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Abstract

Background: One of the most important objectives of the clinical cancer research is to diagnose cancer more

accurately based on the patients’ gene expression profiles. Both Cox proportional hazards model (Cox) and

accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or

survival time prediction for the patients’ clinical treatment. Nevertheless, two main dilemmas limit the accuracy

of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training

robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are

actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model

for the survival time prediction is limited when such biological differences of the diseases have not been

previously identified.

Methods: To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method

based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients.

Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select

the relevant genes, which are significantly associated with the disease.

Results: The results of the simulation experiments show that the semi-supervised learning model can significant improve

the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully

applied to four real microarray gene expression and artificial evaluation datasets.

Conclusions: The advantages of our proposed semi-supervised learning method include: 1) significantly increase the

available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox

model; 3) high predictive accuracy for patients’ survival time in AFT model; 4) strong capability of the relevant

biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for

survival analysis in clinical cancer research.
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Background

An important objective of clinical cancer research is to

develop tools to accurately predict the survival time and

risk profile of patients based on the DNA microarray

data and various clinical parameters. There are several

existing techniques in the literature for performing this

type of survival analysis. Among of them, both Cox pro-

portional hazards model (Cox) [1] and the accelerated

failure time model (AFT) [2] have been widely used. Cox

model is the most popular approach by far in survival

analysis to assess the significance of various genes in the

survival risk of patients through the hazard function. On

the other hand, the requirement for analyzing failure

time data arises in investigating the relationship between

a censored survival outcome and high-dimensional

microarray gene expression profiles. Therefore, AFT

model has been studied extensively in recent years.

However, various current cancer survival analysis mech-

anisms have not demonstrated themselves to be very ac-

curate as expected. The accuracy problems, in essence,

are related to some fundamental dilemmas in cancer

survival analysis. We believe any attempt to improve the

accuracy of survival analysis method has to compromise

between these two dilemmas:

� The small sample size and censored survival data

versus high dimensional covariates dilemma in Cox

model

High-dimensional survival analysis in particular has

attracted much interest due to the popularity of micro-

array studies involving survival data. This is statistically

challenging because the number of genes, p, is typically

hundreds of times larger than the number of microarray

samples, n (p> > n). For survival analysis, sample size is

reduced significantly by the availability of follow-up data

for the analyzed samples. In fact, in publicly available

gene expression databases, only a small fraction of

human-tumor microarray datasets provides clinical

follow-up data. A “low-risk” or “high-risk” classification

based on Cox model usually relies on traditional super-

vised learning techniques, in which only completed data

(i.e., data from samples with clinical follow-up) can be

used for learning, while censored data (i.e., data from

samples without clinical follow-up) are disregarded.

Thus, the small sample size and censored survival data

remain a bottleneck in obtaining robust and accurate

classifiers with Cox model. Recently a technique called

semi-supervised learning [3] in machine learning sug-

gests that censored data, when used in conjunction with

limited amount of completed data, can produce consid-

erable improvement in learning accuracy. Indeed, semi-

supervised learning has been proved to be effective in

solving different biological problems, such as protein

classification [4, 5], drug-protein interaction prediction

[6] and prediction of interactions between disease and

human proteins [7]. Moreover, there are some semi-

supervised learning approaches worked on the gene

expression data. For example, “corrected” Cox scores

were used for semi-supervised prediction using princi-

pal component regression by Bair and Tibshirani [8]

and the semi-supervised classification using nearest-

neighbor shrunken centroid clustering by Tibshirani

et al. [9].

