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The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest

over the last decades. In particular, the analysis of biomarkers in cancer patients within

the pre- and post-therapeutic period is required to identify several types of cells, which

carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer

stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation

and can cause relapses. At the time point of tumor initiation, CSCs originate from

either differentiated cells or adult tissue resident stem cells. Due to their importance,

several biomarkers that characterize CSCs have been identified and correlated to

diagnosis, therapy and prognosis. However, CSCs have been shown to display a high

plasticity, which changes their phenotypic and functional appearance. Such changes

are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which

cause alterations in the tumor microenvironment. Induction of senescence causes

tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells

undergo growth arrest and immune cells are attracted. Besides these positive effects

after therapy, senescence can also have negative effects displayed post-therapeutically.

These unfavorable effects can directly promote cancer stemness by increasing CSC

plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by

promoting senescence escape and subsequent activation of stemness pathways. At the

end, all these effects can lead to tumor relapse and metastasis. This review provides

an overview of the most frequently used CSC markers and their implementation as

biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal

cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers.

Furthermore, it gives examples on how the CSC markers might be influenced by

therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment.

It points out, that it is crucial to identify and monitor residual CSCs, senescent

tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in

a therapy follow-up using specific biomarkers. As a future perspective, a targeted

immune-mediated strategy using chimeric antigen receptor based approaches for the

removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized

therapeutic approach are discussed.
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INTRODUCTION

In 2018, according to the GLOBOCAN study, the malignant
neoplasms with the highest mortality were lung (1.76 million
deaths), stomach (783,000 deaths), liver (782,000 deaths), breast
(627,000 deaths), and colorectal cancers (551,000 deaths) as
well as blood cancers including leukemia (309,000 deaths)
(1). All of these cancers are heterogeneous tumors containing
cells with various stem cell properties, as described below.
Already in 1877, Virchow’s student Cohnheim noticed this cell
population and pointed out that it possesses an embryonic
character (2). Today, those cells are called cancer stem cells
(CSCs) or tumor-initiating cells (TICs) and are seen as drivers
of tumor establishment and growth (2–5), often correlated to
aggressive, heterogeneous and therapy-resistant tumors (6, 7).
Upon application of therapeutic regimens such as chemo- or
radiotherapy the composition of tumor cell subpopulations
changes (6, 8). At first, tumor cells with a high proliferative
capacity are targeted and depleted causing a decrease in tumor
size while CSCs survive (9). Additionally, some tumor cells
will become senescent [therapy-induced senescence (TIS)], and
subsequently can cause a change in the tumor microenvironment
(TME) with tumor promoting effects due to the senescence-
associated secretory phenotype (SASP) (6, 10–12).

It is well-known that CSCs are resistant to treatment and
can cause tumor relapses (13). However, under the therapeutic
pressure and changed microenvironment CSCs can be newly
generated. In this case, these cells do originate from non-CSCs
or from therapy-induced senescent tumor cells (14–18). It is
therefore of importance to characterize these cells in detail and
to understand their origin at the time of tumor initiation and
tumor relapse.

This review underlines the role for a thorough investigation
of tumors especially in the post-therapeutic period. Such post-
therapeutic or therapy follow-up diagnostics are not conducted
in the clinic on a regular basis, yet. The importance of specific
biomarkers that analyze several parameters, such as CSCs
phenotypes, senescence and TME composition, will allow the
detection of therapy-resistant CSCs that cause tumor recurrence.
A precise elimination of those cells of risk in a timely fashion
using targeted cellular therapeutic approaches as the second line
therapy is discussed in this study.

CSCs AND THEIR ORIGIN AT TUMOR
INITIATION

Tumor initiation can either be driven by transformed
differentiated cells or transformed tissue resident stem cells
(19) (compare Figure 1). The transformation can take place
during tissue regeneration and can additionally, be initiated
and/or accelerated as a response to infections, toxins, radiation
or metabolic influences causing mutations (20, 21). During the
transformation process, oncogenes are overexpressed and tumor
suppressors are inactivated promoting uncontrolled growth of
the cells (19). As a consequence, cells de-differentiate and acquire
stem cell characteristics (19). The transformation of tissue

resident stem cells or their progeny is believed to presuppose a
different set of genomic changes allowing uncontrolled, niche-
independent proliferation (5, 22). As stem cells already possess
unlimited growth potential, it is believed that the transformation
of stem cells and their progeny requires only few genomic
changes (5, 22, 23). For example, the low mutagenic changes,
identified in more than 10% of gastric cancers suggest that these
tumors arise from tissue resident stem cell populations (24). Two
stem cell populations have been identified in gastric cancers:
slow cycling cells expressing the transcription factor Mist1 in
the gastric corpus and Leucine-rich repeat-containing G-protein
coupled receptor 5 (Lgr5)-expressing cells in the gastric antrum
(25–27). Both populations have been linked to cancer generation
in mouse models (24, 26, 27). In colon cancers, recent studies
in mice have shown that even differentiated intestinal epithelial
cells can be potential CSCs (28). The fact that adult differentiated
cells, tissue resident stem cells or their progeny can promote
tumor generation has also been shown in the liver. Cell tracking,
in vitro and in vivo studies showed that liver cancer can originate
from adult hepatocytes (29–32) as well as from hepatoblasts and
hepatic progenitors (31, 32).

Tumor type, prognosis and aggressiveness are also influenced
by the origin of the tumor, as analyzed for instance in
breast cancers (33–35). Breast tumors originating from luminal
progenitors are associated with a good prognosis, except those
overexpressing Her2 (34, 36). Tumors originating from basal-like
progenitors show a very aggressive phenotype (34).

In squamous cell carcinomas the differentiation phenotype
seems to be influenced by the cell of origin and the kind
of driver mutation, both responsible for the invasiveness and
aggressiveness of the tumor (37, 38). Loss of the phosphatase
and tensin homolog (Pten) as well as the liver kinase B1
(Lkb1) in lung epithelia causes tumor formation of highly
penetrant tumors. These tumors are rarely metastatic and are
characterized by a differentiated phenotype (37). Basal cells
located within the trachea and main bronchi have been shown
to self-renew and to form heterogeneous spheres (39). These
basal stem cells can cause basal cell hyperplasia or epithelial
hypoplasia, finally resulting in squamous cell metaplasia or
dysplasia, which are discussed as precursors of squamous cell
lung carcinomas (SCC) (39, 40). Studies by Fukui et al. suggest
that high basal cell signatures correlate to a clinically aggressive
phenotype in lung adenocarcinoma (40). Adenocarcinomas are
considered to originate from sub-segmental airways of the
bronchioalveolar stem cells or Type I and Type II pneumocytes
(39). These bronchioalveolar stem cells are quiescent in healthy
lungs but can enter proliferation cycles and could be targets
of mutations causing transformation (39, 41). In mouse
models, data indicate that small cell lung cancers (SCLC)
can also originate from other cell types, i.e., neuroendocrine
cells (42).

While in solid tumors the origin is heavily discussed, in
hematological tumors the situation seems to be clearer. In acute
myeloid leukemia (AML), the cell of origin is thought to be a
hematopoietic stem or progenitor cell (43). However, a subgroup
of human AML has been shown to share expression profiles
with lymphoid T-cell progenitors. The authors showed that
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FIGURE 1 | The origin of CSCs at tumor initiation: The two hypotheses of CSC generation. (A) The proliferation and differentiation of adult tissue resident stem cells is

part of the physiological regeneration program that maintains tissue homeostasis. Adult tissue resident stem cells divide asymmetrically and generate transient

amplifying cells, which possess a high proliferative capacity. These cells terminally differentiate; a process during which they will lose their proliferative capacity to finally

support organ homeostasis. (B) Tumors can be generated by step-wise accumulation of several mutations (red lightening) that transform differentiated cells and cause

a de-differentiation. Tissue resident stem cells as well as their progeny can accumulate mutations that lead to uncontrolled and niche independent growth.

Heterogeneous tumors are generated. CSCs share phenotypic characteristics and several markers have been described in solid as well as in liquid cancers.

under oncogenic conditions, DN2 (double negative 2) T-cell
progenitors process into lymphoid, biphenotypic, and myeloid
leukemia cells (43–45). In chronic myeloid leukemia (CML), the
cell of origin is characterized by the expression of the Bcr-Abl
oncogene, generated from a chromosomal translocation between
chromosome 9 and 22 (46, 47). This molecular aberration defines
the chronic phase in CML, which progresses into blast crisis upon
additional mutations that promote self-renewal (46, 47). While
leukemic stem cells (LSCs) are well-defined and characterized
in AML and CML, the concept of CSCs in acute lymphoblastic
leukemia (ALL) and also in non-hodgkin lymphoma (NHL) is
less established (48–50).

