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ABSTRACT

Clinically HER2+ (cHER2+) breast cancer (BC) can no longer be considered a 
single BC disease entity in terms of trastuzumab responsiveness. Here we propose 
a framework for predicting the response of cHER2+ to trastuzumab that integrates 
the molecular distinctions of intrinsic BC subtypes with recent knowledge on cancer 
stem cell (CSC) biology. First, we consider that two interchangeable populations 
of epithelial-like, aldehyde dehydrogenase (ALDH)-expressing and mesenchymal-
like, CD44+CD24-/low CSCs can be found in significantly different proportions across all 
intrinsic BC subtypes. Second, we overlap all the intrinsic subtypes across cHER2+ 
BC to obtain a continuum of mixed phenotypes in which one extreme exhibits a high 
identity with ALDH+ CSCs and the other extreme exhibits a high preponderance of 
CD44+CD24-/low CSCs. The differential enrichment of trastuzumab-responsive ALDH+ 
CSCs versus trastuzumab-refractory CD44+CD24-/low CSCs can explain both the clinical 
behavior and the primary efficacy of trastuzumab in each molecular subtype of 
cHER2+ (i.e., HER2-enriched/cHER2+, luminal A/cHER2+, luminal B/cHER2+, basal/
cHER2+, and claudin-low/cHER2+). The intrinsic plasticity determining the epigenetic 
ability of cHER2+ tumors to switch between epithelial and mesenchymal CSC states 
will vary across the continuum of mixed phenotypes, thus dictating their intratumoral 
heterogeneity and, hence, their evolutionary response to trastuzumab. Because 
CD44+CD24-/low mesenchymal-like CSCs distinctively possess a highly endocytic activity, 
the otherwise irrelevant HER2 can open the door to a type of “Trojan horse” approach 
by employing antibody-drug conjugates such as T-DM1, which will allow a rapid and 
CSC-targeted delivery of cytotoxic drugs to therapeutically manage trastuzumab-
unresponsive basal/cHER2+ BC. Contrary to the current dichotomous model used 
clinically, our model proposes that a reclassification of cHER2+ tumors based on the 
spectrum of molecular BC subtypes might inform on their CSC-determined sensitivity 
to trastuzumab, thus providing a better delineation of the predictive value of cHER2+ 
in BC by incorporating CSCs-driven intra-tumor heterogeneity into clinical decisions.
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During the past decade, several pathological and 

immunohistochemical (IHC) sub-classifications have 
been proposed to better characterize the extensive and 

heterogeneous molecular features of hormone receptor-

positive and triple-negative breast cancer (BC) at the 

clinical level [1-9]. This type of classification, however, 
has not been extended to clinically HER2+ (cHER2+) 

BC. To date, cHER2+ BC, as exclusively determined by 

immunohistochemistry of HER2 protein overexpression 

and/or fluorescence in situ hybridization of HER2 gene 

amplification, has been largely considered a single disease 
entity [10-14]. Presumably, this is due to the apparent 

dominant role of the HER2 receptor itself on the biology 

and clinical behavior of HER2+ cells, as well as on the 
almost universal use of the anti-HER2 monoclonal 

antibody trastuzumab (Herceptin) to therapeutically 

manage patients with cHER2+ tumors. Interestingly, the 
importance of HER2 to distinguish a unique BC subtype 

might be rather low when compared to the magnitude of 
the BC genome expression as a whole. In other words, 
the distinct and intrinsic molecular subtypes (luminal 

A, luminal B, HER2-enriched [HER2e], basal-like, and 

claudin-low) appear to retain their biological function 
and, more importantly, their clinical outcome, regardless 

of the cHER2+ status [15]. However, although the 
prognostic value of cHER2+ appears to disappear when 
the molecular subtype is taken into consideration, little is 

known about how the co-presence of a given molecular 
subtype might provide independent predictive information 

for trastuzumab benefit beyond cHER2+ status.

THE BASAL-HER2+ SUBTYPE CONFERS 

THE POOREST BC PROGNOSIS AMONG 

CHER2+ BCS

We are beginning to appreciate that de novo 

(primary) resistance to trastuzumab might occur inside 

the framework of a mixed BC subtype, in which HER2 
overexpression/amplification takes place within a basal-
like molecular background [16-23]. While it is not yet 

clear which IHC markers (e.g., CK5, CK5/6, CK14, 
CK17 and/or EGFR), alone or in combination, provide 
the greatest accuracy in defining basal-like BC, Chung et 

al. [23] have recently described that 37% of 97 patients 
with stage 1-3 HER2+ BC expressed at least one basal 
marker. When considering the expression of individual 

markers, the authors identified 15% of CK5/6+/HER2+, 
8% of CK14+/HER2+, and 34% of EGFR+/HER2+. A 
previous study from the same group reported a basal-

HER2+ phenotype in 9% of 131 HER2+ tumors when 
considering the expression of either CK5/6 or CK14 
[19]. In a large series of 713 consecutive hormone 
receptor-negative invasive BC, Liu et al. [17] reported 
8% of basal-HER2+ cases expressing HER2 and any 
of the basal markers CK5/6, CK14, or EGFR. Using 
a consecutive series of 152 HER2+ primary invasive 

ductal BC, we recently reported 16% of cHER2+ cases 
presenting a basal-HER2+ phenotype established solely 

on expression of the basal marker CK5/6 [22]. Beyond 
IHC-based sub-classification studies, Prat et al. [15] 

used molecular data derived from DNA, RNA, and 

protein to determine intrinsic BC subtypes in more than 

1,700 patients not treated with trastuzumab. This study 
confirmed that cHER2+ BC had a 14.1% frequency of 
the intrinsic basal-like subtype, while a similar likelihood 
(14.4%) of cHER2+ occurred in intrinsic basal-like 
subtypes. Interestingly, within cHER2+ tumors, HER2 
gene and protein expression was significantly higher not 
only in the HER2-enriched subtype but also in the basal-

like subtype when compared to luminal BC subtypes. All 
of these studies similarly concluded that basal-HER2+ 

patients have the worst disease-free and overall survival 
among all the HER2+ subtypes (i.e., the cHER2+ status 

does not add independent prognostic value to the intrinsic 

BC subtype), which was even poorer than that of highly 
aggressive basal-like BC [17]. 