� The similar phenotype disease versus different

genotype cancer dilemma in the AFT model

In the accelerated failure time model, to increase the

available sample size and get the more accurate result,

each censored observation time is replaced with the

imputed value using some estimators, such as the in-

verse probability weighting (IPW) [10] method, mean

imputation method, Buckley-James method [11] and

rank-based method. In fact, these estimation methods

assume that the AFT model was used for the patients

with similar phenotype cancer, and the survival times

should satisfy the same unspecified common probability

distribution. Nevertheless, the disparity we see in disease

progression and treatment response can be attributed to

that the similar phenotype cancer may be completely

different diseases on the molecular genotype level. So we

need to identify different cancer genotypes. Can we do it

based exclusively on the clinical data? For example, pa-

tients can be assigned to a “low-risk” or a “high-risk”

subgroup based on whether they were still alive or

whether their tumour had metastasized after a certain

amount of time. This approach has also been used to

develop procedures to diagnose patients [12]. However,

by dividing the patients into subgroups just based on

their survival times, the resulting subgroups may not be

biologically meaningful. Suppose, for example, the

underlying cell types of each patient are unknown. If we

were to assign patients to “low-risk” and “high-risk” sub-

groups based on their survival times, many patients

would be assigned to the wrong subgroup, and any fu-

ture predictions based on this model would be suspect.

Therefore, we need propose more accurate classification

methods by identifying these underlying cancer subtypes

based on microarray data and clinical data together, and

build a model that can determine which subtype is

present in future patients.

Our idea in this study is to strike a tactical balance

between the two contradictory dilemmas. We propose a

novel semi-supervised learning method based on the

combination of Cox and AFT models with L1/2
regularization for high-dimensional and low sample size

biological data. In our semi-supervised learning framework,
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the Cox model can classify the “low-risk” or a “high-risk”

subgroup though samples as many as possible to

improve its predictive accuracy. Meanwhile, the AFT

model can estimate the censored data in the subgroup,

in which the samples have the same molecular

genotype.

Methods

Cox proportional hazards model (Cox)

The Cox proportional hazards model is now the most

widely used for survival analysis to classify the pa-

tients into “low-risk” or “high-risk” subgroup after

prognostic. Under the Cox model, the hazard function

for the covariate matrix x with sample size n and the

number of genes p is specified as λ(t) = λ0(t)exp(β′x),

where t is the survival time and the baseline hazard

function λ0(t) is common to all subjects, but is un-

specified or unknown. Let ordered risk set at time

t(r) be denoted by Rr = {j∈1,…, n:tj ≥ t(r)}. Assume that

censoring is non informative and that there are no

tied event times. The Cox log partial likelihood can

then be defined as

l βð Þ ¼ 1

n

X

r∈D
ln

exp β′x rð Þ
� �

X

j∈Rr
exp β′xj

� �

0

@

1

A ð1Þ

Where D denotes the set of indices for observed events.

Accelerated failure time model (AFT)

The AFT model is a linear regression model for survival

analysis, in which the logarithm of response ti is related

linearly to covariates xi:

h tið Þ ¼ β0 þ xi
′βþ εi; i ¼ 1;…; n; ð2Þ

where h(.) is the log transformation or some other

monotone function. In this case, the Cox assumption of

multiplicative effect on hazard function is replaced with

the assumption of multiplicative effect on outcome. In

other words, it is assumed that the variables xi act multi-

plicatively on time and therefore affect the rate at which

individual i proceeds along the time axis. Because cen-

soring is present, the standard least squares approach

cannot be employed to estimate the regression parame-

ters in Eq. (2) even when p < n.

Fig. 1 Workflow for the development and evaluation of the semi-supervised learning framework for survival analysis
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One approach for AFT model implementation entails

the replacement of censored ti with imputed values. In

order to simplify the method, we use Kaplan-Meier weight

approach to estimate the censored data in the least square

criterion. Since for high dimensional and low simple size

data, the Kaplan-Meier weight estimator is more efficient

than the Buckley-James and rank based approaches.

