactivation of Wnt/β-catenin signaling in 

HCT116 intestinal cancer cells [31].

RESVERATROL

Resveratrol (trans-3,5,4′-trihydroxystilbene), a naturally occurring phytoalexin, is found at a 

high concentration in the skin of red grapes and red wine. Resveratrol is known to have 

antioxidant, anti-inflammatory and antiproliferative effects on a variety of cancer cells in 
vitro and in various animal models [32]. It effectively scavenges superoxide, hydroxyl, and 

peroxynitrite radicals generated from enzymatic and nonenzymatic systems and affords 

protection against DNA damage caused by these ROS [33, 34]. Resveratrol has been 

identified as an effective candidate for cancer chemoprevention based on its striking 

inhibitory effects on cellular events associated with cancer initiation, promotion, and 

progression [35]. It potentiates antitumor activity by regulating multiple cell-signaling 

molecules, including drug transporters, cell survival proteins, cell proliferative proteins, and 

members of the NF-κB and STAT3 signaling pathways [36]. The resveratrol-induced 

apoptosis was mediated by activation of caspases-9 and -3 and a change in the Bax/Bcl-2 

ratio. It regulated the expressions of cyclin D1, E, and Cdk4 as well as cyclin D1/Cdk4 

kinase activity in LNCaP cells [37]. It enhanced TRAIL-induced apoptosis through G1 cell 

cycle arrest and survivin depletion [38]. It can inhibit the activation of p38 MAPK, p53 and 

p21WAF1 pathway in tumor cells [39]. It has been shown to inhibit COX-2 activity [40], and 

tumor angiogenesis by regulating MMP-2 and MMP-9 [41, 42]. The inhibition of NF-κB 

and MMP-9 activities by resveratrol in breast cancer cells blocks their migratory potentials 

[43]. It is well documented that resveratrol can suppress proliferation and invasion as well as 

induce apoptosis in a wide variety of tumor cell types [42]. Resveratrol suppressed NF-κB–

regulated gene products (COX-2, MMP-3, MMP-9, and VEGF), inhibited anti-apoptosis 

(Bcl-2, and Bcl-xL) [44]. It can block IL-1-induced activation of NF-κB leading to 

inhibition of proliferation, S-phase arrest, and induces apoptosis [45]. Resveratrol has been 

shown to inhibit TNFα-mediated MMP-9 expression in HepG2 cells by downregulation of 
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the NF-κB signaling pathway [46]. Extensive in vitro studies revealed multiple intracellular 

targets of resveratrol, which affect cell growth, inflammation, apoptosis, angiogenesis, and 

invasion and metastasis [47]. Resveratrol has been shown to inhibit the phosphatidylinositol- 

3 kinase (PI-3K)/AKT and the MAPK pathways, two key survival cascades that are 

frequently aberrantly activated in human cancers [48, 49]. It has been found to inhibit 

Mammalian target of rapamycin (mTOR) which is a central controller of cell growth, 

proliferation, metabolism and angiogenesis [50]. Resveratrol suppressed AP-1 activity by 

the inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase 

kinase (MEK)1 > ERK1/2 signaling [51]. It also regulated the expression of IAPs and Bax, 

and decreased Akt phosphorylation in PC-3 cells, leading to increased caspase activation and 

apoptosis [52]. Resveratrol activates MAPK at low concentrations, but at higher 

concentrations it can inhibit this signal transducing kinase in cancer cells [53]. It inhibited 

nuclear expression of the AP-1 component proteins, in TPA stimulated mouse skin [54]. It 

has been shown to inhibit the migration and decrease the focal adhesion kinase (FAK) 

activity in MDAMB231 cells [55].

APIGENIN

Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and 

vegetables, possesses anti-oxidant, anti-mutagenic, anti-carcinogenic, anti-inflammatory, 

anti-growth, and anti-progression properties [56]. Apigenin is effective in carcinogenesis. 

Topical application of apigenin inhibited dimethyl benzanthracene-induced skin tumors [57], 

and also diminished UV-induced cancer incidence and increased tumor free survival 

experiment [58]. Previous studies demonstrated that apigenin promotes metal chelation, 

scavenges free radicals, and stimulates phase II detoxification enzymes in cell culture and in 

in vivo tumor models [59]. It has been shown to increase the intracellular concentration of 

glutathione, enhancing the endogenous defense against oxidative stress [60]. In PC-3 tumor 

model, treatment with apigenin resulted in 32% and 51% inhibition in tumor growth [57]. 

The proposed mechanism of anti-tumor activity by apigenin was upregulation of WAF1/p21, 

KIP1/p27, INK4a/p16, and down-modulation of the protein expression of cyclins D1, D2, E 

and cyclin-dependent kinases (cdk) [61]. Apigenin has been shown to inhibit the 

proliferation of human prostate cancer cells by regulating MAPK, PI3K-Akt pathways [62]. 

It inhibited the LPS-induced cyclooxygenase-2 and nitric oxide synthase-2 activity and 

expression in mouse macrophages [63]. Apigenin induced G2/M phase cell cycle arrest and 

reduced the levels of cyclin A, cyclin B, phosphorylated forms of cdc2 and cdc25 in 

pancreatic cancer cell lines [64]. It also induced growth-inhibition and G2/M phase arrest in 

two p53-mutant cancer cell lines, HT-29 and MG63. These effects were associated with a 

marked increase in the protein expression of p21/WAF1 [65]. Previous studies have shown 

that topical application of apigenin prior to UV irradiation prevents UV-induced 

tumorigenesis in mice by inhibiting the cell cycle machinery and cyclin-dependent kinases 

(cdk) [58, 66]. Apigenin has shown promise in inhibiting tumor cell invasion and metastases 

by regulating protease production [67]. It inhibited lung tumor metastasis in B16-BL6 

murine melanoma metastasis model [68]. Apigenin has been shown to be markedly effective 

against human leukemia cells [69]. It inhibits HIF-1α, GLUT-1, VEGF mRNA, and protein 

expression in pancreatic cancer cells in both normoxic and hypoxic conditions [70]. 
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Apigenin is a strong inhibitor of ornithine decarboxylase, an enzyme that plays a major role 

in tumor promotion [57]. Apigenin inhibits the TPA-dependent increase in c-jun and c-fos 

gene expression and tumor promotion in mouse skin. It also suppresses the TPA-mediated 

COX-2 expression by blocking Akt signal transduction and arachidonic acid release in 

HaCaT cells [71]. It has been shown to inhibit proteasome activity and induce apoptosis in 

human breast cancer MDA-MB-231 cells [72]. Apigenin is a well-known inhibitor of 

protein-tyrosine kinases and has been shown to block peroxisome proliferation regulated 

kinase (ERK), a MAPK in isolated hepatocytes [73].

QUERCETIN

Quercetin is a dietary flavonoid abundant in variety of foods including apples, berries, 

brassica vegetables, grapes, onions, shallots, tea, and tomatoes, as well as many seeds, nuts, 

barks, and leaves [74]. It usually occurs as O-glycosides, with D-glucose as the most 

frequent sugar residue. More than 170 different quercetin glycosides have been identified 

[75]. Among polyphenols, quercetin is one of the most potent antioxidants, as demonstrated 

in different studies [76, 77]. It has been shown to inhibit oxidative species generating 

enzymes such as xanthine oxidase (XOD), lipoxygenase (LOX) and NADPH oxidase [78]. It 

is a potent anticancer agent, exhibiting different activities such as cell cycle regulation, 

interaction with type II estrogen binding sites, and tyrosine kinase inhibition [79]. 

Intravenous administration of quercetin inhibited the lymphocyte tyrosine kinase in cancer 

patients and it is the first tyrosine kinase inhibiting compound tested in a human phase I trial 

[80]. Studies have revealed that this flavonoid is capable of inhibiting LPS induced 

inflammation in macrophages [81]. Quercetin could inhibit the gene expression of TNF-α 
via modulation of NF-κB in human peripheral blood mononuclear cells [82]. It inhibited the 

growth of multiple cancer cell lines by mitochondrial mediated apoptotic pathway [83]. It 

has been shown that quercetin reduced the expression of ErbB2 and ErbB3 proteins [84], 

and potentiated AMPK activation and p53-dependent apoptotic cell death in HT-29 colon 

cancer cells [85]. Chemopreventive properties of quercetin have been demonstrated in 

various animal models [86–89], and has been subjected to a Phase I clinical trial in cancer 

patients [80].

Previous study has shown that quercetin can induce cell cycle arrest at late G1 phase in 

human leukemic T-cells [90]. Quercetin increased the therapeutic efficacy of cisplatin both 

in vivo and in vitro [91] and also enhanced the cytotoxic effect of radiation on rat hepatoma 

cells [92]. It also caused pronounced apoptosis in both transformed and primary leukemia 

cells but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was 

accompanied by Mcl-1 downregulation and Bax conformational change and mitochondrial 

translocation that triggered cytochrome c release [93]. Quercetin modulates UVB-induced c-

Fos expression through activation of p38 and cAMP-responsive element binding protein 

(CREB) [94]. It enhances the expression of p53, caspase-3,-9, cytochrome c in MDA-

MB-231 cells [95]. It has been shown to regulate the expression of oncogenes (H-ras, c-myc 

and K-ras) and anti-oncogenes (p53) [96], cell cycle control protein (p21WAF1 and 

p27KIP1) [97], and inhibit different tyrosine and serine–threonine kinases associated with 

cell survival pathways (MAPK, AKT/PKB) [98]. Robaszkiewicz et al. studied the effect of 

quercetin on A-549 cells proliferation. They found that quercetin acts as both antioxidant 
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and pro-oxidant depending upon the concentration used. Quercetin at lower concentration 

enhanced the cancer cell prolifearation whereas at higher concentrations showed the 

concentration dependent cytotoxicity [99]. Previous study has shown that quercetin can 

prevent metal induced tumorogenesis by inhibiting oxidative DNA damage [100]. It has also 

been shown to regulate several signal transduction pathways involving MEK/ERK and Nrf2/

keap1, which are involved in the processes of inflammation and carcinogenesis [101]. 

