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Abstract

Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the

subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC

markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various

drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as

the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the

biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects

that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic

plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of

molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the

related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution

and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and

whether these new concepts can be exploited in clinical practice in the future.
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Introduction
The principle concept of cancer stem cells (CSC) has

gained increasing acceptance in recent years [1-10]. By

definition, CSC exhibit self-renewal activity and long-

term cancer-propagating capacity [1-9]. By contrast,

more mature clonal cells in the same neoplasm have

limited proliferative potential. In leukemias, CSC are

also known as leukemic stem cells (LSC) [5,8,11-18].

The concept of neoplastic stem cells may provide

explanations for the failure of various cytoreductive

agents to produce long-lasting responses in patients

[1-9,11,15-18]. Notably, in many instances, anti-

neoplastic drugs act on more mature neoplastic cells ra-

ther than CSC/LSC, a phenomenon that is explained in

part by the fact that these cells exhibit intrinsic resist-

ance [19-23]. Moreover, CSC often develop acquired

drug resistance and thus produce more malignant sub-

clones over time [11,24-26].

All these observations point to the need to develop

new CSC-eliminating treatment strategies through

which cure rates and survival can be improved

[16,27-31]. In other words, CSC have been recognized as

a major ‘target cell population’ in oncology in recent

years, and considerable effort has been made to identify

novel CSC markers and target expression profiles and to

measure responses of these cells to various targeted

drugs.

The present article provides a summary of our know-

ledge on CSC/LSC, with special focus on the possibility

to translate CSC/LSC-targeting treatment concepts into

clinical application. Unless otherwise stated, this article

refers to CSC/LSC in primary human malignancies.

With regard to cell line models and engineered CSC-like
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cells or other more ‘artificial’ models that may also sup-

port CSC research, we refer to the published literature.

Definition and function of cancer stem cells

In contrast to more mature cancer cells, CSC are self-

renewing cells with long-term proliferative potential

[1-9,11]. As a result, CSC can maintain a given neoplasm

for prolonged time periods. In most cases, these cells

can also produce a cancer (CSC) or leukemia (LSC) in

immunodeficient mice (xenotransplantation model)

which enables their detection and quantification

[1-9,32,33]. Previous studies have used non-obese dia-

betic mice with severe combined immunodeficiency

(NOD/SCID) [1-3,5,6,32,33]. In several tumor models,

this mouse strain is a sufficient or even a preferable

model to study CSC biology [34]. However, more recent

data suggest that in several primary malignancies, NOD/

SCID with loss-of-function-mutated IL-2Rgamma chain

or IL-2Rgamma chain-knock out NOD/shi-SCID mice

(NSG or NOG mice) provide superior engraftment rates

[35-38]. Therefore, many current studies on primary

CSC/LSC employ NSG mice. Depending on the type of

disease, neoplastic cells are injected intravenously,

subcutaneously, or directly into solid organs (orthotopic

application) [27,39-44]. An important point is that

‘short-term engraftment’ (or just simple maintenance) of

tumor/leukemic cells has to be differentiated from long-

term engraftment, only the latter being indicative of the

presence of functionally active (self-renewing) CSC.

Long-term engraftment and growth of cancers/leuke-

mias is best demonstrable by recovering engrafted cells

from primary recipient mice and injecting these cells

into secondary recipient animals [32,39,40,42,43,45-47].

Despite advanced technologies and novel mouse

models, xenotransplantation assays for human CSC have

several limitations. First, the microenvironment is often

species-specific or tumor-specific. Second, in a neoplasm

with low growth-rate (for example, indolent/low-grade/

chronic tumor; premalignant neoplasms), the develop-

ment phase of the neoplasm may exceed the lifetime of

a mouse. Moreover, the CSC pool is composed of het-

erogeneous populations of tumor-initiating cells with

subclone-specific molecular properties and varying

growth characteristics in vivo [11,25,26,28,48]. Some of

the CSC may be recognized (and eliminated) by the re-

sidual immune system of xeno-transplanted mice

[37,38]. On the other hand, the lack of a natural immune

system and thus tumor immune surveillance in highly

immunodeficient mice may facilitate the uncontrolled

expansion of clinically irrelevant sub-clones. Therefore,

several attempts are currently made to establish NSG-

mouse models harboring a human immune system.

A frequently discussed alternative to in vivo xenotrans-

plantation studies are in vitro long-term culture

experiments to study the growth and maintenance of

CSC [47,49-53]. Although helpful as a screen approach,

these assays are not sufficient for evaluating the in vivo

self-renewal capacity of ‘true’ CSC. Several in vitro as-

says employ stromal cells which may provide some of

the ‘niche-factors’ required for long-term growth CSC

[47,49-53]. Solid tumor cells often grow in ‘spheres’ or

clusters for prolonged time periods in such assays

[47,49-53]. However, as mentioned above, the available

in vitro assays cannot replace in vivo xenotransplant-

ation models when long-term self renewal and tumor

propagation should be examined.

Identification and enrichment of CSC/LSC

Several different approaches, through which CSC/LSC

can be identified and enriched in primary cancer/

leukemia samples, have been developed in the past

[1-3,5-7,9,11-13,27,54-61]. A widely applied strategy is to

use antibodies directed against certain cell surface anti-

gens that are (or are not) expressed on CSC

[1-3,5-7,9,11-13,27]. Expression of surface antigens is

best determined by multicolor flow cytometry. Enrich-

ment of CSC/LSC can be performed by fluorescence-

activated cell sorting (FACS) or magnetic cell sorting

[1-9,13,15-18,62-69]. Both techniques have certain limi-

tations. One general problem is that the ‘so-called’ stem

cell markers are often not specific for CSC or LSC. Like-

wise, the stem cell-related antigen CD34 is not only

expressed on hematopoietic stem cells but also on mye-

loid progenitor cells and endothelial cells, and KIT is

not only expressed on hematopoietic stem- and progeni-

tor cells but also on mast cells, germ cells, and melano-

cytes [70,71]. Therefore, it is essential to apply

combinations of antibodies when detecting and analyz-

ing CSC/LSC in various tissues. Usually, one or two

organ-specific markers are employed to confirm the pri-

mary origin of cells (Tables 1 and 2). The pan-

hematopoietic marker CD45 is widely used to confirm

the hematopoietic origin of cells or to exclude leukocytes

in primary fractions obtained from solid tumors.

