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3 Ultimovacs AB, Uppsala, Sweden, 4 Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala

University, Uppsala, Sweden, 5 Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala

University, Uppsala, Sweden, 6 The School of Science and Technology, Nottingham Trent University, Nottingham, United

Kingdom, 7 The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University,

Nottingham, United Kingdom, 8 Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and

Technology, Nottingham Trent University, Nottingham, United Kingdom

Although the discovery and characterization of multiple tumor antigens have sparked the

development of many antigen/derived cancer vaccines, many are poorly immunogenic

and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine

formulations to trigger strong and long-lasting immune responses. Adjuvants have

generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral

salts such as aluminum hydroxide, emulsions, liposomes) and those that act as

immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition,

several novel technologies using vector-based delivery of antigens have been used.

Unfortunately, the immune system declines with age, a phenomenon known as

immunosenescence, and this is characterized by functional changes in both innate and

adaptive cellular immunity systems as well as in lymph node architecture. While many of

the immune functions decline over time, others paradoxically increase. Indeed, aging is

known to be associated with a low level of chronic inflammation—inflamm-aging. Given

that the median age of cancer diagnosis is 66 years and that immunotherapeutic

interventions such as cancer vaccines are currently given in combination with or after

other forms of treatments which themselves have immune-modulating potential such as

surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful

consideration in order to achieve the maximum immune response in a compromised

environment. In addition, more clinical trials need to be performed to carefully assess how

less conventional form of immune adjuvants, such as exercise, diet and psychological

care which have all be shown to influence immune responses can be incorporated to

improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with

respect to the above-mentioned important elements.
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INTRODUCTION

Therapeutic cancer vaccines represent an attractive strategy to

stimulate protective anti-tumor immunity in combination with
standard therapies. Cumulative data have confirmed the efficacy

of cancer vaccines in many murine tumor models, as well as in

phase I and II clinical trials. In view of these promising results,

numerous clinical trials are ongoing. Figures 1 and 2 summarize

open cancer vaccine trials, distinguished by trial phase, cancer

type and vaccine type (Figure 1) and by adjuvant and

combinatorial treatments used (Figure 2). However, cancer

vaccines have not yet achieved significant clinical efficacy in

A

B

FIGURE 1 | Open cancer vaccine trials. Cancer vaccine trials listed as open at ClinicalTrials.gov on August 2020. The number of trials for each cancer type (A) and

for each vaccine type (B) are shown in the bar graph subdivided into phase I, II, and III/IV. Viral vector vaccines include adenovirus and poxvirus, but also trials using

yeast-loaded antigens and one using Salmonella-loaded antigens. Cancers with less than 5 open clinical trials are not shown. “In situ vaccinations” (intralesional

injection of immune- modulatory molecules) are not included in these graphs. HPV, Human Papilloma Virus; CRC, colorectal cancer; VLP, virus like particle.
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phase III trials (Table 1). Indeed, clinical responses have been

rather anecdotal (48, 49). The reasons for those failed trials are

not fully understood but are most likely related to the stage of the

disease treated, an inherent difficulty to mount a strong cellular

immune response to non-live vaccine entities when older and the
choice of antigens, adjuvant and the suppressive nature of the

tumor microenvironment. Among these reasons, the difficulty of

achieving strong cellular immune responses is likely a major

factor to consider. In contrast to prophylactic vaccines against

infectious agents that usually trigger humoral responses,

therapeutic cancer vaccines aim to promote T cell immune
responses for effectiveness. Moreover, very limited

considerations have been given to the pharmacokinetic profile

of the antigen/adjuvant administration strategy and,

consequently, the required durable and effective long-term

CD4+ and CD8+ T cell responses are not achieved. As

mentioned, the developed tumor microenvironment is typically

immunosuppressive and is characterized by the presence of

exhausted T and NK cells and the accumulation of several

suppressive immune cells, such as T regulatory cells, T helper

type-2 (Th2) CD4+ T cells, tumor-associated macrophages
(TAMs), and myeloid-derived suppressor cells (MDSCs) (50–

53), in addition to which the activation state of T cells will be

regulated by co-inhibitory pathways. However, the approval of

the first cancer vaccine (Provenge®) in 2010 spurred hope (54),

as did the reported clinical effects and efficacy of checkpoint

inhibitors in some advanced cancer patients. However, global
availability of the former is limited as the EMA approval was

withdrawn in 2015 (55) and the clinical efficacy of the latter is

restricted to a few cancers. Nonetheless, many combination

strategies involving immune-based therapies and checkpoint

inhibition approaches are currently being tested in phase III

A

B

FIGURE 2 | Adjuvants and combinatorial immunomodulatory therapies being used in cancer vaccine trials. Cancer vaccine trials listed as open at ClinicalTrials.gov

on August 2020. The number of trials using each adjuvant (A) and associating each immunomodulatory therapy with the cancer vaccine (B) are shown in the bar

graph. Adjuvants and combinatorial therapies used in less than 2 clinical trials are not shown. GM-CSF, Granulocyte-macrophage colony-stimulating factor; IL-2,

interleukin-2; Td, Tetanus/diphtheria toxoid; HSP, heat shock protein; CAF09b, cationic liposomes (DDA-MMG1) with complex bound synthetic double-stranded

RNA (Poly(I:C)2); IL-12, Interleukin- 12; P64k, Neisseria meningitides protein; PD-1, Programmed cell death 1; PD-L1, Programmed cell death ligand 1; CTLA-4,

cytotoxic T-lymphocyte-associated protein 4; RT, radiotherapy; M7824, fusion protein composed of a human IgG1 monoclonal antibody against PD-L1 fused with 2

extracellular domains of TGF-bRII; IFNalfa, Interferon alfa; IDO1, indoleamine 2,3-dioxygenase 1; ALT-803, IL-15 superagonist; Other vaccines, Salmonella,

pneumococcal vaccines; HSC, hematopoietic stem cells.
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TABLE 1 | Completed phase 3 cancer vaccine trials.

Vaccine Clinical

trial (NCT

number)

Cancer Vaccine type Antigen

target

Adjuvant Associated

treatment

Control arm Results: immuno-

logical response

(from phase II and

III)

Results: clinical efficacy? (from phase III) References

Peptide vaccine 01989572 Melanoma Peptide tyrosinase,

gp100,

MART-1

Montanide

ISA-51

GM-CSF

/ GM-CSF or Placebo Cell-mediated

(CD8)

No (PFS and OS) (1)

MDX-1379 00094653 Melanoma Peptide gp100 Montanide

ISA-51

+/- Ipilimumab Placebo +

ipilimumab

NA No (OS)

longer survival with Ipilimumab

(2)

gp100:209-217

(210M)

peptide vaccine

00019682 Melanoma Peptide gp100 IL-2 / IL-2 Cell-mediated

(no correlation with

OS)

Yes (PFS and ORR) (3)

GSK1572932A 00796445 Melanoma Peptide MAGE-A3 AS15 / Placebo Antibody-mediated No (PFS) (4)

GM2-KLH 00005052 Melanoma Ganglioside Ganglioside

GM2

QS-21

KLH

/ Observation NA No (PFS and OS)

Detrimental outcome

(5)

CancerVax

(CANVAXIN)

00052156

00052130

Melanoma Allogeneic tumor

cell

/ BCG / Placebo + BCG NA No (PFS and OS) Detrimental outcome (6, 7)

Melanoma

vaccine

01861938 Melanoma Allogeneic tumor

cell (expressing

HLA A2/4-1BB

ligand)

/ BCG Cyclophosphamide / Cell-mediated

(CD8)

Pending (8)

Melacine – Melanoma Allogeneic tumor

cell lysate

/ Detox / Observation Cell-mediated

(CD8)

No (PFS and OS)

Survival benefit in HLA-A2 and –Cw3

population

(9)

GSK1572932A 00480025 NSCL Peptide MAGE-A3 AS15 / Placebo Antibody-mediated

(100%)

No (PFS) (10)

Tecemotide

(L-BLP25)

00409188 NSCL Peptide MUC1 Liposome cyclophosphamide Placebo and

cyclophosphamide

Cell-mediated

(no correlation with

OS)

No (OS)

Survival benefit in patients who received

chemoRT and tecemotide

(11, 12)

rEGF-P64K/

Montanide

ISA-51

00516685

01444118

NSCL Protein EGF Montanide

ISA-51

P64k

cyclophosphamide Best supportive care Antibody-mediated Yes (OS) (13)

Lucanix TM 00676507 NSCL Allogenic tumor

cells

(transfected with

TGF-b2)

/ / / Placebo Cell- and antibody-

mediated

No (PFS and OS);

Positive trend in previously irradiated and

early treated patients

(14, 15)

TG4010 00415818 NSCL MVA (encoding

MUC1 and

IL-2)

MUC1 IL-2

(encoded

by

MVA)

Cisplatin and

gemcitabine

Cisplatin and

gemcitabine

Cell-mediated

(CD8)

Pending

From phase IIb study part: positive trend

(PFS)

(16)

TG4010 01383148 NSCL MVA (encoding

MUC1 and

IL-2)

MUC1 IL-2

(encoded

by

MVA)

Standard

chemotherapy and

bevacizumab if

prescribed

Placebo + standard

chemotherapy and

bevacizumab if

prescribed

Cell-mediated

(CD8) (correlation

with OS)

Pending

From phase IIb study part: longer PFS and

OS in patients with low peripheral baseline

of activated lymphocytes (CD16+ CD56+

CD69+)