Treatment of quercetin down-regulated the antiapoptotic proteins Bcl-2 and Bcl-xL and also 

up-regulated the proapoptotic proteins Bax and caspase-3 in prostatic PC-3 carcinoma cells 

[102]. Quercitrin blocked TPA-induced neoplastic transformation in JB6 P+ cells. 

Pretreatment of JB6 cells with quercitrin down-regulated transactivation of AP-1 and NF-κB 

induced by UVB or TPA. [103], Wang et al., reported that quercetin could activate 

autophagy in gastric cancer cells by regulating of Akt-mTOR and hypoxia-induced factor 1α 
(HIF-1α) signaling. This was further confirmed in animal model [104]. Previous studies 

revealed that quercetin can inhibit production of heat shock proteins in several cancers, 

including breast cancer [105], leukemia [106], and colon cancer [107]. Quercetin has been 

shown to induce estrogen-induced carcinogenesis in animal models [108, 109].

(−)-EPIGALLOCATECHIN-3-GALLATE

(−)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin, representing ~16.5 wt 

% of the water extractable fraction of green tea leaves [110]. EGCG is a strong anti-oxidant 

and it has been demonstrated to inhibit carcinogen-induced oxidative stress [111]. EGCG 

has been shown to inhibit NF-κB activity, MAPK pathway, AP-1 activity, and EGFR-

mediated downstream signaling pathways [112]. Previous studies have revealed that EGCG 

suppressed Akt activation in both colon cancer cell lines and in vivo mouse models [112, 

113]. Topical application of EGCG to the skin has been shown to decrease the incidence of 

UVB induced skin cancer in SKH-1 mice [114]. EGCG inhibited the expression and 

activation of MMPs [115–117] and also increased the expression of the tissue inhibitor of 

MMPs (TIMP1 and TIMP2) [116], indicating its anti-invasive potential. EGCG combined 

with taxane showed an increase in the expression of apoptotic genes such as p53, p73, p21, 

and caspase-3 in in vitro and also in tumor model [118]. It can inhibit the VEGF expression 

and angiogenesis induced by interleukin-6 (IL-6) in gastric cancer [119]. EGCG treatment 

increased the levels of E-cadherin on the cell plasma membrane and suppressed the 

expression of nuclear β-catenin, c-Myc, phospho-Akt, and phospho-Erk in the tumors [120]. 

It inhibited cell proliferation and induced apoptosis in various types of cancer cells by 

inhibiting the activation of the epidermal growth factor receptor (EGFR) family of RTKs 

[121]. EGCG induced apoptosis in gastric cancer cell lines by down-regulating survivin 

expression [122].

Regulation of angiogenesis is one of the possible mechanisms by which EGCG can inhibit 

cancer progression [123]. EGCG inhibits IL-6-induced VEGF expression and angiogenesis 

via suppressing Stat3 activity in gastric cancer [119]. ECCG abolishes the activation of FAK 

and suppresses more than 50% of cell proliferation without evidence of apoptosis analyzed 

by PARP cleavage [124]. EGCG inhibits cell proliferation and AKT phosphorylation at 

Ser473 in MDA-MB-231 and A549 cells [125]. It has been shown to inhibit the activities of 

a variety of enzymes. Xu et al. reported the chemopreventive effect of EGCG on N-methyl-
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N′-nitro-N-nitrosoguanidine (MNNG)-induced gastrointestinal cancer in rats [126]. It 

inhibited the phosphorylation of JNK, JUN, MEK1, MEK2, ERK1, ERK2, and ELK1 (Ets-

like protein 1) in JB6 epidermal cell lines [127]. EGCG inhibits HGF-induced tumor growth 

and invasion in oral cancer [128]. It inhibited AZ521 cell proliferation by preventing β-

catenin oncogenic signaling through proteasomal degradation of p68 [129]. EGCG treatment 

caused dose-dependent cell growth inhibition, cell cycle arrest at the G(0)/G(1) phase, and 

DNA fragmentation in HT-1080 cells [130]. EGCG showed significant reduction in tumor 

volume, proliferation, angiogenesis and metastasis and induction in apoptosis, and growth 

arrest in pancreatic cancer cells. EGCG also inhibited circulating endothelial growth factor 

receptor 2 (VEGF-R2) positive endothelial cells derived from xenografted mice. Tumor 

samples from EGCG treated mice showed significantly reduced ERK activity; and enhanced 

p38 and JNK activities [131].

ISOTHIOCYANATES

Isothiocyanates (ITCs) are electrophilic compounds that play a major role in potential 

chemopreventive effects associated with high intake of cruciferous vegetables such as 

watercress, brussel sprouts, broccoli, cabbage, horseradish, radish, and turnip [132]. 

Cruciferous vegetables have been widely accepted as potential diet components that may 

decrease the risk of cancer [133]. Epidemiological studies show that dietary intake of ITCs 

is associated with reduced risk of certain human cancers [134]. ITCs display 

anticarcinogenic activity by reducing the activation of carcinogens and increase their 

detoxification. They have been shown to inhibit the carcinogen-activating cytochrome P450 

mono-oxygenases and also induce carcinogen-detoxifying phase 2 enzymes [135]. They 

exhibit anti-tumor activity by regulating multiple pathways including apoptosis, MAPK 

signaling, oxidative stress, and cell cycle progression [136]. They also inhibited the growth 

and proliferation of several types of cancer cells, such as prostate cancer [137], breast cancer 

[138], lung cancer [139], cervical cancer [140], leukaemia [141], and colorectal cancer 

[142].

ITCs have been divided into six dietary isothiocyanates (ITCs), allyl isothiocyanate (AITC), 

benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), sulforaphane (SFN), 

erucin (ERN), and iberin (IBN) based on biological activities [143]. PEITC and SFN are two 

of the most widely investigated isothiocyanates from the crucifers, which are highly 

effective in reducing the risk of cancer, induced by carcinogens in animals as well as cell 

culture models [144] PEITC suppressed prostate cancer progression by induction of 

autophagic cell death [145]. They induced cervical cancer cell apoptosis by stimulating DR4 

and DR5 through the inactivation of ERK and MEK [146]. They also have been shown to 

induce G2/M phase arrest and apoptosis in human prostate cancer DU 145 Cell [147].

PEITC induces apoptosis in human osteogenic sarcoma U-2 OS cells through ROS, 

caspase-3, and NO signaling pathways [148]. Recent studies have revealed that ITCs is able 

to inhibit the metastasis potential of human hepatoma cells [149], colon cancer cells [150], 

and breast cancer cells [151]. Previous studies reported that BITC and PEITC inhibited the 

metastasis potential of highly metastatic lung cancer cells by inducing apoptosis and cell 

cycle arrest, via targeting the MAPK/AP-1 pathway [152]. PEITC also inhibited the 
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migration and invasionof human gastric cells by regulating the extracellular signal-regulated 

kinases 1/2 (ERK1/2), protein kinase C (PKC), and nuclear factor-kappaB (NF-κB) 

signaling pathways [153]. AITC has been shown to decrease the proliferation and viability 

of human brain malignant glioma GBM 8401 cells in a dose-dependent manner [154].

Shan et al. evaluated the protective effect of SFN on human vascular endothelial cells 

against lipopolysaccharide-induced inflammatory damage. Treatment of SFN inhibited the 

expression of COX-2, and iNOS and also suppressed the phosphorylation of ERK1/2, JNK, 

and p38 activated by lipopolysaccharide [155]. SFN has been shown to inhibit the 

interleukin-6 (IL-6)-inducible activation of STAT3, which is an oncogenic transcription 

factor activated in many human malignancies, including prostate cancer [156]. It activates 

NF-E2 related factor-2 (Nrf2), a well-known chemopreventive target and activates the Nrf2-

regulated cytoprotective signaling pathway [157]. Treatment with SFN induced apoptosis in 

B16F-10, a highly metastatic melanoma cells by activating caspases 3,-9, Bax, p53 and 

downregulating Bcl-2, caspase-8, Bid, and NF-κB [158]. It reduced the G1 phase cell 

distribution and also down regulalated the phosphorylation of extracellular-regulated kinase 

1/2 (ERK1/2), and induced apoptosis in HCT116 cells [159]. Sulforaphane induces down-

regulation of β-catenin in human cervical carcinoma HeLa and hepatocarcinoma HepG2 

cells [160].

GENISTEIN

Genistein is an isoflavone compound, found in soy bean and related products such as tofu, 

soy milk and soy sauce [161], and is a promising cancer chemotherapeutic agent [162]. 

Treatment of genestein has shown to inhibit the growth of many different cancer cell lines by 

increasing apoptosis, inducing cell cycle delays, and modulating intracellular signaling 

pathways [162]. It inhibited tumor growth in mouse models of breast, prostate and skin 

cancers [163, 164]. Recent studies have demonstrated that genistein inhibited EGF-induced 

proliferation in colon cancer cells via regulating the PI3K/Akt pathway [165], and also 

induced apoptosis and cell cycle arrest at G(2)/M phase [166]. Li et al. showed that 

treatment of genestein enhanced the apoptotic effect of chemotherapy drugs in H460, a lung 

cancer cell line, through the inactivation of NF-κB [167]. Genistein induced cell cycle arrest 

and apoptosis in breast cancer cells [168], and also modulated BRCA1 expression in vitro 
[169] and in vivo [170]. Laboratory investigations demonstrated that the growth inhibitory 

effects of genistein were linked to the inhibition of PI3K, leading to the inhibition of Akt, 

and eventual inhibition of NF-κB [10, 167, 171]. Treatment of genistein can inhibit β-

catenin-mediated WNT signaling through increasing sFRP2 gene expression by 

demethylating its silenced promoter in colon cancer cell line DLD-1 [172]. It has the 

potential to stimulate breast cancer cell death through mobilizing endogenous copper ions 

and generation of reactive oxygen species (ROS) [6].