AMONG CHER2+ BCS, A BASAL-LIKE 

PHENOTYPE PREDICTS THE POOREST 

PRIMARY RESPONSE TO TRASTUZUMAB

Beyond confirming the notion that the occurrence 
of a basal-HER2+ phenotype can delineate a subgroup of 

intrinsically aggressive cHER2+ BC, a recent study by our 

group was the first to reveal that basal-HER2+ patients 
might not benefit from the addition of trastuzumab on 
top of chemotherapy [22]. Accordingly, in the sub-cohort 

of HER2+ patients (n = 69) treated with trastuzumab-
based adjuvant/neoadjuvant therapy, the basal-HER2+ 

phenotype was found to be the sole independent 
prognostic marker for a significantly inferior time to 
treatment failure in multivariate analysis. Chung et al. [23] 

have recently confirmed that CK5/6 and EGFR expression 
are predictive of worse prognosis in HER2+ BC patients 
treated with trastuzumab. Given the known association 
between the basal-like subtype with stronger responses to 
chemotherapy compared with other molecular subtypes, 
the higher recurrence rates in basal-HER2+ patients 

receiving adjuvant chemotherapy and trastuzumab should 

be viewed as the ability of the basal protein expression to 
dictate de novo refractoriness to trastuzumab in cHER2+ 

patients. Although Chung et al. [23] acknowledge that 
they failed to identify a significant predictive threshold 
for CK5/6 expression, our study established that a simple 
CK5/6-based fingerprint using a 10% positivity cutoff 
might be used as a strong predictive marker of primary 

refractoriness to trastuzumab [22]. These findings build 
on the pioneering discoveries in 2007 by Harrys et al. 

[16], who demonstrated that a particular HER2+ tumor 
phenotype overexpressing genes associated with the 
basal-like phenotype, including higher expression of basal 

cytokeratins, exhibited intrinsic resistance to pre-operative 



Oncotarget32319www.impactjournals.com/oncotarget

trastuzumab and vinorelbine. 

THE BASAL-HER2+ MIXED SUBTYPE 

ACCUMULATES MULTIPLE CSC-

RELATED MECHANISMS OF RESISTANCE 

TO TRASTUZUMAB

There is an ever-expanding body of literature 

documenting possible mechanisms of escape from 

trastuzumab that share many of the same markers and 

signaling pathways implicated in the biology of drug-
resistant cancer stem cells (CSCs) [24-44]. Given that 
enrichment for CSC-like features is a well-known 
molecular hallmark of highly aggressive basal-like BC 

[45-57], it is reasonable to propose a causal link between 
the presence of basal markers (e.g., CK5/6), an augmented 
CSC activity, and primary resistance to trastuzumab in 

basal-HER2+ disease. Indeed, earlier studies from our 

group and others have repeatedly described that basal-

HER2+ cells exhibiting de novo resistance to trastuzumab 

distinctively amass a majority of the known mechanisms 
for trastuzumab resistance [18, 20, 21, 23, 30, 33, 44], 

which are not mutually exclusive (Figure 1). The key 
mediators of these mechanisms are closely linked to CSCs 

[25].

While confirmation of these in vitro findings in 

clinical specimens will be required to unambiguously 
demonstrate the role of CSCs in clinical resistance 

to trastuzumab, we should also acknowledge that 
trastuzumab efficacy appears to rely, at least in part, on 
its ability to directly target and inhibit CSCs in HER2+ 

tumors [58-65]. Moreover, HER2 protein itself appears 

to be a key driver of CSCs in BC even in the absence 

of HER2 overexpression/amplification [60, 64, 65], 
which might explain the unexpected clinical efficacy 
of adjuvant trastuzumab in cHER2-negative BC [66, 

67]. Therefore, if the molecular basis for the clinical 
efficacy of trastuzumab is via a CSC targeting-dependent 

process, the most direct manner to resolve this scenario 

is the counterintuitive proposal of the a priori occurrence 

of trastuzumab-resistant HER2+ CSCs exclusively in 

basal-HER2+ BC, but not in other HER2+ phenotypes. 

That is, “not all HER2+ CSCs are born equal”, because 

basal-HER2+ tumors continue to grow not only when 
challenged with trastuzumab, but also when treated 
with other anti-HER therapies (e.g., the dual EGFR/
HER2 tyrosine kinase inhibitor lapatinib [30, 43, 68]). 

Alternatively, when considering the plasticity of CSC-like 
cellular states in BC [56], perhaps we need to paraphrase 
Orwell to rather consider that “all HER2+ CSCs are equal, 

but some HER2+ CSCs are more equal than others”. We 

here propose a framework for predicting the response 
of cHER2+ to trastuzumab that integrates the molecular 

Figure 1: Basal-HER2+ BC cells accumulate a majority of the known mechanisms for trastuzumab resistance, which 

are not mutually exclusive, and whose key mediators are closely linked to CSCs. 
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distinctions of intrinsic BC subtypes with the most 
recently acquired data on CSC biology in BC.

INTRINSIC MOLECULAR SUBTYPES, 

CSCS STATES AND HER2+ BC: 

RETHINKING THE PROGNOSTIC-

PREDICTIVE VALUE OF CHER2+ TUMORS

Breast CSCs appear to exist in two different, but 
reversible and therefore interchangeable, epithelial 

(E)- and mesenchymal (M)-like states [56]; the first 
state characterized by the expression of aldehyde 

dehydrogenase (ALDH) [58, 69-73], and the second state 
characterized by the CD44+CD24-/low immunophenotype 

[74-76]. Importantly, while these distinct CSC 
populations can be found across all the molecular/

intrinsic BC subtypes, their proportion varies significantly. 
Accordingly, the number of ALDH-expressing E-CSCs 

is significantly higher in HER2-enriched (HER2e) and 
luminal B BC, while basal-like and claudin-low BC are 

highly enriched in CD44+CD24-/low M-CSCs. Moreover, 

the gene expression profiles of E-CSCs resemble those 
of luminal stem cells, whereas the profiles of M-CSCs 
resemble those of basal stem cells in normal breast [56, 

77-79]. Given this knowledge and the understanding that 
different BC molecular subtypes are characterized by 

distinct mutational portraits [80], a unique combination 

of genetic and likely also microenvironmental factors will 
ultimately contribute to the predominance of each CSC 

phenotype in a given cHER2+ tumor type. 