Tumors generated on the basis of CSCs are believed to
follow a unidirectional hierarchy, in which only the CSC
population is able to initiate tumor growth (51). At the time
point of tumor initiation, it is suggested that cancer stem
cells divide asymmetrically to maintain the CSC pool (52).
These asymmetric divisions generate transient amplifying cells,
which are undergoing symmetric divisions; therefore having a
high proliferative capacity (51, 52). Based on recent data from
hematological cancers (AML), the hierarchical model proposed
by Bonnet and Dick (43) is most likely a simplified description.
It is now believed that the organization of CSCs (in solid as
well as in hematological cancers) is more complex (52–56). In
contrast to the CSC model in which only a small subpopulation
of cells is able to promote tumor initiation and growth, the clonal

evolution model states that genetically unstable cells accumulate
genomic and genetic alterations over time causing an increase
in tumor aggressiveness, resistance and heterogeneity (5, 57).
Both models are not mutually exclusive, which can be explained
by the cellular plasticity (plasticity model) that suggests,
that different cellular states can interconvert (as explained
later) (5, 57).

Because CSCs have been shown to cause tumor initiation and
tumor relapses, the search for biomarkers that characterize these
cells and allow therapeutic as well as prognostic prediction or
follow-up is ongoing. The most prominent markers of solid and
hematological tumors are described in the following section.

Biomarkers for CSC Populations in Solid
Cancers
In solid cancers, the clinical use of CSC specific biomarkers is
very limited, besides the use of the carcinoembryonic antigen
(CAE), fragments of the cytokeratin 19 (YFRA 21-1) (58) and
the alpha-fetoprotein (AFP) that is expressed by cancer stem cells
(58, 59). Importantly, most markers expressed in CSCs can also
be found in adult tissue resident stem cell populations, human
embryonic stem cells (hESC) or adult tissues (60). Additionally,
most markers label heterogeneous stem cell populations pointing
to the fact that their characterization and isolation has to be
based on marker combinations using several surface markers or
combinations of extracellular as well as intracellular markers; to
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TABLE 1 | Examples of lung cancer stem cell markers and their use as

diagnostic, predictive, or therapeutic biomarkers.

Marker Stem cell

marker

Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD44 (and

its variants)

(61–66)

(39, 67–69)*

(70)**

(71) (71–80) (61, 64, 70, 81)

(39, 69)*

CD87 (82)

CD90 (83)

(39, 67)*

CD133 (84–99)

(39, 67–69)*

(70, 100)**

(74, 101–104)

(69)*

(91, 105–112)

(39, 67, 68)*

(70)**

CD166 (62, 66, 113)

(39, 68)*

(113)

Surface markers, not CD

EpCAM (62, 66, 86, 114,

115)

(116–120) (121) (117, 122–124)

Intracellular markers

ALDH (65, 84, 114, 125–

129)

(39, 68, 69, 130)*

(131) (132–134) (62, 128, 135)

(39, 69, 130)*

(70, 126)**

Nanog (70) (70, 126)

(69)*

Oct-3/4 (96)

(67, 69)*

(67)* (136)

(69)*

The table lists examples of cancer stem cell markers and indicates those which have been

tested as biomarkers within a therapeutic (metastasis, tumor stage, size), diagnostic, or

prognostic (survival, resistance etc.) approach. Starsindicate reviews (*) and contradictory

results (**).

identify and isolate cells that promote tumor initiation, resistance
and relapse.

Below, a short summary of the most prominent markers
is provided. CSC markers that could have potential usefulness
within therapeutic, diagnostic, and prognostic approaches are
pointed out (compare Tables 1–7) and focus on most deadliest
tumors of lung, liver, breast, stomach, and colorectal as well as
AML and CML. Tables 1–7 provide an extensive list of markers
expressed in CSCs. A comparison shows that several markers are
expressed in several tumor types.

CD44
CD44 is a biomarker which is not only expressed in solid
but also in hematological cancers (see below). Its expression
is associated with increased proliferation, self-renewal and
metastasis (61, 149, 462, 463). For example, in colorectal
cancers, expression of CD44/CD166 characterizes a cell
population able to form tumor spheres, suggesting anchorage-
independent proliferation of these cells (333). In other studies,
CD44high/CD133high cells showed increased tumorigenic
capabilities (334). Also in breast cancers, the percentage of
CD44+/CD24−/CK+/CD45− cells was shown to be increased
in malignant lesions compared to non-malignant lesions
(139). A significant decrease in proliferation and migration
of breast cancer cells was observed after the knock-down of

TABLE 2 | Examples of breast cancer stem cell markers and their use as

diagnostic, predictive, or therapeutic biomarkers.

Marker Stem cell

marker

Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD24 (137)

CD29 (ß1

integrin)

(137, 138)

CD44 (and

its variants)

(139–149) (150–154) (76, 150, 152,

154–166)

(166–171)

(172, 173)**

CD49f (174–176)

(177)*

(178) (175, 178, 179)

CD61 (137, 180)

CD70 (181)

CD90 (182)

CD133 (183)

(184)*

(185–187) (188–190)

(184)*

(191–193)

(184)*

Surface markers, not CD

CXCR4 (194)

EpCAM (186) (186)

LGR5 (195) (195)

ProC-R (196)

Intracellular markers

ALDH (147, 148, 197,

198)

(199, 200)*

(198, 201, 202)

(199)*

(171, 192, 197,

203–208)

(200)*

(209, 210)**

BMI-1 (143, 211–218)

(219)*

Nanog (142) (220, 221)

Notch (222–224) (222, 225) (187, 212, 222,

224, 226–230)

(222, 226, 231–

234)

(235)*

Oct-3/4 (142) (220, 221)

Sox2 (142)

Signaling pathways

Wnt/ß-

Catenin

(195, 236, 237) (236) (237)

The table lists examples of cancer stem cell markers and indicates those which have been

tested as biomarkers within a therapeutic (metastasis, tumor stage, size), diagnostic, or

prognostic (survival, resistance etc.) approach. Stars indicate reviews (*) and contradictory

results (**).

CD44 (140). In gastric cancers, the knock-down of CD44
reduced sphere formation and caused decreased tumor growth
in severe combined immunodeficiency mice (246). In many
tumors (e.g., breast and liver), CD44 is expressed as isoform
and its expression has been associated with increased cancer
stem cell properties (141). In lung cancers, CD44v9 expression
correlates significantly with early-stage lung adenocarcinoma
and epidermal growth factor receptor (EGFR) mutations (464).
Variants of CD44 are also expressed in gastric cancers and
promote tumor initiation (248).

The CSC marker CD44 has been indicated as a biomarker
for diagnostic, therapeutic, and prognostic approaches (compare
Tables 1–5). In gastric cancer patients, CD44+ circulating
tumor cells correlated with a poor prognosis (465). In colorectal
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TABLE 3 | Examples of gastric cancer stem cell markers and their use as

diagnostic, predictive, or therapeutic biomarkers.

Marker Stem cell marker Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD24 (238)

(239)*

(240)* (241) (242–244)

(239, 245)*

CD44 (and

its variants)

(246–251)

(239, 240, 245,

252)*

(247, 251,

253, 254)

(240)*

(255–257)

(239, 240,

245)*

(247, 251, 254,

258–260)

(239, 240, 245,

252)*

CD90 (251)

(239, 245)*

CD133 (247, 249, 250)

(239, 240, 252)*

(254, 261)

(240)*

(257)

(239, 240)*

(254, 262–265)

(239, 240, 252)*

Surface markers, no CD

CXCR4 (266) (267)* (268–271)

EpCAM (248, 249, 272)

(239, 240, 252)*

(273) (265, 272)

LGR5 (274)

(252)*

(240)* (275, 276)

(252)*

(275, 277–279)

LINGO2 (280) (280)

Intracellular markers

ALDH (249, 281, 282)

(239, 240, 252)*

(260, 281, 282)

Letm1 (283) (283)

Musashi2 (284) (284)

Nanog (285)

(239, 286)*

(287)

(240)*

(287, 288)

(286)*

Oct-3/4 (239, 252)*

(289)**

(247, 265, 288)

(289)**

Sox2 (247)

(239, 240, 252,

290)*

(240)*

(291)**

(292) (247, 288, 293)

(265)**

The table lists examples of cancer stem cell markers and indicates those which have

been tested as biomarkers within a therapeutic (metastasis, tumor stage, size, resistance),

diagnostic (i.e., resistance), or prognostic (survival, resistance etc.) approach. Stars

indicate reviews (*) and contradictory results (**).

cancers, a prognostic quantitative real-time PCR was established
to analyze the expression of CD44v2 showing that a high
expression correlated with a worse prognosis (339). In gastric
cancers, the expression of CD44 and CD90 correlated with
distant metastasis and could therefore be used as a diagnostic
biomarker (251) and was suggested as a biomarker for treatment
response (253). Therapeutic approaches targeting CD44 have
been made using e.g. adenoviral delivery of siRNA in vitro (337).
Furthermore, CD44-targeting drug conjugated aptamers (76) or
hyaluronic acid coated onto nanoparticles have been in the focus
of research (155). Antibody-based photosensitizer conjugates
for combined fluorescent detection and photo-immunotherapy
(PIT) of CD44-expressing cells in triple-negative breast cancers
(TNBC) (150) or other antibody-based approaches tested in
safety studies (466–468).

CD133
The biomarker CD133 (Prominin-1) is expressed on hESCs and
rarely found on normal tissue cells (60). The marker has been
additionally identified in tumors of breast, liver, stomach, and

TABLE 4 | Examples of liver cancer stem cell markers and their use as diagnostic,

predictive, or therapeutic biomarkers.