Genistein has been shown to decrease the synthesis of prostaglandins in several normal and 

malignant cells [173–175]. In the cell culture experiments, genistein decreased 

cyclooxygenase-2 (COX-2) mRNA and protein expression in both human PCa cell lines 

(LNCaP and PC-3) and primary prostate epithelial cells and increased 15-

hydroxyprostaglandin dehydrogenase (15-PGDH) mRNA levels in primary prostate cells 
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[176]. Treatment with genistein combined with prostate tumor irradiation significantly 

enhanced inhibition of prostate tumor growth and increased mouse survival in metastatic 

orthotopic PC-3 xenograft tumor model [177, 178]. It also inhibited the activation of NF-κB 

DNA binding activity and upregulation of APE1/Ref-1 induced by radiation in vitro and in 

PC-3 prostate tumors in vivo [178, 179]. Genistein is a potent antiangiogenic agent which 

can inhibit VEGF-induced endothelial cell activation by decreasing protein tyrosine kinase 

(PTK) activity and MAPK activation [180]. It also decreased the activation of JNK and p38, 

induced by VEGF [180]. Genistein promotes the tissue-plasminogen activator (tPA) activity 

in human cervical cancer cells (HeLa S3) and in human umbilical vein endothelial cells 

(HUVEC) [181]. It has been demonstrated that genistein could inhibit osteolytic bone 

metastases, suppress bone resorption, increase bone mass and improve bone microstructure 

in bone metastases of breast cancer [172]. It has the potential to inhibit NF-κB activation 

and modulate inflammatory pathways [179, 182, 183]. It also induces apoptosis via NF-κB 

dependent and independent pathways [184]. Pretreatment with this isoflavone inhibited Src/

STAT3/HIF-1alpha activation by radiation and nuclear translocation of HIF-1alpha [185].

URSOLIC ACID

Ursolic acid (UA) is a pentacyclic triterpene compound widely found in food, medicinal 

herbs, apple peel and is able to exhibit a wide range of pharmacological functions, including 

antioxidant, anti-tumor, and anti-inflammatory activities [186], and is also one of the most 

promising chemopreventive agents. Ursolic acid can inhibit the activities of DNA 

polymerase and DNA topoisomerase and decrease the rate of cell proliferation [187]. 

Ursolic acid attenuated oxidative stress-mediated hepatocellular carcinoma induction by 

diethylnitrosamine in male Wistar rats [188]. It also decresed the production of pro-

inflammatory markers including COX-2, iNOS, TNF-α, IL-1β, IL-2, and IL-6 in LPS-

treated mouse brain [186]. Treatment with UA suppressed TPA-mediated induction of 

COX-2 protein and synthesis of PGE2 in human mammary epithelial cells. It also inhibited 

TPA-mediated activation of protein kinase C, extracellular signal regulated kinase 1/2 

(ERK1/2), c-Jun NH2-terminal kinase 1/2 (JNK1/2), and p38 mitogen-activated protein 

kinase (MAPK) [189]. Ursolic acid potentiates its anti-tumor effects through suppression of 

NF-κB and STAT3 pathways in prostate cancer [190]. Harmand et al. reported the apoptotic 

potential of ursolic acid in HaCat derived keratinocyte cell line. Treatment with UA 

decreased the viability of HaCat cells in a concentration- and time-dependent manner. In 

addition, cell cycle analysis revealed that UA treated HaCat cells were blocked 

predominantly in G1 phase [191]. It also has been found to inhibit the proliferation of 

MCF-7 cells followed by a significant decrease in CyclinD1/CDK4 expression, which can 

be regulated by FoxM1 [192].

Ursolic acid potentiates TRAIL-induced apoptosis through activation of ROS and JNK-

mediated up-regulation of death receptors and down-regulation of decoy receptor 2 (DcR2) 

and cell survival proteins [193]. It has been shown to induce apoptosis in highly metastatic 

melanoma cell line, B16F-10 by activating cells p53 and caspase-3 gene expressions and 

inhibiting the NF-κB mediated activation of bcl-2 [194]. Ursolic acid inhibits the invasion 

and metastasis of various cancers such as ovarian carcinoma [195], prostate [196, 197], and 

breast [198], probably through inhibiting the activity of gelatinase and the expressions of 
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MMP-2 and MMP-9 [180, 197], suppressing CXCR4 expression [196], and modulating c-

Jun N-terminal kinase, Akt and mammalian target of rapamycin signalling [198]. It 

potentiates antiangiogenic activity by regulating VEGF, TIMP-1, MMP-2 and MMP-9 [199]. 

Shanmugam et al. investigated the effect of ursolic acid (UA) on NF-κB and STAT3 

signaling pathways in both androgen-independent (DU145) and androgen-dependent 

(LNCaP) prostate cancer cell lines. They found that UA inhibited constitutive and TNF-α-

induced activation of NF-κB in DU145 and LNCaP cells in a dose-dependent manner. This 

suppression was mediated through the inhibition of constitutive and TNF-α-induced IκB 

kinase (IKK) activation, phosphorylation of IκBα and p65, and NF-κB-dependent reporter 

activity. Moreover, UA suppressed both constitutive and inducible STAT3 activation 

concomitant with upstream kinases (Src and JAK2) [190]. Ursolic acid can regulate key 

steps of angiogenesis in vitro, including endothelial cell proliferation, migration, and 

differentiation [200]. Raphael and Kuttan, investigated the effect of UA on the cell-mediated 

immune response in metastatic tumor-bearing C57BL/6 mice. They found that 

intraperitoneal administration of UA (50 mumoles/Kg body) increased natural killer cell 

activity (NK-activity) and enhanced the antibody dependent cell mediated cytotoxicity 

(ADCC) in metastatic tumor-bearing animals [201].

LYCOPENE

Lycopene is a most potent antioxidant carotenoid pigment, found in tomatoes, fruits, and 

vegetables such as red carrots, guava, watermelons, and papayas. High consumption of 

tomatoes and tomato products containing lycopene has been shown to decrease the risk of 

cancer [202]. The chemopreventive potential of lycopene can be contributed to its strong 

antioxidant activity [203]. Epidemiological studies have shown that dietary intake of 

lycopene is inversely correlated with the risk of many cancers including prostate [204], lung 

[205], colon [206], leukemia [207] and liver [208]. Lycopene prevents carcinogenesis by 

interfering with various cell signalling pathways. It regulates the cell cycle progression 

mainly in the G0/G1 phase via down-regulation of cell cycle regulatory proteins, including 

cyclin D1, cyclin E, and cyclin-dependent kinases (CDK) 2 and 4 in breast and prostate 

cancer cell lines [209–211]. A phase II randomized clinical trial of lycopene 

supplementation before radical prostatectomy showed that lycopene supplementation could 

decrease the growth of prostate cancer [212]. In another phase II trial combination of 

lycopene with soy isoflavones more strongly stabilized serum prostate-specific antigen 

(PSA) levels than lycopene alone in men with prostate cancer [213].

It has been reported that lycopene is able to modulate MAPK signalling in breast cancer 

cells [214] and is also able to regulate NF-κB activation by inhibiting ROS production [215]. 

Lycopene effectively inhibited the HMG-CoA reductase expression and cell growth and 

inactivated the Ras activation in prostate PC-3, colon HCT-116, HT-29 and lung BEN cancer 

cells [215]. Scolastici et al. studied the antimutagenic potential of lycopene and showed its 

inhibitory effect on DNA damage induced either directly by hydrogen peroxide (H2O2) or 

indirectly by n-nitrosodiethylamine (DEN) in HepG2 cells [216]. The most important target 

of lycopene has been found to be IGF-1 receptor signaling. This signaling regulates the 

downstream Ras/MAPK and PI3K/Akt signalling pathway, leading to the blockade of cell 

cycle progression and finally apoptosis [217].
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PERILLYL ALCOHOL (POH)

The monoterpene perillyl alcohol is a natural product from cherries, lavender, and other 

plants [218]. Perillyl alcohol (POH) has chemopreventive activity against rat liver cancer 

[219] and it inhibits the proliferation of cultured human colon carcinoma cells [220]. It 

exhibits chemotherapeutic activity against chemically induced rat mammary tumors with 

little toxicity to the host [221–223]. Perillyl alcohol has been shown to induce regression of 

81% of small mammary carcinomas and up to 75% of advanced mammary carcinomas 

initiated by 7,12-dimethylbenz(a) anthracene (DMBA) in the Wistar rat. Dietary POH was 

more potent than monoterpene limonene at inducing tumor regression [221]. The 

chemopreventive activity of POH during the promotion phase of liver carcinogenesis is 

associated with a marked increase in tumor cell death by apoptosis, or programmed cell 

death [219]. Chaudhary et al., investigated the chemopreventive effect of perillyl alcohol on 

DMBA-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin 

tumorigenesis and its possible mechanisms of action in Swiss albino mice [224]. 

Pretreatment of POH modulated the activities of catalase, glutathione reductase, glutathione 

peroxidase, glutathione-S-transferase and reduced glutathione contents on TPA-induced skin 

edema. Perillyl alcohol also suppressed the Ras/Raf/ERK pathway and induced apoptosis 

[224].

Perillyl alcohol has been shown to inhibit the growth and proliferation of various cancers 

[225–227]. It induced cell cycle arrest and apoptosis by upregulating the expression of bax, 

bid, and p21waf1, and also by downregulating cyclinD and cdk2 expression [226]. In a 

combination treatment, POH and methyl jasmonate blocked cells at the G0/G1 phase of the 

cell cycle and induced forced apoptosis by the addition of cisplatin in breast cancer cells. 

Furthermore, POH and methyl jasmonate treatment activated tumor necrosis factor receptor 

1 and this was further increased by the addition of cisplatin [228]. Yeruva et al. investigated 

the effects of POH and its metabolite perillic acid (PA) on the proliferation of non small cell 

lung cancer (NSCLC, A549, and H520) cells and found that both POH and PA elicited dose-

dependent cytotoxicity, and induced cell cycle arrest and apoptosis with increasing 

expression of bax, p21 and caspase-3 activity in both the cell lines. Perillyl alcohol and PA 

in a combination treatment were also sensitized the cells to cisplatin and radiation in a dose-

dependent manner [229].