We propose that when overlapping each molecular 
BC subtype across the continuum of cHER2+, where 
one extreme is the complete absence of CD44+CD24-/

low M-CSCs in HER2-enriched/cHER2+ tumors and the 

other extreme is a high preponderance of CD44+CD24-/

low M-CSCs in basal/cHER2+ and claudin-low/cHER2+ 
tumors, the differential enrichment of ALDH-expressing 

versus CD44+CD24-/low CSCs might explain both the 

clinical behavior and the primary efficacy of trastuzumab 
in each mixed cHER2+ subtype (Figure 2). On the one 
hand, the enrichment of ALDH-expressing E-CSCs 

Figure 2: A new framewok for predicting the response of cHER2+ to trastuzumab that integrates the molecular 

distinctions of intrinsic BC subtypes with the most recent knowledge of CSC biology. (CL: Claudin-low; HER2E: HER2-
enriched; MET: Mesenchymal-Epithelial Transition; EMT: Epithelial-Mesenchymal Transition).
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in HER2e/cHER2+ and luminal B/cHER2+ subtypes 

might contribute to the known poor clinical outcome 
of BC co-overexpressing ALDH and HER2 [81, 82]. 

Simultaneously, given that efficacy of trastuzumab 
appears to relate directly to its ability to drastically 

reduce the fraction of ALDH-positive cells in HER2+ 

BC cell populations (i.e., CSC populations defined by 
high ALDH express the highest HER2 levels and remain 

exquisitely sensitive to trastuzumab treatment, whereas 
HER2+ BC cell populations exhibiting primary resistance 

to trastuzumab maintain an intact population of ALDH+ 

cells following trastuzumab treatment [58]), HER2e/
cHER2+ and luminal B/cHER2+ BC will be the mixed 
phenotype which will benefit greatest from trastuzumab 
(Figure 2). If the highest preponderance of ALDH-
expressing E-CSCs occurs in the HER2e/cHER2+ and 

luminal B/cHER2+ BC subtypes and not in the luminal 

A/cHER2+ subtype, this model could also explain why a 
minority of patients with cHER2+ BC have an excellent 
prognosis even in the absence of treatment [83, 84]. On 

the other hand, the enrichment of CD44+CD24-/low M-CSCs 

may contribute to the highly aggressive clinical behavior 

of the basal/cHER2+ phenotype since CD44+CD24-/low 

cells will endow this subtype with a mesenchymal-related 
enhancement of BC progression [85-87]. Simultaneously, 
since the enrichment of mesenchymal traits results in 

a highly refractory response to the anti-tumor actions 

of trastuzumab [20, 21, 30, 33], the basal/cHER2+ and 

claudin-low/cHER2+ BC will be the phenotypes with less 
benefit from this treatment. 

INTERCHANGEABLE EPITHELIAL/

MESENCHYMAL CSC CELLULAR STATES 

AND TRASTUZUMAB RESISTANCE: 

PREDICTING THE CLINICAL BEHAVIOR 

OF CHER2+

Our current framework of CSC-driven primary 
efficacy of trastuzumab in cHER2+ also incorporates the 
idea that breast CSCs have an intrinsic plasticity allowing 
the transition between the epithelial-like (ALDH+) state 
and the mesenchymal-like (CD44+CD24-/low) state. These 

reversible transitions might endow cHER2+ tumors with 
a plastic capacity for tissue invasion, dissemination, and 

growth at metastatic sites, thus ultimately determining the 
prognosis of each mixed cHER2+ subtype. Alternatively, 

the ability of CSCs to transit from a trastuzumab-

responsive epithelial-like state to a trastuzumab-refractory 

mesenchymal-like state might endow cHER2+ with a 
plastic degree of responsiveness to trastuzumab, thus 

ultimately determining the predictive value of each 

cHER2+ subtype. Once again, however, it should be noted 
that the degree of plasticity that enables CSCs (and non-

CSC) to transit between these states should vary among 
each molecular subtype of cHER2+: cHER2+ BC of 

luminal origin will be more refractory, but still capable, for 
loss of an epithelial-like state, whereas basal/cHER2+ and 
claudin-low/cHER2+ BC will be inherently poised to gain 
a mesenchymal-like state. Indeed, our proposed model can 

readily accommodate the current available data regarding 

the occurrence of trastuzumab refractoriness driven by the 

epithelial-to-mesenchymal transition (EMT) phenomenon 

[20, 21, 34, 88-92].

JIMT-1 was the first commercial cell line established 
from a HER2+ patient with intrinsic resistance to 
trastuzumab, and is naturally enriched for a CD44+CD24-/

low mesenchymal state. Interestingly, the subpopulation 

of trastuzumab-refractory basal/HER2+ JIMT-1 

cells exhibiting CD44+CD24-/low   M-CSC-like surface 

markers changes over time [30]. Whereas low-passage 
cultures contain ≈10% of cells with the CD44+CD24-/

low immunophenotype, late-passage JIMT-1 cultures 

accumulate ≈80% of CD44+CD24-/low cells, thus exhibiting 

an almost perfect identity to the CD44+CD24-/low-enriched 

phenotype constitutively occurring in the commonly 

HER2-negative claudin-low subtype [90-92]. Resistance 
to trastuzumab (and lapatinib) has been shown to occur 
when HER2+ cells spontaneously switch from a luminal to 
a claudin-low phenotype following EMT [93]. The natural 
ability to acquire a trastuzumab-refractory EMT phenotype 

might however be higher in HER2+ cells lacking some 
key epithelial markers such as estrogen receptor and 

E-cadherin, and are therefore poised to acquire a new 
mesenchymal state. In contrast, HER2+ cells expressing 

high levels of markers typical of the luminal phenotype 

will maintain their trastuzumab-responsive epithelial-
like phenotype. Thus, when contemplating a continuum 
of epithelial-like and mesenchymal-like CSC states 

throughout the overlapping molecular BC subtypes in 

cHER2+, it becomes obvious that the EMT phenomenon 

is a pivotal mechanism that, when activated, convergently 
drives primary and secondary resistance to HER2-targeted 

therapies (for a more detailed explanation of how the 
EMT phenomenon impacts intra-tumor heterogeneity and 

trastuzumab efficacy in cHER2+ BC, see BOX1).
It is noteworthy that the de novo enrichment of EMT 

traits, which appears to be a major determinant of primary 
resistance to trastuzumab in basal/cHER2+ BC cells, and 

the spontaneous acquisition of EMT traits, which may 
constitute a major determinant of acquired resistance to 