Additional antibodies are applied to delineate CSC from

more mature neoplastic cells [1-3,5-7,9,11-13,27,65

-69,72,73]. In case of myeloid leukemias, the antigen

profiles of more mature cells are well defined, and the

approach to deplete these (Lin+) cells from LSC is well

established. However, in certain leukemias, LSC may ab-

errantly express one or even several of the ‘lineage-re-

lated’ antigens. In such leukemias, application of the

‘Lin-cocktail’ may lead to a loss of LSC subsets. Another

problem is that antibody-bound cells may be detected

and eliminated by the residual immune system of NOD/

SCID mice. This problem has been outlined in acute

myeloid leukemia (AML) where CD38+ cells (CD38

antibody-laden) may be cleared by the residual immune
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system of NOD/SCID mice [38]. The problem has been

addressed by switching from NOD/SCID mice to NSG

(or NOG) mice that lack a functionally active cytokine

receptor gamma chain [35-38]. As mentioned above, the

lack of a natural immune system in these models is a

remaining issue that will hopefully be solved by introdu-

cing a humanized immune system into these mice. An-

other caveat is that some of the antibody preparations

used to define CSC may induce apoptosis in cancer cells

[74].

In solid tumors, a general problem is that for most

neoplasms, robust markers discriminating between more

mature and immature cells are not available. In colorec-

tal cancer and some other solid tumors, the Wnt target

gene LGR5 has been described as a potential CSC

marker [121,122]. Other markers, such as CD44, are

broadly expressed on tumor cells and also in other cell

types (for example, leukocytes) present in the same

organ sites. Another problem is that several CSC-

homing receptors and their ligands are species specific

which may prevent homing of CSC to their specific

microenvironment (CSC niche) in mice. Such limitations

can be overcame by direct (orthotopic) injection of

CSC into target organs or into tissue scaffolds

[39-44,46,123,124]. Other potential solutions may be to

co-transplant ‘niche-relevant’ autologous (human)

stroma cells together with CSC, to treat mice with cyto-

kines promoting the growth of CSC/LSC or to employ

NSG mice engineered to express human niche-

associated cytokines such as stem cell factor (SCF) [125].

For the future, mouse models harboring a human

immune system as well as human stromal cells might be

desirable for studying CSC biology.

Probably the most important problem regarding

CSC-recognition is stem cell plasticity and disease het-

erogeneity [9,11,25,28,54,126]. Likewise, depending on

the subtype of myeloid leukemia, LSC may reside within

the CD34+/CD38− fraction of the clone but also in the

CD34+/CD38+ or even in CD34− cell populations

[38,78,126]. It has also been described that LSC may be

composed of CD133+ and CD133− subfractions

[64,127]. Only a few markers, such as CLL-1 or

interleukin-1 receptor accessory protein (IL-1RAP), may

be more or less specific for LSC in certain human

leukemia models [67,87]. These markers are interesting

tools and may serve as diagnostic markers or/and thera-

peutic targets in the future. Tables 1 and 2 show a sum-

mary of markers expressed on CSC in hematopoietic

neoplasms (Table 1) and non-hematologic malignancies

(Table 2).

Regulation of growth and development of CSC/LSC

So far, little is known about the regulation of growth and

survival of CSC/LSC in hematopoietic and non-

hematopoietic malignancies. The development phase of

CSC may often last for years if not decades

[28,48,54,128]. In an early phase (pre-phase) of cancer or

leukemia development, neoplastic stem cells may be

slowly cycling cells that produce small-sized subclones

[11,28,54,128]. At this early hypothetical stage of cancer

evolution, it may be preferable to call these cells prema-

lignant neoplastic stem cells (NSC) rather than CSC/

Table 1 Phenotype of neoplastic stem cells (NSC) in hematologic neoplasms

Neoplasm Defined cell subsets containing NSC Cell surface antigens aberrantly expressed or overexpressed on neoplastic SC

AML CD34+/CD38− [32] CD25 [75], CD33 [76], CD52[77]

CD96 [68], CD123 [69]

CLL-1 [67]

AML CD34+/CD38+ [38] n.k.

AMLNPM1mutated CD34− blast-like [78] n.k.

MDS CD34+ [79] CD123 [80]

MDS with 5q- CD34+/CD38− [81] CD52 [77], CD123

MPN CD34+ [82] n.k.

CML CD123 [86], IL-1RAP [87] CD34+/CD38− [17] CD25 [83], CD26 [84], CD33 [85]

Ph + ALL CD34+/CD38−/CD19+ [88] CD25, CD26a, CD52

Ph − ALL CD34+/CD19+ [89] n.k.

CLL CD34+/CD19+ [90] CD5

Myeloma CD20+/CD27+/CD138− [91] n.k.

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome(s); MPN, myeloproliferative neoplasm(s); CML, chronic myeloid leukemia; ALL, acute lymphoblastic

leukemia; CLL; chronic lymphocytic leukemia; n.k., not known; NSC, neoplastic stem cells; SC, stem cell; Ph+, Philadelphia chromosome-positive; Ph−, Philadelphia

chromosome-negative; IL-1RAP, interleukin-1 receptor accessory protein. aIn a subset of patients with Ph + ALL, LSC express CD26.
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LSC [24,28,128-131]. Later, when these premalignant

cells have accumulated a sufficient number of molecular

lesions (defects) and thereby have ‘learned’ how to es-

cape all relevant surveillance mechanisms, their progeny

can expand and form an overt malignancy within short

time, so that the term malignant NSC (=CSC or LSC in

leukemias) is appropriate [28,48,128,130,132] (Table 3).

In early phases of NSC evolution (premalignant stage),

the mechanisms and molecules regulating growth, sur-

vival, and asymmetrical cell division, may be similar if

not the same compared to that in normal stem cells.

These factors include cytokines and cytokine-receptors,

niche-related factors, including stem cell-homing and

chemotactic molecules, pro- and anti-apoptotic mole-

cules, and signaling pathways involved in the regulation

of self-renewal and proliferation [133-135]. Later, when

NSC-derived neoplastic clones expand to an overt malig-

nancy, several ‘physiologic’ mechanisms controlling

growth and differentiation of normal (and premalignant

neoplastic) stem cells may no longer work to prevent

clonal expansion [28,48,128,130,136-138].

Cytokine regulation of NSC (CSC/LSC)

A number of recent data suggest that the cytokine net-

work is involved in the regulation of self-renewal,

growth, survival, and differentiation of NSC [64,69,125].

As mentioned above, the cytokines that regulate growth

and function of premalignant NSC may be similar or the

same as that regulating growth of normal stem cells.