MOLECULAR TARGETS FOR NATURAL CHEMOPREVENTIVE AGENTS

Regulation of Reactive Oxygen Species (ROS)

Oxidative stress is defined as an imbalance between production of free radicals and reactive 

metabolites, so-called oxidants, and their elimination by protective mechanisms, referred to 

as anti-oxidative systems [230]. Generation of ROS and the corresponding response to 

oxidative stress are the key factors in the pathogenesis of several human diseases including 

cancer [231]. There are several studies indicating the relationship between ROS and tumor 

progressin [232–234]. Epidemiological and laboratory studies together indicate that a high 

consumption of antioxidant-rich fruits and vegetables can reduce the risk of cancer [235–

237]. The mitochondria, the cellular membrane oxidases, such as NADPH oxidase, nitric 

oxide synthase and myeloperoxidase are major sources of ROS. The byproducts associated 
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with the metabolism of arachidonic acid by cyclooxygenase, lipoxygenase, and cytochrome 

P450 monooxygenase also result in the production of ROS [238]. The ROS produced in the 

body include superoxide (O2
−), hydroxyl (OH−), hydroperoxyl (HOO−), peroxyl (ROO−), 

and alkoxyl (RO−) radicals, and the reactive nitrogen species (RNS) include nitric oxide 

(NO−) and the peroxynitrite anion (ONOO−) [231]. Many tumor promoters generate ROS, 

and the involvement of ROS –particularly hydrogen peroxide (H2O2) – in tumor promotion 

is supported by both in vivo and in vitro studies [232, 239]. ROS are also known to play a 

significant role in the promotion stage of carcinogenesis. Vitamins and phenolic 

phytochemicals are among the most prevalent antioxidants in fruits and vegetables and are 

onsidered to prevent ROS-mediated carcinogenicity [231].

Curcumin has antioxidant activity against free radicals and also increases the activity of 

antioxidant enzymes [240]. Incubation with curcumin resulted in enhanced cellular 

resistance to oxidative damage [241]. Previous investigation has shown that curcumin 

prevents lipid peroxidation and DNA strand breakage [242]. Curcumin has been shown to 

induce phase II detoxifying enzymes (glutathione peroxidase, glutathione reductase, 

glucose-6-phosphate dehydrogenase and catalase) and enhance the body’s natural 

antioxidant system, leading to detoxification of mutagens and carcinogens [243]. 

Antioxidant effects of curcumin are 10-fold more potent than ascorbic acid or resveratrol 

[244]. Curcumin has been found to increase hepatic GSH, SOD, GPx, GR, GST, and CAT 

activities in paracetamol-treated rats [245]. It also down regulates nitric oxide formation, a 

key element in inflammation and possibly in the process of carcinogenesis [246, 247]. 

Curcumin increased heme oxygenase activity in vascular endothelial cells both in normoxic 

and hypoxic conditions. This function is important in curcumin-mediated cytoprotection 

against oxidative stress [241].

Resveratrol is a nutraceutical with well-known antioxidant activity [248]. Pintea et al. 
studied the protective effect of resveratrol against hydrogen peroxide induced oxidative 

stress in cultured human RPE cells. They found that it has no cytotoxic effect at 

concentrations of 25–100 μM in culture media, but showed a protective effect against 

hydrogen peroxide-induced cytoxicity. Pretreatment with resveratrol induced a significant, 

dose-dependent increase of superoxide dismutase, glutathione peroxidase, and catalase 

activities. Moreover, it also enhanced the level of reduced glutathione under both basal and 

oxidative stress conditions [249]. Spanier et al. have reported that protective effects of 

resveratrol against oxidative injury is attributed to the upregulation of endogenous cellular 

antioxidant systems rather than the direct scavenging activity of ROS [250].

EGCG, isolated from green tea, displays several biological and pharmacological properties, 

antioxidant actions, iron-chelating capabilities, attenuation of lipid peroxidation due to 

various forms of radicals, and is thought to act as an antioxidant in biological systems [251]. 

It has also been found to protect and rescue PC12 cells against amyloid β-induced 

neurotoxicity in a dose dependent manner [252, 253]. In another study, oral supplementation 

of EGCG significantly decreased the levels of lipid peroxidation and protein carbonyl 

content in aged rats, possibly by enhancing the GSH redox status and both enzymic and non-

enzymic antioxidants status [254]. Laboratory study revealed that EGCG has biphasic action 

and also acts as prooxidant depending on the concentration and cellular environment [255]. 
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However, at lower concentrations, EGCG has been found to protect cells against the 

detrimental effects of oxidative stress [253].

Apigenin plays a role in cancer chemoprevention and cancer chemotherapy. It has been 

found to inhibit lipid peroxidation and protects antioxidant system in N-nitrosodiethylamine 

administered animals [256]. Apigenin has been found to scavenge free radicals and 

stimulates phase II detoxification enzymes in culture and tumor model [59]. It also has been 

shown to increase the level of intracellular glutathione and increase the endogenous defense 

against oxidative stress [60]. Ursolic acid remarkably inhibited the ethanol-induced 

oxidative stress in the liver and heart by decreasing lipid peroxidation products 

(thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and conjugated 

dienes) by enhancing the activities of antioxidant enzymes (superoxide dismutase (SOD), 

catalase, glutathione peroxidase, and glutathione S-transferase) [257, 258].

Several studies have indicated that lycopene is an effective antioxidant and free radical 

scavenger [259]. Lycopene possess high number of conjugated double bonds, exhibits higher 

singlet oxygen quenching ability compared to β-carotene or α-tocopherol [260]. It has been 

shown to inactivate hydrogen peroxide and nitrogen dioxide [261, 262]. Dietary intake of 

lycopene significantly reduced lipid and protein oxidation and demonstrated a protective 

effect against azoxymethane (AOM)-induced colonic preneoplastic lesions [263]. 

Laboratory studies have shown that lycopene is able to protect lymphocytes against NO2 -

induced membrane damage and cell death twice as efficiently as β-carotene [261, 264].

REGULATION OF NUCLEAR FACTOR (NF)-κB ACTIVATION

Nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to 

control multiple cellular processes in cancer including inflammation, transformation, 

proliferation, angiogenesis, invasion, metastasis, chemoresistance, and radioresistance [265]. 

Vertebrate Rel/NF-κB transcription factors include RelA, RelB, c-Rel, p50/p105 and p52/

p100 [266]. They exist as homo or heterodimers, which bind to DNA target sites (κB sites) 

to influence gene expression. The most common dimer is a p50-RelA heterodimer, 

specifically called NF-κB. In most normal cells, they are retained in the cytoplasm as an 

inactive complex through the direct binding of IκB inhibitor. Various signals, including 

many cytokines, can cause degradation of the IκB protein and the resulting in translocation 

of the active Rel/NF-κB complex into the nucleus [267–269]. Continuous activation of NF-

κB factors is also emerging as a hallmark of various types of solid tumors, including breast 

[270], ovarian [271], colon [272], pancreatic [273], thyroid [274], bladder [275], and 

prostate, carcinomas [276], as well as in melanomas [277]. Helbig et al. have demonstrated 

that NF-κB regulates the motility of breast cancer cells by directly upregulating the 

expression of the chemokine receptor CXCR4 [278]. The regulation of apoptotic response 

by NF-κB supports a role in oncogenesis and also in the resistance of tumor cells to 

chemotherapy [269]. This transcription factor controls the expression of gene products 

linked with invasion, angiogenesis, and metastasis of cancer [279].

NF-κB stimulates VEGF, proteolytic enzymes such as MMPs, urokinase plasminogen 

activator (uPA), and cell adhesion molecules such as ICAM-1 [267]. NF-κB regulates the 

Pratheeshkumar et al. Page 14

Anticancer Agents Med Chem. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression of growth factors, cytokines and other factors involved in stress responses, cell 

proliferation and cell cycle progression [267, 280, 281]. The ability of tumor cells to evade 

immune surveillance is another contributing factor to tumor progression. The patients with 

renal cell carcinoma (RCC) showed impaired T-cell signaling as a result of defective NF-κB 

activation [282]. Therefore, drugs that could inhibit NF-κB activity are found to be useful in 

cancer chemotherapy and treatment [283].

Curcumin exhibits several pharmacological properties in humans and experimental colitis 

through inhibition of NF-κB transcription factor in inflammation 9 [284–286]. Curcumin 

blocked IκB alpha phosphorylation and degradation, leading to abrogation of NF-κB 

activation [287]. It has been shown to down regulate NF-κB and inhibit IKB kinase, 

suppressing proliferation and inducing apoptosis [288]. Shishodia et al. studied the effect of 

curcumin on Human mantle cell lymphoma. Their study has shown that treatment of 

curcumin suppressed NF-κB activation and also downregulated the expression of this 

transcription factor regulated gene products (Bcl-2, Bcl-XL, cyclin D1, COX-2, TNF, IL-6, 

RANK, and RANKL) leading to cell cycle arrest, suppression of proliferation and induction 

of apoptosis in Human mantle cell lymphoma (MCL) [289]. Curcumin is known to exert 

anti-inflammatory effects by interrupting NF-κB signaling at multiple levels. Collet and 

Campbell, have shown that curcumin induces sustained activation of JNK, which promotes 

apoptosis in human HCT116 colon cancer cells [290]. Curcumin inhibits inducible NF-κB 

activation and suppresses cancer cell proliferation in oral cancer [291], leukemia and 

multiple myeloma [292], breast cancer [293], ovarian cancer [294], pancreatic cancer [295], 

bladder cancer [296], and prostate cancer [297]. Curcumin sensitizes human cancer cells to 

cell-killing agents through NF-κB pathway. In human pancreatic cancer, the curcumin 

combination therapy with TNF-related apoptosis inducing ligand (TRAIL) suggests that 

inhibition of NF-κB stimulates TRAIL-induced apoptosis [298].