(17, 18)

Racotumomab 01460472 NSCL Anti-idiotypic

antibody

NeuGcGM3 Alum / Best supportive

care

Antibody-mediated Pending

From phase IIb study part: Yes (PFS and

OS)

(19)

(Continued)
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TABLE 1 | Continued

Vaccine Clinical

trial (NCT

number)

Cancer Vaccine type Antigen

target

Adjuvant Associated

treatment

Control arm Results: immuno-

logical response

(from phase II and

III)

Results: clinical efficacy? (from phase III) References

BEC2 00003279

00006352

00037713

SCLC Anti-idiotypic

antibody

GD-3 BCG / Best supportive care Antibody-mediated

(no correlation with

OS)

No (PFS and OS) (20, 21)

GVAX® 00089856 Prostate Allogenic tumor

cells

(secreting GM-

CSF)

/ GM-CSF / Docetaxel and

prednisone

NA No (survival) ClinicalTrials

.gov

Sipuleucel-T/

Provenge

00005947 Prostate DC PAP GM-CSF / Placebo Cell- and antibody-

mediated

Yes (OS)

No significant difference in PFS

(22)

Sipuleucel-T/

Provenge

00065442 Prostate DC PAP GM-CSF / Placebo Cell- and antibody-

mediated

Yes (OS)

No significant difference in PFS

(23)

Sipuleucel-T/

Provenge

00779402 Prostate DC PAP GM-CSF / Placebo Pending Not significant difference in time to

biochemical failure

Pending for OS results

(24)

DCVAC 02111577 Prostate DC / / Docetaxel and

prednisone

Placebo + docetaxel

and prednisone

Pending Pending ClinicalTrials

.gov

PROSTVAC 01322490 Prostate Poxviral vector

(transfected with

PSA and

TRICOM)

PSA TRICOM

+/- GM-

CSF

/ Placebo +/- GM-

CSF

No

(no detectable

antibody responses

to PSA)

No (PFS and OS) (25, 26)

Intravesical BCG 00002990 Bladder in situ vaccination / BCG / Different doses of

BCG

/ No (OS) (27)

intravesical BCG 00002490 Bladder in situ vaccination / BCG / RT or mitomycin C NA No survival benefit with RT (versus BCG or

chemotherapy)

(28)

Intravesical BCG 01442519 Bladder in situ vaccination / BCG Electromotive

mitomycin

BCG alone NA Yes (PFS, OS)

in BCG+ mitomycin group

(29)

Intravesical BCG 00330707 Bladder in situ vaccination / BCG +/-

IFN a

/ / NA Higher recurrence in patients with CIS,

NRAMP1

D543N G:G, and the (GT)n allele 3

genotypes

(30)

GV1001

(TELOVAC)

00425360 Pancreas Peptide Telomerase GM-CSF Gemcitabine and

capecitabine

Gemcitabine and

capecitabine

Cell-mediated

(CD4)

No (OS) on overall population, approved

indication in South Korea using eotaxin

levels as biomarker for patient stratification

(31)

HyperAcute-

pancreatic

(Algenpantucel-

L)

01072981 Pancreas Allogenic tumor

cells

(expressing

murine a

-gal epitopes)

/ / Gemcitabine +/-

5FU

chemoradiation

Gemcitabine +/-

5FU

chemoradiation

Pending Pending (32)

PANVAC-VF 00088660 Pancreas poxvirus vector

(expressing

CEA, MUC1 and

TRICOM)

CEA, MUC1 GM-CSF / Best supportive

care or palliative

chemotherapy

Cell-mediated Pending (33)

FNHLId1 00091676 NHL Protein Ig idiotype KLH

GM-CSF

/ KLH + GM-CSF Cell-mediated

(CD4 and CD8)

Yes (PFS) (34, 35)

(Continued)
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TABLE 1 | Continued

Vaccine Clinical

trial (NCT

number)

Cancer Vaccine type Antigen

target

Adjuvant Associated

treatment

Control arm Results: immuno-

logical response

(from phase II and

III)

Results: clinical efficacy? (from phase III) References

FavId

(Mitumprotimut-

T)

00089115 NHL Protein Ig idiotype KLH

GM-CSF

Previous rituximab Placebo + GM-CSF Cell- (72%) and

antibody- (20%)

mediated

No (PFS and ORR) (36, 37)

MyVax 00017290 NHL Protein Ig idiotype KHL

GM-CSF

Previous

chemotherapy

KLH + GM-CSF Antibody-mediated

(41%)

No (PFS) (38)

DCVax-L 00045968 GBM DC / / / Placebo Pending Pending (39)

Rindopepimut 01480479 GBM Peptide EGFRvIII KLH

GM-CSF

Temozolomide KLH +

temozolomide

Antibody-mediated No (OS) (40)

NeuVax 01479244 Breast Peptide HER2 GM-CSF / Placebo and GM-

CSF

NA No (PFS) (41)

THERATOPE 00003638 Breast Peptide Sialyl-Tn KLH

Detox-B

cyclophosphamide KLH-vaccine and

cyclophosphamide

Antibody-mediated

(correlation with

OS)

No (PFS and OS) (42, 43)

HSPPC-96/

vitespen

00033904 RCC Autologous

tumor-derived

HSPPC-96

/ / / Observation NA No (PFS) (44)

IMA901 01265901 RCC Peptide TUMAPs GM-CSF Cyclophosphamide

and Sunitinib

Sunitinib Cell-mediated

(CD8)

(no correlation with

OS)

No (OS) (45)

BCG 00427570 CRC in situ vaccination / BCG / Observation or

chemotherapy

NA Yes (OS) compared to observation (46)

Gardasil 02087384 Anus VLP HPV-6, 11,

16, 18

Alum / Placebo Pending Pending ClinicalTrials

.gov

Abagovomab 00418574 Ovary anti-idiotypic

antibody

CA-125 / / Placebo Antibody-mediated No (PFS and OS) (47)

Phase 3 cancer vaccine trials listed as completed at ClinicalTrials.gov on August 2020. Immune responses results are reported as published in phase III data when available or in phase II respective data of the same vaccine and same authors group.

5FU, 5-fluoruracil; BCG, Bacillus Calmette–Guérin; CA-125, carcinoma antigen 125; CEA, Carcinoembryonic antigen; CRC, colorectal carcinoma; Detox, detoxified Freund’s adjuvant; DC, dendritic cell; EGF, epidermal growth factor; GBM,

glioblastoma; GM-CSF, Granulocyte-macrophage colony-stimulating factor; HER2, human epidermal growth factor receptor 2; HSPPC-96, Heat Shock Protein Peptide Complex-96; HPV, human papillomavirus; IL-2, Interleukin-2; Ig,

immunoglobulin; KLH, keyhole limpet hemocyanin; MUC1, Mucin 1; MVA, modified vaccinia virus Ankara; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PAP, Prostatic acid phosphatase; PFS,

progression free survival; PSA, Prostate-specific antigen; SCLC, small cell lung cancer; RCC, renal cell carcinoma; RT, radiotherapy; TGF-b2, Transforming growth factor-beta 2; TUMAP, PLIN2, APOL1, CCND1, GUCY1A3, PRUNE2, MET,

MUC1, RGS5, MMP7, HBcAg; TRICOM, B7.1 + ICAM-1, InterCellularAdhesion Molecule-1 + LFA-3, Leukocyte function-associated antigen-3; VLP, virus like particle.
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trials (Table 1, Figure 2B). In relation to the suppressive

environment, a key factor is to initiate vaccination in tumor

indications early on in the disease, non-metastatic, as the lesion

size may impact the effectiveness of the treatment (56). This

strategy is however hampered by lack of end-points that

facilitates studies that fall within a time-frame that can be
viable for the industry sponsored clinical trials.

Another potentially confounding issue with regards to the

efficacy of cancer vaccines is age, given that the median age of

cancer diagnosis is 66 years, and the immune system is known to

de c l i n e w i t h ag e . Th i s phenomenon , known a s

immunosenescence, is characterized by functional changes in
both innate and adaptive cellular immunity as well as in lymph

node architecture. While many of the immune functions decline

over time, others paradoxically increase. Indeed, aging is known

to be associated with a low, but persistent level inflammation.

“Inflamm-aging” also leads to dysregulation of innate and

adaptive immune cells (57–59).
It is therefore essential that the choice of adjuvants is carefully

optimized for each vaccine formulation, as well as for each

patient, in order to break immune tolerance and achieve

maximum immune responses and clinical efficacy, even in

such a compromised environment. Most cancer antigens are

poorly immunogenic and adjuvants are required to (i) prolong

the antigen availability at the injection site (“depot” effect); (ii)
activate the innate immunity; (iii) direct the immune response

toward T helper type-1 (Th1) responses; and (iv) to mitigate the

tumor/associated immune suppression (60, 61). Based on

function, classical adjuvants have generally been divided into

two categories: the immunostimulatory adjuvants (cytokines,

Toll-Like receptor agonists, saponins …) and “depot”
adjuvants (e.g. mineral salts such as aluminum hydroxide,

emulsions, liposomes). Although practical, this classification is

today rather simplistic since some delivery systems can also

activate innate immunity by creating local proinflammatory

reactions (62). Novel RNA-based vaccines have an inherited

adjuvant capacity that has also been associated with problematic

toxicity, handled by elegant design and formulation (63). As such
RNA-based vectors, which have had so far been developed for

cancer treatment, are now in a record development program

reaching the society in response to the COVID-19 pandemic.