Likewise, in myeloid leukemias, NSC/LSC express recep-

tors for various regulators of normal stem cells, includ-

ing the IL-3 receptor (CD123/CD131), SCF receptor

KIT (CD117), or G-CSF receptor (CD114) [64,69,139]. It

has also been described that epidermal growth factor

(EGF) receptor family members, including HER2, are

expressed on epithelial NSC/CSC, such as mammary

CSC [140,141]. There is also evidence that insulin-like

growth factor (IGF) receptors and fibroblast growth fac-

tor (FGF) receptors play an important role in solid tu-

mors and may be expressed on solid tumor CSC

[142-144]. At least in leukemias, the cytokine ligands

that bind to these receptors trigger proliferation of LSC-

enriched cell fractions [139]. Depending on the type and

phase of disease, these cytokines also promote differenti-

ation and maturation of LSC. However, most of these

cytokines may not cause self-renewal in LSC. Some of

these cytokines, such as IL-3, are also produced in clonal

cells and may thus act as autocrine growth regulators of

LSC [17,87,145,146]. LSC are also considered to respond

to various chemokines. In line with this assumption,

LSC express chemokine receptors such as CXCR4

[39,147-150]. A clinically important question is whether

premalignant NSC or CSC/LSC express receptors for

erythropoietin (EPO), granulocyte colony-stimulating

Table 2 Phenotype of CSC-enriched fractions of neoplastic

cells in solid tumorsa

Neoplasm Phenotype of CSC-rich cell fraction Reference

Breast cancer CD326+/CD45−/CD44+/CD24− [40]

CD44+/CD49f+/CD133+ [92]

CD326+/CD44+/CD47+/MET+ [93]

CD29f

Gastric cancer CD326+/CD44+ [94]

CD49f+ [95]

CD90+ [96]

LGR5b+ [97]

CD44+ [98]

Colon cancer CD326+/CD44+/CD166+ [99]

CD44+/CD49f+/CD133+ [100]

LGR5b+ [101]

CD133+ [47]

SCLC CD133+ [102]

NSCLC CD133+ [103]

Pancreatic cancer CD44+/CD24+/CD326+ [43]

CD133+/CXCR4+ [39]

HCC CD326 [104]

CD133+ [105]

CD44+/CD90+ [44]

Glioblastoma CD133+ [42]

CD15+/CD133+ [106]

CD15+/CD133+ [106]

CD133+/SSEA-1+ [107]

Ewing’s sarcoma CD133+ [108]

Osteosarcoma CD133+ [109]

CD117+/STRO-1+ [110]

CD271+ [111]

Ovarian cancer CD24+/CD44+/CD326+ [112]

CD44+/CD117+ [113]

CD133+ [114]

Prostate cancer CD44+/CD49f/CD326+ [115]

CD44+/CD24− [116]

CD44+/CD133+ [117]

Melanoma CD271+ [118]

ABCB5+ [119]

EPOR+ [120]

NSC, neoplastic stem cells; LGR5, Leucine-rich repeat-containing G-protein

coupled receptor 5; SCLC, small cell lung cancer; n.k., not known; NSCL, non-

small cell lung cancer; HCC, hepatocellular carcionoma; EPOR, erythropoietin

receptor. aExpression of NSC markers refers to primary human cells tested in

xenotransplantation assays and/or in a sphere-formation assay. bLGR5 is not

detectable on human NSC by flow cytometry.
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factor (G-CSF), or granulocyte/macrophage colony-

stimulating factor (GM-CSF). These cytokines are often

administered in tumor patients in order to correct

disease-related anemia or to accelerate neutrophil pro-

duction after chemotherapy. In AML as well as in the

myelodysplastic syndromes (MDS), NSC/LSC indeed ex-

press receptors for G-CSF and sometimes also for GM-

CSF [139]. By contrast, NSC/LSC usually do not express

EPO receptors in these malignancies. However, the EPO

receptor may be expressed on CSC in a few solid tumors

as well as in melanoma-initiating cells [120,151-153].

Table 4 shows a summary of cytokine receptors

expressed on CSC and LSC in various malignancies.

Oncogenic signaling pathways in NSC (CSC/LSC)

Growth and function of NSC, including self-renewal and

malignant expansion, are considered to depend on a

complex network of signaling cascades and molecules.

Oncogenic signaling is considered to derive from three

distinct classes of molecules, i) the driver lesions (pri-

mary oncogenic kinases) that are often disease-specific

or at least disease-related, like BCR/ABL in chronic

myeloid leukemia (CML), ii) broadly expressed mutated

oncogenic kinases, and iii) cytokine-activated stem cell

kinases that play a role in survival or/and growth of

NSC (example: wt KIT in leukemias). The downstream

signaling networks of ‘i,’ ‘ii,’ and ‘iii’ are in part

Table 3 Classification of neoplastic stem cells (NSC)

Defining properties Premalignant NSC Malignant NSC = CSC/LSC

Self-renewal Yes Yes

Cell cycle Dormant or very slowly cycling Slowly cycling or more rapidly cycling

Immediate tumor-initiating potential Noa Yes

Long-term tumor-initiating potential Facultative potentiala Yes

Numbers of somatic acquired molecular lesions/
mutations

Relatively low Relatively high

Drug response Intrinsic resistance (based in part on
quiescence)

Intrinsic and often also acquired resistance in malignant
subclones

aThe potential of a NSC to produce a neoplastic condition does not mean that this cell can form a tumor within a certain time period; however, after a certain

latency period, when a sufficient number of molecular lesions have been accumulated, these premalignant NSC may transform to fully malignant NSC (=CSC/LSC)

that have immediate tumor-initiating capacity in vivo in patients as well as in NSG mice. In a subset of patients, premalignant NSC will never convert into fully

malignant NSC (= CSC/LSC). NSC, neoplastic stem cells; CSC/LSC, cancer stem cells/leukemic stem cells.