Manna et al. investigated the effect of resveratrol on NF-κB activation induced by various 

inflammatory agents. They showed that resveratrol blocked TNF-α induced activation of 

NF-κB in a dose- and time-dependent manner. Resveratrol also suppressed TNF-induced 

phosphorylation and nuclear translocation of the p65 subunit of NF-κB. Suppression of 

TNF-α induced NF-kappaB activation by resveratrol was not restricted to myeloid cells 

(U-937); it was also observed in lymphoid (Jurkat) and epithelial (HeLa and H4) cells. 

Resveratrol also blocked the NF-kappaB activation induced by PMA, LPS, H2O2, okadaic 

acid, and ceramide [299]. Resveratrol suppressed phosphorylation and subsequent 

degradation of IκB a, thereby inhibiting activation of NF-κB in TPA-stimulated mouse skin 

[300].

Apigenin inhibits the transcriptional activity of NF-κB in LPS-stimulated mouse 

macrophages. The classical proteasome-dependent degradation of the NF-κB inhibitor IκB 

alpha was observed in apigenin LPS-stimulated human monocytes [301]. Xu et al. 
demonstrated that treatment of apigenin potentiated the activation-induced cell death 

(AICD) by inhibiting NF-κB activation and suppressing NF-κB -regulated anti-apoptotic 

molecules, cFLIP, Bcl-x(L), Mcl-1, XIAP, and IAP, but not Bcl-2. Furthermore, it 

suppressed NF-κB translocation to nucleus and inhibited IκB-α phosphorylation and 

degradation in response to TCR stimulation in reactivated peripheral blood CD4 T cells, as 
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well as in leukemic Jurkat T cell lines [302]. Apigenin has been found to inhibit DNA 

binding and reduce nuclear levels of the p65 and p50 subunits of NF-κB in human prostate 

carcinoma PC-3 cells. Apigenin blocked the IκB degradation, IκB-α phosphorylation along 

with significant decrease in IKK-alpha kinase activity.

Apigenin also inhibited TNF-α-induced activation of NF-κB via the IκB-α pathway, 

thereby sensitizing the cells to TNF-α-induced apoptosis. The inhibition of NF-κB 

activation correlated with a decreased expression of NF-κB -dependent reporter gene and 

suppressed expression of NF-κB-regulated genes specifically, Bcl2, cyclin D1, COX-2, 

MMP-9, iNOS-2, and VEGF, which contribute to prostate cancer progression [303]. Afaq et 
al. evaluated the effect of EGCG on UVB-mediated modulation of the NF-κB pathway. 

Treatment of normal human epidermal keratinocytes (NHEK) with EGCG (10–40 μM) for 

24 h resulted in a significant inhibition of UVB (40 mJ/cm2)-mediated degradation and 

phosphorylation of IκB-α and activation of IKK-α, in a dose-dependent manner. Data 

suggest that EGCG protects against the adverse effects of UV radiation via modulations in 

NF-κB pathway, and provide a molecular basis for the photochemopreventive effect of 

EGCG [304]. Pretreatment of normal human bronchial epithelial cells (NHBE) cells with 

EGCG suppressed CSC-induced phosphorylation of IκB-α, and activation and nuclear 

translocation of NF-κB /p65, which leads to the significant downregulation of NF-κB -

regulated proteins cyclin D1, MMP-9, IL-8, and iNOS [305]. Quercetin has been found to 

inhibit the NF-κB and their downstream cascade including TNF-α and NO [306]. It binds to 

the NF-κB in HepG2 cells [307]. Davis et al., demonstrated that the soy isoflavone genistein 

inhibits the cell growth and induced apoptosis in human prostate cancer, LNCaP and PC3 

cells by regulating NF-κB [308]. Treatment with low doses of UA has been found to 

sensitize cancer cells to chemotherapeutic agents, taxol or cisplatin through suppressing NF-

κB [309].

INHIBITION OF ANGIOGENESIS

Angiogenesis is the development of new blood vessels from the pre-existing vascular beds. 

It is tightly regulated by a large number of proangiogenic and antiangiogenic factors, occurs 

in response to the increasing demand for nutrients and oxygen experienced by proliferating 

tumor cells. Angiogenesis plays a pivotal role in tumor growth, invasion, and metastasis 

[310]. Tumors cannot grow beyond a size of approximately 1–2mm without 

neovascularization [311]. The angiogenic process involves the activation, proliferation, and 

migration of endothelial cells toward angiogenic stimuli produced by the tumor [312]. The 

tumor cells induced secretion of angiogenesis factors which is commonly observed in most 

aggressive tumors. The process of angiogenesis is mediated by several pro-angiogenic 

molecules released by both tumor cells and host cells including endothelial cells, epithelial 

cells, mesothelial cells, and leucocytes [310]. These pro-angiogenic molecules bind to 

receptors on nearby blood vessels and induce the activation, proliferation, and migration of 

endothelial cells towards the tumor. Stimuli for the production of pro-angiogenic mediators 

include hypoxia, cytokines, and growth factors, as well as mutations in oncogenes and tumor 

suppressor genes [313].
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Among various angiogenic factors, VEGF, fibroblast growth factor (FGF) family, 

interleukin-8 (IL-8), angiogenin, angiotropin, epidermal growth factor (EGF), 

plateletderived endothelial cell growth factor (PD-ECGF), platelet derived growth factor 

(PDGF), fibrin, nicotinamide, transforming growth factor- α (TGF-α), TGF-β, and tumor 

necrosis factor-α (TNF-α) are important regulators [314]. Degradation of basement 

membrane is a crucial event in angiogenesis. Many proteases are capable of degrading 

extracellular matrix components. They are of three major groups: Serine proteases, 

Cathepsins, and Matrix metalloproteases (MMPs). Urokinase plasminogen actvator is the 

most important member of the serine protease family involved in ECM degradation. It is 

secreted as an inactive, single chain precursor that requires binding to its cell membrane 

receptor for activation [313]. Members of this system, including uPA and its receptor 

(uPAR), are over expressed in several malignant tumors [315]. MMPs are a broad family of 

zinc-binding endopeptidases, which secreted in inactive proenzymatic forms. MMPs can be 

subdivided on the basis of preferential extracellular matrix substrate [316]. Among matrix 

metalloproteinases (MMPs), gelatinases such as MMP-2 and MMP-9 play a key role in 

degrading most ECM components surrounding tumor tissue [317].

There are several natural products which have been tested for their antiangiogenic potential 

[318]. Curcumin is found to be a potent angiogenesis inhibitor which downregulates various 

proangiogenic proteins such as vascular endothelial growth factor and basic fibroblast 

growth factor [319].

Previous studies have shown that curcumin inhibited vascular endothelial cell proliferation 

in vitro and capillary tube formation in vivo [288, 320, 321]. Curcumin has been shown to 

down-regulate the hypoxia-induced mRNA and the protein expression of VEGF, leading to 

suppression of hypoxia-stimulated angiogenesis [322]. Thaloor et al. studied the effect of 

curcumin on endothelial cell migration, attachment, and tube formation on matrigel. 

Curcumin treatment resulted in a dose-dependent inhibition of tube formation and 

metalloproteinase activities. It also inhibited angiogenesis in a s.c. matrigel plug model in 

mice [323].

Singh et al. investgated the antiangiogenic potential of EGCG, and found that treatment of 

EGCG inhibited the tube formation, migration and regulated MMPs [324]. Apigenin has 

been found to inhibit tumor angiogenesis by downregulating HIF-1 and VEGF expression in 

human ovarian cancer cells under normoxic condition [325]. Apigenin also suppressed the 

expression of erythropoietin mRNA, which is a typical hypoxia-inducible gene, via the 

degradation of HIF-1 α [326].

Genistein has been found to be the most potent angiogenesis inhibitor among the flavanoids 

compounds. Treatment with genistein caused a dose-dependent inhibition in the expression 

of VEGF, PDGF, uPA, and MMP-2 and 9, respectively. Furthermore, angiogenesis 

inhibitors-plasminogen activator inhibitor-1, endostatin, angiostatin, and thrombospondin-1 

were also upregulated [327]. Igura et al., studied the effect of resveratrol and quercetin on 

the inhibition of angiogenesis in vitro. They found that treatment of resveratrol and quercetin 

inhibited angiogenesis by inhibiting the migration and tube formation in bovine aorta 

endothelial (BAE) cells [328].
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Antiangiogenic potential of UA in both in vitro and in vivo model was investigated. 

Treatment of ursolic acid inhibited the prolifearation, migration, invasion, and tube 

formation in human umbilical vein endothelial cells (HUVEC). The levels of serum VEGF, 

NO, and proinflammatory cytokines were significantly reduced, whereas serum TIMP-1 and 

IL-2 levels were significantly elevated in UA treated animals compared with those in control 

animals. Gelatin zymographic analysis also showed the inhibitory effect of UA on the 

protein expression of matrix metalloproteinases MMP-2 and MMP-9 [199].

The PEITC treatment caused a decrease in survival of HUVECs in a concentration- and 

time-dependent manner. The tube formation and migration by HUVEC was also inhibited in 

the presence of PEITC at pharmacologically relevant concentrations. This effect has been 

associated with suppression of VEGF secretion, downregulation of VEGF receptor 2 protein 

levels, and inactivation of prosurvival serine-threonine kinase Akt [329]. Sulforaphane 

showed inhibitory effects on hypoxia-induced VEGF and VEGF receptor (flk-1) expression, 

and also two angiogenesis-associated transcription factors, HIF-1α and c-Myc in HMEC-1 

cells [330]. This compound also caused the inhibition of cell migration and capillary tube 

formation in HUVECs by regulating the MEK/ERK and PI3K/AKT pathways which 

synergistically induced FOXO transcriptional activity [331].

REGULATIN OF APOPTOSIS

Cancer is a disorder characterized by uncontrolled proliferation and reduced apoptosis. 