trastuzumab in HER2e and luminal (A and B)/cHER2+ 

BC cells, both converge on a significant decrease in 
HER2 expression. Our work showed that the spontaneous 
enrichment of the CD44+/CD24-/low CSC-mesenchymal 

phenotype in basal/HER2+ cells was coincidental with a 
global decrease in HER2 expression [30]. Using luminal-
HER2+ BC cells, Lesniak et al. [93] reported that the 

spontaneous conversion of trastuzumab-responsive 

luminal/HER2+ cells to a trastuzumab-refractory CD44+/

CD24-/low phenotype through EMT was accompanied by 
a strong down-regulation of HER2. These findings may 
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have major clinical implications when considering the 
discordance rates for HER2 expression between matching 
and metastatic tumors [94], and following trastuzumab-
based neoadjuvant systemic therapy [95, 96]. Notably, 

cHER2+ patients whose metastatic disease has converted 
to HER2-negative have a worse overall prognosis [97], 
while cHER2+ patients whose residual disease following 
treatment with neoadjuvant trastuzumab abrogates HER2 
overexpression have a significantly poorer recurrence-
free survival (RFS) [98]. If a change in HER2 status 
merely reflects the heterogeneity of HER2 expression 
within the tumor (i.e., trastuzumab treatment eliminates 
HER2-overexpressing clones leaving only HER2-negative 

tumor cells upon completion of therapy), it then follows 
that trastuzumab should have an equal effect on those 

tumors achieving a pathological complete response 

and those tumors becoming HER2-negative. However, 
the fact that the RFS is significantly better for cHER2+ 
patients with tumors that retain HER2 overexpression 
implies that negativization of HER2 is accompanied by 

an increased aggressiveness in residual disease. Basal/

cHER2+ tumors rarely exhibit a uniformly positive basal 

cytokeratin expression, but instead show a partially-
positive type (“baso-luminal” [99]) often displaying 

a checkerboard-type intratumoral heterogeneity [18]. 

Therefore, an enrichment of clones or cell clusters 

with a high percentage of CSCs displaying a basal/
mesenchymal phenotype and decreased HER2 expression 

might explain the poor response of basal/cHER2+ to 

trastuzumab, as well as the change in HER2 expression 
status (Figure 3). If a major determinant of trastuzumab 
resistance in luminal and HER2e/cHER2+ tumors is the 

de novo occurrence of EMT phenomena, leading to the 

appearance of mesenchymal clones or cell clusters with 
a CD44+/CD24-/low/HER2-low phenotype, the selection 
pressure of trastuzumab treatment will similarly lead to 
the emergence of trastuzumab-refractory mesenchymal-

CSCs, as well as a shift in the HER2 status of the tumor 
(Figure 3, BOX1). Indeed, the plasticity between CSC 
types ultimately will result in significant challenges 
not only to the efficacy of trastuzumab itself but also 
to trastuzumab-based chemotherapy. EMT phenotypic 

shifts resulting in increased numbers of M-CSCs will 
increase the local recurrence capacity of a given cHER2+ 

subtype by decreasing proliferation and thus generally 

avoiding the activity of cytotoxic chemotherapeutic 

agents. By increasing the proportion of trastuzumab- and 

chemotherapy-refractory low-proliferative/quiescent 

Figure 3: The intrinsic degree of plasticity determining the ability of cHER2+ BC to switch between epithelial and 

mesenchymal CSC states will vary across the continuum of mixed phenotypes, thus dictating their evolutionary 

response to trastuzumab.
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M-CSCs cells at the invasive edge, a cHER2+ tumor 

belonging to a given molecular subtype would also 
augment its capacity of entering the circulation and 

forming micro-metastases at distant sites. Genetic 
diversity, epigenetic activation of signaling pathways, and 
the tumor microenvironment will influence, independently 
or simultaneously, the plastic capacity of M-CSCs to 

transitioning back to a proliferative state driven by 

E-CSCs after cessation of treatment, thus mediating local 

and metastatic tumor relapses over time (BOX 1).
Forthcoming clinical studies should clarify whether 

intratumoral heterogeneity in basal cytokeratins and/or 

conventional EMT markers can confirm a crucial role 
of HER2-negative M-CSCs in determining trastuzumab 

efficacy and patient survival in cHER2+ BC. Available 
in vitro data, however, appears to confirm that the degree 
of intrinsic plasticity to drive the trastuzumab-refractory 

CD44+/CD24-/low mesenchymal CSC state may account 

for the de novo resistance to trastuzumab in basal/

cHER2+ BC. Experiments in our laboratory have shown 
that trastuzumab-refractory basal/HER2+ JIMT-1 cells 

can be converted into trastuzumab-responsive cells by 

promoting the conversion of CD44+/CD24-/low M-CSC-

like states into CD24+ E-CSC-like CSC states [20]. 

Indeed, the depletion of SLUG, a critical regulator of 
epithelial cell identity in breast development and cancer 

[100], was sufficient to drastically reduce the percentage 
of cells with a trastuzumab-refractory CD44+/CD24-/low 

immunophenotype. Moreover, this sensitized the original 

basal-HER2+ cell population by increasing the number 

of trastuzumab-responsive ALDH-expressing cells 

(unpublished observations). The fact that metformin-

induced preferential killing of CD44+/CD24-/low cells 

was similarly sufficient to overcome primary resistance 
to trastuzumab in basal/HER2+ xenografts in vivo [33], 

lends pharmacological support to the concept that the 

relative enrichment in CD44+/CD24-/low M-CSCs is a/the 

key determinant of the de novo efficacy of trastuzumab. 
Accordingly, diverse molecular mechanisms leading to the 

reversal of the mesenchymal phenotype in HER2+ tumors 

(e.g., mIR-200c-driven suppression of TGF-β signaling 
[101, 102]) have been found to efficiently counteract 
trastuzumab resistance and the invasion-metastasis 

cascade in cHER2+ BC. 