Moreover, it also has rigorously and strong theoretical jus-

tifications under reasonable conditions [13]. For each cen-

sored ti with the conditional expectation of tj given tj > ti
[14], the imputed value h(ti) can then be given by

h t�i
� �

¼ δið Þh tið Þ
þ 1−δið Þ Ŝ tið Þ

� �−1X

t rð Þ>ti
h t rð Þ
� �

ΔŜ t rð Þ
� �

;

ð3Þ

where Ŝ is the Kaplan-Meier estimator (Kaplan and

Meier, 1958) of the survival function and ΔŜ(t(r)) is the

step of Ŝ at time t(r) [15].

L1/2 regularization

In recent years, various regularization methods for sur-

vival analysis under the Cox and AFT models have been

proposed, which perform both continuous shrinkage and

automatic gene selection simultaneously. For example,

Cox-based methods utilizing kernel transformations

[16], threshold gradient descent minimization [17], and

lasso penalization [18] have been proposed. Likewise, a

few authors have proposed variable selection methods

based on accelerated failure time models. Most of these pro-

cedures are based on L1 -norm, however, the results of L1
regularization are not good enough for spartity, especially in
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Fig. 2 The percentage of different types of samples in original datasets and the datasets processed by our semi-supervised learning approach
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biology research. Theoretically, the Lq (0 < q < 1) type

regularization with the lower value of q would lead to bet-

ter solutions with more sparsity. Moreover, among Lq
regularizations with q ∈ (0, 1), only L1/2 and L2/3 regulari-

zations permit an analytically expressive thresholding rep-

resentation [19]. In the literature [19], Xu et al.

investigated that when 0 < q < 1/2, there are not obvious

difference in the variable selection performance of Lq (0 <

q < 1/2) regularization, but solving the L1/2 regularization

is much efficient compared to the L0 regularization. On

the other hand, the L1/2 regularization can yield most

sparse solutions among Lq (1/2 < q < 1) regularizations.

Moreover, they also proved some attractive properties of

the L1/2 regularization, such as unbiasedness, sparsity and

oracle properties. Our previous works have also demon-

strated the efficiencies of L1/2 regularization for Cox and

AFT models respectively [20]. The sparse L1/2 regularization

model has expressed as:

β ¼ argmin l βð Þ þ λ
X

p

j¼1

βj

�

�

�

�

�

�

1=2
( )

ð4Þ

where l is loss function and λ is tuning parameter. Since

the penalty function of L1/2 regularization is nonconvex,

which raises numerical challenges in fitting the Cox and

AFT models. Recently, coordinate descent algorithms

[21] for solving nonconvex regularization approach

(such as SCAD, MCP) have been shown significantly ef-

ficiency and convergence [22]. The algorithms optimize

a target function with respect to a single parameter at a

time, iteratively cycling through all parameters until

reached its convergence. Since the computational bur-

den increases only linearly with the number of the co-

variates p, coordinate descent algorithms can be a

powerful tool for solving high-dimensional problems.

Therefore, in this paper, we introduce a novel univari-

ate half thresholding operator of the coordinate descent

algorithm for the L1/2 regularization, which can be

expressed as:

βj ¼ New Half ωj; λ
� �

¼ 2

3
ωj 1þ cos

2 π−φλ ωj

� �� �

3

� �� �

if ωj

�

�

�

� >

ffiffiffiffiffi

543
p

4
λð Þ

2
3

0 otherwise

8

>

>

>

<

>

>

>

:

ð5Þ

where ỹi
(j) = ∑k ≠ jxikβk as the partial residual for fitting βj,

ωj = ∑i = 1
n xij(yi − ỹi

(j)), and φλ ωð Þ ¼ arccos λ
8

ωj j
3


 �−3
2

�

.