This also sets the scene for many novel indications ahead

(64, 65).

In this review, adjuvants approved for human use will be
discussed with respect to the above-mentioned elements.

Importantly, new forms of adjuvants including exercise,

microbiota and the psychological status of the patient prior to

immunization will also be discussed.

IMMUNOSTIMULATORY ADJUVANTS

Immunostimulant adjuvants likely constitute the most

promising strategy to potentiate immune responsiveness in
elderly cancer patients. Numerous defects in the innate and

adaptive immune system have been indeed described in elderly

individuals. Age-related reductions in levels of major

histocompatibility (MHC) class II expression as well as

dysregulation of cellular signaling in human and murine

monocytes compromise the efficiency of antigen presentation

to T cells (66–68). Studies on peripheral blood mononuclear cells

(PBMCs) from elderly donors have also revealed that aged

dendritic cells (DCs) have a reduced capacity for producing
inflammatory cytokines in response to inflammatory stimuli, and

particularly to several Toll-like receptor (TLR) ligands, as well as

an impaired ability to present antigens to T cells (59, 69–71).

Alongside defects in innate immune potential, numerous reports

have described the phenomenon of T cell immunosenescence, an

event which primarily results from thymic involution which
leads to a contraction of the naïve T cell compartment and a

predominance of terminally differentiated memory T cells in the

periphery (72, 73). Other studies suggest that chronic latent

infections, such as cytomegalovirus (CMV), could also play a

crucial role in T cell immunosenescence in the CD4+ T cell

compartment, as well as in the naïve and memory CD8+ T cell
compartments (74, 75). Permanent CMV infection stimulates

the expansion of CMV-specific memory CD8+ T cells and could

thus impact on the ability of an individual’s T cells to elicit a

response against new antigens (76). Additionally, the chronic

inflamm-aging status observed with age has been associated with

diminished expression of the costimulatory receptor CD28 on T

cells because of persistently increased levels of TNF-a (77–79).
CD28 is vital for efficient T cell activation, reduced levels of

which have been correlated with poor immune responses after

vaccination among older people (80, 81).

Cytokines
The use of cytokines in cancer immunotherapy and specifically

in cancer vaccine formulations is becoming more prevalent as

they can elicit both cellular and humoral immune responses.
IFN-a, IFN-g, IL-2, IL-12, IL-15, IL-18, IL-21 have especially

demonstrated immunological efficacy when used as part of a

vaccine adjuvant strategy (50). However, to date, GM-CSF

(granulocyte macrophage colony-stimulating factor) is the

immunostimulatory cytokine which has been most widely used

in clinical vaccine trials (Figure 2A). GM-CSF has been reported
to induce strong T cell responses as well as to inhibit tumor

growth in both whole tumor cell and peptide vaccines in

preclinical studies (82) by recruiting and activating antigen-

presenting cells (APCs) at the injection site. However, GM-

CSF as vaccine adjuvant has delivered conflicting results in

clinical trials. In some trials, GM-CSF has shown only weak
effects in potentiating immune response of cancer vaccine (83,

84) and in others no additional positive effect was reported when

associated with Montanide (85, 86). However, the only FDA

approved cancer vaccine, Provenge®, bases the adjuvant effect on

a fusion protein that contains GM-CSF and reported an OS

benefit in patients with metastatic castrate-resistant prostate

cancer. However, in phase II and III trials testing Provenge®,
the exact role/influence of GM-CSF over clinical efficacy was not

thoroughly investigated. In addition, two trials containing GM-

CSF in the vaccine formulation resulted in decreased cell-

mediated immune responses and shorter survival of patients

with melanoma (87, 88), however it is also possible that in this
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instance the choice of antigen as well as formulation have had an

impact on the results. Indeed, lower doses of GM-CSF in water

formulations could shape the lymph node differently compared

to a montanide based formulation. Interestingly, daily doses of

GM-CSF over 100 µg/day given repeatedly have been reported to

promote the expansion of myeloid-derived suppressor cells
(MDSCs) and inhibit T-cell function (89). While GM-CSF as

an adjuvant in prime/boost administration given at lower doses

has shown good adjuvant capabilities and is an adjuvant

commonly used in many vaccine formulations due to the

expanded knowledge of the adjuvant (Table 1, Figure 2A).

Systemic use of cytokines such as IL-2 or GM-CSF in
combination with other immunotherapies have also shown

clinical efficacy (3, 90). It is therefore extremely important to

optimize the schedule, formulation and the dose of cytokine in

order to avoid/limit systemic side-effects.

Toll-Like Receptor Ligands
The stimulation of professional APCs such as neutrophils, B

cells, macrophages and DCs is an efficient approach to boost the

efficacy of cancer vaccines, especially in immunocompromised

individuals, such as cancer patients and more generally the

elderly. However, as indicated above, age-related deficiencies in

monocyte and macrophage function mediated by functional
dysregulation of cellular signaling, and specifically of Toll-like

receptor (TLR) pathway have been described. Activation of

APCs relies upon stimulation of pathogen recognition

receptors (PRRs) by conserved pathogen-associated molecular

patterns (PAMPs) expressed on microbes, or endogenous

danger-associated molecular patterns (DAMPs) released by
injured cells. TLRs recognizing PAMPs and DAMPs under

physiological conditions are expressed either on the cell

membrane (TLR1, -2, -4, -5, -6, and -10) or on endosomal

membranes within the cell (TLR3, -7, -8, and -9) according to the

ligand - membrane TLRs bind lipids and proteins whereas

intracellular TLRs bind nucleic acids (91, 92). PRR activation

induces the release of chemokines and inflammatory cytokines,
the recruitment of innate and adaptive immune cells, and

stimulation of the APCs themselves via the induction of

costimulatory molecule expression, including B7.1 (CD80),

B7.2 (CD86) and CD40.

Studies on peripheral blood mononuclear cells (PBMCs) from

elderly donors have shown that that aged DCs have a diminished
ability in producing cytokines in response to inflammatory

stimuli, and particularly to TLR1/2 and TLR7/TLR9 ligands, as

well as an impaired capacity for presenting antigens to T cells

(69–71). Such deficiencies have been associated with a decreased

activity of PI3K that results in aberrant activation of NF-kB and

therefore a weak, but chronic inflammatory state characterized
by continuous release of IL-6 and TNF-a cytokines (93), the so-

called phenomenon of inflamm-aging. The overall result is a

compromised ability of DCs to orchestrate an efficient adaptive

immune response in elderly individuals (59).

In view of these defects on DCs, TLR ligands which mimic

PAMPs represent promising adjuvant candidates for cancer

vaccines in elderly individuals. Synthetic TLR3, TLR7 and

TLR9 agonists are likely the best candidates, as they mimic

viral RNA and DNA PAMPs (94) which generally generate

robust cytolytic CD8+ T-cell responses (95, 96). Specifically,

TLR3 recognizes viral dsRNA and their synthetic analog Poly

I:C (97, 98); TLR7 binds viral ssRNA, whereas TLR9 interacts

with unmethylated CpG DNA from bacteria and viruses (91, 92).
Three TLR ligands are FDA-approved for cancer therapy:

Bacillus Calmette-Guérin (BCG), a TLR2/4 ligand, the TLR4

ligand monophosphoryl lipid A (MPLA) and the TLR7 agonist

imiquimod. However, many other TLR agonists have proven

their efficacy in pre-clinical and clinical studies.

The use of TLR agonists constitutes an efficient way to boost
the efficacy and potency of cancer vaccines thanks also to their

interaction with other immune and non-immune cells which can

express TLRs, including T-cells and cancer cells. Indeed, poly I:C

(TLR3 agonist) has been reported to stimulate the proliferation

and survival of both CD4 and CD8 T cells in a CF-kB-dependent

manner (99, 100). Additionally, in human CD4+ Th cells, the
stimulation of TLR7/8 and TLR5 by resiquimod and flagellin

increases IFN-g, IL-2, and IL-10 release and enhances

proliferation in an APC-independent manner (101). Other

studies have shown similar effects of TLR9 stimulation on the

survival and proliferation of CD4+ and CD8+ T-cells. This effect

was mediated by NF-kB signaling and was associated with

increased expression of the anti-apoptotic protein Bcl-xL (99).
Furthermore, TLR9 stimulation of CD4+ T-cells can render them

resistant to the immunosuppressive effects of regulatory T cells

(Tregs) (102, 103).