Table 4 Cytokine/chemokine receptors detectable on neoplastic stem cells (NSC)

Malignancy Cytokine receptors expressed on NSC

AML IL-2RA [154], IL-3RA [155], G-CSFR [156], FLT3 [157], SCFR/KIT [158], CXCR4 [159]

MDS G-CSFR [160], SCFR/KIT, CXCR4 [161]

MPN G-CSFR [160], SCFR/KIT [162], CXCR4 [163]

Ph + CML IL-2RA [83], IL-3RA [17], G-CSFR [160], GM-CSFR [164], SCFR/KIT [165], IL-1RAP [87], CXCR4 [166]

Ph + ALL IL-2RA [167], IL-3RA [168], CXCR4 [169]

Myeloma CXCR4 [170]

Breast cancer EGFR [171], ERBB2/Her2 [172], FGFR2 [173], TGFßR [174], MET [93]

Gastric cancer EGFR [175], ERBB2/Her2 [176]

Colon cancer EGFR [177], CXCR4 [178], IGF1R [179], TGFßR [180]

SCLC EGFR [181]

Pancreatic cancer EGFR [182], CXCR4 [39]

HCC EGFR, IGF1R [183]

Glioblastoma EGFR [184], PDGFRB [185], CXCR4 [186], TGFßR [187], MET [188]

Ovarian cancer EGFR [189], ERBB2/Her2 [190], IGF1R, TGFßR [191]

Prostate cancer CXCR4 [192]

Melanoma CXCR1 [193], EPOR [120]

AML, acute myeloid leukemia; IL, interleukin; G-CSFR, granulocyte colony-stimulating factor receptor; SCF, stem cell factor receptor; Ph+, Philadelphia

chromosome-positive; CML, chronic myeloid leukemia; GM-CSF, granulocyte- macrophage colony-stimulating factor; ALL, acute lymphoblastic leukemia; CLL,

chronic lymphocytic leukemia; EGFR, epidermal growth factor receptor; TGFßR, transforming growth factor ß receptor; IGF1R, insulin-like growth factor 1 receptor;

SCLC, small cell lung cancer; NSCL, non-small cell lung cancer; n.k., not known; HCC, hepatocellular carcionoma; PDGFR, platelet-derived growth factor receptor;

NGFR, nerve growth factor receptor; EPOR, erythropoietin receptor.
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overlapping, may often complement each other, and

may sometimes even produce synergistic effects on

downstream activation and thus oncogenesis

[165,194-196]. In an early phase of cancer evolution,

the driver mutation (‘i’) and otherwise physiologic

mechanisms (‘iii’) may play a predominant role. How-

ever, with disease progression, more and more add-

itional oncogenic signaling molecules (‘ii’) and

pathways become activated [197-200]. Thus, in ad-

vanced phases of a malignancy, additional signaling cas-

cades and networks may play a more and more decisive

role in CSC/LSC expansion and resistance. All three

classes of molecules may contribute to CSC/LSC resist-

ance, and all three have been considered as potential

targets of therapy in solid tumors and leukemias

[7,14,16,28,198,201,202].

In the past 15 years, several of the driver kinases

have been identified as major targets of therapy. The

highlighting example is CML where BCR/ABL-target-

ing tyrosine kinase inhibitors (TKI) induce major and

long-lasting responses [203]. Other similar treatment

concepts are emerging in other types of cancers and

leukemias as well as in lymphomas. However, it has

also been described that in most tumor models, NSC

(CSC/LSC) cannot be eradicated completely using

these drugs [11,24,28,130,204] as CSC/LSC often

grow and survive independent of the primary (major)

driver lesion, such as BCR/ABL in CML [204,205].

During the past few years, several major attempts,

supported by next-generation sequencing approaches,

have been made to reveal additional molecular lesions

and the resulting signaling cascades and to define

additional target pathways in CSC/LSC [206,207]. In-

deed, a number of different signaling pathways - often

shared by normal and neoplastic stem cells - have

been described to play a role in the evolution and

maintenance of CSC/LSC. Several of these pathways

have been implicated in stem cell self-renewal. One of

these pathways is the Wnt/ß-catenin pathway. This

pathway is involved in the maintenance of self-renewal

of NSC in leukemias and melanoma as well as in

breast, lung, and liver cancers [119,198,208-211]. The

Notch signaling pathway has been implicated in self-

renewal of CSC in breast cancer, colon cancer, and

glioblastoma [201,212-214]. The hedgehog-signaling

pathway is also considered to contribute to

self-renewal of CSC in various malignancies, such as

glioblastoma, breast cancer, colon cancer, pancreatic

cancer, and also in leukemias [215-219]. Other signal-

ing pathways may be involved in the regulation of pro-

liferation, survival, and differentiation of CSC. These

pathways include, among others, the PI3 kinase-

mTOR pathway, the RAS-RAF-MEK-ERK pathway, or

the JAK-STAT pathways [196,220-223].

Role of the microenvironment and cell-cell interactions

Depending on the stage and type of malignancy, growth

and self-renewal of NSC (CSC/LSC) rely on a permissive

microenvironment, the CSC niche [4,14,45,72,224,225].

In an early phase of cancer evolution, the CSC niche

may regulate growth and self-renewal of premalignant

NSC in a similar or in the same way as that of normal

stem cells [54,211-216,226,227]. Relevant molecules con-

tributing to stem cell niche interactions in healthy tis-

sues and in ‘premalignant neoplastic states’ include

adhesion molecules, chemotactic factors, cytokines, and

growth factor receptors [99,225,228-235] (Figure 1). In

addition, the local electrolyte milieu, the Ca2+ gradient

as well as hypoxia may contribute to stem cell niche in-

teractions and stem cell self-renewal in normal and (pre)

malignant conditions [225].

Stem cell homing and abnormal spread of NSC/CSC

Depending on the organ system, homing of stem cells is

a physiologic process [225,236-239]. Likewise, normal

hematopoietic stem cells are detectable in the peripheral

blood and undergo homing in various organs. In most

solid organs, however, stem cells do not undergo redis-

tribution and homing, unless these cells transform to

metastasizing CSC. Stem cell homing of normal

hematopoietic stem cells and LSC is a multi-step process

and the same holds true for the invasion-metastasis cas-

cade of CSC [240,241]. Several different molecules are

involved in the homing and invasion process, including

selectins and selectin-ligands, integrins and their recep-

tors, and other cell-cell and matrix-binding molecules

[240,242]. However, ordered expansion and redistribu-

tion from and into the stem cell niches in various organs

is usually deregulated in premalignant NSC and malig-

nant CSC/LSC [84,99,225,228-235]. In the normal and

leukemic bone marrow, several specific molecular inter-

actions that may contribute to stem cell homing (to the

niche) have been identified. These include, among

others, SDF-1-CXCR4 interactions, SCF-KIT interac-

tions, and Notch-Notch-ligand interactions (Figure 1)

[64,139,225]. In solid tumors, interactions between CSC

and the CSC niche are less well defined. One important

type of molecules may be cytoadhesion receptors, in-

cluding integrins, selectins, CD44, or members of the

cadherin family. Most of these homing receptors, includ-

ing chemokine receptors and ligands of matrix mole-

cules such as L1 or CD44, have been detected on CSC

[228,229,243]. Likewise, L1 is expressed on the edges of

invasive colon cancers and its metastases [230,231] and

the same holds true for CD44 and CD133, suggesting

that these molecules play a role in tumor invasion and

thus disease progression [99,230-232].