Remark: In our previous work [23], we used 3
4
λð Þ23 for

represent L1/2 regularization thresholding operator. Here,

we introduced a new half thresholding representation

Table 1 The performance of the Cox and AFT models with and without the semi-supervised learning approach in simulated

experiment (the average numbers and the standard deviations (in brackets) were listed in 50 runs)

Cor. Size Cox Semi-Cox

Correct Selected Precision Correct Selected Precision

100 4.06 (1.39) 24.44 (4.65) 0.166 (0.044) 6.58 (1.41) 16.96 (6.41) 0.388 (0.080)

ρ = 0 200 5.62 (1.64) 28.22 (6.16) 0.199 (0.031) 8.68 (1.56) 17.84 (5.72) 0.487 (0.078)

300 8.02 (1.43) 35.18 (5.81) 0.228 (0.029) 9.76 (0.98) 19.02 (5.41) 0.513 (0.087)

100 3.90 (1.43) 24.38 (5.83) 0.159 (0.041) 6.46 (1.37) 17.08 (6.05) 0.378 (0.075)

ρ = 0.3 200 5.68 (1.42) 29.64 (6.19) 0.192 (0.035) 8.62 (1.11) 17.86 (5.45) 0.483 (0.074)

300 7.84 (1.55) 35.86 (5.96) 0.219 (0.037) 9.42 (0.68) 18.54 (5.10) 0.508 (0.082)

Cor. Size AFT Semi-AFT

Correct Selected Precision Correct Selected Precision

100 5.02 (1.61) 38.74 (6.27) 0.130 (0.029) 6.84 (1.37) 35.52 (6.17) 0.192 (0.031)

ρ = 0 200 7.12 (1.30) 46.68 (6.03) 0.152 (0.025) 8.84 (1.18) 42.16 (5.38) 0.210 (0.039)

300 8.90 (0.99) 56.54 (6.85) 0.157 (0.019) 9.86 (0.46) 50.84 (5.49) 0.194 (0.027)

100 4.74 (1.19) 39.54 (5.88) 0.120 (0.030) 6.72 (1.43) 35.84 (6.43) 0.188 (0.033)

ρ = 0.3 200 6.98 (1.50) 47.02 (6.32) 0.148 (0.024) 8.78 (1.02) 44.96 (6.95) 0.195 (0.031)

300 8.80 (1.02) 56.82 (6.30) 0.155 (0.022) 9.78 (0.50) 49.31 (5.86) 0.198 (0.034)

Table 2 The detail information of four real gene expression

datasets used in the experiments

Datasets No. of genes No. of samples No. of censored

DLBCL (2002) 7399 240 102

DLBCL (2003) 8810 92 28

Lung cancer 7129 86 62

AML 6283 116 49
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ffiffiffiffi

543
p

4
λð Þ23 . This new value is more precisely and effectively

than the old one. Since it is known that the quantity of the

solutions of a regularization problem depends seriously on

the setting of the regularization parameter λ. Based on this

novel thresholding operator, when λ is chosen by some effi-

cient parameters tuning strategy, such as cross-validation,

the convergence of the algorithm is proved [24].

Our proposed semi-supervised learning method

Figure 1 illustrates the overview of our proposed semi-

supervised learning development and evaluation workflow.

Microarray gene expression data on a specific cancer type

are collected, processed, and separated into completed

samples and censored samples. In order to identify tumor

subclasses that were both biologically meaningful and clin-

ically relevant, we applied the L1/2 regularized Cox model

on the completed data to select a group of outcome-

related genes firstly. Thus, all samples including completed

and censored cases can be subsequently classified into

“low-risk” and “high-risk” classes. Once such classes are

identified, we can evaluate the censored data using the

mean imputation approach based on the completed data

belonged to the same risk classes, because they are corre-

lated to similar disease biologically meaningful at the mo-

lecular level. When the censored data replaced by the

appropriate imputation values, the L1/2 regularized AFT

model can be used to select a list of genes that correlate

with the clinical variable of interest, and reevaluate the

censored data based on these selected genes. A stratified

K-fold cross-validation is used for regularization parameter

tuning. We repeated this semi-supervised learning proced-

ure including Cox and AFT steps multiple time with in-

creasing number of available training data and estimating

the censored data based on the similar genotype disease.