CSC-DRIVEN EFFICACY OF 

TRASTUZUMAB AND THE 

RECLASSIFICATION OF CHER2+ BC: A 

THERAPEUTIC COROLLARY

Despite the undeniable improvements in treatment, 

Figure 4: Because trastuzumab-refractory CD44+CD24-/low mesenchymal-like CSCs distinctively possess a highly 

endocytic activity, the otherwise irrelevant HER2 in basal/cHER2+ can open the door to a “Trojan horse” type 

approach by employing antibody-drug conjugates such as T-DM1, which will allow a rapid and CSC-targeted delivery 

of cytotoxic drugs to therapeutically manage cHER2+ BC with primary resistance to trastuzumab.
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many cHER2+ BC patients ultimately die because of 

disease progression. It is thus critical to increase success 

rates in the adjuvant/neoadjuvant setting. Unfortunately, 
no clear biomarkers have emerged as reliable predictors 

of primary resistance to trastuzumab. Although newer 
agents are under investigation and are expected to improve 

outcomes for early-stage patients in combination with 
trastuzumab-based adjuvant therapy, at the moment we 
cannot offer clinicians clear guidance on solutions that 

can be integrated in the daily clinical routine. Because the 

biologically-distinct intrinsic BC subtypes appear to retain 

their individual molecular characteristics and biological 

behavior regardless of cHER2+ status, prospective 

studies are needed to test the concept that the overlap 

of each molecular BC subtype across the cHER2+ BC 

spectrum might generate an a priori prediction model of 

response to trastuzumab. In this framework, the known 
aggressiveness of the basal-like BC subtype confers not 

only worsened outcomes for patients with cHER2 BC, 
but also the poorest response to trastuzumab. Contrary to 

the current dichotomous clinical model (cHER2+ versus 

cHER2-), our model proposes that reclassification of 
cHER2+ tumors based on CSC-related markers might 

indirectly inform on their CSC-driven refractoriness to 

trastuzumab, thus providing a better delineation of the 

predictive value of cHER2+ in BC (BOX 1). Indeed, 
an equivalent overlapping of the intrinsic BC subtypes 

across the continuum of cHER2-negative BC can explain 

Figure 5: A reclassification of cHER2+ tumors based on basal (e.g., cytokeratin 5/6) and CSC-related markers (e.g., ALDH) 

might inform on their CSC-determined sensitivity to trastuzumab and T-DM1, thus providing a better delineation of the predictive value 

of cHER2+ in BC.
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the apparently paradoxical activity of trastuzumab in 

HER2e/cHER2- and luminal/HER2- tumors [66, 67], 
which accumulate HER2-dependent (but not due to gene 
amplification) ALDH-overexpressing E-CSCs. This can 
also explain the inefficiency of trastuzumab in basal/
cHER2- tumors, which accumulate HER2-independent 
CD44+/CD24-/low M-CSCs [64, 65]. Because only 

strongly ALDH-positive cells show a more aggressive 
phenotype typical of E-CSCs [103], it might relevant 

to evaluate whether the stem cell biomarker ALDH 
could be associated with trastuzumab efficacy in a cut-
off-dependent manner in cHER2+ versus cHER2- BC. 

Nevertheless, it is important to stress that at least two 
key questions need to be answered before a mixed 
molecular/clinical classification can be implemented to 
aid oncologists in the therapeutic management of HER2+ 

tumors. 

First, it is important to address whether the plastic 
transition between trastuzumab-responsive epithelial-like 
CSC states and trastuzumab-refractory mesenchymal-

like CSC states can similarly explain the efficacy of 
trastuzumab in the metastatic setting. Although Giordano et 

al. [104] reported that patients with HER2+ metastatic BC 
have circulating tumor cells (CTCs) undergoing EMT and 

enrichment for CSC features, additional studies are needed 

to determine whether EMT-CTCs [105-107] and CSCs 
have prognostic or predictive value in HER2+ metastatic 

BC treated with trastuzumab-based therapy. Interestingly, 
overexpression of the putative CSC biomarker beta1-

integrin, a structural component of basal epithelial 

cells, is an independent negative prognostic factor for 

tumor progression of HER2+ metastatic BC treated with 
trastuzumab-based chemotherapy [108]. Beta1-integrin 

is constitutively overexpressed in basal/HER2+ BC cells 

with de novo resistance to trastuzumab [21, 109], whereas 
the expression of a heavily N-glycosylated variant 

of beta1-integrin is activated during the spontaneous 

conversion of trastuzumab-sensitive HER2+ luminal 

cells to a trastuzumab-unresponsive HER2- claudin-low 
phenotype. Our current framework therefore predicts 
that a primary basal/cHER2+ or claudin-low/cHER2+ 
phenotype would likely remain unchanged in metastatic 
disease, whereas one should expect a higher degree of 
phenotypic conversion during the metastatic evolution of 

primary luminal/cHER2+ phenotypes. 

Second, a definition of potentially clinically 
actionable groupings of cHER2+ BC that improves 

prognosis and therapeutic planning, especially in the 

sub-class of basal/cHER2+ and claudin-low/cHER2+ BC 
patients that are not likely to benefit from trastuzumab-
based therapy, should be accompanied by alternative 

therapeutics able to eliminate the clinically-critical 

tumor cell population of trastuzumab-unresponsive 

CSC mesenchymal states. The ability of the anti-

diabetic drug metformin to suppress self-renewal and 
proliferation of trastuzumab-resistant CSCs [33, 110, 

111] is under evaluation in the METTEN study, a phase 

II, randomized, open-label, multicentric trial of neo-

adjuvant chemotherapy and trastuzumab with or without 
metformin in women diagnosed with HER2-positive 
primary BC [112]. Interestingly, the new antibody-drug 
conjugate ado-trastuzumab emtansine (T-DM1, Kadcyla®), 

which consists of the potent chemotherapeutic DM1 
(maytansinoid) coupled to trastuzumab, has been shown 
to potently and differentially target trastuzumab-refractory 

mesenchymal CSCs [113]. It appears that CD44+/CD24-/

low cells display a highly endocytic activity, thereby 

rendering them particularly sensitive to antibody-drug 

conjugates such as T-DM1. Indeed, treatment with T-DM1 
not only depleted pre-existing CD44+/CD24-/low cells 

at concentrations that failed to affect the bulk of tumor 

cells, but also prevented the EMT-mediated induction of 

CSC-like properties in differentiated tumor cells [113]. 

The unanticipated targeting of the mesenchymal state 

of CSCs by T-DM1 may indeed explain the efficacy of 
this recently approved antibody-drug conjugate against 

the outgrowth of trastuzumab-refractory basal/HER2+ 
BC cells xenotransplanted in animal models [114]. 