Marker Stem cell

marker

Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD24 (294–296)

(297, 298)*

(298)* (295)

CD44 (299, 300)

(298)*

(300–303)

(298)*

(304)**

CD90 (295, 300,

305–308)

(297, 298)*

(295, 300,

304, 309)

(298)*

CD133 (295, 296, 300,

310–313),

(297, 298)*

(314) (295, 300,

304, 311, 314–

319), (320)**,

(298)*

Surface markers, not CD

EpCAM (297, 298)*

(294, 300,

304, 311, 321)

(322) (298)* (300, 301, 304,

311, 319, 321–

327)

(298)*

Intracellular markers and pathways

AFP (311, 321) (328) (311, 321,

329), (330)*

Nanog (312, 313,

331), (298)*

(298)* (331)

(298)*

Notch (295, 296, 305) (295)

Oct-3/4 (313, 331),

(298)*

(309, 331),

(298)*

Sox2 (313)

(298)*

Wnt/

ß-catenin

(295, 313) (295) (313)

(330)*, **

The table lists examples of cancer stem cell markers and indicates those which have

been tested as biomarkers within a therapeutic (metastasis, tumor stage, size, resistance),

diagnostic (i.e., resistance), or prognostic (survival, resistance etc.) approach. Stars

indicate reviews (*) and contradictory results (**).

colon (compare Tables 1–5) and has also been described as a
marker that characterizes cells with high tumorigenicity and a
high ability to form spheroids (184, 469). In breast cancers, its
expression correlates with N-cadherin expression that was found
to be significantly higher in patients withmetastasis (191). In lung
cancers, the expression of CD133 has been correlated to epithelial
to mesenchymal transitions (EMT), in combination with other
additional stem cell markers, such as BMI1 (84).

The expression of CD44 and CD133 in colorectal cancers
can predict metastasis (470), however, no correlation to patient
outcome could be detected (471). In breast cancers, CD133
mRNAwas suggested to be suitable for prognosis prediction (193,
472) and CD133 protein has been correlated to a poor prognosis
(193). Pre-clinical therapeutic approaches cover antibody-based
targeting of colorectal (341, 342) as well as breast cancers (188)
(compare Tables 1–5).

EpCAM
The epithelial cell adhesion molecule (EpCAM, CD326) is
expressed on CSCs in various tumor types including colon and
hepatocellular cancers (473–476). Furthermore, it is expressed
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TABLE 5 | Examples of colorectal cancer stem cell markers and their use as

diagnostic, predictive, or therapeutic biomarkers.

Marker Stem cell

marker

Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD24 (332)

CD44 (333–335)

(336)*

(337, 338) (339)

CD133 (334, 340)

(336)*

(340) (338, 341–

343)

(340, 344)

CD166 (333)

(336)*

(333)

Surface markers, not CD

EpCAM (335)

(336)*

(345, 346)

(347)*

LGR5 (335, 348–350)

(336)*

(351) (352) (353, 354)

Intracellular markers

ALDH (335, 355, 356)

(336)*

(355)

(357)*

Letm1 (358) (358)

Nanog (359, 360)

(336)*

(361) (361, 362)

Oct-3/4 (363, 364)

(336)*

(363, 365)

Sall4 (366) (366)

Sox2 (359, 367, 368)

(336)*

(367–369)

The table lists examples of cancer stem cell markers and indicates those which

have been tested as biomarkers within a therapeutic (metastasis, tumor stage, size,

resistance), diagnostic (i.e., resistance), or prognostic (survival, resistance etc.) approach.

Starsindicate reviews (*).

in non-transformed tissues such as epithelial cells (476), and
various stem and progenitor cells (477, 478). EpCAM is involved
in proliferation and differentiation as well as in cell signaling
and formation and maintenance of organ morphology (479).
In cancer tissue, EpCAM is homogeneously expressed on the
cell surface, while in epithelia it is expressed on the basolateral
side (476).

In breast cancers, the expression of EpCAM is correlated
to CSC-like phenotypes that promote formation of bone
metastases in mice (480). In lung cancers, the expression
of EpCAM is often associated with the expression of
CD44 and CD166. Triple positive cells show increased
clonogenicity, spheroid formation, self-renewal capacity,
and show increased resistance to both 5-fluouracil and
cisplatin (62).

As one of the first CSC markers, EpCAM has been
evaluated as a therapeutic biomarker (compare Tables 1–
5). Targeting EpCAM with different antibody formats has
been performed in colorectal as well as breast cancers
(347). In colorectal cancers, a therapeutic approach targeting
EpCAM+ cells with aptamers has been performed in pre-clinical
conditions (345, 346).

TABLE 6 | Examples of AML cancer stem cell markers and their use as

diagnostic, predictive, or therapeutic biomarkers.

Marker Stem cell

marker

Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD33 (370) (371–392) (393)

CD123 (370, 394–

396)

(395, 397–

399)

(373–376, 397,

400–412)

(394, 399,

403, 413)

Surface markers, not CD

CLL-1 (414–416) (370) (414, 417–419) (415, 420)

TIM3 (421) (422) (420, 423)

Intracellular markers

ALDH (424) (424, 425)

Nanog (426) (427) (426)

Oct-3/4 (428) (429) (429–431)

Sox2 (431, 432)

The table lists examples of cancer stem cell markers and indicates those which have

been tested as biomarkers within a therapeutic (metastasis, tumor stage, size, resistance),

diagnostic (i.e., resistance), or prognostic (survival, resistance etc.) approach.

Intracellular Biomarkers as Regulators of Stemness

in Solid Cancers
Both embryonic and CSCs show unlimited growth, invasive
capacity and are characterized by an undifferentiated cellular
state (481). This feature depends on transitions between epithelial
and mesenchymal states, regulated by a network of intracellular
pluripotency transcription factors. As reviewed by Hadjimichael
et al. and also described by others pluripotency in ESC is
regulated by a core-network of transcription factors, consisting
amongst others of Oct-3/4, Sox2, Nanog, Klf4, and c-MYC as
well as signaling pathways such as the Jak/Stat, Wnt/ß-catenin,
Hedgehog/Notch, TGF-ß as well as FGF signaling pathways (367,
482, 483). The core-pluripotency network consisting of Nanog,
Oct-3/4 and Sox2 (described in detail below) activates genes
of self-renewal and suppresses genes involved in differentiation
(482). Pluripotency factors as well as signaling pathways have
been indicated as biomarkers for CSCs as shortly described below
(compare Tables 1–5). Of note, the tables do not include all
biomarkers, however describe the most abundant ones reported
in the literature.

Sox2
The transcription factor Sox2 belongs to the SRY-related HMG-
box (SOX) family, and is involved in the maintenance of an
undifferentiated cellular phenotype (367). Its aberrant expression
in cancers often leads to increased chemotherapy resistance and
asymmetric divisions, as observed in colorectal cancers (368).
In those, Sox2 expression correlates with a stem cell state and
with a decreased expression of the caudal-related homeobox
transcription factor 2 (CDX2), which could serve as a prognostic
marker for a poor prognosis (367, 368). In gastric cancers,
expression of Sox2 correlates with the tumor stage as well as with
a poor prognosis (247, 288). The formation of tumor spheroids in
vitro also correlates to the overexpression of CD44 and CD133 as
well as the transcription factors Sox2, Nanog and Oct-3/4 (247).
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TABLE 7 | Examples of CML cancer stem cell markers and their use as

diagnostic, predictive, or therapeutic biomarkers.

Marker Stem cell marker Biomarker

diagnostic

Biomarker

therapeutic

Biomarker

prognostic

Surface markers, CD

CD25 (433–437)

(438–440)*

(439)* (441)

CD26 (433–437, 442–445)

(438–440)*

(443, 446)

(439)*

(434, 447, 448) (443)

CD33 (433, 434)

(438–440)*

CD36 (434, 435)

(438)*

(435)

CD117 (433, 434, 437)

(439, 440)*

CD123 (434, 449–451)

(439, 440)*

(449, 450)

Surface markers, not CD

IL1RAP (433–437, 452, 453)

(438–440)*

(439)* (452, 453) (437)

Intracellular markers

JAK/STAT (433)

(438)*

Wnt/β-

catenin

(454–456)

(438, 457)*

(454, 458, 459)

(457)*

FOXO (460)

(438)*

(460)

Hedgehog/Smo/Gli2 (461)

(438)*

(461)

The table lists examples of cancer stem cell markers and indicates those which have

been tested as biomarkers within a therapeutic (metastasis, tumor stage, size, resistance),

diagnostic (i.e., resistance), or prognostic (survival, resistance etc.) approach. Stars

indicate reviews (*).

However, in another study, Sox2 levels were downregulated in
gastric cancers in comparison to normal tissue and high Sox2
expression correlated with decreased metastasis and a better
prognosis for the patient due to increased p21 levels (293).
Therefore, the oncogenic functions of Sox2 are controversially
discussed in gastric cancers, in which Sox2 might also have
tumor-suppressor functions. These different functions seem to
depend on the cancer origin and cellular context (484).

Oct-3/4
Oct-3/4, also known as POU5F1, belongs to the POU homeobox
gene family and is also a regulator of pluripotency in mammalian
stem cell population. Oct-3/4 is upregulated in several cancers
and may support the neoplastic transformation and resistance
(485). In colorectal cancer cells, Oct-3/4 causes increased
migration and liver metastasis (363, 486) correlating with
poor survival (365). As reviewed by Prabavathy et al. Oct-3/4
expression is correlated to increased self-renewal and metastasis
in lung cancer cells (67). A meta-analysis showed that Oct-3/4
expression in lung cancer was associated with poor outcomes
concerning the differentiation degree, the TNM Classification
of Malignant Tumors (TNM) and lymphatic metastasis (136).