In the semi-supervised learning framework, the pre-

dictive accuracy of the Cox and AFT models would be

improved because the number of the training data
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Fig. 4 The CI obtained by the Cox and AFT models with and without semi-supervised learning approach for the four gene expression datasets
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increased and the censored data were imputed reason-

ably. The L1/2 regularization approach can select the sig-

nificant relevant gene sets based on the Cox and AFT

models respectively.

In our proposed semi-supervised learning method, the

censored data are evaluated from the same risk class to

improve prediction performance. However, there are

some observable errors in the imputations of the cen-

sored data. For example, the estimated survival time by

AFT model was even less than the censored time. We

regarded them as error estimations, and would not use

them for model training.

In this paper, two parameters were used to test the

performances obtained by different methods.

Integrated Brier-Score (IBS)

The Brier Score (BS) [25] is defined as a function of time

t > 0 by:

BS tð Þ ¼ 1

n

X

n

i¼1

Ŝ tjX ið Þ21 ti≤t∧δi ¼ 1ð Þ
Ĝ tið Þ

þ 1−Ŝ tjX ið Þ
� �2

1 ti > tð Þ
Ĝ tð Þ

" #

ð6Þ

where Ĝ(⋅) denotes the Kaplan-Meier estimation of the

censoring distribution and Ŝ(⋅|Xi) stands to estimate sur-

vival for the patient i. Note that the BS(t) is dependent on

the time t, and its values are between 0 and 1. The good

predictions at the time t result in small values of BS. The

integrated Brier Score (IBS) is given by:

IBS ¼ 1

max tið Þ

Z

max tið Þ

0

BS tð Þdt ð7Þ

The IBS is used to assess the goodness of the predicted

survival functions of all observations at every time

between 0 and max(ti).

Concordance Index (CI)

The Concordance Index (CI) can be interpreted as the

fraction of all pairs of subjects which predicted survival

times are correctly ordered among all subjects that can

actually be ordered. By the CI definition, we can deter-

mine ti > tj when fi > fj and δj = 1 where f(⋅) is survival

function. The pairs for which neither ti > tj nor ti<tj can

(a) Cox (b) Semi-Cox

Fig. 6 The survival curves of the Cox model with and without the semi-supervised learning method for AML dataset
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be determined are excluded from the calculation of CI.

Thus, the CI is defined as:

CI ¼

X

i

X

j

1 f i < f j∧δi ¼ 1

 �

X

i

X

j

1 ti < tj∧δi ¼ 1
� � ð8Þ

Note that the values of CI are between 0 and 1, the

perfect predictions of the building model would lead to

1 while have a CI of 0.5 at random.

Results

Simulated experiment

We adopted the simulation scheme in R. Bender’s work

[26]. The generation procedure of the simulated data is

as follows:

Step 1: we generate γi0, γi1,…, γip (i = 1,…,n)

independently from standard normal distribution

and set: X ij ¼ γij

ffiffiffiffiffiffiffiffi

1−ρ
p þ γi0

ffiffiffi

ρ
p

(j = 1,…, p) where ρ

is the correlation coefficient.

Step 2: The survival time yi is written as: yi ¼ 1
α
log

1− α� log Uð Þ
ω� exp βXð Þ


 �

which U is an uniformly distributed

variable, ω is the scale parameter, α is the shape

parameter.

Step 3: Censoring time point yi′(i = 1,…n) is obtained

from an random distribution E (θ), where θ is

determined by specify censoring rate.

Step 4: Here we define yi =min(yi, yi′) and δi = I(yi < yi′),

the observed data represented as (yi, xi, δi) for the

model are generated.