During progression of a tumor or leukemia, CSC/LSC

may no longer depend on their interaction with the
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(original) organ-specific microenvironment (CSC niche).

Rather, CSC/LSC often expand and redistribute from

local sites to other organs to cause metastasis. In epithe-

lial tumors, CSC redistribution is facilitated by the so-

called epithelial-mesenchymal transition (EMT), a

process that is associated with a loss of specific (adhe-

sive) interactions between cancer cells and the surround-

ing microenvironment [233,244,245]. Several different

molecules, including E-cadherin and L1, have been im-

plicated in the process of EMT in solid tumors

[230-233]. Since EMT may also involve CSC, metastasis

formation is directly linked to EMT. In hematopoietic

neoplasms, similar mechanisms may apply during dis-

ease evolution. However, so far, little is known about

specific alterations in CSC niche interactions in these

malignancies. In CML, LSC have been described to ex-

hibit an adhesion defect that may explain the LSC es-

cape from the bone marrow niche, and subsequent

extramedullary spread of progenitors, which is a pathog-

nomonic finding in this type of leukemia [234,235,246].

The endosteal and the vascular stem cell niche in the bone

marrow

In the normal bone marrow (BM) and in hematopoietic

neoplasms, two types of stem cell niches have been pos-

tulated, a vascular niche and an endosteal (osteoblastic)

stem cell niche (Figure 1). Both niches are considered to

act together and thereby trigger self-renewal, prolifera-

tion, migration, and redistribution of normal and neo-

plastic (leukemic) stem cells [225,247-249]. Whereas the

endosteal niche is considered to regulate self-renewal

and quiescence of normal and neoplastic stem cells, the

vascular niche is considered to regulate self-renewal, re-

distribution, and the leukemic spread of these cells. The

postulated vascular niche may primarily be composed of

endothelial (arterial) cells and perivascular cells, whereas

Figure 1 Cellular interactions in the bone marrow (BM) stem cell niches. Two types of BM stem cell (SC) niches have been postulated, the

vascular SC niche and the endosteal (osteoblastic) SC niche. Both SC niches are considered to play a role in SC homing and SC self-renewal. A

number of SC receptors and their ligands regulate qiuesence, self-renewal, proliferation, differentiation, and homing of SC. Relevant ligands are

expressed in niche-related cells, including vascular endothelial cells, endosteal cells, and osteoblasts. Whereas several of these ligands are

membrane-bound and act as homing receptors, some of them, such as stem cell factor (SCF) or stroma cell-derived factor-1 (SDF-1), can also be

produced and released as soluble ligands and thus can act as chemotactic factors for SC. Abbreviations: OPN, osteopontin; HY-A, hyaluronic acid;

Ang-1, Angiopoietin-1.
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the endosteal stem cell niche is primarily represented by

endosteal-lining cells and osteoblasts [225,247]. The

endosteal niche is considered to provide a more hypoxic

and hypercalcemic milieu than the vascular niche, which

may also contribute to stem cell niche interactions

[14,225,250-252] (Figure 1). Several different adhesion

molecules, like hyaluronic acid, Jagged, N-cadherin,

osteopontin, CAMs, VEGF, SCF, or SDF-1, are consid-

ered to contribute to stem cell homing in the niche

[225,247-249]. Normal and neoplastic stem cells express

receptors for these stromal ligand receptors (Figure 1).

Role of hypoxia

Hypoxia and hypoxia-inducible factors (HIF) may influ-

ence the fate and self-renewal capacity of stem cells in

the micro-milieu of the stem cell niche in health and

disease [14,225,250-254]. So far, little is known about the

mechanisms through which hypoxia regulates self-

renewal and proliferation of CSC. One important aspect

may be that hypoxia upregulates not only HIF expres-

sion but also several angiogenic and growth-regulatory

cytokines, such as SDF-1 (CXCR4) or VEGF [250,

255,256]. These cytokines may promote tumor-

associated angiogenesis. It has also been described that

hypoxia maintains a more stem cell-like state of progeni-

tor cells in the BM by regulating key signaling pathways

responsible for stem cell growth and survival, such as

Notch or Oct4 [253,254,257,258]. This may also hold

true for CSC/LSC in hypoxic areas in the centers of solid

tumors [259]. Another important aspect is that hypoxia

can trigger the production of reactive oxygen species

(ROS) in neoplastic (stem) cells, which in turn leads

to DNA breaks and thereby increases mutagenesis

and thus the generation of more malignant subclones

[260,261]. Thus, hypoxia may be a trigger of oncogenesis

and malignant progression as well as CSC/LSC

resistance [262-264].

Plasticity and subclone formation of NSC (CSC/LSC)

A remarkable aspect in the biology of neoplastic stem

cells is plasticity and subclone formation during disease

evolution which is relevant clinically as subclone forma-

tion is often associated with progression and drug

resistance. Recent data suggest that in AML and CML,

subclone formation is an early and frequent event in

LSC development, and the same may hold true for other

neoplasms, including solid tumors [26,54,128,129,131

,206,220,265]. Plasticity is best explained by genetic in-

stability. The excessive plasticity and subsequent forma-

tion of neoplastic subclones is somehow contradictory

to the hypothesis that many (at least premalignant) NSC

are quiescent cells. However, subclone formation is now

considered to be a step-wise and long-lasting process,

which may explain the formation of multiple CSC

subclones with varying proliferative capacity (Figure 2)

[28,48,54,128]. Subclone formation and plasticity of LSC

in CML may also be associated with lineage commit-

ment and differentiation or even a lineage switch. One

good example is lymphoid or biphenotypic (mixed) blast

crisis in Ph + CML [266-269]. In rare cases, subclone

formation from LSC is excessive and may result in the

development of two histologically unrelated but still

monoclonal neoplasms [270-272]. Finally, it has also

been reported that some of the hematopoietic neoplasms

produce their own (clonal) microenvironment [273-275].

A related observation is ‘vasculogenic mimicry’ that in-

volves the so-called ‘malignant stromal cells’ or ‘malig-

nant endothelial cells.’ Such stromal cell progenitors

have recently been detected in several malignancies, in-

cluding AML [276]. All these observations suggest that

the leukemia-associated microenvironment, including

the LSC niche, is a new emerging target of therapy.

Expression of molecular targets in NSC/CSC

An essential question in CSC research is whether certain

therapeutic targets are expressed in or on CSC. Notably,

targeting of CSC using drugs that can kill or perman-

ently suppress these cells may be a pre-requisite for the

development of new curative treatment approaches in

cancers and leukemias [7,11,14,16,28]. However, unfor-

tunately, in many instances, CSC and normal stem cells

share the same target antigens [64]. As a result, CSC-

targeting therapies often result in the occurrence of sub-

stantial adverse side effects such as prolonged cytopenia.