Specifically, because CD44+CD24-/low mesenchymal-like 

CSCs distinctively possess a highly endocytic activity, the 

otherwise irrelevant HER2 can open the door to a “Trojan 
horse” type approach through the employment antibody-

drug conjugates such as T-DM1, which will allow a 
rapid and CSC-targeted delivery of cytotoxic drugs to 

trastuzumab-unresponsive basal/cHER2+ BC (Figure 4).
The extension of BC subtypes in clinical settings 

such as triple-negative BC could lead to “orphan” BC 

diseases that might complicate the accurate design of 

powerful clinical trials with sufficient number of patients. 
In contrast, the integration of a straightforward and 
inexpensive IHC-based subclassification of cHER2+ 
BC into “basal-like/cHER2+” and “non-basal/cHER2+” 

subtypes is likely to provide better-quality prognostic and 

predictive information that might streamline translational 

medicine for the treating oncologist. T-DM1 has received 

regulatory approval for treatment-refractory HER2+ 

metastatic or locally advanced BC. Therefore, if T-DM1 

or other new CSC-targeting agents now entering clinical 
trials might improve clinical outcomes for patients 

with trastuzumab-unresponsive basal/cHER2+ BC, the 
reclassification of cHER2 tumors based on basal and CSC-
related markers (Figure 5) will undoubtedly lead to further 
gains for women diagnosed with cHER2+ BC disease. 
Nevertheless, our model proposes that a reclassification 
of cHER2+ tumors based on the spectrum of molecular 

BC subtypes might inform on their CSC-determined 

sensitivity to trastuzumab at the level of individual 

tumors (BOX1), thus providing a better delineation of the 
predictive value of cHER2+ in BC by incorporating CSC-

driven intra-tumor heterogeneity into clinical decisions. 
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BOX 1. CSC-DRIVEN TUMOR 

HETEROGENEITY AND TRASTUZUMAB 

RESISTANCE IN CHER2+ BC

One of the greatest challenges for BC therapy is 

the occurrence of intra-tumor cellular heterogeneity [115-

118], which negatively affects the efficacy of different 
approaches to cancer treatment including biological 

agents such as the anti-HER2 monoclonal antibody 

trastuzumab (Herceptin). Although the mechanisms 

driving intratumoral variation of cellular function have 

remained uncertain until recently, we are accumulating 
ever-growing evidence that genetic diversity, epigenetics, 
and the tumor microenvironment ultimately determine 

the integrated functioning of molecular programs that 

govern and maintain CSCs across the diverse molecular 

subtypes of BC [119, 120]. In our current CSC-based 

framework of primary resistance to trastuzumab in 
cHER2+ BC, genetic (i.e., mutational landscape) and 

non-genetic (i.e., epigenetic and microenvironmental) 

mechanisms collectively but differentially contribute 

to tumor heterogeneity of cHER2+ tumors belonging to 

each molecular subtype of cHER2+ BC (i.e., luminal A/

cHER2+, luminal B/cHER2+, HER2-enriched/cHER2+, 

basal/cHER2+, and claudin-low/cHER2+; Figure B1-1). 

SOURCES OF CSC-RELATED TUMOR 

HETEROGENEITY IN CHER2+ BC

Cellular origin and mutation profile across the 
spectrum of cHER2+ BC

Each molecular subtype of cHER2+ BC has a 

different cell-of-origin (e.g., mammary stem cells, bipotent 

progenitors, luminal progenitors, late luminal progenitors 

or more committed, differentiated luminal cells), which 
may represent a stage of developmental arrest for a 

cHER2+ tumor with an origin earlier in the differentiation 
hierarchy or, alternatively, transformation of a cell type 

at one specific stage of development in the normal breast 
tissue [91, 121, 122]. In addition to having different cells 

of origin, the different molecular subtypes of cHER2+ BC 

are characterized by different mutational profiles. Thus, 
beyond the overexpression/amplification of HER2 shared 
among all of them, each of the molecular subtypes of 

cHER2+ BC have a different mutational landscape [123-

126], e.g., whereas the most frequent genetic alteration 
expected to be found in luminal A/cHER2+ BC is the 

mutational activation of PI3K signaling, basal/cHER2+ 
and claudin-low/cHER2+ BC subtypes almost always 
contain mutations in TP53 as well as genomic alterations 
in PTEN (Figure B1-2). 

Variations in trastuzumab-responsive versus 

trastuzumab-refractory CSC types across the 

spectrum of cHER2+ BC

Beyond the mutation profile as a source of genetic 
heterogeneity in the distinct molecular subtypes of 

cHER2+ tumors, another level of epigenetic heterogeneity 

arises from the nature of the cells that are responsible for 

tumor maintenance and progression in each cHER2+ BC 

subtype, i.e., the so-called CSCs. Despite the diversity of 

genetic changes driving the different molecular subtypes, 

two different types of CSCs exist in any of the cHER2+ 
BC subtypes: a more proliferative, epithelial-like state 

characterized by the expression of the CSC marker ALDH, 

and a more quiescent and invasive, mesenchymal-like 

state characterized by the expression of the CD44+CD24-/

low immunophenotype [56, 120] (Figure B1-2). This 
apparently paradoxical phenomenon is suggestive of 

common, shared regulatory pathways capable of directing 
self-renewal and differentiation of solely two major 
types of CSCs regardless of the intrinsic molecular BC 

subtype in which they reside. Remarkably, however, 
each molecular subtype of cHER2+ BC is expected to 

exhibit significantly different frequencies of trastuzumab-
responsive epithelial CSCs (E-CSCs) and trastuzumab-

refractory mesenchymal CSCs (M-CSCs). Thus, claudin-

low/cHER2+ and basal/cHER2+ subtypes should contain 
a significant proportion of trastuzumab-unresponsive 
CD44+CD24-/low-expressing M-CSCs, the HER2e/cHER2+ 

subtype will be characterized by a high proportion of 
trastuzumab-sensitive ALDH-positive E-CSCs, the 

luminal B/cHER2 would contain a lower proportion of 
CSCs than HER2e/cHER2+, basal/cHER2+, and claudin-

low/cHER2+ subtypes, and the luminal A/cHER2 subtype 
will display the lowest proportion of cells expressing any 
CSC marker. 