In our simulated experiments, we build high-dimensional

and low sample size datasets. In every dataset, the dimen-

sion of the predictive genes is p = 1000, in which 10 prog-

nostic genes and their corresponding coefficients are

nonzero. The coefficients of the remaining 990 genes are

zero. About 40 % of the data in each subgroup are right

censored. We considered the training sample sizes are

n = 100, 200, 300 and the correlation coefficients of

genes areρ = 0 and ρ = 0.3 respectively. The simulated

data were applied to the single Cox, single AFT and

semi-supervised learning approach with Cox and AFT

models. For gene selection, we use L1/2 regularization

approach and the regularization parameters are tuned

by 5-fold cross validation. To assess the variability of

the experiment, each method is evaluated on a test set

including 200 samples, and replicated over 50 random

training and test partitions.

Figure 2 shows the percentage of data distribution

processed by our semi-supervised learning model with

L1/2 regularization in different parameter settings (a: n =

100, ρ = 0.3; b: n = 100, ρ = 0; c: n = 200, ρ = 0.3; d: n =

200, ρ = 0; e: n = 300, ρ = 0.3; f: n = 300, ρ = 0;). The first

cylinder represents the simulated dataset, and the

cylinders a-f present the form of the dataset processed

by our semi-supervised learning model. Compared to

the original dataset, the most censored data can be

reasonable estimated to the available data by semi-

supervised learning model. For example, when the

training sample n = 300 and the correlation coeffi-

cientρ = 0, just 2.41 % censored data cannot conjugate

into the available samples because their imputed sur-

vival time based on the AFT model is smaller than

their observed censored time. Moreover, we can see

that with the sample size increases or the correction

coefficient decreases, more censored data can be correctly

estimated to available training data.

The classification accuracy under the correlation coef-

ficient ρ = 0.3 with different training sample size setting

was demonstrated in Fig. 3, the sum of red and blue part

represent the samples which can be correctly classified

by the Cox model. The first cylinder in each group rep-

resents the result obtained by Cox model, and the sec-

ond one represents the result obtained by our semi-

supervised learning model. No matter in which group,
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Fig. 8 The percentage of correct and error classification obtained by our proposed semi-supervised learning model in simulated experiment
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the semi-supervised learning model obtained the high

improvements of the classification performance. When

the training sample size n = 100, 200, 300, more than

32.23, 20.55 and 15.63 % samples were correctly classi-

fied by semi-Cox model when comparing with the re-

sults of the single Cox model.

The precision of our semi-supervised learning model

with L1/2 regularization was given in Table 1. The preci-

sion is got from the number of correct selected genes

divided the total number of selected genes by the

methods. With the sample size increase or the correc-

tion coefficients of the features decrease, the classifica-

tion performances of each model become better. We

found the single Cox and single AFT model is difficult

to select the whole correct genes in the dataset. This

means these models selected too few corrected genes

and many other irrelevant genes in their results. This

made their prediction precision very low. Nevertheless,

our semi-supervised learning model solves this problem,

the precisions of the semi-Cox or the semi-AFT were

both higher than that obtained by the single Cox or sin-

gle AFT model. After processed by our semi supervised

learning method, the number of selected correct genes

was increased, and the number of total selected genes

were decreased, the semi-Cox achieved about 130 % im-

provements in precision compared to the single Cox

model. Although the precision improvement of semi-

AFT model is smaller than that of the semi-Cox model,

it can select most correct genes under different param-

eter settings. Therefore we think our semi-supervised

learning method can significantly improve the accuracy

of prediction for survival analyses with the high-

dimensional and low sample size gene expression data.

Simulation analysis of real microarray datasets

In this section, the proposed semi-supervised learn-

ing approach was applied to the four real gene ex-

pression datasets respectively, such as DLBCL (2002)

[27], DLBCL (2003) [28], Lung cancer [29], AML

[30]. The brief information of these datasets is sum-

marized in Table 2.