In hepatocellular carcinoma (HCC) Oct-3/4 expression was
correlating with tumor size and recurrence (309).

Nanog
Nanog is a homeobox domain transcription factor widely
expressed in human cancers (487). In colorectal tumors its
expression was significantly increased in CD133+ cells, and on
the basis of a univariate analysis, Nanog expression correlated
linearly to liver and lymph node metastasis and the TNM stage.
It might therefore be useful as a prognostic biomarker in post-
operative liver metastasis (362). In breast cancer, expression of
Nanog and Oct-3/4 has been correlated to a poor prognosis of
the patient as well as EMT (220, 221). In HCC cell lines Nanog
expression drives selfrenewal and invasion, metastasis, and drug
resistance (298).

Biomarkers for CSC Populations in
Hematological Cancer
CSC biomarkers of AML and CML have been listed in Tables 6,
7. They indicate commonly used markers and point out possible
functions of these markers as biomarkers in prognosis, therapy,
and diagnosis. Below a short introduction of the most relevant
markers is given.

CD44
As mentioned above, CD44 is a common marker shared by
many cancers (60). In hematological cancers, CD44 expression is
functionally associated with chemotherapy resistance (488, 489).
The expression of CD44 in AML is significantly correlated with
a poor overall survival (OS) (490). Furthermore, CD44 was
shown to be significantly higher expressed in non-remission
AML patients (490). A highly relevant function of CD44 for LSCs
is the adhesion to the bone marrow niche (491).

CD123 and CD33
In hematological malignancies, such as AML, CD123 as well as
CD33 have been described as the “classical” CSC markers (492,
493). CD123 is a marker expressed on LSCs (395, 397, 494), but
not exclusively (395, 398). In AML patients, CD123 expression
correlates to the therapy response rate (413, 495), the relapse
risk (403), and a shorter disease-free period and OS (399, 413).
CD123 has been associated with increased proliferation and
differentiation (494, 496).

CD33 is historically, the most commonly used marker for
AML stem cells, with clinical implementation of CD33 targeting,
dating back to the Food and Drug Administration (FDA)
approval of gemtuzumab ozogamicin (GO) in 2000 (497). CD33
is highly expressed on blasts in around 85–90% of AML patients
(433, 438, 497) and also expressed at higher densities in CML
(433, 438) but less on healthy hematopoietic stem cells (HSCs).
These cells are additionally characterized by expression of CD25,
CD26, and Interleukin-1 receptor accessory protein (IL-1RAP)
and also other markers (440).

CLL-1
The C-type lectin-like molecule-1 (CLL-1) is a promising
alternative to the “classical” LSC targets (414). The majority of
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AML patients shows CLL-1+ LSCs, a marker not being expressed
onHSCs (370, 414–416). Compared to CD33, CLL-1 was not only
more frequently and stronger expressed on LSCs, but also not
or more weakly expressed on normal tissues leading to reduced
off-target effects after treatment with a respective antibody-
drug conjugate. Therefore, CLL-1 might be a more suitable
and specific LSC target than CD33 (414). A high expression
of CLL-1 is associated with poor prognosis (420) and a faster
relapse (415) in AML. Interestingly, controversial observations
have been made using CLL-1 as a biomarker after chemotherapy.
The diagnostic value of CLL-1 is discussed controversially:
while Zhang et al. showed that CLL-1 was increased after
chemotherapy (371), others showed that there is no difference
between CLL-1 expression at diagnosis and at relapse (415) or
even detected a decreased CLL-1 expression at relapse (370). The
relevance of CLL-1 as a prognostic biomarker for chemotherapy
failure or relapse is therefore still unclear. Its expression is not
detectablewithin the chronic phase of CML (440).

TIM-3
Another “non-classical” LSC biomarker is T-cell
immunoglobulin and mucin 3 (TIM-3), that is highly expressed
on LSCs but not expressed on healthy HSCs (498). It is correlated
to a poor prognosis (420) and treatment failure (423). Stem cell
properties of TIM-3+ cells were confirmed by engraftment in a
xenograft mouse model (421).

Intracellular Biomarkers as Regulators of Stemness

in Hematological Cancers
The core-network of pluripotency associated transcription
factors as well as signaling pathways have also been analyzed in
hematological cancers. Fifty AML patients have been analyzed
for the expression of Sox proteins, which are overexpressed in
10–22% of the patients. The analysis showed that high levels of
Sox proteins may have a prognostic value (432). The analysis of
Oct-3/4 expression correlated with an unfavorable prognosis and
is associated with FMS-like tyrosine kinase 3-internal tandem
duplications (FLT3-ITD) (430).

Activation of stemness-associated pathways especially in CML
has been shown to promote extensive proliferation and has been
linked to the onset of blast crisis, which is associated with a loss
of differentiation of the leukemia initiating cells. An important
impact on this effect has the Wnt/ß-catenin pathway (46) that
promotes HSC proliferation, independent of the bone marrow
niche (5, 22, 499). Especially, resistance to the tyrosine kinase
inhibitor imatinib has been shown to correlate to an increased
nuclear localization of ß-catenin (454, 458, 500). Inhibitors
targeting the Wnt pathway have been shown to be of advantage
for example in long-term cell cultures (500). Additionally,
the hedgehog pathway has been suggested to be involved in
chemotherapeutic resistance in CML, which is also characteristic
for chronic phase CML cells (47). Mouse studies also indicate the
involvement of the hedgehog pathway (46, 47), which has been
implicated as a therapeutic biomarker for CML (456, 461).

To summarize, CSCs at tumor initiation originate from either
differentiated cells or adult tissue resident stem cells (5, 19, 22).

Several data indicate that the origin strongly correlates to the
aggressiveness of the tumor. Therefore, extra- and intracellular
biomarkers that characterize CSCs have been identified and
implemented to be of diagnostic and prognostic advantage.
However, stem cells are subject to a high degree of plasticity
modulated by the TME (19), that is significantly changed by
chemo- and radiotherapies and composed of several different cell
types. In the following section, focus will be laying on senescent
tumor cells as part of the TME as they have long-term influence
on TME and CSC development and progression.

THE ESCAPE OF CANCER STEM CELLS
FROM THERAPY

At the moment first-line therapeutic treatments in progressed
tumors include in the most cases surgery, chemo- as well as
radiotherapies (501) (compare Figure 2). Those have been shown
to induce DNA damage and to trigger senescence in cancer cells,
a process known as therapy-induced senescence (TIS) (10, 502,
503). TIS will cause a decreased tumor size and attracts immune
cells such as neutrophils, monocytes as well as T-cells toward
senescent tumor site (503). However, over a long-term period the
anti-tumorigenic effects of TIS are lost and the cancer might gain
stemness causing tumor relapses (Figure 2).

Therapy-Induced Senescence: Its
Hallmarks, Biomarkers, and Its Role in
CSC Generation
Agents that induce DNA damage such as chemo- and
radiation therapies have been identified to trigger senescence in
differentiated cancer cells (10). TIS has been in the research focus,
because it significantly contributes to the long-term outcome of
patients (12). The DNA damage response ultimately activates
one or several tumor suppressors pathways [p53, p16 (Ink4a),
p21 (Waf1), and retinoblastoma (RB)], that trigger and maintain
the senescence growth arrest (504). However, it is important to
mention that the senescence phenotype can also be induced in
cancer cells which lack functional p53 and RB protein (504).
TIS and senescence in general, are recognized as a double-edged
sword, that on the one hand leads to the attraction of immune
cells, inflammation, and elimination of senescent tumor cells and
correlates with a positive post-treatment prognosis and treatment
outcome (505–507). On the other hand, senescence can play a
strong pro-tumorigenic role that supports CSC generation, as
described below.

Senescent cells are characterized by biochemical and
morphological changes such as flattening and/or nuclear
enlargement (508). There are several classical biomarkers of
cellular senescence and they comprise: senescence-associated
beta-galactosidase (SA-ß-gal) activity, expression of p53 protein,
the amount of p53 in the nucleus, increase in expression of p14
(Arf), p16 (Ink4a) and p21 (Waf1), SASP, and often senescence-
associated heterochromatic foci (SAHF) (12, 505, 507, 509–515).
Furthermore, senescent cells display low Ki67 levels and show
levels of heterochromatin protein 1 (HP1) gamma (516), as well
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FIGURE 2 | Kinetic of tumor development in pre-, early-, and late-therapeutic period upon application of chemo- and/or radiation therapy: current situation in the

clinic. (A) In the pre-therapeutic situation, heterogeneous tumors are composed of several cell types, including CSC, tumor cells, TAMs, and CAFs; all characterized

by biomarkers. (B) In the early post-therapeutic period, upon application of the first-line treatment (that currently uses mostly chemo- or radiotherapeutic regimens)

several important changes occur in the tumor, in particular: tumor cells or CAFs die due to the therapy or become senescent, whereas CSCs mostly survive the

treatment. Senescent cells (tumor cells and CAFs) attract immune cells toward the senescent site via SASP. The SASP therefore plays a positive role and attracts

immune cells in this early post-therapeutic situation. Attracted immune cells promote the clearance of dead, of necrotic, and senescent tumor cells and CAFs. (C) In

the late post-therapeutic situation uncleared senescent tumor cells and senescent CAFs and SASP thereof play a negative (pro-tumorigenic) role and support tumor

development. SASP molecules provide stimulating factors for CSCs for further uncontrolled proliferation as well as their maintenance. Also, remaining senescent

tumor cells acquire additional mutations that promote activation of a stemness phenotype and finally a tumor relapse.

as di- or tri-methylated lysine 9 of histone H3 (H3K9Me2/3)
and histone H2A variant (macroH2A) (505, 517, 518). The
usefulness of telomere length as a biomarker of senescence has
been questioned (505).