Plasticity of E- and M-CSC states and acquisition 

of trastuzumab-refractory M-CSC-like states

The bidirectional transition between E- and 
M-CSC states is mediated by plastic, EMT/MET-related 

epigenetic alterations contextually regulated by signals 

originating mostly in the tumor microenvironment (e.g., 

cytokines/chemokines), transcriptional regulation (e.g., 

microRNAs), or some combination thereof [56, 120, 127-
131]. Two types of differentiated tumor cells are derived 
from the E- and M-CSC states: An epithelial type produced 

by E-CSCs, which are common in most of the cHER2+ 
subtypes, and mesenchymal bulk tumor cells derived 

from M-CSCs, which are rare in the majority of cHER2+ 
subtypes (i.e., luminal A/cHER2+, luminal B/cHER2+ 

and HER2e/cHER2+) but observable or common in the 

basal/cHER2+ and claudin-low/cHER2+ subtypes. While 
the epithelial or mesenchymal bulk cell progeny will 
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secrete signals to positively reinforce the self-renewal of 
their corresponding parental E- and M-CSCs, it should be 

noted that more stem-like or mesenchymal phenotype cells 

can appear, and shift, at any time during tumor evolution, 

leading to mixed cell populations in cHER2+ tumors with 
respect to more epithelial cell properties. Thus, non-stem, 

bulk epithelial tumor cells in any of the cHER2+ subtypes 

of luminal origin can undergo an EMT phenotypic shift 

resulting in increased numbers of trastuzumab-refractory 

M-CSCs, which naturally occur at high numbers in the 
claudin-low/cHER2+ subtype originating from less 
committed mammary stem cells. 

Moreover, there is evidence that more differentiated 

tumor cells may acquire CSC properties through nuclear 

reprogramming-like dedifferentiation phenomena; the 

range or probability of dedifferentiation rates of bulk 

tumor cells into CSC-like states [132-137], however, 
is expected to be inversely proportional to the number 

of cellular generations removed from being a CSC. 

Although all these closely related mechanisms can de 

novo repopulate CSCs in trastuzumab-treated cHER2+ 

BC, the intrinsic capacity to lower the epigenetic barriers 
responsible for cellular plasticity will vary across the 
molecular subtypes of cHER2+ tumors, thus determining 

not only their varying proportions of the two E- and 
M-states of CSCs, but also the proclivity to generate CSC 

states via the EMT or dedifferentiation phenomena (Figure 
B1-2). 

Intrinsic subtype-dependent plasticity of CSCs in 

cHER2+ BC

Dedifferentiation and reprogramming, two highly 
related versions of cancer cellular plasticity that can 

generate heterogeneity across the different molecular 

subtypes of cHER2+ BC through evolutionary time, will 
substantially but differentially reduce the effectiveness of 

trastuzumab across the spectrum of cHER2+ BC subtypes. 

In other words, although these mechanisms, altogether, 
could certainly contribute to the emergence of new clones 
in cHER2+ tumors with respect to plasticity for evolution 
and/or reversibility of tumor-initiating and self-renewal 
CSC-like properties, their dynamics will be intrinsically 
constrained not only by their inherited epigenetic 

programming (i.e., the cell compartments from which a 
given cHER2+ subtype arises), but also by the specific 
genetic portraits of each molecular BC subtype. 

Epigenetic mechanisms

Chromatin state shifts may be vital to dictate 

plasticity in HER2+ BC cells because bivalent chromatin, 

i.e., simultaneous maintenance of both active and repressed 

marks at promoter regions of developmental genes [127-
130], may hold genes in a so-called poised state that, if 

activated by specific microenvironmental signals, would 
either allow non-CSC and CSC-like mesenchymal cells 

to accrue epithelial characteristics, or non-CSC and CSC-

like epithelial cells to accrue mesenchymal characteristics. 

Altered chromatin patterns during cancer development 

would be a factor for evolution of cellular heterogeneity 
[138] by helping to lock in specific tumor phenotypes. 
On the one hand, the development of cHER2+ BC with 
a luminal phenotype, which derives from committed 
cell compartments in normal breast epithelium, may 

evolve over a longer time course with more chromatin 
evolution from bivalency to a more stable cancer-specific 
promoter DNA hypermethylation. On the other hand, the 

development of cHER2+ BC with a claudin-low or basal 
phenotype, which derives from a more primitive and/or 
less committed normal breast epithelial compartment, 

might arise faster with cell phenotypes more dependent 
on the retention of a more plastic, epigenetically poised 

(bivalent) control of chromatin states. 

Crucially, for our current framework of CSC-
driven primary resistance to trastuzumab, such bivalent 

modification at specific gene promoters, which facilitate 
the rapid dedifferentiation of phenotypically plastic 

cells to stem-like cells [127-130], would permit basal-
type HER2+ cells to respond to the same stimulus in a 

qualitatively different manner than luminal type of HER2+ 

cells. At least some of the non-stem, bulk epithelial cells 

of basal/cHER2+ will be a priori poised to rapidly become 

dedifferentiated into M-CSC-like states. Thus, in response 

to certain microenvironments rich in EMT-inducing 

heterotypic signals, basal/cHER2+ are intrinsically 

expected to more rapidly switch to trastuzumab-refractory 
M-CSC-like states than cHER2+ tumors of luminal 

origin. Because the gain of an increasingly stable M-CSC 

phenotype is apparently dependent on the sustained 

presence of potent EMT-reinforcing signals [127-130], 
in their absence, M-CSCs may naturally revert to a more 

epithelial phenotype unless they are supported by the 

appropriate epigenetic modification. Therefore, because 
basal/cHER2+ tumors and cHER2+ tumors of luminal 

origin are also differentially enriched with CD44+ stem 

cells exhibiting bivalent chromatin configurations in 
E-cadherin and other epithelial-specific genes, they will 
also exhibit an intrinsically enhanced capacity to rapidly 

dedifferentiate into a CD24+ proliferative epithelial state 

following trastuzumab withdrawal. 
M-CSCs can stably maintain their residence in the 

mesenchymal state through the activation of autocrine 

signaling loops that liberate M-CSCs from dependence on 

continuous paracrine EMT-inducing signals originating 

elsewhere within tissues [127-130]. This scenario may 
naturally occur in the claudin-low/cHER2+ subtype, in 
which the stable residence in a mesenchymal state will 
involve a highly stable silencing of key epithelial genes 

via DNA hypermethylation. This can be inherited with 
high fidelity over the course of multiple successive 
divisions. Nevertheless, a full spectrum of less-plastic 

DNA hypermethylated to highly plastic poised states of 
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chromatin will occur not only throughout the continuum 
of cHER2+ molecular subtypes but also to different 

extents in individual tumors, thus adding another layer 

of epigenetic complexity to intratumor heterogeneity in 

cHER2+ BC. 