Apoptosis, a genetically programmed cell-suicide process, is vital for the proper 

development and functioning of multicellular organisms. It is characterized by typical 

morphological and biochemical hallmarks, including cell shrinkage, membrane blebbing, 

nuclear condensation, and fragmentation [332, 333]. Inducing apoptosis is an effective 

method of treating cancers. There are two major pathways, extrinsic and intrinsic, have been 

identified for the induction of apoptosis [334]. The most evident morphological signs of 

apoptosis are cellular shrinkage, membrane blebbing, nuclear condensation, and 

fragmentation, which are the final steps of consequential signaling cascades [335]. 

Apoptotic signaling pathways can also be divided into caspase-dependent and -independent 

or mitochondria-dependent and -independent pathways. Caspases are cysteine proteases and 

play a central role in the initiation and execution phases of apoptosis.

Activation of caspases is recognized as a key element in the apoptotic process [336]. They 

are of two types, initiator caspases (caspase 2, 8, 9 and 10), and effector or executioner 

caspases (caspase 3, 6 and 7). Initiator caspases transmit the death signal generated by the 

apoptotic stimulus to the effector caspases, which act to cleave the target proteins and thus 

produce the morphological features of apoptosis [337]. During apoptosis, the released 

cytochrome c from mitochondria triggers caspase-9 activation whereas ligation of death 

receptors on the plasma membrane activates caspase-8 [338]. p53 also called ‘guardian of 

the genome’, the first tumor suppressor gene involved in cell cycle regulation and induction 

of apoptosis. p53 can be activated by a variety of stimuli such as radiation and anticancer 

agents, leading to cell cycle arrest and/or apoptosis [339]. It has been found that; p53 is 

either mutated or overexpressed in most of the human tumors along with antiapoptotic gene 

bcl-2 that enhances tumor cell proliferation and metastasis [340].
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Curcumin has been shown to induce apoptosis in many types of cancer cell lines [341–343]. 

Previous studies have demonstrated that curcumin-induces apoptosis through a mechanism 

of downregulating ornithine decarboxylase and along a ROS dependent mitochondria-

mediated pathway in human acute promyelocytic leukemia HL-60 cells [344]. Curcumin 

treatment resulted in cleavage of caspase-3 and poly adenosine diphosphate-ribose 

polymerase. It also increased the cellular levels of apoptotic Bcl-XL protein and a decreased 

the cellular content of antiapoptotic protein Bcl-2 [345]. Wu et al., studied the effect of 

curcumin on human non-small cell lung cancer NCI-H460 cells. They have shown that 

curcumin induces apoptosis in NCI-H460 cells in a dose-dependent manner. Curcumin 

treatment upregulated BAX and BAD and down regulated BCL-2, BCL-XL and XIAP. It 

also has been shown that increase the reactive oxygen species (ROS), intracellular Ca (2+) 

and endoplasmic reticulum (ER) stress in NCI-H460 cells after exposure to curcumin [346]. 

It has been suggested that production of reactive oxygen intermediates the release of 

cytochrome c causing tumor cell apoptosis as a result of curcumin treatment [347]. 

Curcumin is also able to induce mitochondrial abnormalities and promote p53-dependent 

apoptosis and the activation of caspase-8 and caspase-3 [348–350].

Resveratrol-treatment inhibited the constitutive expression of phosphatidylinositol 3′-kinase 

(PI3K) and phosphorylated (active) Akt in human prostate carcinoma LNCaP cells. It also 

down regulated the level of ant apoptotic protein Bcl-2 and up regulated the proapoptotic 

members of the Bcl-2 family such as Bax, Bak, Bid, and Bad [351]. Resveratrol activate 

intracellular Notch-1 and restore wild-type p53 expression in glioblastoma cells. Significant 

de-phosphorylation of Akt, increased Bax expression and decreased Bcl-2 expression and 

cleavage of caspase-3 were also observed in resveratrol-induced apoptosis in glioblastoma 

cells [352].

EGCG inhibited the growth of anaplastic thyroid carcinoma cells in a dose-dependent 

manner. Treatment of EGCG has been shown to suppress the phosphorylation of EGFR, 

ERK1/2, JNK, and p38. These changes were correlated with increased p21 and reduced 

cyclin B1/CDK1 expression. Furthermore, it increased the accumulation of sub-G1 cell, 

activated caspase-3 and cleaved PARP [353]. Lim and Cha studied the in vitro cytotoxic 

effect of EGCG against human laryngeal epidermoid carcinoma Hep2 cells. EGCG-

treatment increased the p53 level in the cells, with a corresponding decrease in Bcl-2 and 

Bid protein levels as well as an increase in the Bax level. EGCG also induced the 

cytoplasmic release of cytochrome c from the mitochondria accompanied by a decreased 

mitochondrial membrane potential, and subsequently upregulated translocation of apoptosis-

inducing factor (AIF) and endonuclease G (EndoG) into the nucleus during the apoptotic 

process [353].

Treatment with apigenin inhibited the proliferation of MDA-MB-453 human breast cancer 

cells in a dose- and time-dependent manner. Apigenin activated caspase-9 and -3, 

accompanied by the cleavage of capases-6, -7, and -8 [354]. Wang et al. reported that the 

apoptotic rate was significantly increased in tumor cells treated with ursolic acid both in 
vitro and in vivo. Ursolic acid induced DNA fragmentation, upregulated caspase-3, -8, and 

-9 and down regulated expression of Bcl-2 in BGC-803 cells [355]. Ursolic acid at non-

cytotoxic concentrations, upregulated the tumor suppressor gene p53 and caspase-3 and 
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down-regulated the anti-apoptotic gene Bcl-2 in B16F-10 melanoma cells [194]. Incubation 

of HepG2 cells with quercetin induced apoptosis by the activating caspase-3 and -9, but not 

caspase-8. Furthermore, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased 

translocation of Bax to the mitochondrial membrane. It also inhibited the major survival 

signals, Akt and extracellular regulated kinase (ERK) in the same experiment [356].

REGULATION OF CYCLOOXYGENASE (COX)-2

Cyclooxygenase (COX) is a member of the prostaglandin synthase family of enzymes that 

plays an important role in the growth and progression of cancer. They are made up of two 

main types of enzymes, namely COX-1 and COX-2. COX-1 enzyme is constitutively 

expressed in normal circumstances, whereas COX-2, which is an inducible enzyme, has a 

major role in inflammatory response [357, 358]. COX-2 is overexpressed in inflammatory 

states which are induced by a variety of stimulators including cytokines, growth factors, as 

well as tumor promoters [359]. The specific function of COX-2 is the conversion of 

arachidonic acid to prostaglandin (PGE(2)), a major metabolite in inflammation. COX-2 has 

been found to be constitutively expressed in a number of cancers, colon [360, 361], prostate 

[362, 363] breast [364], where the expression of COX-2 is paralleled by a higher incidence 

of chemotherapy failure. A study showed that COX-2 was expressed in 24% of adenomas 

and in 56% of adenocarcinomas [365]. COX-2 protein inhibitors (i.e., NSAIDs and 

COXIBs) are not recommended for prolonged administration since they may cause severe 

side effects [366].

Curcumin is a potent inhibitor of COX-2. It inhibits COX-2 via NF-κB downregulation, 

which is one of the major inducers of COX-2 promoter activation [367]. Celecoxib is a 

promising preventive drug but its long-term use causes adverse cardiovascular effects [368]. 

Curcumin in combination with celecoxib have been shown to inhibit colon cancer cell 

growth by suppressing COX-2 [369]. In another study, curcumin has been found to inhibit 

PMA-induced COX-2 mRNA and protein levels in H460 cells [370]. Wang et al. studied the 

effect of curcumin on deoxycholic acid (DCA) induced cell proliferation in human HT-29 

colon cancer cell line and its underlying molecular mechanisms. They found that treatment 

of curcumin inhibited the cell proliferation by regulating COX-2 mRNA transcription, 

COX-2 protein expression, and PGE(2) synthesis induced by DCA in HT-29 cell line [371].

Resveratrol dose-dependently prevented both COX-2 induction and PGE(2) production in 

bFGF-stimulated fibroblasts [372]. Studies revealed that apigenin can inhibit the phorbol 

ester-induced COX-2 expression in the breast cancer cell lines (MCF-10A and MCF-7) 

[373] and human brain microvascular endothelial cells (HBMEC) [374]. Furthermore, 

apigenin suppressed the expression of COX-2 by decreasing the intracellular Ca(2+) level 

and inhibiting NF-κB activation in human mast cell line (HMC-1) [375]. In another study 

EGCG has been found to inhibit COX-2, PGE(2), and IL-8 expression, induced by IL-1beta 

in human synovial fibroblasts [376], and the inhibition of COX-2 was associated with 

inhibition of NF-κB translocation [377]. Genistein in combination with capsaicin exerts 

anti-inflammatory and anticarcinogenic properties through the modulation of COX-2 in TPA 

(12-O-tetradecanoylphorbol-13-acetate) -treated rat mammary glands or mammary cancer 

cell line [378].
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INHIBITION OF SIGNAL TRANSDUCERS AND ACTIVATOR OF 

TRANSCRIPTION 3 (STAT3)

STAT proteins were originally identified as being latent cytoplasmic transcription factors, 

which were only translocated to the nucleus upon Jak-mediated phosphorylation and 

dimerization following cytokine-induced activation of Jaks [379]. Constitutive activation of 

Stat proteins, notably of Stat3 and also Jak- Stat3 signalling pathway has been frequently 

observed in many primary human tumors [380, 381]. Dysregulated Stat3 has been associated 

with increased breast cancer cell proliferation, survival, and metastasis [382]. Abberent Stat3 

promotes uncontrolled growth and survival through dysregulation of gene expression, 

including cyclin D1, c-Myc, Bcl-xL, Mcl-1, and survivin genes, thereby contributing to 

oncogenesis [380, 383, 384]. Constitutive activation of Stat3 signaling also confers 

resistance to apoptosis in human U266 myeloma cells [385], in breast cancer cells [382] and 

in other cells [386]. Inhibition of the Stat3 pathway has been shown to induce apoptosis in 

breast cancer cell lines [387]. Antiapoptotic proteins, such as Bcl-xL and Mcl-1, were shown 

to be up-regulated in multiple myeloma cells in which constitutive Stat3 activity was 

induced by IL-6 [385, 388].