In order to accurately assess the performance of the

semi-supervised learning approach, the real datasets

were randomly divided into two pieces: two thirds of the

available patient samples, which include the completed

and correct imputed censored data, were put in the

training set used for estimation and the remaining com-

pleted and censored patients’ data would be used to test

the prediction capability. We used single Cox and single

AFT with L1/2regularization approaches for comparisons

and for each procedure, the regularization parameters

are tuned by 5-fold cross validation. All results in this

article are averaged over 50 repeated times respectively.

As show in Fig. 4, our proposed semi-supervised learn-

ing method can significantly increase the available sam-

ple size for classification model training. Especially, in

Lung cancer dataset, the available samples increase from

27.91 to 94.19 %. For other three datasets, the available

sample sizes also augment from 57.50, 69.56, 57.75 to

96.67, 96.73, 94.84 % respectively. Most censored data

were accurately estimated by the AFT model using sam-

ples, which belong to the same genotype disease classes,

and were sequentially classified into high-risk or low-

risk classes by the Cox model respectively. In addition of

that, just small part of the censored data cannot conju-

gate into the available samples because their imputed

survival time based on the AFT model is smaller than

their observed censored time. The reason may be the in-

dividual differences of the patients.

The integrated brier score (IBS) and the concordance

index (CI) measurements were used to evaluate the classi-

fication and prediction performance of Cox and AFT

models in the semi-supervised learning approach. In the

IBS measure, the lower value means the more accurate

prediction result. As shown in Fig. 5, the values of IBS ob-

tained by our semi-supervised learning model with L1/2
penalty were smaller than that obtained by the single Cox

and AFT models. For example, in the Lung cancer dataset,

the IBS values of the Cox and AFT models from 0.2164

and 0.2195 improve to 0.1259 and 0.1341 respectively in

the semi-supervised learning approach. For the other gene

expression datasets DLBCL2002, DLBCL2003 and AML,

the IBS values of the Cox model improve 34, 45 and 26 %,

and the IBS values of the AFT model improve 34, 36 and

28 % respectively. This means that our proposed semi-

supervised learning approach can significantly improve

the classification and prediction accuracy of the Cox and

AFT models. In Fig. 6, the values of CI measure obtained

by Cox and AFT with and without the semi-supervised

learning approaches were given respectively. The CI

values belong to the regain [0.5, 1] and its larger value

means the more accurate prediction results. As shown in

Fig 6, for the Lung cancer dataset, the CI values of the

Cox and AFT models from 0.5738 and 0.6013 improve to

0.6620 and 0.7225 respectively in the semi-supervised

learning approach. The improvement rate is higher than

(0.6620-0.5738)/(0.5738-0.500) = 120 %. For the other

gene expression datasets DLBCL2002, DLBCL2003 and

AML, the CI values of the Cox models improve 39, 45

and 25 %, and the CI values of the AFT models improve

56, 45 and 36 % respectively. These also illustrated the

semi-supervised learning method can significantly im-

prove the accuracy of prediction in survival analysis with

the high-dimensional and low sample size gene expression

data.

Figure 7 gives the number of genes selected by the

L1/2regularized Cox and AFT models with and without
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the semi-supervised learning framework. The semi-Cox

and semi-AFT selected less genes compared to the single

Cox and the AFT model. For example, in the lung cancer

dataset, the single Cox and single AFT models select 14

and 22 genes respectively. However, the Cox and AFT

models just select 10 and 17 genes in semi-supervised

learning model. Moreover, Combined the found in the

Figs. 5 and 6, the prediction accuracy of Cox and AFT in

the semi-supervised learning model was significantly im-

proved using more relevant genes.

On the other hand, we find that for these all four

gene expression datasets, the selected genes from Cox

and AFT models are quite different and just small

parts are overlapping. We think the reason may be

that the regularized Cox model selects the relevant

genes for low-risk and high-risk classification. Nerve-

less, the genes selected by the AFT model are high

correlation for the survival time of patients. So these

two models may select different genes, which have

different biological function. Through our below ana-

lyses, we know that the genes selected by semi-

supervised learning methods are significant relevant

with the cancer.