Biomarkers that underline the effect of a therapeutic approach
based on the induction of senescence have to be evaluated
carefully and quite often simultaneously. The investigation
of senescence markers after post-operative chemotherapy in
muscle-invasive bladder cancer (MIBC) revealed that the
simultaneous expression of several markers involved in the p53
pathway has to be checked to correctly assess the pathological
outcome of MIBC (509). The analysis revealed that the
expression of p14 (Arf) was associated with an impaired response
to chemotherapy and poor prognosis, whereas p21 (Waf1)
expression was related to reduced tumor cell proliferation (509).

TIS can play an anti-cancerous role (503). As demonstrated
in our studies in premalignant and malignant liver disease,
the induction of senescence leads to a so-called “senescence
surveillance” mechanism, which relies on innate and adaptive

immune cells. These cells clear senescent premalignant cells,
thereby protecting premalignant liver from cancer development
(535, 536). Interestingly, in further studies, we could show that
the chemokine (monocyte chemoattractant protein 1, MCP-1)
axis is of importance for the induction and maintenance of
senescence and for the sufficient immune surveillance in the
liver (525). Several biomarkers of senescence were found to
correlate with a disease-free survival or with an improved OS in
several solid cancers (516, 524). One such indicator, a lysosomal-
beta-galactosidase (GLB1) that hydrolyzes beta-galactose from
glycoconjugates and represents the origin of SA-ß-gal, was
reported as a reliable senescence biomarker in prostate cancer
(516). Inhibition of the cyclin-dependent kinase 4/6 (CDK)-
RB pathway by a novel drug, SHR6390, resulted in reducing
the levels of Ser780-phosphorylated RB protein and correlated
with the G1 arrest as well as with cellular senescence in a wide
range of human RB+ tumor cells in vitro (520). Xiang et al.
identified seven senescence-associated genes (SAGs, Table 8)
significantly decreased in senescent cells and increased in HCC
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TABLE 8 | Biomarkers of therapy-induced senescence (TIS).

Biomarker References

Senescence-associated beta-galactosidase

(SA-β-Gal)

(12, 14, 504, 505, 510, 516–520)

P53 (14, 504, 520, 521)

(507)*

Retinoblastoma (RB) Protein

(CDKN2A; Ser780phosphorylated RB protein;

cyclin-dependent kinase

(CDK) 4/6-retinoblastoma)

(12, 14, 504, 519–521)

(507)*

P14 (human)

P19 (mouse)

(12, 509, 510, 514, 515, 519)

(505, 507, 513)*

P16 (INK4A; CDKN2) (12, 14, 509, 512, 515, 519, 522)

(505, 507, 513, 514, 516)

P21 (WAF1) (14, 509, 522)

(505, 507, 513)*

Senescence-associated heterochromatic foci

(SAHF)

(12, 509, 510, 515, 519)

(505, 507, 513)

Heterochromatin protein 1 (HP1) gamma (509, 516, 518)

Telomere length (505)*

Di- or tri-methylated lysine 9 of histone H3

(H3K9Me2/3)

(505, 517, 518)

Histone H2A variant (macroH2A) (505, 517, 518)

Lysosomal-beta-galactosidase (GLB1) (516)

Inhibition of growth (ING) family of proteins

(ING−1,−2,−3,−4,−5)

(523)

Senescence-associated genes (SAGs) family:

[18B (KIF18B), Citron kinase (CIT), Centrosomal

protein 55 (CEP55), minichromosome

maintenance complex component 5/7 (MCM),

Cell division cycle 45 (CDC45), enhancer of zeste

homolog 2 (EZH2)]

(524)

Senescence-associated secretory phenotype

(SASP)

(12, 14, 510, 519)

(505, 507, 509, 522)

Soluble TNF-receptor-II (11, 523)

Chemokine (C-C motif) receptor/ligand 2,

(CCR2/CCL2); Monocyte chemoattractant

protein 1 (MCP-1) axis

(525)

IL-1 (526)

IL-6 (527–531)

IL-8 (528, 531, 532)

(526, 527)

Regulated on activation, normal T cell expressed

and secreted (RANTES)

(533, 534)

Examples of the most important biomarkers of TIS are listed. Stars indicate reviews (*).

tissues (524). Interestingly, those SAGs were strongly associated
with OS, especially in Asian populations, and had a better
predictive accuracy in comparison to serum AFP in predicting
OS of HCC patients (524). Recently, Smolle et al. reviewed and
underlined the role of members of the inhibition of growth (ING)
family. These act as tumor suppressors, regulating cell cycle,
apoptosis, and cellular senescence. The authors proposed them
as clinically useful biomarkers in the detection and prognosis of
lung cancer (523).

In line with the positive role of senescence, evidence
exists regarding the role of TIS in turning “cold” tumors

toward a “hot” phenotype that results in activating immune
responses against tumor antigens (503). As reported in
Her2+ breast cancer patients treated with Trastuzumab and
chemotherapy, the treatment-induced epitope spreading was
characterized by increased antibody responses not only to
the tumor antigen Her2, but also to endogenous CEA,
insulin-like growth factor-binding protein 2 (IGFBP2), and
p53 (521).

TIS is a very important protective mechanism that is induced
immediately after chemo- or radiation therapy. TIS mediates the
recognition and clearance of senescent tumor cells by immune
cells (503, 535). Induction of TIS after the therapy is associated
with a better prognosis and OS (524). However, if senescent
tumor cells are not cleared in a timely fashion, their role at a later
time points shifts from positive to negative, as discussed in the
section below.

Negative Role of TIS: Cancer Progression
Several studies report a pro-tumorigenic effect of TIS leading
to cancer recurrence and support of tumor development (503).
Uncleared senescent cells acquire additional mutations, thereby
escaping the cell cycle arrest and transform into malignant cells
(536). Moreover, factors secreted by senescent cells are also
reported to play a strong tumor-promoting role (526).

Was et al. suggested that senescent human colon cancer
cells (HCT116) that appear during a doxorubicin-based therapy
enter a “dormant” cellular state, survive the treatment, and
cause tumor re-growth (537). Importantly, the recent findings
by Scuric et al. suggest a long-term effect of chemotherapy
and/or radiation exposure upon TIS (11). In this study, markers
of cellular senescence, including higher DNA damage and
lower telomerase activity, were observed many years later
in breast cancer survivors (11). Elevated levels of a soluble
tumor necrosis factor (TNF)-receptor-II, a pro-inflammatory
biomarker and one of the main SASP molecules, were also
detected (11). A negative effect of SASP was correlated to a
p53 single-nucleotide polymorphism (SNP) at codon 72 which
is correlated to increased risk of breast cancers (538). Using a
humanized mouse model, Gunaratna et al. showed that SASP
caused an increased invasion of pro-inflammatory macrophages
(522). However, the inflammation proceeded into a chronic
inflammation with pro-tumorigenic action and tumor-associated
macrophages (TAMs) contributed to angiogenesis and increased
tumor growth rates (522). Also, senescent cancer-associated
fibroblasts (CAFs) and, in particular, expression of Caveolin-
1 (CAV1) promote tumor invasion in pancreatic cancer (539).
Moreover, in clinicopathological characteristics of patients, a
high CAV1 expression directly correlates with higher levels of
serum tumor antigens, with the rate of advanced tumor stage, and
with significantly worse outcomes in both overall and disease-free
survival (539).

It has been suggested that cancer therapies, especially chemo-
and radiotherapies, possess long- and late-term pro-tumorigenic
side effects and could therefore contribute to the relapse of
the malignant disease they were intended to treat (540). Such
long-term effects could be caused by the decreased removal of
senescent cells, as described below.
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Cancer Stemness: Senescence Escape
As mentioned above, cells undergoing senescence can still escape
the senescence program and become malignant while acquiring
additional mutations (519, 535, 536) (Figure 2). In our studies,
we observed a spontaneous mutation [a deficiency in p19
(Arf)] in Ras-expressing hepatocytes, which resulted in a full-
blown HCC development using a Ras-induced precancerous
liver disease model (535, 536). The reversibility of TIS can be
caused through the inactivation of tumor suppressors p53, p16
(Ink4A), p19 (Ink4d), and/or RB (504, 507, 519). Additionally,
the over-expression of CDC2/CDK1 and survivin can promote
cancer stem cell survival and can also promote the development
of polyploidy (507). In general, mutations in CDKN2A, coding
for p16 (Ink4a, CDKN2A), p21 (Waf1, CDKN1A), and p27
(Kip1, CDKN1B) as well as E2F3 and EZH2, and a high c-MYC
expression might result in low percentages of senescent cells
(504, 519). Moreover, particular mutations completely protect
melanoma cells from cell cycle arrest upon chemotherapy:
DMBC29 melanoma cells that carried a EZH2S412C mutation,
expressed c-MYC at a low level and a wild type of CDKN2A
did not undergo senescence, in contrast to many melanoma cells
treated with vemurafenib and trametinib (519).