Curcumin was shown to inhibit constitutive and IL-6–induced Stat3 activation in human 

multiple myeloma cells [389]. Stat3 was considered to be a master regulator in human 

glioma and essential for tumor cell survival and its ability to invade the normal brain [390]. 

Weissenberger et al. studied the effect of curcumin on Jak/Stat3 activity in glioma cell. Low 

dose of curcumin treatment inhibited Jak1,2/Stat3 tyrosine-phosphorylation in a dose-

dependent fashion. Curcumin downregulated transcription of the Stat3 target genes c-Myc, 

MMP-9, Snail, and Twist, and of the proliferation marker Ki67. It has also been shown to 

inhibit cell proliferation by inducing a G2/M phase arrest [391]. Treatment of cancer cells 

with curcumin induced a dose- and time-dependent decrease of constitutive IL-6 expression 

and IL-6-induced Stat3 phosphorylation in ovarian and endometrial cancer cells. Stat3 

activation was found to be reversible and was returned to control levels 24 h after curcumin 

removal [392].

Epigallocatechin-3-gallate inhibits growth and angiogenesis of gastric cancer by inhibiting 

VEGF and Stat3 activation [393]. It blocked Stat3 phosphorylation (Tyr705 and Ser727) and 

thereby inhibited the collagen production and proliferation in keloid fibroblasts cells [394]. 

EGCG also markedly inhibited the activation of Stat3 in YCU-H891 (carcinoma of the 

hypopharynx) cells [395] and BT-474 (human breast cancer cell) cells [396]. Apigenin 

inhibited Stat3 phosphorylation following exposure to hypoxia. Interestingly, Stat3 

inhibition is correlated with VEGF expression [397]. Previous study has shown that luteolin 

inhibited phosphorylation of STAT3 and inhibited the expression of cyclin D1, survivin, Bcl-

x(L), and VEGF [398].

Resveratrol has been found to regulate interleukin (IL)-6–induced ICAM-1 gene expression 

by attenuating Stat3 phosphorylation [399]. Resveratrol promotes differentiation and 

apoptosis of medulloblastoma cells by suppressing Stat3 signaling and a range of cancer-

associated gene expression [400]. Yang et al., reported that resveratrol can reduce in vivo 
tumorigenicity and enhance the sensitivity of glioblastoma tumor initiating cells (GBM-TIC) 
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to radiotherapies through the Stat3 pathway [401]. Quercetin inhibited Cu(2+)-oxidized 

LDL-induced endothelial apoptosis through modulating Jak2-Stat3 pathways [402]. In vitro 
treatment of activated T cells with quercetin blocked IL-12-induced tyrosine 

phosphorylation of Jak2, Tyk2, Stat3, and Stat4, resulting in a decrease in IL-12-induced T 

cell proliferation and Th1 differentiation [403]. Pathak et al. showed that treatment of UA, 

inhibited both constitutive and IL-6–inducible Stat3 activation in a dose- and time-dependent 

manner in multiple myeloma cells [404].

REGULATING MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs) 

PATHWAY

Mitogen-activated protein kinases (MAPKs), comprising a family of serine and threonine 

kinases of ERK, JNK, and p38, play an important role in the transmission of cell signals 

through transduction systems to cell nucleus, where they influence the expression of genes 

that regulate important cellular processes such as cell growth, differentiation, proliferation, 

survival, migration, and apoptosis [405, 406]. Components of these pathways are mutated or 

aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt) [407]. The 

Raf/MEK/ERK pathway has a major role in the regulation of apoptosis by the post-

translational phosphorylation of apoptotic regulatory molecules including Bad, caspase 9, 

and Bcl-2 [408]. This pathway also contributes to chemotherapeutic drug resistance as 

ectopic activation of Raf induces resistance to doxorubicin and paclitaxel in breast cancer 

cells, and also B-Raf has been found to be mutated in various malignancies including 

melanoma, thyroid and breast cancer [409]. Similar to other MAPKs, p38 is activated by 

MAP kinase kinases (MAPKKs/MKKs) with MKK3 and MKK6 being the two main 

upstream MAPKKs [410]. p38 stimulates a number of downstream substrates, including 

MAP kinase-activated protein kinase-2 (MAPKAPK-2/MK2), transcription factor-2 

(ATF-2), mitogen- and stress-activated kinase (MSK), and p53 [411–413].

Curcumin caused a down-regulation of enhancer of zeste homolog 2 (EZH2) genes through 

stimulation of three major members of the mitogen-activated protein kinase (MAPK) 

pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and 

p38 kinase in MDA-MB-435 human breast cancer cells [414]. Weir et al. reported that 

curcumin induced apoptosis in cisplatin-resistant human ovarian cancer cells by modulating 

p38 and Akt [415]. Curcumin also has been shown to suppress the PMA-induced 

phosphorylation of ERK, JNK, and p38 MAP kinase in human astroglioma cells [416].

Resveratrol has been found to activate MAP kinases pathways and induce apoptosis in 

human breast cancer cells MCF-7 [417]. Dietary supplementation of resveratrol attenuated 

chronic colonic inflammation in mice. Treatment of resveratrol reduced prostaglandin E 

synthase-1 (PGES-1), COX-2, and iNOS proteins expression, via downregulation of p38, a 

mitogen-activated protein kinase (MAPK) signal pathway in chronic dextran sulphate 

sodium (DSS)-induced colitis mice model [418].

Noh et al. found that apigenin could inhibit PMA-induced phosphorylation of p38, which 

was involved in the down-regulation of the expression of MMP-9 at mRNA levels. 

Furthermore, the treatment of p38 MAPK inhibitors (SB203580) to Caski cells caused the 
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reduction of MMP-9 expression [419]. Apigenin treatment caused increased 

phosphorylation of ERK1/2 and JNK1/2 and this sustained activation resulted in decreased 

ELK-1 phosphorylation and c-FOS expression, leading to inhibition cell survival in human 

prostate cancer cells [420].

Treatment of EGCG significantly inhibited the phosphorylation of p38 and c-Jun N-terminal 

kinase (JNK), NF-κB, and AP-1 transcriptional activities in human corneal epithelial cells 

[421]. In another study, EGCG inhibited Ang II-induced endothelial stress fiber formation 

and hyperpermeability via inactivation of p38 MAPK/HSP27 pathway [422]. Quercitrin 

blocked TPA-induced neoplastic transformation in JB6 P+ cells. Pretreatment of JB6 cells 

with quercitrin down-regulated transactivation of AP-1 and NF-κB induced by UVB or TPA 

through the inhibition of MAPKs phosphorylation, including ERKs and p38 kinase and the 

inhibition of JNKs [103]. Ursolic acid inhibited the proliferation and induced apoptosis in 

HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway. Treatment with UA 

suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well 

correlated with its growth inhibitory effect [423].

REGULATION OF CELL CYCLE

Cell growth and proliferation are highly regulated events in normal cells, and dysregulation 

of cell cycle can lead to uncontrolled proliferation and contribute to the malignant phenotype 

of tumor cells [421]. Cancer cells are characterized by a failure of cell cycle control which 

results in their over proliferation. Cell cycle checkpoints play pivotal roles in the regulation 

of critical events, including DNA replication, cellular proliferation, cellular differentiation, 

and apoptosis [424]. Cell cycle control is a highly regulated process that involves the 

modulation of cell cycle regulatory proteins, including cyclins (cyclin A, B, Ds, or E); 

cyclin-dependent kinases (CDKs) (CDK 1, 2, 4, or 6); and CDK inhibitors, such as 

p21WAF1, p27KIP1, p53, and phosphorylated retinoblastoma (pRb) [425]. Many 

phytochemicals have been shown to regulate the cell cycle proteins, leading to the inhibition 

of cancer cell proliferation. In addition, cell cycle checkpoints, such as G1/S and G2/M, are 

also important targets in cell cycle control [426]. Studies showed that apoptosis was 

accompanied by a reduction in the number of cells in G0/G1 and an increase in the number 

of G2/M-phase cells, indicating a cell cycle arrest in G2/M phase [427–429].

Lu et al. investigated the curcumin induced DNA damage, S and G2/M phase arrest in the 

colorectal carcinoma HCT116 cells [430]. In another study curcumin induced successive 

G(1)/S and G(2)/M phase arrest accompanied by down-regulation of cyclin D1, cdc2 and 

cyclin B1 in HOS cells [431]. Treatment of quercetin caused G2/M arrest in human 

esophageal squamous cell carcinoma cell line through up-regulation of p73 and p21waf1 and 

subsequent down-regulation of cyclin B1, both at the mRNA and protein levels [432]. 

Resveratrol (100 μmol/L) induced cell cycle block and accumulation of cells at the G0–G1 

phase by 48 h in PANC-1 cells. In AsPC-1 cells, resveratrol caused cell cycle arrest and 

induced depletion of cells in the S and G2-M phases of the cell cycle [433].

In vitro study showed that EGCG down-regulated cell cyclerelated proteins such as cyclin 

B1 and CDK1, whereas p21 was up-regulated in ARO cells [353]. Apigenin remarkably 
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inhibited Huh7 cell proliferation and induced cell cycle arrest at G2/M phase and an 

increased rate of apoptosis [434]. In another study, apigenin blocked the proliferation of two 

types of leukemia through cell-cycle arrest in G(2)/M phase (myeloid HL60) and G(0)/G(1) 

phase for (erythroid TF1 cells) [435].

Isothiocyanates induced G(2)/M cell cycle arrest accompanied by mitotic phosphorylation of 

histone H3 in multiple myeloma [436]. PEITC induced a dose-dependent decrease in cell 

viability through induction of cell apoptosis and cell cycle arrest in the G(2)/M phase of DU 

145 cells. The induction of G(2)/M phase arrest was mediated by the increase of p53 and 

WEE1 [147].