Beside APCs and T cells, TLRs are also expressed by amultitude

of cancer cells. Their direct effect on cancer cells is not completely

defined, and probably much less important than their immune
effects. The activation of TLR2 and TLR4 in cancer cells has been

linked to tumor-promoting effects by promoting vascularization

and cell invasion via the induction of COX-2, PGE2 and IL-8 (104,

105). Similar to TLR2 and TLR4, TLR7/TLR8 overexpression in

lungcancer cells has beenassociatedwithpro-tumoreffects through

the activation of NF-kB and resulting in upregulation of

inflammatory cytokines, the anti-apoptotic Bcl-2, the angiogenic
VEGFR2 and several chemokine receptors associated with cell

migration (106). TLR3 stimulation by Poly I:C or BCG has been

implicated in promoting tumor cell death in amultitude of cancers,

including breast cancer, colon cancer, bladder cancer, head and

neck carcinoma, pharynx carcinoma, hepatocellular carcinoma,

lung cancer and melanoma. TLR3 polymorphisms have also been
linked toan increased riskof several cancers suchasnasopharyngeal

carcinoma, breast cancer, cervical cancer, and Hodgkin’s disease

(107). However, TLR3 activation has been reported to induce

cancer progression as well by the induction of VEGF, MMP9 and

uPAR via Myc- and MAPK signaling (108). TLR5 signaling on

cancer cells has been reported to inhibit tumor growth in various

cancers, including breast cancer (109), head and neck cancer (110)
and colon cancer (111). On the contrary, TLR5 stimulation in

gastric cancer cells, notably by H. pylori, has been reported to

increase IL-8 production, tumor cell proliferation as well as TNF-a
expression levels that can support the suppressive effects of Treg

cells (112, 113). Depending upon tumor cell types, TLR9 activation
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can stimulate or inhibit tumor cell proliferation (114–118) or

induce caspase-dependent apoptosis (119, 120). The TLR9

agonist CpG-ODN has proved to be moderately effective in

glioblastoma patients when injected intratumorally (121, 122).

In summary, various TLRs can be expressed on numerous

cancer cell types and TLR3 and TLR5 appear to be the most
promising adjuvants for combining direct anti-tumor properties

with immunostimulant effects on APCs and T cells. However, the

final effect of each TLR agonist relies on its immunostimulant

properties. Therefore, the choice of the TLR agonist should be

primarily driven by its ability to trigger T cell response in humans,

which should be defined on a case-by-case basis for a given antigen.

Saponins
Saponin adjuvants are extracts from the plant Quillaja saponaria

and possess potent inflammatory properties. QS-21 is the most

commonly used adjuvant in vaccine formulations (123) and its

immunogenicity has been attributed to the triterpene aldehyde

group, which is capable of triggering the ASC/NALP3

inflammasome signaling and thus stimulating the conversion
from precursor to activated forms of IL-1 b and IL-18 (124). The

adjuvant QS-21 has been reported to elicit robust T-helper 1,

CD8+ T cell and humoral responses in preclinical studies. Besides

such immunogenic properties, QS-21 strongly activates the

inflammasome thus causing cell membrane lysis and apoptosis

of APCs (124). QS21 has also been tested in clinical trials, mostly
as adjuvant of cancer vaccines targeting ganglioside antigens and,

despite strong humoral responses, no significant cellular immune

responses were observed. Its efficacy in cancer vaccine appears

thus limited.

QS-21 has also been used as part of more complex vaccine

formulations combining multiple adjuvants, for instance

ISCOMATRIX incorporating the saponin adjuvant with
antigens in a micellar structure (125), and AS01 and AS15

combining QS-21 with MPL (126).

Stimulator of Interferon Genes Agonists
Stimulator of Interferon Genes (STINGs) are transmembrane

proteins that induce a robust Type I IFNg response upon

activation and are expressed at the highest levels by T cells.
STING activation can lead specifically to T cell apoptosis since

DCs or macrophages do not exhibit such sensitivity (127).

STING agonists are combined with adjuvant systems that

specifically target myeloid cells (128) and are capable of

reprogramming MDSCs towards a DC-like phenotype

expressing IL-2 and co-stimulatory molecules (129). However,

differential binding properties of these agonists to human and
murine cells poses a challenge for the development of

clinical strategies.

Ideally, implementation of STING agonists in cancer vaccines

should be combined with potent adjuvant/delivery systems such

as liposomes or polymeric nanoparticles or inorganic materials

to minimize systemic dissemination that can cause toxic cytokine
storm and limited bioavailability.

Currently, ADU-S100 and MK-1454 are being tested along

with immune checkpoint inhibitors (ICIs) in early phase clinical

trials in patients with advanced/metastatic solid tumors or

lymphomas (NCT03172936, NCT03010176). Both require

accessible lesions for intratumor injections to avoid

systemic toxicity.

DELIVERY SYSTEM AS ADJUVANTS

The classical classification of delivery systems and

immunostimulant adjuvants is practical, but not dichotomic
since several adjuvants can act as a delivery platform for

antigens, while also having some immunomodulating

properties. Adjuvants traditionally classified in this category

mainly act by improving antigen stability, preventing antigen

degradation and finally optimizing its processing and

presentation to T cells. The most important delivery system
adjuvants and their mechanisms are described below.

Mineral Salts
Alum is by far the most used adjuvant in approved human

vaccines against various infectious organisms (130). Aluminum-

based adjuvants are traditionally classified as a delivery system

type because their depot effect at the injection site leads to a slow

release of the antigens. However, recent reports showed that
alum is also capable of stimulating the innate immune response

by activating the NLRP3/NALP3 inflammasome complex and

triggering the release of uric acid (131, 132).

The adjuvant effect of alum in vaccines against infectious

agents essentially results from an induction of a sustained Th2

response, as characterized by antibody production, but generally
fails to mount a strong cellular (Th1)-based immune responses

that are necessary for robust protective anti-tumor immunity.

Hence, the use of aluminum-based adjuvants in cancer vaccines

is of limited use (130). However, studies have been able to show

that alum can also induce a cytotoxic immune response (133), as

well as a clinical efficacy in cancer patients in terms of survival

(racotumomab-alum vaccine directed against NeuGcGM3
tumor-associated ganglioside) (19). In addition, recent studies

have shown that alum can elicit robust immune responses and

have anti-tumor efficacy (in terms of inhibited tumor growth and

prolonged survival) when used in nanoscale (134). Nano-

aluminum adjuvants can indeed carry more antigens and more

efficiently present them to antigen-presenting cells (APCs) in
lymph nodes compared to traditional aluminum salt adjuvants

which tend, instead, to remain at the injection site because of

their positive charge and large particle size (135, 136).

Emulsions
Emulsions are typically classified as water-in-oil (W/O) or

oil-in-water (O/W) formulations and mainly act as delivery

system of antigens in the injection site, thereby allowing a slow
and prolonged release of the latter. Nevertheless, they also have

some immune adjuvant properties by inducing local inflammation

and promoting the recruitment of APCs as well as their phagocytic

uptake of antigen (137–139).

Complete Freund’s adjuvant (CFA) was the first water-in-oil

emulsion to be developed (1930). CFA is a highly potent
adjuvant which contains heat-killed mycobacteria but induces
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a strong local inflammation that often leads to ulceration at the

site of injection. Given its adverse effects, CFA is not permitted

for use in humans.

Incomplete Freund’s adjuvant (IFA) is also aW/Oemulsion, but

without mycobacteria. IFA induces more manageable adverse

events than CFA and is the “golden standard” of this group of
adjuvants for assessing the immunogenicityof antigens inmice. IFA

has proven to induce both cellular and humoral immune responses

(140–143) and its human equivalent, Montanide ISA-51, has been

and continues to be widely used in peptide cancer vaccine

formulations in many trials (melanoma, renal carcinoma) (144,

145) (Figure 2A). Other studies, however, have shown negative
effects of IFA and, more generally, of all W/O emulsions. The slow

persistent releaseof the antigen coupledwith the local inflammation

induced by the emulsion itself can actually result in the

sequestration of primed CD8+ T cells at the injection site, when

using short peptides, leading to limited T cell homing to the tumor

and T cell tolerance (146–149). In addition, W/O emulsions are
usually associated with Toll-Like receptor (TLR) agonists and

numerous studies have reported a detrimental effect of W/O

emulsion on T cell responses triggered by TLR agonists (150).

MF59 is an O/W squalene-based emulsion that is currently

licensed for human influenza vaccines (151, 152). As for other

adjuvants historically included in this group, MF59 also appears

capable of triggering cellular and humoral responses. Indeed, MF59
can promote leukocyte recruitment by inducing macrophages and

dendritic cells to secrete several chemokines. MF59 has proven to

be effective in elderly subjects in human trials and is currently used

in a flu vaccine for individuals > 65 years. The use of MF59 is

limited in cancer vaccine strategies because of the primal Th2

response. However, in combination with CpG ODN (cytosine
guanine dinucleotide oligodeoxynucleotides, TLR9 agonist),

MF59 has proven to induce effective anti-tumor responses in

several murine cancer models (94, 153).

Liposomes
Liposomes are phospholipid vesicles which are used as delivery
carriers for antigen or also immunostimulatory adjuvants (154,

155). Allison and Gregoriadis, in 1974–1976 innovated the

liposomes and since then all their derivative nanovesicles have

become important delivery systems for vaccines. Positively

charged liposomes have been reported to trigger more potent

immune responses compared to negatively charged liposomes.
This efficacy is attributed to both more efficient phagocytosis of

positively charged liposomes by APCs (156) and reduced

lysosomal degradation of antigens because of a higher pH

(157). The key advantages of liposomes are their versatility,

plasticity, biocompatibility, and biodegradability. Various

choices for the composition and preparation can be achieved
from a selection of lipids to target the desired charge, size,

distribution, traveling and location of antigens or adjuvants for

cancer vaccines (155). However, using liposomes for human

applications is restricted due to the lack of stable manufacturing

of vaccine-grade liposomes and their high cost (155, 158). To

resolve these obstacles in co-formulation, a manufacturable,

synergistic anionic liposome platform with TLR4/TLR7
agonists ready for use in clinical trials has been developed (159).