An escape of cells from senescence was also identified by
Milanovic et al. in B-cell lymphoma studies (14). In those
studies, the researchers showed that senescent cells substantially
upregulated an adult tissue stem cell signature and activated
Wnt signaling (14). This senescence-associated stemness was
an unexpected cell-autonomous phenotype that caused the
generation of cells with a higher tumorigenic potential in
vitro (14).

However, escape from senescence is not the only pathway
that promotes an increase in the cancer stemness phenotype.
Stemness within the tumor tissue is also regulated indirectly
by signaling molecules which support the maintenance of
stemness in CSCs as well as non-CSCs, as described in the
following sections.

Cancer Stemness: SASP and CSC Maintenance
The stemness phenotype within a tumor can also be mediated via
SASP (526). Several studies address the strong pro-tumorigenic
phenotype (526) whose cytokines can mediate the maintenance
of CSCs. The most prominent interleukins (IL) of SASP are
IL-1,−6, and−8 (526). These cytokines can influence the CSC
phenotype and functionality and therefore influence the plasticity
phenotype of CSCs.

Using breast cancer cell lines, Di et al. showed that
an induction of senescence in mesenchymal stem cells by
hydrogen peroxide treatment causes an increased secretion of
the inflammatory cytokine IL-6, which led to a higher migratory
capacity of breast cancer cells in vitro as well as in xenotransplants
(541). An increase in the aggressive metastatic chemoresistant
phenotype upon inflammatory cytokine stimulation such as
IL-1ß, IL-6, and RANTES (regulated on activation, normal T
cell expressed, and secreted) was also observed by others (533,
534). Our own work indicated that IL-8 blocks differentiation
of hepatocellular premalignant cells, a pathway mediated via
mammalian target of rapamycin complex 1 (mTORC1) kinase,

that causes an increase in chemotherapy resistance (532). An
increase in tumorigenicity and EMT of breast cancer cells has
been shown to correlate to an increased expression of CD44 or
CSC-like properties and be caused by the senescence-associated
IL-8 and IL-6 (527–529). Pathways that might be involved in such
cellular reprogramming processes are the JAK2/STAT3 signaling
pathway (542), the IL-6/STAT3 and NOTCH cross-talk signaling
(187, 530) as well NFκB-IL-6 signaling axis, responsible for the
generation of CSCs (531). Interestingly, interference with those
pathways by aspirin increased chemosensitivity and decreased
self-renewal in breast cancer cells (531). In colorectal cancer cells
the inflammatory cytokine IL-6 mediates deacetylation, which
subsequently activates NANOG transcription and accumulation
of stemness phenotypes, correlating with malignant progression
and poor prognosis (543).

To summarize, TIS on the one hand has positive effects that
eliminates differentiated tumor cells and also causes invasion
of immune cells with anti-tumorigenic functions. On the other
hand, senescence causes negative effects that are reflected by pro-
tumorigenic functions causing CSC development and a gain of
cancer stemness (Figure 2).

An additional level of complexity is added by the plasticity of
CSCs as well as non-CSCs, which also causes increased cancer
stemness, resistance, and relapse. Examples are given in the
next paragraph.

Cancer Stemness: Plasticity of CSCs and Non-CSCs
Cancer stemness is not only triggered by senescence escape and
acquisition of stemness phenotypes or supported bymaintenance
of stemness (544) but also by the plasticity of CSCs and non-
CSCs, altogether causing tumor relapses after treatment, as
described below.

Plasticity is regulated by the TME that is very heterogeneous
and consists of CAFs, TAMs, and neutrophils as well as of
cancer-associated adipocytes, tumor-infiltrating lymphocytes,
and cancer cells with or without stem cell characteristics (545).
Therefore, a clear separation between SASP effects and plasticity
cannot be made as several direct and also indirect regulatory
networks are involved (Figure 2).

Mechanistically, plasticity of cells is a characteristic that
ensures robust tissue regeneration and homeostasis (546, 547)
and describes the phenotypic and molecular changes of tumor
cells increasing stemness and reflecting the tumor’s ability
to self-renew (18, 548). This phenotype is ultimately closely
linked to EMT (15, 548). As described, the transition from
the epithelial to mesenchymal state is associated with defined
regulatory networks, chromatin remodeling and gene expression
programs that are specific to the epithelial, mesenchymal or
hybrid cellular state (15–18). Plasticity increases the complexity
by suggesting that CSCs can switch between different cellular
states, characterized by the expression of surface markers
as well as transcription factors (18, 56). Examples for this
come from the analysis of different tumor cells: Chaffer
et al. demonstrated that CD44low cells (non-CSCs) can switch
to a CD44high phenotype (CSCs) resulting in mammosphere
formation, a phenotype that could be induced by upregulation
of the zinc finger E-box binding homeobox 1 (ZEB1) protein
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expression induced by TGF-ß (548), which is a major cytokine
of the TME (545). In NSCLC cell lines, two distinct CSC
subpopulations have been described by expression of CD133 and
the aldehyde dehydrogenase (ALDH) (549). ALDHs compose
an enzyme superfamily with metabolic functions. The analysis
of its activity is often used to identify CSCs (550, 551).
Analyzing CD133 and ALDH activity, Akunuru et al. separated
cancer stem/progenitor cells (CD133+, ALDHhigh) from non-
CSCs (CD133− or ALDHlow) and showed that non-CSCs can
interconvert into CSCs. The latter process is activated by TGF-
ß signaling or signaling by the zinc finger protein SNAI (Snail)
transcription factor family. The described process underlines
the dynamic plasticity of CSC/non-CSCs cells (549). After
TGF-ß treatment, the authors observed an increase in IL-1ß
and IL-6 as well as an increase in CD133+ and ALDHhigh

subpopulations (549).
Interferon-ß (IFN-ß) as well as Oncostatin M (OSM), also

cytokines within the TME, have been shown to regulate CSC
phenotypes (552). Activation of IFN-ß signaling pathways in
non-CSCs blocks the expression of CD44 and Snail, which
causes a decrease tumor sphere formation and additionally
inhibits invasion (552). In contrast, OSM induces a stemness
phenotype in non-CSCs (552). One of the major regulators
of colorectal tumor plasticity (either CSCs or cancer cells) are
the Wnt-ß-catenin and the KRAS/BRAF/ERK pathways, which
have been implicated to regulate tumorsphere formation, self-
renewal as well as resistance, as reviewed by Pereira et al. (553)
and Zhan et al. (554). Activation of Wnt-signaling increased
sphere and clone formation as well as drug resistance (555, 556).
Acquisition of stemness was also described by Perekatt et al.
using transgenic mice to analyze the function ofWnt-signaling in
tumorigenesis and de-differentiation in the gut (28). The authors
show that the inactivation of Smad 4, a factor that regulates the
differentiation program, promoted the development of adenomas
with characteristics of activated Wnt signaling over long-term
periods (28). Such Wnt activation can correlate with increased
treatment resistance as reviewed by Mohammed et al. (557).
Also in gastric cancer, activation of the Wnt pathway causes an
increase in CD44 as well as Oct-3/4 expression and correlates
with an increased proliferation (558).

As described above, a gain of stemness due to SASP and
CSC maintenance or by plasticity of CSCs and non-CSCs, can
cause increased resistance (Figure 2). CSCs (pre-existing or post-
therapeutically generated de novo) can escape the treatment by
the expression of drug exporters and detoxification proteins,
entrance into dormancy as well as resistance to DNA damage
induced cell death (4, 15, 185, 559, 560). Their survival causes
tumor relapses (Figure 2). To interfere with the relapse, several
strategies have been under investigation to block CSC resistance
and growth (9, 13), as described below (Figures 3, 4).

ERADICATION OF CSCs: NEW TARGETED
APPROACHES

Targeting CSCs has been in the focus of research for many years
(13). As reviewed by Shibata and Hoque, the combination of
CSC-targeted therapies and conventional non-targeted therapies

can result in a decreased chemoresistance (9). Approaches
of CSC-targeted therapies include kinase inhibitors as well
as targeting stem cell associated pathways such as Wnt and
β-catenin, some of which have already entered the clinical
phase (9, 13). Immunological approaches that target CSCs via
MHC-restricted killing include adoptive cell transfer, targeting
checkpoint inhibitors as well as antibody-based approaches and
vaccination. MHC-unrestricted killing based on NK-, γδT-, and
chimeric antigen receptor (CAR) T-cell approaches have been
established (561, 562). Currently, these approaches are performed
after failures of the first-line therapies.

Based on the promising results of CAR T-cellular therapy
in treating hematological diseases, CAR T-cell-based approaches
have also moved forward into the therapy of solid cancers (563,
564). Although, CAR T-cell-based approaches face difficulties in
treating solid cancers, their therapeutic use could be a promising
alternative (563, 564).