Figure 8 shows the survival curves of the Cox model

with and without the semi-supervised learning method

for AML dataset. The x-axis represents the survival days

and the y-axis is the estimated survival probability. The

green and read curves represent the changes of the sur-

vival probability for the “low-risk” and “high-risk” clas-

ses respectively. As show in Fig. 8a, these two curves

intersect at the time point of 564 day, which means

that the single Cox cannot efficiently classify and pre-

dict the survival rate of the patients using the AML

dataset. On the contrary, in Fig. 8b, the survival prob-

abilities of the “low-risk” and “high-risk” patients can

be efficiently estimated by the semi-Cox model. For

other three gene expression datasets, we also got the

similar results, which are the classification perform-

ance of semi-Cox model significantly outperforms the

single Cox model.

Discussion

In this section, we introduce a brief biological discussion

of the selected genes for the Lung cancer dataset to

demonstrate the superiority of our proposed semi-

supervised learning method. The number of selected

genes by semi-supervised learning method is less than

the single Cox and AFT model, but includes some genes

which are significantly associated with cancer and can-

not be selected by the two single Cox and AFT models,

such as GDF15, ARHGDIB and PDGFRL. GDF15 be-

longs to the transforming growth factor-beta superfam-

ily, and is one kind of bone morphogenetic proteins. It

was showed that GDF15 can be seen as prognostication

of cancer morbidity and mortality in men [31]. ARHG-

DIB is the member of the Rho (or ARH) protein family;

it is involved in many different cell events such as cell

secretion, proliferation. It is likely to impact on the can-

cer [32]. The role of PDGFRL is to encode a protein

contains an important sequence which is similar to the

ligand binding domain of platelet-derived growth factor

receptor beta. Biological research has confirmed that this

gene can affect the sporadic hepatocellular carcinomas.

This suggests that this gene product may get the func-

tion of the tumour inhibition.

At the same time, the Cox and AFT models with

and without semi-supervised learning method also

selected some common genes. For example,the

PTP4A2, TFAP2C, GSTT2. PTP4A2 is the member of

the protein tyrosine phosphatase family, overexpres-

sion of PTP4A2 will confer a transformed phenotype

in mammalian cells, which suggested its role in

tumorigenic is [33]. TFAP2C can encode a protein

contains a sequence-specific DNA-binding transcrip-

tion factor which can activate some developmental

genes [34]. GSTT2 is one kind of a member of a

superfamily of proteins. It has been proved to play an

important role in human carcinogenesis and shows

that these genes are linked to cancer with a certain

relationship [35].

Through the comparison of the biological analyses of

the selected genes, we found the semi-supervised

method based on Cox and AFT models with L1/2
regularization is a competitive method compared to sin-

gle regularized Cox and AFT models.

Conclusion

To overcome the limitations of fully unsupervised and

fully supervised approaches for survival analysis in

cancer research, we have developed a discriminative

semi-supervised method based on Cox and AFT models

with L1/2 regularization. This method combines the ad-

vantages of both Cox and AFT models, and overcome

the dilemma in their applications. By comparison the

results of Cox and AFT modes with and without the

semi-supervised method in simulation experiment and

real microarray datasets experiment with different regu-

larizing method, we demonstrated that 1) the censored

data could be employed after appropriate processing; 2)

the semi-supervised classification improved prediction

accuracy as compared to the state of the art single Cox

model; 3) the gene selection performance gain improved

with the increase number of available samples. There-

fore, for clinical applications, where the goal is often to

develop an accurate predicting test using fewer genes in

order to control cost, the semi-supervised method based

on Cox and AFT models with L1/2 regularization can be

chosen to applied, it will be an efficient and accuracy
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method based on the high-dimensional and low-sample

size data in cancer survival analysis.
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