Many animal models using liposomes as delivery agents have

shown that liposomal cancer vaccines have superior efficacy over

the non-liposomal vaccines (158, 160, 161). In mice challenged

with Lewis lung carcinoma cells, liposomal vaccines combining

basic fibroblast growth factor and the adjuvant monophosphoryl

lipid A (MPLA) induced tumor-specific antibodies and Th1-type
immune responses (160). Liposomal delivery of the lipid antigen

a-galactosylceramide induced anti-tumor immunity that was

protective against lung metastases in 65% of B16 F10-tumor-

bearing mice, by activating the NKT cells in the spleen (161).

Park et al., developed a peptide-CpG-liposome complex vaccine

which was proven to efficiently elicit humoral responses (anti-
hTM4SF5 antibodies) and inhibit cancer growth in various

murine tumor models (pancreatic cancer, metastatic

hepatocellular cancer, colon cancer, lung metastasis model)

(162). Liposomal vaccines have also been reported to elicit

strong cytotoxic T lymphocyte (CTL) responses against tumor-

associated peptides, as in the case of Lip-DOPE-P5-MPL, where
the P5 peptide was encapsulated in a complex of 5 lipids (DMPC,

DMPG, cholesterol, DOPE and MPLA) conjugated with

maleimide-PEG2000-DSPE (163). In a mouse model of

neuroblastoma, liposomal delivery of CpG ODNs has been

shown to elicit potent anti-tumor effects, whereas the CpG-

alone group failed (119). Liposomes were also proven to

increase the uptake and stimulation of APCs leading to anti-
tumor efficacy when used as delivery system of DNA or RNA

complexes in mice (164). Recently, a novel lipopolyplex vector

(multi-LP) was proposed for the in vivo delivery of mRNA by

incorporating the immune adjuvant a-galactosylceramide (a-
GalCer) and a multivalent cationic lipid to target the dendritic

cells (DCs) without cell-specific functionalization or
ligands (165).

In addition to the above, several clinical trials using liposomes as

carrier system for vaccine have reported safety, capability of inducing

prolonged antigen-specific CD4+ and CD8+ T cell responses, as well

as prolonged survival in various cancers, including non-small-cell

lung carcinoma (NSCLC) (166), melanoma (167, 168), follicular

lymphoma (169) ovarian (170), breast and prostate cancers (171).
In conclusion, liposomes are versatile delivery systems which

can load antigens, proteins, peptides, nucleic acids, and

carbohydrates, as well as for the formulation of new types of

vaccines targeting the lymphatic system or specific APCs such as

macrophages or DCs.

Virosomes
Virosomes are spheres of natural or synthetic phospholipids

(liposomes) incorporated into which are virus envelope

phospholipids and viral spike proteins. They were identified in

1975, but the first virosome-based vaccine in humans was

Inflexal V for influenza in 2009 (158). Virosome-based

vaccines are currently commercialized as preventive vaccines

for HPV16 and 18-related cancers (Cervarix™ and Gardasil®)
(172, 173). Virosomes were widely utilized in cancer vaccines

because they are incapable of replicating and therefore are not

infectious but retain the ability of the parenting virus while

carrying tumor-specific antigens to the APCs to induce

immunity (174). Thus, virosomes increase the tumor-specific
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antibody and T cell responses (175, 176), as has been observed in

phase I clinical trial on metastatic breast cancer patients (177,

178). The main advantages of virosomes as efficient prophylactic

and therapeutic agents are tissue targeting, immune activation

and potentiation. Application of virosomes in cancer vaccine will

open a new prospective with multiple safe advantages as a unique
delivery system (179–181). Recently, adding magnetic agents to

HA-virosomes has been proposed as a ground-breaking

innovative platform for treating cerebral tumors by enabling

targeting using an external magnetic field from a magnetic

helmet (182).

Nanoparticles
Nanoparticle carriers have the advantage to specifically target the

APCs by various formations and strategies. The main types of

nanoparticle adjuvants under development include metals,

carbon nanotubes and polymers.
Metallic nanoparticles have various advantages over polymers

and liposomes thanks to their multifunctional properties such as

their small particle size, superparamagnetic properties and

biocompatibility. Metallic nanoparticles such as gFe2O3,

Al2O3, TiO2, ZnO, and SiO2 enhance immune responses

mainly by acting as antigen carriers that deliver directly to

APCs. Specifically, gFe2O3 with a positive surface charge can
be absorbed by proteins with negative charge, promote the

immune response and enable labeling and tracking cells at the

same time. Enhancing the cross-presentation ability of DCs and

T cell activation confers great potential on superparamagnetic

iron oxide nanoparticles as adjuvants. However, the mechanisms

are still not well defined (183). Gold nanoparticle platforms have
been more widely applied in tumor models, challenges with

regards to approval from the Food and Drug Administration

(FDA) remain a challenge for translating these into the clinical

setting (184). Recently, gold nanoparticle surfaces were coated

with high cargo density of polyelectrolyte multilayers or peptides

to promote the antigen-specific T cell response (184, 185).

Carbon nanotubes are extensively used in cancer therapeutics
due to their large surface area and good conjugation and

encapsulation properties. In the field of cancer vaccines,

carbon nanotubes have been especially proven to enhance the

embryonic stem cell-based cancer vaccine response in murine

colon cancer model (MC38) (186). Despite the encouraging

results in pre-clinical studies, the use of carbon nanotubes in
humans has been hampered by their potential toxicity.

Conflicting data is indeed reported on carbon nanotubes

biocompatibility and biodegradability (187).

Although polymeric particles have been used in product

development for several decades, they have not until relatively

recently been considered for vaccine development. However,
PLGA (poly lactic-co-glycolic acid) nanoparticles have now

been approved for human use by the FDA and the European

Medicines Agency (EMA) after being considered as the most

nontoxic and slowly degraded vaccine delivery system (188) for

target-specific and controlled delivery of drugs, peptides, proteins,

antibodies and genes in cancer. Linear polyethyleneimine was

recently developed for chemical coupling of protein/peptide

ligands to form nano-polyplexes with plasmid DNA or RNA

which deliver the nucleic acids into the targeted cells without

associated toxicity to healthy cells (189). The delivery of DNA and

mRNA using such an approach has a number of advantages,

including being safer alternatives to viral vectors, colloidal stability

(190, 191) can be exploited using injection-free gene delivery
systems (192–194), and the ability to modify with targeting

moieties like mannose (195).

In addition to the main nanoparticles above-mentioned, other

promising nanoparticles are under development as adjuvants in

cancer vaccines. For instance, to enhance the tumor penetration

capability, positively charged nanoparticles based on the most
abundant polysaccharide in nature (chitosan) have been

developed over two decades of research on very complex

optimized systems. Also, synthetic melanin nanoparticles have

been reported to be an innovative adjuvant for cancer vaccines,

in that they efficiently localize to draining lymphoid tissues and

exhibit strong immunostimulant properties when loaded with
both short and long peptides in mice (196). A melanin-based

vaccine in combination with a TLR9 has also proved to be a

strong anti-tumor efficacy in cancer murine models and

compares favorably with the classical formulation of IFA and

TLR9 agonist (197).

Current nanoparticle-based strategies in cancer vaccination

and immunotherapy vary. Therapeutic nanomaterials enhance
the efficacy of cancer vaccines by increasing the lymphatic

delivery of specific antigens or by combining targeting

approaches with stimulating materials to synergize and/or

modulate immune activation. Primarily, the nanocarriers load

the adjuvants by hydrophobic or electrostatic interactions which

elevate the immunogenicity of tumor antigens (198). The
potential co-delivery of antigens and adjuvants such as TLR

ligands to DCs can boost the induction of protective anti-tumor

immunity. Thus, the therapeutic cancer vaccine becomes

essentially a nano-package of antigen, adjuvant and nano-

carriers. For instance, the aliphatic polyesters PLGA and poly-

ϵ-caprolactone (PCL) have proven to be efficient vectors for

increasing their uptake by DCs due to their critical size, surface
charge, surface functionalization and route of administration

(199, 200). However, the efficacy of such an approach was proven

in minimal residual disease conditions instead of the typical

clinical condition of large bulky tumors. The co-delivery of

adjuvants with nano-based formulations enhances the cross-

presentation and/or skews the immune responses to the
desired CD4+ T helper phenotypes. Specifically, cancer nano-

vaccines co-deliver peptides and TLR9 agonists (201, 202), and

gold nanoparticles the anionic TLR3 agonist poly I:C co-

delivered with cationic antigen peptides (185). In addition,

nanoparticles can support a combinational use of adjuvants to

permit exploitation of synergy among certain TLR agonists (159,

203–205). A significant therapeutic example in a late-stage
murine melanoma model has been combining the peptide

epitope of tyrosine-related protein 2 (Trp2) and CpG-based

nano-vaccine with siRNA against TGF-b, which is one of the

major cytokines responsible for induction and maintenance of an

immunosuppressive tumor microenvironment (206). Effective
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cross-presentation was promoted using pH-sensitive delivery

systems that retain their cargo under the physiological

condit ions and release ant igens in the endosomal

microenvironment (~pH 6) (207, 208). Alternatively, an

oxidation-sensitive polymersome can respond to the oxidative

environment of endosomes to trigger the delivery of antigens and
adjuvants in the cytosol (209). Furthermore, modification of

liposomes with a cell-penetrating peptide or gold nanoparticles

with tumor antigens has also been shown to promote cross-

presentation (210, 211).