In this regard, it is noteworthy that the only available

curative drug-therapy in AML, which is polychemother-

apy, is usually also associated with prolonged cytopenia.

Therefore, current research is seeking novel markers and

targets that are preferentially or even selectively

expressed on CSC (LSC) but are not expressed (or less

abundantly expressed) by normal stem cells [67,84,87].

Examples for surface markers/targets that have been

described to be expressed primarily on LSC in myeloid

leukemias, but less abundantly (or not at all) on normal

stem cells, are CD25, CD26, CD33, CD47, CD52, CD96,

CD123, IL-1RAP, and CLL-1 [65-69,72,73,85,277-280].

With regard to CD33 and CD52, clinically established

targeting concepts are available [280-282]. Likewise, as

assessed by in vitro and in vivo experiments, the CD52-

targeting antibody alemtuzumab is able to kill LSC in

AML and MDS [77]. Figure 3 shows the effect of alem-

tuzumab on AML LSC in vitro. However, unfortunately,

normal stem cells also express low but detectable

amounts of these surface antigens, and the respective

drugs, gemtuzumab ozogamicin (GO, anti-CD33) and

alemtuzumab (anti-CD52) have recently been removed

from the oncologic market because of their toxicity pro-

files which may indeed result in part from their effects
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on normal stem cells [280-282]. There are also other

antibody-based targeted drugs that are currently being

developed, such as (among others) CLL-1, IL-1RAP,

CD44, CD96, or CD123. The value of these agents

is currently being tested preclinically and in clinical

trials [283].

A number of different signaling molecules and survival

molecules have been identified as potential targets in

LSC/CSC. Among these are the PI3K, mTOR, MEK,

Smoothened, Notch, Wnt, heat shock proteins, and

Bcl-2 family members. Table 5 provides an overview of

molecular targets expressed in CSC and LSC in various

malignancies. During the past few years, several potent

targeted drugs directed against the primary dominant

oncoproteins of various tumors and leukemias have been

developed. An interesting example is CML, where BCR/

ABL blockers are applied successfully to suppress the

growth and expansion of LSC [203]. However, even

BCR/ABL TKI may not be capable of suppressing all

LSC for a prolonged time period, because of stem cell

resistance [11,19-23,204]. Nevertheless, the effects of

BCR/ABL TKI in CML are a highlighting example of

LSC suppression. Notably, in many patients in whom

TKI treatment has led to a complete continuous mo-

lecular response, treatment discontinuation can be per-

formed, and only a subset of these patients relapse

whereas others remain BCR/ABL-negative over years,

suggesting that many (clinically relevant) LSC had been

eradicated [284].

Intrinsic and acquired resistance of NSC/CSC

Normal and neoplastic stem cells benefit from several

repair mechanisms and defense systems through which

these cells can escape or survive various stress reactions,

toxin-exposure, or microbial attacks, and the same

mechanisms are responsible for drug resistance

[11,19-23,28,298,299]. In the context of neoplastic stem

cells, intrinsic forms and acquired forms of resistance

have been described. Intrinsic resistance is usually de-

tectable in all CSC populations (subclones), including

Figure 2 Subclone formation of CSC during evolution of a malignancy. During cancer/leukemia evolution, a large number of different

subclones with varying combinations of mutational lesions develop. Each change in color is indicative of the acquisition of a relevant new

molecular lesion. After a certain time, one or more malignant (dominant) subclones expand and develop into an overt malignancy. However, at

the time of diagnosis of a cancer/leukemia, all the other premalignant subclones and their stem cells are also still present. Neoplastic stem cells

are indicated by bold circles. After intensive therapy, many or most (sometimes all) of the cancer/leukemic stem cells may have been eradicated.

However, the less malignant (pre-malignant) neoplastic stem cells may still survive (because of their quiescence and other resistance-related

mechanisms) and may later expand and produce a relapse. Such late relapses may not necessarily express the same oncogenic lesions (driver

mutations) compared to the original subclone but still are derived from the same initial stem cell clone. Today, the subclonal architecture is

demonstrable by deep sequencing technologies in various malignancies.
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premalignant NSC and CSC/LSC, whereas acquired re-

sistance is usually found in newly generated, more ma-

lignant, subclones and their (subclone-specific) CSC/

LSC in advanced neoplasms [11,19-23,298,299].

The mechanisms underlying intrinsic resistance of

LSC/CSC are poorly understood. In most neoplasms,

multiple factors and mechanisms may act together to

produce intrinsic resistance. One factor may be stem cell

quiescence [11,19-23,298,299]. Another important factor

are cytokine interactions and cell-cell interactions in the

CSC niche [14,19-23,28,54]. Moreover, certain drug

transporters are expressed differentially in CSC/LSC

when compared to more mature neoplastic cells

[300-304]. These transporters may mediate drug uptake

(such as OCT-1, a drug transporter for Imatinib) but

may also contribute to enhanced drug efflux from CSC/

LSC. Likewise, in advanced leukemias, LSC often express

MDR-1 and probably other drug efflux transporters

[22,300-305]. Similar drug transporters have also been

identified in solid tumors and in solid tumor CSC. Other

mechanisms underlying intrinsic resistance of LSC/CSC

may be an abnormal expression or upregulation of

survival-related (stress) molecules (often after drug ex-

posure), abnormal expression of signaling molecules or

transcription factors, and the lack or loss of tumor sup-

pressor genes or death regulators [11,19-23,28,41

,306-312] (Table 6). In addition, the local organ-specific

microenvironment, tissue hypoxia, and the interaction

with the ‘CSC niche’ may contribute to the resistance of

CSC/LSC [11,19-23,28,45,313].

A number of different mechanisms may underlie ac-

quired drug resistance in CSC/LSC. One is genetic in-

stability and the ‘mutation capacity’ of the malignant

genome, resulting in a plethora of mutations in critical

target genes that can be detected in (more) malignant

subclones in these patients [28,54,78,129,206,207,325].

These mutations may occur in an early phase (or even

prephase) of the disease. They may develop in most,

many, or only a few subclones and may either be detect-

able at diagnosis (prominent subclone/s) or they remain

undetectable for a longer time period because they de-

velop in slowly cycling NSC that are only be capable of

generating small-sized subclones [26,28,54,128,325].