REGULATION OF ACTIVATOR PROTEIN-1

Activator protein-1 (AP-1) is a transcription factor that regulates genes involved in 

carcinogenesis, cell proliferation, and progression of benign tumors to malignancy and in 

metastasis. It is formed by dimerization of activated c-Jun, and c-FOS [437, 438]. When 

AP-1 is activated, it binds to TPA response elements (TRE) or cAMP response element 

(CRE) in the promoter region of the target genes [439]. There is a close relationship between 

c-fos over-expression and tumor development. Furthermore, inactivation or suppression of c-

jun leads to the development of papillomas and liver tumors [440]. JNK and p38 MAPK 

phosphorylation enhances the activity of c-Jun and ATF2 proteins, which in turn activate 

AP-1 target genes [441]. AP-1 has been found to induce COX-2, uPA, c-Fos, MMP-9, cyclin 

D1, VEGF [442], and this transcription factor is recognized as a molecular target of many 

antioxidant and chemopreventive compounds [443]. Inhibition of AP-1 has been shown to 

block tumor promotion, transformation, progression, and invasion [444].

Curcumin effectively blocks AP-1 and NF-κB signaling pathways and enhances apoptosis in 

many cancer cell lines [445]. Curcumin also has been reported to inhibit the activation of 

AP-1 induced by tumor promoters by direct interaction with the AP-1 DNA-binding motif 

and to inhibit C-Jun N-terminal kinase (JNK) activation by carcinogens [389, 442]. 

Resveratrol inhibited the c-Fos [446] and suppressed AP-1 DNA binding affinity [54], via 

MEK1 > ERK1/2 signaling [51]. Treatment of EGCG inhibited phosphorylation of the 

MAPKs p38, JNK and AP-1 transcriptional activity in human corneal epithelial cells [421]. 

Electrophoretic mobility shift assay revealed that EGCG inhibits binding of AP-1 proteins to 

its response elements in synovial fibroblast [447]. Nair et al., showed that treatment of SULF 

in combination with EGCG attenuated AP-1 activity in PC-3 cells [448].

Previous study showed that treatment of apigenin inhibited c-Fos / AP-1 activity by 

regulating and Janus kinase 2 (JAK2) / signal transducer and activator of transcription 1/2 

(STAT1/2) pathways in interleukin-1β-treated articular chondrocytes [449]. Hwang et al. 
investigated the protective effects of apigenin and luteolin on immortalized human 

keratinocytes (HaCaT) against UVA damage, and found that treatment of both flavanoids 

inhibited UVA-induced collagenolytic MMP-1 production by interfering with Ca(2+)-

dependent MAPKs and AP-1 signaling [450]. Li et al. showed that Ras/MAPK/AP-1 

signalling pathway is involved in genistein induced G2/M cell cycle arrest in MDA-MB-231 

breast cancer cells [451].
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CONCLUSION

Natural products are a rich source of cancer chemotherapy drugs, and primarily target 

rapidly proliferating tumor cells. Chemoprevention by edible phytochemicals is of great 

interest and is considered to be an inexpensive, readily applicable, acceptable, and accessible 

approach to cancer control and management. Several phytochemicals are in preclinical or 

clinical trials for cancer chemoprevention. Epidemiological studies have shown that high 

dietary consumption of vegetables and fruits reduced the risk of cancer. Severe toxicity is the 

major drawback in conventional radiotherapy and chemotherapy. Both methods exert toxic 

side effects, such as nausea, vomiting, mucosal ulceration, alopecia, pulmonary fibrosis, 

cardiac, and hepatic toxicity. Use of natural compounds as an adjunct to chemotherapy and 

radiation may reduce treatment toxicities as well as increase the therapeutic index. Studies 

showed that phytochemicals, including curcumin, reseveratrol, epigallocatechin gallate, 

apigenin, quercetin, genistein, lycopene, ursolic acid, isothyocynates, and perillyl alcohol 

exerted anticancer effects by multiple signal transduction pathways. They inhibited the 

reactive oxygen species production, NF-κB activation, angiogenesis, AP-1 and COX-2; 

regulated Stat3 and MAPKs pathway; and induced cell cycle arrest and apoptosis; in various 

experimental models. Based on these available evidences, it can be concluded that the daily 

consumption of fruits and vegetables rich in above discussed components could be beneficial 

for the cancer prevention. The better strategy to identify the compounds for cancer 

prevention is through mechanism based investigation. The understanding of molecular 

mechanism of a specific plant derived compound against a particular type of cancer will 

leads to the invention of novel drug and drug targets for therapeutic intervention.
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Fig. (1). 
Multi-step process in carcinogenesis.
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Fig. (2). 
Chemical structures and sources of natural chemopreventive agents.
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Fig. (3). 
Targets of natural chemopreventive agents.
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Table 1

Molecular Targets for Natural Chemopreventive Agents

Agent Natural Source Mechanism of Action Molecular Targets

Curcumin Curcuma longa (turmeric powder) Anti-oxidant, antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis, antiinflammation, 
antiangiogenesis.

EGFR, IGF-1R, AKT, NF-κB, COX-2, 
LOX, ERK, AP-1, PI3K, VEGF, 
VEGFR1, MMP-2/9, p53, p21, Bax, 
iNOS STAT3/5, TRAIL-R1/DR4, G2/M 
phase arrest, cyclin D1, c-myc, Bcl-2, 
Bcl-xL, cFLIP, XIAP, c-IAP1, JNK.

Resveratrol Red wine, grapes (mainly in the skin), 
mulberries, peanuts, vines, pines

Antioxidant, antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis, antiangiogenesis, 
antiinflammation

SOD, catalase, glutathione, AKT, AP-1, 
NF-κB, iNOS, COX-2, STAT3, survivin, 
p53, p21, BAX, BAK, MMP-2, MMP-9, 
Bcl-2, Bcl-xL, and Caspase-3.

EGCG Camellia sinensis (green tea) Antioxidant, anti-mutagenesis, anti-
proliferation, anticarcinogenesis, 
cell cycle arrest, apoptosis, 
antiinflammation, antiangiogenesis.

p53, p73, p21, Bax, EGFR, AKT, NF-
κB, Bcl-2, cyclin D1, COX-2, VEGF, 
MMP-2/9, STAT3, ERK1/2, AP-1, 
IL-12,

Isothyocynates cruciferous vegetables, watercress, 
brussels sprouts, broccoli, cabbage, 
horseradish, radish

Anticarcinogenesis, Anti-oxidant, 
antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis, antiinflammation, 
antiangiogenesis.

MEK, ERK1/2, PKC, COX-2, iNOS, 
JNK, p38, c-Jun and c-Fos

Quercetin phytoalexin, skin of red grapes and red 
wine

Anticarcinogenesis, Anti-oxidant, 
antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis, antiinflammation, 
antiangiogenesis.

MAPK, AKT, Bcl-2, Bax and caspase-3, 
mTO R

Genistein Soybeans and soy products, red clover 
(Trifolium pretense), sicilian pistachio 
(Pistacia vera)

Antioxidant, antiproliferation, 
antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis, antiangiogenesis, 
antiinflammation

AKT, NF-κB, Bcl-2, survivin, cyclin D1, 
COX-2, MMP-2/9, p53, p21, GADD153, 
Bax, STAT3/5, ERK1/2, CDK1, AP- 1, 
IGF-1R

Apigenin Parsley, Petroselinum crispum Anti-oxidant, antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis

MAPK, PI3K-AKT, NF-κB, Bcl-2, 
cyclin D1, COX-2, MMP-2/9, ICAM-1, 
HIF-1, VEGF

Ursolic acid Loquat leaf, apples, bilberries, 
cranberries

Anti-oxidant, antiproliferation, 
anticarcinogenesis, cell cycle arrest, 
apoptosis.

COX-2, iNOS, TNF-α, IL-1β, IL-2 and 
IL-6, JNK1/2, MAPK, CyclinD1/CDK4.

Perillyl alcohol cherries, lavender Antioxidant, antiproliferation 
(growth inhibition, cell cycle arrest, 
apoptosis), antiangiogenesis, 
antiinflammation,

MAPK, AKT bax, p21 and caspase-3

Lycopene Tomatoes, guava, rosehip, watermelon, 
papaya, apricot and pink grapefruit; 
most abundant in red tomatoes

Antioxidant, antiproliferation 
(growth inhibition, cell cycle arrest, 
apoptosis), antiangiogenesis, 
antiinflammation, 
immunomodulator

Cyclin D1, Bcl-2, Bcl-xL, AKT, BAD, 
NF-κB, MMP- 9, Sp-1, IGF-BP3

Abbreviations: EGFR, epidermal growth factor receptor; EGCG, epigallocatechin-3-gallate; TRAIL, tumor necrosis factor–related apoptosis-
inducing ligand; NF-κB, nuclear factor-κB; MMP-2/9, matrix metalloproteinases; IL-12, interleukin 12; Jun-N-terminal kinase; iNOS, inducible 
nitric oxide synthase; PPAR-γ, peroxisome proliferator-activated receptor-γ; COX-2, cyclo-oxygenase-2; VEGF, vascular endothelial growth 
factor; VEGFR1, vascular endothelial growth factor receptor 1; TNF-α, tumor necrosis factor- α; JNK, Jun-N-terminal kinase; CDK, cyclin-
dependent kinase; ERK, extracelluar signal–regulated kinase; SOD, superoxide dismutase; mTOR, mammalian target of rapanycin; DR, death 
receptor; PAFR, platelet activating factor receptor; NO, nitric oxide; eNOS, endothelial nitric oxide synthase. ICAM-1 intercellular adhesion 
molecule 1; Mcl-1 myeloid cell leukemia 1; XIAP, X-chromosome-linked IAP; Bax Bcl-2-associated X protein, Bcl-2 B cell lymphoma 2; AP-1 
activator protein 1; IGF-BP3, insulin-like growth factor binding protein 3.
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