Although several vaccination strategies have been tested in

vivo, therapeutic benefits remain mixed and a huge gap between
material research, preclinical experimentation and clinical reality

remains. Further research into the use of PLGA are warrantied to

bridge this gap (199). The delivery of whole-cell cancer vaccines

has been accomplished using a PLGA matrix containing tumor

lysate as the source of tumor antigens, granulocyte macrophage

colony-stimulating factor (GM-CSF) for recruitment of DCs in
situ, and CpG for DC activation. This PLGA matrix elicited

antigen-specific CD8+ T cells and increased both prophylactic

and therapeutic anti-tumor efficacy (212). Alternatively, plasma

membranes of tumor cells have been extracted and coated onto

polymeric nanoparticle cores along with the TLR4 agonist MPLA

as a tumor cell-mimicking cancer vaccine (198).

Although targeted delivery to DCs and the induction of CD8+

T cell responses can be achieved using nano-vaccines consisting

of CD40 Ab-modified nanoparticles (213), the efficiencies of DC-

targeting and induction of adaptive immune responses require

optimization as different DC subsets have characteristic sites of

tissue residence, receptor expression profiles and functions (214).

Moreover, targeting distinctive tissue sites such as murine
lymphoid tissue-resident CD8+ DCs and, for human,

CD141+BDCA-3+ DCs and Langerhans cells requires further

study for nano-vaccines (215, 216). The efficient draining of

nanoparticle carriers to lymphoid tissues has been qualitatively

and quantitatively demonstrated using fluorescent or contrast

agent-based imaging. For example, a polyester nanoparticle

system loaded with ovalbumin (OVA) has been labeled with a
near-infrared probe (216), and PLGA nanoparticles have been

designed to carry iron oxide particles conjugated with

fluorophore-labeled peptide antigen (217). Additionally,

synthetic melanin nanoparticles have efficiently localized to the

draining lymphoid tissues and have potent immunostimulant

properties when loaded with short or long peptides in murine
models (196, 197). Delivery systems having different particle

sizes composition, morphology, and surface chemistry of

particles are promising candidates to be translated into clinics

to confirm delivery to the draining lymphatics (218).

Novel Biomolecule-Based Targeting
Strategies
To induce tumor immunity, Fc gamma receptor (FcgR) targeting

strategies coupled with antigens have been explored for the

purpose of activating both CD8+ and CD4+ T cells. FcgR

cross-linking to improve T cell priming can be achieved via

the formation of immune complexes in vivo (219). For vaccine

purposes, the conjugating of a universal tetanus-derived

synthetic peptide (minimal tetanus toxin epitope, MTTE) with

viral or tumor derived antigens - also in the form of synthetic

peptides - can facilitate immune complex formation and FcgR

cross-linking which results in DC and T cell activation (220,

221). Alternative strategies to target DCs include fusion strategies
based on IgG scaffolds that introduce antigen epitopes in the

CDR region and vaccine delivery using a DNA based vector

system with the aim to target the high affinity FcgRI (222, 223).

The goal and advantage of these technologies is to provide a

single drug entity which can harness both the adjuvant and

targeting of the antigen to APCs, as well as the potential antigen
half-life extension that the methodology provides. It also ensures

that HLA/peptide off-rate is not the determining factor for

antigen delivery to the lymph node. The challenges presented

by these approaches are the species differences in the receptor

and immunology biology as well as the costly production of, for

example, antibody-based therapies, if used as such.

COMBINATORIAL STRATEGIES TO
IMPROVE CANCER VACCINE EFFICACY
IN THE IMMUNOSUPPRESSIVE CONTEXT
OF CANCER PATIENTS

Combining Different Adjuvants to Induce
More Extensive Immune Responses
The ideal adjuvant for a cancer vaccine formulation should (i)

protect antigens from degradation, (ii) stimulate efficient uptake

of the antigens by APCs, (iii) activate these APCs to efficiently

present the antigen to T cells in order to trigger a strong Th1/
CTL response and long-term memory T cells. One single

adjuvant may not provide all of these effects at the same time.

Thus, a combination of a delivery system adjuvant and an

immunostimulant adjuvant is commonly chosen for cancer

vaccine formulation (Figure 3). For instance, montanide (for

depot effect) and a TLR ligand (for APC stimulation) constitutes

a common combination of adjuvants for anti-cancer vaccine
(224). Based on preclinical studies, combining several TLR

agonists or anti-CD40 antibodies with a TLR ligand could

potentiate the adjuvant effect by activating different APCs

simultaneously and further inducing more extensive CD8+ T

cell responses (225–227). However, the realization that

formulations and the design of the antigen can negatively
influence the expansion of a systemic immune response is of

importance and should trigger in depth characterization of both

the design and physiochemical properties of vaccine

components , and the pharmacokinetic profi les and

administration dose and schedule, to achieve proper anti-

tumor responses.

Another strategy to enhance the efficacy of cancer vaccines
could be combining it with systemic immunostimulatory agents

such as cytokines, especially IL-2 or GM-CSF. Systemic IL-2 in

combination with gp100 peptide-vaccine in patients with

melanoma has delivered significant efficacy in terms of
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objective response and progression-free survival compared to IL-

2 monotherapy. However, at such high doses, IL-2 caused

numerous toxicities if not formulated correctly (3).

Blocking VEGF to Restore Tumor Vessels
and Promote T Cell Homing to Tumors
Following the induction of peripheral immune response by

cancer vaccine, specific anti-cancer T cells need to penetrate

the tumor to attack cancer cells. Unfortunately, the tumor
vasculature is reported to express reduced levels of leukocyte

adhesion molecules, such as intercellular adhesion molecule-1

(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1),

and an aberrant overexpression of immune checkpoints

including PD-L1, the death receptors FasL and TRAIL, and

IDO, all of which impede the infiltration and function of
activated T cells into/in the tumor microenvironment (228).

Anti-angiogenic treatments such as bevacizumab (vascular

endothelial growth factor—VEGF—inhibitor) have been reported

to restore a normal vasculature within tumors and increase the

expression levels of ICAM-1 (229). Additionally, VEGF has also

been proven to inhibit T cell and DC activation (230, 231).
Therefore, combining an anti-angiogenic treatment such as

bevacizumab (VEGF inhibitor) with vaccine seems a valid

strategy to enhance the anti-cancer T cells (triggered by the

vaccine) homing to tumor. Other molecules such as all-trans

retinoic acids, anti-inflammatory triterpenoid, tyrosine kinase

inhibitors (sunitinib), IL-12 and anti-IL-6R antibodies, anti-CSF-

1R, anti-CCL2 have been reported to reduce tumor infiltration by
MDSCs and improve the efficacy of cancer vaccines (232–237).

Finally, STING agonists possess the ability to convert MDSCs from

a suppressive into a type-1 immune profile (129).

Depletion of Immunosuppressive
Leucocyte Populations by Combining
Chemotherapy With Cancer Vaccines
Chemotherapy has long been considered to conflict with

immunotherapies due to its leucocyte depleting effect.

However, several peripheral and intratumoral leucocyte
populations have immunosuppressive properties, thus reducing

the efficacy of tumor-reactive cytotoxic T lymphocytes CTLs. A

therapeutic strategy could thus rely on combining therapeutic

cancer vaccine with leucocyte-depleting chemotherapeutics that

target such populations.

Regulatory T (T reg) cells are particularly known for
inhibiting CTL functions through the release of the anti-

inflammatory IL-10, FGF-B and adenosine as well as the

‘consumption’ of IL-2 in the microenvironment, thereby

reducing its availability for T cells. Combining cancer vaccines

with molecules that can reduce the number of Treg cells, such as

cyclophosphamide or low dose temozolomide (TMZ) thus
constitutes another valid approach to improve the efficacy of

anti-tumoral CTLs (126, 238, 239). Several studies indicate that

3–7 days after these chemotherapies may be the best timing to

administer the cancer vaccine (84, 240, 241).

MDSCs represent another immunosuppressive leukocyte

population frequently found in the tumor microenvironment

which can limit the efficacy of anti-tumoral CTLs. Several
myeloablative chemotherapeutics are known to decrease both

FIGURE 3 | Improving the efficacy of cancer vaccines: Combinational approaches.
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peripheral and intra-tumor MDSCs, such as platinum salts,

taxanes, gemcitabine, 5-Fluorouracil (242–244). The rationale

of combining chemotherapy with therapeutic cancer vaccines to

deplete MDSCs and boost vaccine-induced CTL responses has

been reported in several studies (84, 238, 245). Specifically, in

carboplatin-paclitaxel regimen the normalization of myeloid
cells begins 2 weeks after the second cycle of chemotherapy

and the administration of cancer vaccine at this point resulted in

stronger vaccine-induced responses in preclinical and clinical

studies (246–249).

Other studies reported improved anti-tumor responses also

when chemotherapeutic agents were given simultaneously with
the vaccination, as in the case of metronomic cyclophosphamide

(170) or association of cyclophosphamide, paclitaxel and

docetaxel (250). Given these results, the optimal schedule may

be starting with chemotherapy cycles and following with

concomitant chemotherapy and vaccination.