CAR THERAPIES TARGETING CSCs

Targeting CD133+ CSCs
Targeting CD133+ CSCs in solid cancers has shown quite
promising preclinical results either using monotherapeutic
approaches (565, 566) or using combinational approaches
together with cytostatic agents (567). Recently, a clinical trial
testing CD133-directed CAR T-cells in patients with ALL, AML,
breast, brain, liver, pancreatic and ovarian cancers as well as
colorectal cancers has been completed (NCT02541370, Table 9).
Initial results showed feasibility, safety, and efficacy of CD133-
directed CAR T-cells in patients. Especially, HCC patients who
were not responsive to sorafenib showed a median progression-
free survival of 7 months (568). In all patients the duration of
response ranged from 9 to 63 weeks; three patients showed a
continued response at the time of publication. Stable disease was
observed in 14 out of 23 patients for 9 weeks to 15.7 months and
21 patients did not show detectable signs of metastasis (568).

Additional studies (Table 9) are ongoing for the treatment
of relapsed or refractory AML (NCT03473457), relapsed
or late staged sarcoma (NCT03356782), as well as glioma
(NCT03423992). A case study of a patient receiving CD133-
directed CAR T-cells after previous chemo- and radiotherapy
as well as EGFR-directed CAR T-cell therapy reported a
partial response for a period of 4.5 months (569). However,
severe toxicities affecting the skin, the oral mucosa, and the
gastrointestinal tract were reported (569).

Targeting CD44+ CSCs
Although CD44 is a very prominent CSC antigen, only few
CAR-based approaches targeting CD44 have been developed.
Early approaches that entered clinical trials included monoclonal
antibodies and antibody-conjugates. First studies involving
186Re-conjugated antibody against the splice variant CD44v6
showed advantageous effects at first, however a long-term stable
disease was only observed in one patient (570, 571). Likewise,
the CD44-directed monoclonal antibody RG7356 showed only
modest success in clinical trials with AML patients (572) and
solid tumors (468). Tijink et al. coupled the CD44v6-directed
antibody bivatuzumab to the cytotoxic antimicrotubule agent
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FIGURE 3 | Targeted personalized second-line therapy as a future perspective. (A) Analysis of post-therapeutic biopsy samples: follow-up studies need to be

included into regular clinical post-therapeutic relapse analysis. After therapy, local biopsies of remaining tumor tissue and/or satellite tissue should be taken periodically

(even after several years post-therapy) and a multivariant analysis for biomarkers has to be performed, including the analysis of CSC biomarkers, pro-inflammatory

cytokines, senescent markers as well as markers for CAFs. (B) Targeted second-line therapy needs to be performed based on the analysis described in (A) and will

include a specific targeted eradication of remaining cells that could promote tumor relapse and metastasis. Targeted therapies comprise CAR-based approaches

targeting CSCs as well as senescent cells or CAFs and TAMs. They also include senolytic drugs to deplete senescent cells independent of CAR approaches.

mertansine to produce an antibody-prodrug conjugate (573).
Bivatuzumab mertansine was administered to seven patients and
two of them showed stable disease during the therapy phase.
However, one patient with squamous cell carcinoma of the
esophagus died after treatment due to toxic epidermal necrolysis,
which caused the premature cancelation of this trial (573).
Because of this fatality, two clinical trials that were conducted in
parallel for patients with metastatic breast cancer (574) and head
and neck squamous cell carcinoma (575) had to be terminated.

Still, there are some promising approaches involving CD44v6-
directed CAR therapies. For instance, cytokine-induced killer
(CIK) cells carrying a CAR against CD44v6 showed anti-cancer
effects against sarcoma in vitro and in vivo (576). Furthermore,
a phase I/IIa clinical trial using CD44v6-directed CAR T-cells
for AML and multiple myeloma patients is currently recruiting
(NCT04097301) (Table 9).

Targeting EpCAM+ CSCs
Pre-clinical as well as clinical studies targeting EpCAM+ cancer
cells using monoclonal antibodies or CAR constructs have been
performed to date using co-culture and xenograft approaches
(577–579) (Table 9). Combination therapy of EpCAM-directed
CARNK-92-cells and regorafenib, a potent multikinase inhibitor,
resulted in a synergistic antitumor effect using for example
colorectal cancer cells or xenograft models (580). CAR T-cells
targeting EpCAM have been shown to significantly block tumor

growth in xenografts and to secrete cytotoxic cytokines, including
interferon-γ (IFN-γ) and tumor necrosis factor alpha (TNF-α) in
vitro (579). Additionally, an injection of EpCAM-directed CAR
T-cells led to delayed disease progression in immunodeficient
mice with peritoneal ovarian and colorectal xenografts (581).
Currently, there are several clinical trials with EpCAM-directed
CAR T-cells listed for patients with various malignancies:
three trials are ongoing (NCT02915445, NCT03563326, and
NCT03013712), one trial is not yet recruiting (NCT04151186),
and four trials are listed with unknown status (NCT02725125,
NCT02728882, NCT02735291, and NCT02729493) (Table 9).

LSC-Directed CAR Therapies
In the field of CAR therapeutics, CD123 and CD33 are
frequent targets for AML-specific CAR cells (Table 9). CAR T-
and CAR NK-92-cells redirected against CD33 have entered
clinical trials (Table 9). Case reports show a good tolerability of
CD33-directed CAR NK-92-cells (372), but disease progression
after treatment with CD33-directed CAR T-cells was still
present (387). Currently, numerous clinical trials using CAR
T-cells targeting CD123 are ongoing. NCT03672851 with two
participants had to be terminated due to adverse effects (582).
Furthermore, first studies implement CLL-1 as a target of CAR
T-cells [Table 9; (419), NCT04010877 and NCT03222674].
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FIGURE 4 | Targeted personalized first-line therapy as a future perspective. (A) Pre-therapeutic period: local biopsies before the therapy would allow to determine the

heterogenic composition of the tumor, consisting of several biomarkers to be analyzed (CSC, CAFs, and TAMs biomarkers, tumor cell antigens, as well as e.g., T-cell

compositions). (B) First-line targeted personalized therapeutic approach—therapeutic regimens could combine several approaches: the chemotherapy and small

molecules (both selected based on tumor genotype), combined with immunotherapies (antibodies and checkpoint inhibitors based on tumor and analysis of T-cell

phenotype), as well as CAR cell-based therapies targeting CSCs, CAFs, and TAMs. Combination therapy will allow a precise and efficient targeting of the heterogenic

tumor composition from the beginning on.

NEXT GENERATION CARs AND
TARGETING OF CSCs IN COMBINATIONAL
THERAPIES

For the more efficient CSC elimination, different approaches
that have been developed can be used, i.e., tandem CAR T-
cells (TanCAR) (583) as well as single universal (U) tricistronic
transgene CAR T-cells (UCAR T-cells) (584). Multi-targeting of
Her2, IL-13 receptor subunit alpha-2 (IL13Rα2), and ephrin-A2
(EphA2) was shown to overcome antigenic heterogeneity in 15
primary GBM samples and to increase the therapeutic success
using xenograft models (584). Targeting two or more antigens
may increase the risk for on-target/off-tumor toxicity, since
most of the antigens are not only expressed on malignant cells,
but also on healthy cells (60, 585). Improved safety, specificity,
and flexibility can be obtained using universal CARs (UniCAR)
or split, universal and programmable (SUPRA) CARs (585–
589). Both consist of an inert and universal CAR construct
without a single chain variable fragment (scFv) adaptor molecule
domain in combination with a multiple tumor-targeting scFv
adaptor molecule (585, 588, 589). In both cases, the activity
of CAR T-cells can be regulated by the dosage of the scFv
adaptor molecules or by introducing competitive molecules,
such as leucine zippers as a regulator for the SUPRA CARs
(588, 589). Additional safety of CAR T-cells can be achieved

by the induction of suicide genes, e.g., iCasp9 (590, 591) or by
inhibitory CAR (iCAR) constructs, in which signaling domains
consist of an immuno-inhibitory receptor [e.g., CTLA-4 or
PD-1; (592)]. An antigen only expressed on the surface of
healthy cells is a target of iCAR and therefore the the attack of
non-tumorigenic cells is greatly reduced (592). Specificity can
be improved by using synthetic Notch (synNotch) receptors.
The binding of synNotch specific to the antigen induces the
cleavage of an intracellular domain and activates in turn the
transcription of a second CAR, specific to another tumor
antigen (593).

To enhance the targeting of solid tumors using CAR-
based approaches, the combination treatment with conventional
chemotherapeutic drugs could be a novel strategy to enhance
antitumor response. To test this approach, NK-92 cells were
modified with an EGFR-directed CAR construct against renal
cell carcinoma (RCC) cell lines (594). In combination with
the multikinase inhibitor cabozantinib, EGFR-directed CAR
NK-92 cells showed synergistic effects in vitro and in vivo

(594). Cabozantinib also caused a decrease of the anti-
inflammatory PD-L1 surface expression in renal cell carcinoma
cell lines (594). Furthermore, cabozantinib is known to reduce
tumor infiltration of immuno-modulatory subpopulations like
regulatory T-cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) (594, 595).
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TABLE 9 | Overview of clinical trials using current CAR-cell-based approaches in solid and hematological cancers targeting CSC.