Genetic mechanisms

Beyond epigenetic diversity-mediated tolerance 

to trastuzumab, bona fide genetic mechanisms for drug 

resistance classically considered to solely affect the 

bulk cell populations might also augment CSC-driven 

heterogeneity in cHER2+ BC if such mutations lead to 

an increase in the frequency of trastuzumab-refractory 

M-CSC-like states. Because cHER2+ may consist of 

different sub-clones that carry a founder mutation(s) alone 

or additional acquired mutations that confer trastuzumab-

resistant states, a pre-existing trastuzumab-resistant clone 

may remain unaffected and through outgrowth can come 
to dominate the entire cancer population. 

For instance, in situ single-cell analyses are 

beginning to illuminate the fact that the frequency and 

topology of HER2 gene amplification and other key 
accompanying driving mutations such as PIK3CA 
significantly varies before and after treatment with 
chemotherapy. Of note, chemotherapy treatment appears 

to drastically modulate genetic diversity within HER2+ 
tumors by selecting for PIK3CA1-mutant cells, a minor 
subpopulation in treatment-naïve samples. Because 

activating mutations in PIK3CA, which are commonly 
associated with resistance to HER2-targeting agents [140-
143], induce breast tumor heterogeneity by evoking cell 

dedifferentiation into multipotent stem-like states and 

promoting different cell fate switches [144, 145], their 
selection upon treatment with chemotherapeutic agents 
or other microenvironmental stresses might drastically 

accelerate tumor relapse and metastatic progression by 

altering the initial intrinsic phenotype of cHER2+ BC and 

generating M-CSC-like states refractory to anti-HER2 

therapies [146]. Because mutations are shared between 
CSCs and their clonal progeny, the fact that intratumoral 

cell heterogeneity significantly increases in the spectrum 
of luminal-to-basal subtypes can explain how genetic 
and epigenetic heterogeneity can coalesce at the CSC 

level to differentially affect tumor evolution and clinical 

progression in individual tumors belonging to each 

cHER2+ molecular subtype (Figure B1-2). 
In this integrated view, the genetic and CSC-based 

developmental and/or hierarchical models of BC, often 

considered as mutually exclusive when describing tumor 
heterogeneity, can be harmonized by considering the CSC 

state as a central biological property or epigenetic process 

upon which different mutational profiles across the 
subtypes of cHER2+ BC coalesce. Moreover, an intrinsic 

subtype-dependent degree of plastic, epigenetically poised 

(bivalent) chromatin states combined with an intrinsic 
subtype-dependent degree of intratumoral cell-to-cell 

heterogeneity may ultimately dictate how new genomic 
alterations acquired over time may de novo generate 

new CSCs as well as clones of differentiated progeny 
to differentially generate cellular heterogeneity in the 

natural history of individual tumors belonging to each 

molecular subtype of cHER2+ BC. That is to say, more 

poised epigenetic states in individual tumors belonging 

to certain subtypes of HER2+ tumor cells might generate 

higher degrees of diversity in gene expression patterns that 

can rapidly evolve through trastuzumab selection during 

treatment, thus driving multistep epigenetic fixation of 
gene expression in response to trastuzumab-based therapy. 

THERAPEUTIC IMPLICATIONS OF 

CSCS-RELATED INTRA-TUMOR CELL 

HETEROGENEITY IN CHER2+ BC

The development of specific, individualized 
therapeutic strategies has emphasized genomic and 

phenotypic differences between major BC subtypes 
but has largely been designed to target bulk tumor cell 

populations. Interestingly, the HER2-targeting antibody 

trastuzumab likely represents the sole currently available 

agent that simultaneously targets the bulk epithelial 

tumor population and the epithelial type of CSCs in BC. 

Unexpectedly, this will confound stratified treatment 
decisions (i.e., trastuzumab-based therapy) that are solely 

based on one sole mutation biomarker (i.e., HER2 gene 

amplification/HER2 protein overexpression). Indeed, the 
optimum therapeutic benefit of trastuzumab-based HER2 
blockade will arise when the successful reduction of both 
HER2+ bulk tumor epithelial populations and HER2+-E-

CSC takes place in an individual cHER2+ tumor (Figure 
B1-3). Conversely, poorer responses are a priori expected 

in tumors belonging to cHER2+ subtypes enriched with 
trastuzumab-unresponsive non-CSC mesenchymal bulk 

tumor cells and M-CSCs (i.e., basal/cHER2+ and claudin-

low/cHER2+), or in those with an increased proclivity to 
alter their initial intrinsic phenotype. 
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Figure B1-1: The clinical relevance of each genetic, epigenetic, and microenvironmental facet in terms of trastuzumab 

failure and recurrence of individual cHER2+ tumors will be related to the extent to which each mechanism, across 

the spectrum of cHER2+ BC molecular subtypes, impinges on intra-tumor cellular heterogeneity via: 1.) the frequency 

of the trastuzumab-responsive epithelial-CSC type the versus trastuzumab-resistant mesenchymal-CSC type, 2.) the intrinsic differential 

plasticity that mediates the balance between the two CSC states, and 3.) the intrinsic proclivity of bulk tumor cells to dedifferentiate and 
acquire trastuzumab-resistant mesenchymal-CSC-like states.
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Figure B1-2: Genetic and epigenetic heterogeneity coalesce at the CSC level to differentially affect tumor evolution and 

clinical progression in individual tumors belonging to each cHER2+ molecular subtype. CSC states may serve as the unit 

of selection in the genetic evolution of individual cHER2+ tumors belonging to luminal A/cHER2+, luminal B/cHER2+, HER2-enriched/

cHER2+, basal/cHER2+, and claudin-low/cHER2+ subtypes because genetic and non-genetic mechanisms can influence CSC properties 
by acting not only simultaneously but also independently over time, thereby differentially influencing trastuzumab responsiveness, tumor 
progression, and patient survival in each mixed subtype of cHER2+ BC. 
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Figure B1-3: When considering the activity of trastuzumab in each type of bulk and CSC cellular compartments 

across the spectrum of molecular BC subtypes, we can provide a better a priori delineation of the predictive value 

of cHER2+ in BC in terms of trastuzumab responsiveness at the level of individual tumors, thus incorporating CSC-

driven intra-tumor heterogeneity into clinical decisions.
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