Enhancing Cytotoxic T Lymphocyte
Function by Combining Cancer Vaccines
With Immune Checkpoint Inhibitors
Immune checkpoint inhibitors (ICIs), including antibodies

against programmed cell death protein-1 (PD-1) or its ligand

(PDL-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) have

proven to enhance anti-tumor immunity and efficacy in several

cancers. However, a large subset of patients does not benefit from

ICI therapy, with a reported objective response rate for anti-PD1

varying from almost absent (pancreatic cancer, glioma,
microsatellite-stable colon adenocarcinoma) to 15–30% for

most cancers, and 50–80% for few cancers including

melanoma, Hodgkin lymphoma, squamous cell carcinoma and

Merkel carcinoma (251). This low response rate observed in

most cancers is likely related to a limited specific T cell response

developed against cancer cells, especially for tumors with a low
mutational burden. Therefore, combining a cancer vaccine,

which can elicit specific T cell responses, and ICIs represents

an attractive therapeutic option. Based on positive results in pre-

clinical models (252–254), several clinical trials are now

evaluating novel personalized vaccines against neoepitopes

specific of each pat ient in combinat ion with ICIs

(NCT02950766, NCT02897765, NCT03289962) (Figures 2B

and 3). However, few studies address the point of the choice of

a specific molecule. One preclinical study reported that anti-4-

1BB antibody was superior to achieve anti-tumor efficacy in

combination with peptide cancer vaccine compared with other

immunomodulating antibodies (255). Also, the timing of

combination therapy is rarely discussed in clinical trials, but
some reports suggest that immune checkpoint inhibitors better

synergize with the vaccine when administered at the time of the

boost rather than at the prime (256).

Combining Cancer Vaccine With
Radiotherapy to Favor Antigen-
Presentation by Cancer Cells
Numerous studies have shown the immunogenic properties of

radiotherapy. Tumor irradiation can indeed induce

immunogenic cell death (ICD) (257, 258) and thus lead to

tumor regression even at distance sites, the so-called abscopal

effect (259, 260). Additionally, radiotherapy has been reported to

stimulate the expression of several molecules in cancer cells

including MHC class I, death receptors, adhesion molecules, Fas,

thus promoting CTL-mediated killing (261, 262). Therefore,
combinatorial strategies of irradiation with the therapeutic

cancer vaccine also constitute an attractive treatment option

(263–265) (Figures 2B and 3). However, radiotherapy is also

responsible of reducing tumor infiltrating effector cells during

the radiation regimen (266). Yet, the ultimate effect of

radiotherapy synergizing with cancer vaccines is partly due to
the vessel normalization that allows a better infiltration of T cells

enhanced by the vaccine (267). Another preclinical study

reported the best efficacy of vaccine when is administered 5

weeks after radiotherapy (268). In light of these findings, the

combinatorial strategy of radiotherapy and cancer vaccine has

more potential to succeed when radiotherapy is given first,
followed by the vaccine (269).

UNDERSTANDING AND MANIPULATING
THE PATIENTS’ “LIFE-STYLE” TO
INCREASE VACCINE POTENCY

Although life expectancy has increased in Europe over the last 30

years, the so called “healthy life expectancy” has not, and many

suffer from some form of chronic disease in the last 9–11 years of

their life after the age of 65. In fact, 85% of deaths are caused by
chronic diseases such as cancer, cardiovascular disease, chronic

respiratory disease, diabetes, and mental illness, with 70 to 80%

of healthcare costs being dedicated to the treatment and

management of these conditions and diseases. Moreover,

whereas cardiovascular diseases are the main cause of death

after the age of 65, cancer remains the first and second cause of

death before and after the age of 65 respectively. Risk factors
known to be involved in chronic disease include repeat

infections, obesity, diet, tobacco, radiation and environmental

factors, all of which induce chronic disease through the induction

of inflammation. Correctly regulated acute inflammation is the

normal response to pathogens, irritants or damaged tissue,

whereas chronic inflammation results from a failure to
completely eliminate the pathogens, the inability to

enzymatically remove the irritant, the body turning against

self-proteins. However, chronic inflammation can also be the

results of recurrent acute inflammation. In recent years, the

importance of the microbiota has been revealed, including

alterations during chronic inflammation. Furthermore, more

recent work has highlighted how a disturbed microbiota
cannot only play a part in exacerbating inflammation but can

drive the process. For example, in immunotherapy against

cancer, studying a patient’s intestinal microbiota composition

can be used to stratify patients into “responders” versus “non-

responder” according to their intestinal microbiota composition

(270, 271). Indeed, in the study from V. Gopalakrishnan et al.,
2018 (271), patients with metastatic melanoma who responded
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to anti-PD1 treatment, with longer progression-free survival,

were found to have a higher diversity of bacteria as well as a

significantly higher number of the Ruminococcaceae family in

their fecal microbiota. Interestingly, the prevalence of this family

of bacteria increases during alcohol abstinence and inversely

correlates with intestinal permeability (272). This species has also
been shown to have in vitro and in vivo anti-inflammatory

properties (273). Importantly, similar studies in mice have

demonstrated that response to treatment could be transferred

from responders to non-responders via fecal transplantation into

tumor-bearing germ-free mice (271). However, other studies

have shown the importance of other bacteria such as
Bifidobacterium longum , Collinsel la aerofaciens , and

Enterococcus faecium, and Akkermansia muciniphila the latter

being systematically found in higher number in patients with

advanced melanoma who respond to anti-PD-L1 treatment

(274), whereas patients with advanced urothelial carcinoma,

non-small cell lung cancer, and renal cell carcinoma who
received antibiotics before, during and after treatment all

experienced reduced progression-free survival and lower

overall survival rates, thereby demonstrating the importance of

not disturbing the microbiota (275).

Most cancer vaccines, including cancer vaccines, will require

some form of adjuvant to either induce/boost a response,

increase the speed of the response, allow for a more reduce
dose to be used and/or reduce the number of immunizations. In

view of the importance/influence the microbiota on a person’s

overall wellbeing and the immune system in particular, it is of

prime importance to understand ways to improve this

biodiversity, as well as to increase the number of “beneficial”

bacteria present in the patient’s intestinal microbiota before,
during and after vaccination. Increasing the diversity of bacteria

within the intestinal flora has been shown to improve metabolic

and immunological functions (276). No clear data is available

about cancer vaccine, but the efficacy of vaccination against

several pathogen has been clearly correlated with microbiota.

Microbiota can indeed act as a natural vaccine adjuvant and

specifically as ligand for different TLRs. Flagellin (TLR5 ligand)
from microbiota seems to play a crucial role since levels of TLR5

have been correlated to the magnitude of humoral response

(277). Recently, microbiota has also been reported to enhance

anti-tumor response when used as a real cancer vaccine adjuvant

in a murine model [EGFR vIII-expressing Listeria

vaccine, (278)].
In light of these results, the use of probiotics, or novel

genetically modified bacteria, may improve the efficacy of

cancer vaccine. In addition, the microbiota is sensitive and will

respond to physiological changes taking place in the host due to

internal and external factors such as lifestyle, exercise, diet and

the physiology of the host and this, in turn, will influence the

well-being of the host. Exercise has already been shown to have a
role in reducing the risk of cancer, and to be associated with a

lower incidence of cancer and a lower risk of recurrence (279,

280). These effects and associations have been linked with the

ability of exercise to influence immune cells such as NK, T cells,

B cells and DCs, all of which have been found at a higher density

within the tumors of animals who had been allowed to freely use

an exercise wheel (281). Out of all these cells, NK cells (which

express the highest number of b-adrenergic receptors) were the
most sensitive to exercise, in that they were recruited within

minutes after the start of exercise (282). These effects were shown

to be driven, at least in part, by exercise-induced increases in
catecholamine production (282). Moreover, the relationships

between the hypothalamic-pituitary-adrenal (HPA) axis, the

autonomic nervous system and the immune system and its

effect on the microbiota have previously been neglected and

certainly never been taken into account prior to, or during cancer

vaccine treatment. Yet, this Gut-Brain axis is bi-directional
whereby gut-microflora and brain communicate and are

influenced by each other’s signals via neural, endocrine,

humoral and immune links. Therefore, as highlighted above,

activities such as exercise which increases the level of

neurotransmitters such as catecholamines, and the

consumption of certain food such dietary fibers which will
increase the production of short chain fatty acids such as

butyrate, generated by anaerobic bacteria during fermentation

which in turn will influence the production of neuropeptide such

as NPY, will have a significant impact on the activation or

suppression of certain immune cells. Butyrate itself is a histone

deacetylase inhibitor that has been shown to suppress tumor

growth (283–285). NPY receptors are widely expressed on
immune cells, especially Y1R, which exists on almost every

type of immune cells, and have an important yet diverse role

on the immune system, having both negative as well as activator

functions (286) [For a full review on the immunomodulatory

activity of NPY please read Chen et al. (287)]. Targeting

selectively certain neuropeptide receptors will therefore open
more drug development to improve vaccine potency as well as

offer novel vaccine deliver system.

NPY levels often increase during stress responses, and NPY

receptors are shown to be overexpressed by many well-

innervated cancers such as prostate cancer, the trans-

differentiation of which into aggressive neuroendocrine

prostate cancer (NEPC) after a long period of androgen-
deprivation-therapy (ADT) treatments often leads to metastasis

progression and incurable disease. NEPC expresses high levels of

b2-adrenergic receptors (ADRs) which can be activated by

adrenergic signals triggered by depression or chronic stress,

which is prevalent in men with prostate cancer. Improving the

efficacy of immunotherapies will therefore require approaches to
attenuate the immunosuppressive nature of the tumor

microenvironment (TME), increase the biodiversity and the

number of “good” bacteria as well take into account the impact

of depression and chronic stress.