Nevertheless, as soon as these small-sized subclones ac-

quire a sufficient number of additional hits (mutations),

they can expand and develop into an overt disease in

which neoplastic cells and CSC exhibit acquired resist-

ance [26,28,54,128,325]. The use of targeted drugs must

lead to a selection of these more malignant subclones

over time. Mutations leading to drug resistance may

occur in a number of different genes. Likewise, muta-

tions in various tyrosine kinases may contribute to re-

sistance against oncoprotein-targeting drugs [326-328].

The best studied model is CML, where multiple muta-

tions in the BCR/ABL kinase domains have been identi-

fied in Imatinib-treated patients [326-328]. Such

mutations have been detected in virtually all oncogenic

kinases that play a key role in human leukemogenesis

or myeloproliferation and also in most other tumor

models [329].

Other mechanisms of acquired resistance include the

amplifications of target genes (overexpressed targets) or

activation of additional pro-oncogenic molecules

(Table 5) [330-334]. These types of resistance are usually

associated with a poor prognosis and are often accom-

panied by cytogenetic evidence of clonal evolution.

Likewise, in CML and AML as well as in MDS, a

complex karyotype usually indicates an unfavorable

prognosis [334-336].

Can we translate the CSC concept into clinical practice?

Most of the conventional anti-cancer agents currently

used in daily practice or in clinical trials are primarily

acting on rapidly dividing cells that make up the bulk of

the tumor, whereas most CSC (and premalignant NSC)

Figure 3 Leukemic stem cells express the cell surface target

antigen CD52. Upper panels: bone marrow (BM) cells obtained

from a patient with acute myeloid leukemia (AML; left panel) or

control BM (right panel) cells were stained with antibodies against

CD34, CD38, and CD52. The immature CD34+/CD38− stem cells

were found to co-express CD52 (red histogram) in the patient with

AML but did not express CD52 in the normal BM. The black open

histogram represents the isotype-matched control antibody. Lower

panels: BM cells were incubated in various concentrations of the

CD52-targeted antibody alemtuzumab at 37°C for 1 h. Thereafter,

the numbers of viable CD34+/CD38− stem cells were counted by

flow cytometry using calibration beads. As visible, exposure to

alemtuzumab resulted in a dose-dependent decrease in AML stem

cells (left panel) but did not result in a decrease of normal BM stem

cells (right panel).
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Table 5 Molecular targets detectable in neoplastic stem cells (NSC)

Target type Molecular target example Potentially relevant as NSC-target in Targeted drug example

Surface antigens CD20 ALL, CLL Rituximab [285,286]

CD33 CML, AML GO [85,282]

CD44 AML mAb [72]

CD52 5q-AML, CLL Alemtuzumab [77,287]

CD123 AML mAb [69]

EGFR Colon-Ca Cetuximab [288]

ERBB2 Breast/Gastric/ Trastuzumab [172]

Ovarian-Ca

Cytokine receptors KIT GIST, CML Imatinib [203,289]

PDGFRA CEL, GIST Imatinib

EGFR Pancreas-Ca Erlotinib [182]

ERBB2 Breast-Ca Lapatinib[290]

Signaling molecules Hedgehog Basal cell carcinoma Vismodegib [291]

BRAF Melanoma Vemurafenib [292]

BTK CLL Ibrutinib [293]

mTOR Glioblastoma, Temsirolimus [294,295]

Renal cell carcinoma

Transcription factors MYC AML JQ1 [296]

Niche-NSC-axis CD26/DPPIV CML Gliptins [84]

CD184/CXCR4- Plerixafor [159]

VEGF-VEGFR - Bevacizumab [297]

SCF-KIT-axis- Imatinib [203]

Abbreviations: ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; AML, acute myeloid leukemia; mAb,

monoclonal antibodies, EGFR, epidermal growth factor receptor; Ca, carcinoma; GIST, gastrointestinal stroma cell tumor; CEL, chronic eosinophilic leukemia;

PDGFR, platelet derived growth factor receptor; BTK, Bruton’s tyrosine kinase; mTOR, mammalian target of rapamycin; MDR-1, multidrug-resistance protein 1;

CSA, cyclosporine A; DPPIV, dipeptidyl-peptidase IV; VEGF, vascular endothelial growth factor; SCF, stem cell factor.

Table 6 Mechanisms of drug resistance in NSC and strategies to overcome resistance

Mechanism Proposed strategy to overcame resistance Examples

NSC quiescence Antibody-based killing of NSC CD20, CD33, CD52,

Bi-specific mAb [77,280,286]

Mobilization of the immune system against NSC Vaccination [314],

IL-2 + histamine [315]

NSC mobilization into the cell cycle Cytokine-priming [316]

CTLA-4 inhibition Ipilimumab [317]

PD1 inhibition Nivolumab [318]

NSC-niche interactions NSC mobilization out of the niche Plerixafor [159]

Redirection of NSC into the niche Gliptins (CML [84])

Targeting of niche cells Revlimid [319]

Targeting of Niche modulating-cytokines (for example, VEGF) or Avastin [320]

Cytokine (for example, VEGF) synthesis Rapamycin [295]

Enforced drug efflux Verapamil [321,322] Blocking the efflux pumps CSA

Expression of anti-apoptotic proteins Blocking BCL-2 family members Obatoclax [323]

Blocking heat shock proteins (Hsp) Hsp70, Hsp90 [324]

NSC, neoplastic stem cells; IL-2, interleukin-2; CSA, cyclosporine A; CML, chronic myeloid leukemia.
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are not affected. High-dose chemotherapy and novel tar-

geted drugs may be able to eliminate the bulk of the

neoplasm and to eradicate most CSC (or LSC) in a given

tumor or leukemia. These debulking agents are still very

useful and instrumental in anti-cancer therapy. However,

relapses may develop from a few residual, drug-resistant,

premalignant (quiescent) NSC that exhibit intrinsic stem

cell resistance. Notably, even if all CSC/LSC can be

eradicated by drug therapy, (late) relapses can develop

from such residual, mostly quiescent premalignant NSC

[26,28,54,128,131,220,325]. In other words, many new

drug therapies can eliminate the mass of CSC/LSC that

have generated the dominant clone but are unable to

eradicate all quiescent premalignant NSC forming

smaller subclones [26,54,128,284]. These drugs may even

lead to operational cures without having the potential to

eradicate the disease completely [128,284]. The question

is how relevant the residual (often quiescent) NSC are in

these patients. Notably, not all types of MRD and MRD-

specific NSC may be relevant clinically, even if they may

expand to another dominant clone [28,54,128]. Likewise,

in hairy cell leukemia, cladribine (2CdA) may not be able

to eradicate all LSC, and most premalignant NSC may

survive. However, because of the relatively slow growth

rate and low mutation rate of NSC, full blown relapses

are relatively uncommon; and if they occur (typically

after 3 to 5 years), leukemic cells are again responsive to

the same drug. By contrast, in AML, the mutation rate

is high and relapses are always indicative of a poor out-

come and are often associated with multidrug resistance.