Phase ID number Approach Target Cell-based therapy Condition

I NCT03423992 CAR T CD133, EGFRvIII,

IL13RvIII2,

Her-2,EphA2, GD2,

Autologous CAR T-cells Recurrent malignant glioma

I NCT03563326 CAR T EpCAM WCH-GC-CAR T Neoplasm, stomach metastases

I NCT02915445 CAR T EpCAM CAR T-cells Malignant neoplasm of nasopharynx TNM

stagingdistant metastasis (M), Breast cancer

recurrent

I NCT03766126 CAR T CD123 Autologous CAR T-cells Relapsed/refractory AML

I NCT03672851 CAR T CD123 Autologous CAR T-cells Relapsed/refractory AML

I NCT03190278 UCAR T CD123 Allogeneic CAR T-cells Relapsed/refractory AML

I NCT04106076 UCAR T CD123 Allogeneic CAR T-cells Newly diagnosed AML

I NCT02159495 CAR T CD123 Autologous/allogeneic

CAR T-cells

AML (various) or blastic plasmacytoid dendritic cell

neoplasms

I NCT03585517 CAR T CD123 CAR T-cells Relapsed/refractory AML

I NCT04014881 CAR T CD123 CAR T-cells Relapsed/refractory AML

I NCT03114670 CAR T CD123 Donor-derived CAR T-cells Recurred AML after allogeneic hematopoetic stem

cell transplantation

I NCT03796390 CAR T CD123 Autologous CAR T-cells Relapsed/refractory AML

I NCT03126864 CAR T CD33 Autologous CAR T-cells Relapsed/refractory AML

I NCT03795779 cCAR T CLL1-CD33 CAR T-cells Relapsed and/or refractory, high risk hematologic

malignancies

I NCT02799680 CAR T CD33 Allogeneic CAR T-cells Relapsed/refractory AML

I/II NCT04097301 CAR T CD44v6 Autologous CAR T- cells AML, multiple myeloma

I/II NCT02541370 CAR T CD133 Autologous or

donor-derived T-cells

Liver cancer, pancreatic cancer, brain tumor, breast

cancer, ovarian tumor, colorectal cancer, acute

myeloid, and lymphoid leukemias

I/II NCT03356782 CAR T CD133 Autologous CAR T cells Sarcoma, osteoid sarcoma, ewing sarcoma

I/II NCT03013712 CAR T EpCAM Autologous CAR T-cells Colon cancer; esophageal carcinoma; pancreatic,

prostate cancer; gastric cancer, hepatic carcinoma

I/II NCT03556982 CAR T CD123 Autologous/allogeneic

CAR T-cells

Relapsed/refractory AML

I/II NCT03222674 Multi-CAR T CD33, CD38,

CD123, CD56, MucI,

CLL-1

Autologous CAR T-cells Relapsed/refractory AML

I/II NCT04010877 Multiple CAR T CLL-1,

CD33, and/or CD123

Autologous/allogeneic

CAR T-cells

AML

I/II NCT04109482 CAR T CD123 Autologous CAR T-cells Relapsed or refractory blastic plasmacytoid

dendritic cell neoplasm, acute myeloid leukemia,

and high risk myelodysplastic syndrome

I/II NCT02944162 CAR NK CD33 NK-92-cells Relapsed/refractory AML

I/II NCT01864902 CAR T CD33 Autologous or

donor-derived T-cells

Relapsed/refractory AML

I/II NCT03971799 CAR T CD33 CAR T-cells Children and adolescents/young adults (AYAs) with

relapsed/refractory acute myeloid leukemia (AML)

II/III NCT03631576 CAR T CD123/CLL-1 CAR T-cells Relapsed/refractory AML

- NCT03473457 Single or

double CAR T

CD33,CD38,

CD56, CD123,

CD117,

CD133,CD34, or

Mucl

CAR T-cells Relapsed/refractory AML

II NCT02729493 CAR T EpCAM Autologous CAR T-cells Relapsed or refractory liver cancer

II NCT02725125 CAR T EpCAM Autologous CAR T-cells Relapsed or refractory stomach cancer

N.A. NCT04151186 CAR T EpCAM,TM4SF1 CAR T-cells Solid tumor

Source: http://clinicaltrials.gov/.
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The combination of the multikinase inhibitor sunitinib
and CAR T -cells targeting carbonic anhydrase IX (CAIX)
has been shown to be of advantage as sunitinib reduces
immunosuppressive components of the TME (596).
Improvements could also be made using Her2-directed
CAR NK-92-cells (92/5.137.z) in combination with apatinib
(597). Treatment with CAR NK-92 alone resulted in an efficient
elimination of small Her2+ tumor xenografts in vivo, but not in
an elimination of larger solid tumors in gastric cancers (597). A
combinatorial treatment with apatinib increased CAR NK-92
cell infiltration into these larger tumor xenografts and resulted in
an enhanced antitumor efficacy of the cells (597).

In AML, early approaches focused on the targeting of single
markers; combinatorial therapies, targeting more than one
marker, have been tested here as well (598). Haubner et al.
analyzed optimal combinations of different LSC markers and
concluded that CD33/TIM-3 or CLL-1/TIM-3 combinatorial
targeting is most suitable since these markers maximally
cover AML cells and are minimally co-expressed on HSCs
(370). Interestingly, the combination of CD33 and CD123 was
found unsuitable (370). Approaches that already implement
combinatorial targeting of AML LSCs include tri-specific killer
engagers against CD33 and CD123 (373), compound CAR T-
cells against CD33 and CD123 (374) or CLL-1 and CD33
(i.e., NCT03795779), universal CAR T-cells against CD33
and CD123 (375), and CAR CIK-cells against CD33 and
CD123 (376).

FUTURE PERSPECTIVES

Studies obtained in the last 5–10 years confirmed the importance
and the urgent need of diagnostic screening of the TME
not only before the treatment, but also at several stages in
the post-therapeutic period. This is within the context of
personalized therapies that are based on the idea to identify
the best therapeutic approach for the patient. This approach
should be based on the tumors molecular signature, involving
the TME. The best and the most appropriate therapeutic
options, which match each individual patient’s requirements
will increase the therapeutic efficacy and will cause fewer
side effects.

The particular value of post-therapeutic local biopsies is that
they enable the evaluation of tumor relapse risk on the basis
of multivariate biomarkers and also provide information on
therapeutically addressable targets within the remaining tumor
tissue. In-time detection of tumor-promoting cells, which re-
emerge in the post-therapeutic period (Figure 3), will allow an
application of the individualized and precise second-line therapy
in a timely fashion. Detection of tumor cells with stemness
phenotypes will allow for their directed and specific targeting
using the second-line treatments, depending on a different mode
of action (4, 560). This secondary specific therapy can include,
targeted therapies such as e.g., immunotherapies, CAR NK-,
and CAR T-cells that mediate a precise eradication of several
types of cells: CSCs, CAFs, and/or remaining senescent cells. To

increase the specificity and therapeutic outcome and to decrease
severe side effects, CAR-based therapeutics are constantly being
optimized, as discussed in the section above. Special needs are:
improvement of target specificity in combination with decreased
off-target effects. In addition, secondary therapies could also
include senolytic drugs that selectively kill senescent cells as it was
discussed in a recent comprehensive review by Short et al. (599).
These therapies cause very low or minor side-effects after their
administration (599). In the post-therapeutic period, however,
it is important to focus on the biomarkers of CSCs as well as
the biomarkers of senescent tumor cells, tumor-promoting SASP
molecules, CAFs and TAMs. These cells and molecules strongly
influence tumor relapse and their monitoring and their in-time
elimination is crucial (Figure 3). As currently available blood test
systems are not sensitive enough to detect local changes in the
TME, other methods for instance local biopsies and subsequent
multivariant analysis of obtained tissues should be used whenever
possible and even after many years upon the first-line therapy
(Figure 3).

The analysis of multivariant biomarker, however is not
only of importance within the post-therapeutic situation. A
detailed understanding of the tumor composition before the
treatment could allow straight forward first line therapies
(Figure 4). Target analysis includes CSCs, CAFs, tumors cells
and TAMs, and other tumor-promoting cells. Therapeutic
options such as chemotherapy and radiotherapy in combination
with small molecules and immunotherapies (CAR cells) could
tremendously improve the outcome of the first-line approaches
and predict relapses (Figure 4). Combinations already in the
first-line therapy are especially required in advanced stages of
malignant disease.

In conclusion, our review gives an overview of the most
important biomarkers of CSCs in the TME. Furthermore, we
underline the value of local biopsies and precise diagnostics
and screening of biomarkers in both pre- and post-therapeutic
situations (Figures 3, 4). We suggest the implementation of
those strategies in the first and second-line personalized therapy
required to eradicate the remaining tumor-promoting senescent
tumor cells, CAFs, TAMs, and finally CSCs to protect from
tumor recurrence.

The high costs are one point of contention regarding the
biopsies and their analysis as well as the implementation
of immunotherapies into the first and secondary line
targeted therapies. However, considering the costs for
therapies, comprising resection, and medication strategies,
as well as the patient’s sufferings due to a re-emerged full-
blown cancer, the targeted therapy will help to save the
patients and clinics from high personnel, emotional, and
medicinal costs.
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