The same holds true for most solid tumors. In CML,

several novel TKI may induce complete continuous mo-

lecular remissions (CMR) [337,338]. Even imatinib can

induce long-term CMR in a smaller fraction of patients

[284]. When TKI are discontinued in these patients,

some of them will relapse but may again respond to ima-

tinib or other new TKI [284]. The exact curative poten-

tial of imatinib and of the new TKI in CML remains

unknown. In solid tumor, novel TKI have also been

applied in clinical trials and some of these agents are ra-

ther promising. However, long-term remissions are usu-

ally not induced with these agents even when combined

with chemotherapy. Overall, with a few exceptions, in

most advanced solid tumors, no drug-based CSC-

eliminating treatment approach has been developed so

far. However, there are several examples where targeted

drugs as single agents may lead to long-term disease

control. One example is the gastrointestinal stroma cell

tumors (GIST), where TKI have shown encouraging re-

sults [339-341]. Another example is renal cell carcinoma,

where inhibitors of the PI3K-mTOR pathway have

shown to exert major anti-tumor effects [342,343].

A general problem in cancer evolution is that many

CSC/LSC and most or all premalignant NSC may be

dormant cells, and that dormancy is often associated

with intrinsic resistance. One possible way to overcome

this type of resistance may be to apply targeted anti-

bodies, especially antibody-toxin conjugates which often

act independent of the cell cycle and thus can destroy

even dormant NSC. Likewise, in several types of lymph-

omas, the addition of pan-B-cell-targeting antibodies has

substantially improved cure rates and the overall out-

come (survival) in these patients [287,344,345]. An alter-

native strategy is to mobilize dormant cells into the cell

cycle or out of the niche (where dormancy may be prop-

agated) [159,346]. Finally, dormancy of NSC/CSC may

be overcome by exposure to cytokines that promote cell

cycle progression in NSC/CSC. Another principal strat-

egy may be to promote CSC/LSC exhaustion by indu-

cing differentiation and maturation in these cells or by

mobilizing the immune system against CSC/LSC.

A major problem is that in advanced cancer lesions,

CSC not only exhibit intrinsic (natural) stem cell resist-

ance but often also acquired drug resistance in more re-

sistant and thus more malignant subclones [28,54,128].

One strategy to address the multiple mechanisms of re-

sistance accumulating in advanced tumor lesion is to

apply drug combinations. Another strategy is to combine

conventional or targeted drugs with response modifiers

or agents that mobilize tumor cells into the cell cycle.

An alternative approach is to select targeted drugs that

can overcome acquired drug resistance resulting from

point mutations in critical target genes. Likewise, in

CML, second-generation BCR/ABL TKI can often over-

come imatinib resistance associated with BCR/ABL mu-

tations [338,347,348].

Another aspect in CSC/LSC evolution is that resist-

ance of CSC/LSC is often associated with specific inter-

actions between these cells and CSC niche. One strategy

to overcome this form of resistance is to mobilize CSC/

LSC from the niche where stem cells are considered to

be protected and thus less accessible to targeted drugs.

One example is the SDF-1/CXCR4 axis that can be

disrupted by the CXCR4 blocking agent Plerixafor

[349,350]. Recent data suggest that Plerixafor cannot

only mobilize normal hematopoietic stem cells from the

bone marrow stem cell niche but also LSC and that

Plerixafor-mobilized LSC may be more sensitive against

certain anti-leukemic drugs [159,346]. However, it re-

mains unknown whether all LSC can be mobilized by

Plerixafor, whether the mobilization is associated with a

rebound of more rapidly growing LSC in the niche and

whether addition of Plerixafor to conventional chemo-

therapy will indeed increase response and cure rates in

patients with AML or other leukemias. In addition, more

recent data suggest that in certain forms of leukemias

(CML), LSC are already mobilized cells that can easily

traffic between niches [84].
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Recent data suggest that the vascular (arteriolar) stem

cell niche is of particular importance for self-renewal of

LSC [225,247-249]. Therefore, additional effects of tar-

geted drugs on vascular cells or drug combinations

employing anti-angiogenic agents are of considerable

interest. One of these anti-angiogenic drugs is Lenalido-

mide, a major anti-angiogenic drug that produces major

responses in various myeloid and lymphoid neoplasms,

including 5q-MDS, multiple myeloma, and chronic

lymphocytic leukemia. Several other anti-angiogenic

drugs have been tested in hematopoietic and solid malig-

nancies, with varying success. Encouraging results have

been obtained when combining these agents with other

anti-neoplastic agents. A remarkable observation is that

the novel BCR/ABL TKI Nilotinib and Ponatinib (but

not imatinib) are potent inhibitors of endothelial growth

and angiogenesis [351]. Whether these additional effects

of these TKI are responsible for their better efficacy in

CML remains unknown. This is an attractive hypothesis,

since their much stronger effects on BCR/ABL (when

compared to imatinib) fail to explain their excellent clin-

ical efficacy, as CML LSC are considered to survive in-

dependent of BCR/ABL [352,353]. Table 6 provides

strategies aimed at overcoming LSC resistance in human

malignancies.

Summary and future perspectives

During the past few years several CSC/LSC-targeting

concepts have been developed with the aim to establish

more effective treatment approaches in applied oncol-

ogy. However, although such novel treatment concepts

are straight-forward, several questions remain. First,

the complexity of the somatic aberration networks and

of the resulting signaling cascades that drive oncogen-

esis during CSC/LSC evolution and may lead to CSC/

LSC resistance. To address this aspect, the use of drug

combinations or broadly acting drugs has been sug-

gested and may be required to eliminate or suppress all

relevant CSC/LSC populations in a given neoplasm.

Novel treatment concepts have to take additional as-

pects into account, including intrinsic resistance, the

related issue of CSC/LSC quiescence, and the inter-

action of CSC/LSC with their organ- and disease-

specific microenvironment (CSC niche). Additional

local factors such as hypoxia may also play a role in

CSC/LSC resistance. The hope for the future is that we

will be able to exploit our increasing knowledge about

CSC/LSC, in order to define new treatment concepts,

with the ultimate aim to eradicate CSC/LSC in various

cancer types as well as in leukemias. In advanced, drug-

resistant neoplasms, such treatment concepts may need

to be combined with high-dose chemotherapy and/or

stem cell transplantation.
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