Although the precise mechanisms underlying such intricate

connections are only now starting to be elucidated there is

absolutely no doubt that they will need to be carefully assessed
if one wants to achieve optimum vaccine efficacy. However, most

of the scientific vaccine community is now focused on the

microbiota, forgetting the rest of the axis.

Therefore, future successful cancer therapy as well as

vaccination strategies may be those that approach the therapy
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using both an effective vaccine but also include therapeutic

strategies that influence the life-style impacting the immune system.

CONCLUSIONS

Therapeutic vaccines represent an attractive strategy to stimulate

the immune system against cancer in combination with standard

therapies. However, multiple cancer vaccines have not yet
achieved significant clinical efficacy. Their limited efficacy is

certainly in part related to the poor immunogenicity of the

vaccine itself in many cases, but also to the difficulty of

inducing an effective immune response in the compromised

immune system of cancer patients. Indeed, cancer cells

successfully grow by establishing an immunosuppressive tumor
microenvironment to protect themselves from host’s immune

attack. To add to this the median age of cancer patients is 66

years old and the immune system is known to become less

efficient and more dysregulated as people age. However, while on

the one hand the immune system declines over time, a

phenomenon known as immunosenescence, aging is also

known to be associated with a low, but persistent level of
inflammation, inflamm-aging , which a lso leads to

dysregulation of innate and adaptive immune cells. Therefore,

the choice of adjuvants in vaccine formulations needs careful

optimization for each vaccine as well as for each patient if the

maximum immune response and clinical efficacy in such a

compromised condition is to be achieved. Globally, given the
crucial role of CD8+ T cells in tumor control, adjuvants capable

of eliciting cellular response, rather than humoral, are certainly

preferable. Indeed, levels of CD8+ T cells induced after cancer

vaccine have been correlated with tumor regression in both

murine and clinical studies (256, 288). More specifically,

promising adjuvants are those that proved to favor dendritic

cells maturation (the principal APC in tumor context) and cross-
presentation. Among the formers, STINGs and TLR agonists

(especially CpG, albeit more in mice than in human and poly I:C)

demonstrated the most encouraging results. The induction of DC

maturation is in fact a crucial point in vaccine strategy to avoid

self-antigens tolerance. In addition, given the defects on DCs

described in elderly individuals, TLR ligands likely represent the
most promising immunomostimulatory adjuvant candidates for

cancer vaccines in these patients. Beside the maturation of DCs,

the ideal vaccine formulation should also favor the cross-

presentation of antigens to CD8+ T cells by DCs. In that

respect, several vectors are under development. Although live

vectors from virus or bacteria can efficiently induce cross-
presentation of antigens, the vector itself being immunogenic,

elicits an immune response. Therefore, after the first dose of

vaccine, the subsequent boost doses need to use different vectors

in order to overcome the neutralization of vectorized vaccine by

host immunity. Consequently, this approach has limited

prospects in clinical practice. Other not live vectors showed

interesting results in mice, such as liposomes, virosomes or
nanoparticles. They have the advantage of being able to deliver

different source of antigens (RNA, DNA, proteins, peptides, …)

and adjuvants and also be immunostimulatory by assembling

both molecules in a package and carry it to secondary lymphoid

organs. Compared to classic depot adjuvants such as IFA or

MF59, these vectors, allow antigens to reach directly the lymph

nodes in order to induce a more efficient cross-presentation

between DCs and T cells. The use of these adjuvants may thus
overcome the detrimental effect that some study reported for W/

O emulsions, related to the persistent release of antigen and the

inflammation in the injection site. In fact, if in one hand the slow

release of antigen may promote a stronger immune response, on

the other hand it can lead to T cell anergy if DCs are immatures

or T cell sequestration at the injection site has occurred.
However, although very promising, vector adjuvants have not

yet demonstrated convincing efficacy in humans.

In the light of these results, not-depot adjuvants are thus

preferable, but the schedule of this particular type of vaccination

is still a crucial point, and unfortunately not directly addressed in

clinical trials and only rarely in pre-clinal studies. A too short
period between boost and priming vaccinations might indeed

lead to immunological tolerance against the antigens. In a mouse

model, Wick et al. reported a decline of response from 30% to

15% (circulating specific T cells) by day 10 of daily vaccinations

with a formulation using poly I:C and OVA protein (289).

Another study by Stark et al. showed similar results in a B16-

OVA melanoma model using a vaccine formulation with archae
liposoms (archaeosomes) (290). In this study, the authors

vaccinated mice with a regular interval of 0, 21, 42, 72 and 110

days and a decline of response was seen after the third dose.

However, beside the potency of immunological response

(amount of specific T cells) induced at the time of vaccination,

it is also important to achieve a prolonged tumor protection. This
latter has been particularly correlated with a central memory

phenotype (CD62Lhigh) of vaccine-induced T cells, rather than

effector memory (CD62Llow). In that respect, interestingly, in the

prophylactic model of Stark et al. even if a single dose of vaccine

triggered a lower frequency of antigen-specific CD8 T cells than

multiple doses, the late tumor protection was similar (tumor

challenge on day 323). These results highlight the importance of
the quality of the immunological response besides the quantity.

Lastly, different combinatorial approaches are being explored

trying to enhance the efficacy of the vaccine. Despite the

numerous encouraging results in pre-clinical studies, clinical

responses to cancer vaccine as monotherapy have been rather

anecdotal so far and they are mostly reported in case of pre-
neoplastic lesions or low tumor burden. However, the goal of a

therapeutic cancer vaccine should be to improve survival in

patients with advanced cancers. In this common situation, the

immune response elicited by the vaccine needs to be particularly

strong to face the suppressive nature of the tumormicroenvironment

and more generally the immunocompromised system of the patients

in this context, associating different adjuvants, especially an
immunostimulatory molecule with a vector adjuvant, may

certainly improve the efficacy of the vaccine. In addition,

combining cancer vaccine with other treatments is more likely to

succeed, but early intervention may also be of value. Several

combinatorial strategies are being explored, such as with anti-
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angiogenic treatments to promote T cell homing to tumors, with

immune checkpoint inhibitors to enhance CTL function, and also

with standard anti-cancer therapies such as chemotherapy to deplete

immunosuppressive leucocyte populations, and radiotherapy to

favor antigen-presentation by cancer cells. As mentioned, a crucial

point, rarely addressed in clinical trials, is the optimal timing
of such therapies. In the light of the synergic mechanism

specifically involved, therapies acting through the clearance of

immunosuppressive cells such as radiotherapy and chemotherapy

should be given prior to vaccination, whereas immunostimulatory

agents enhancing the anti-tumor response of the vaccine should be

administered concomitantly with the vaccine (preferentially at the
boost dose) as in the case of immune checkpoint inhibitors. It may

also be favorable to use vaccines in combination with early surgical

intervention as the size of the lesionmay hamper effective infiltration

into the tumor. If the early intervention is used, then therapy effects

could be achieved without a risk for immune suppression. Also, the

host is less likely to have been negatively impacted by the tumor,
immobilization and/or toxic drugs, making the patient more likely to

still have a healthy and functional immune system.

In addition to these more traditional approaches, more

clinical trials should consider implementing changes in the

diet/exercise/stress level of the patients, while the patients are

recovering from other more aggressive form of treatments

(chemotherapy, radiotherapy) in order to re-establish a

functional more effective immune system prior to the

administration of a vaccine and carefully monitor the effect

these will have on the diversity/quantity of their microbiome

and their immune status, before and after vaccination in order to
assess their impact and overall benefit for the patients.
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Gratadoux JJ, et al. Faecali bacterium prausnitzii is an anti-inflammatory

commensal bacterium identified by gut microbiota analysis of Crohn disease

patients. Proc Natl Acad Sci USA (2008) 105(43):16731–6. doi: 10.1073/

pnas.0804812105

274. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre MS, et al. The

commensal microbiome is associated with anti-PD-1 efficacy in metastatic

melanoma patients. Science (2018) 359(6371):104–8. doi: 10.1126/

science.aao3290

275. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al.

Gut microbiome influences efficacy of PD-1-based immunotherapy against

epithelial tumors. Science (2018) 359(6371):91–7. doi: 10.1126/

science.aan3706

276. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M,

et al. Diversity of the human intestinal microbial flora. Science (2005) 308

(5728):1635–43. doi: 10.1126/science.1110591

277. Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, et al.

TLR5-mediated sensing of gut microbiota is necessary for antibody

responses to seasonal influenza vaccination. Immunity (2014) 41:478–92.

doi: 10.1016/j.immuni.2014.08.009

278. Zebertavage L, Bambina S, Shugart J, Alice A, Zens KD, Lauer P, et al. A

microbial-based cancer vaccine for induction of EGFRvIII-specific CD8+ T

cells and anti-tumor immunity. PloS One (2019) 14:e0209153. doi: 10.1371/

journal.pone.0209153

279. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev

Cancer (2008) 8(3):205–11. doi: 10.1038/nrc2325

280. Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan

A, Alfano CM. Physical activity, biomarkers, and disease outcomes in cancer

survivors: a systematic review. J Natl Cancer Inst (2012) 104(11):815–40.

doi: 10.1093/jnci/djs207

281. Pedersen L, Idorn M, Olofsson GH, Nookaew I, Hansen RH, Johannesen

HH. Voluntary running suppresses tumor growth through epinephrine- and

IL-6-dependent NK cell mobilization and redistribution. Cell Metab (2016)

23(3):554–62. doi: 10.1016/j.cmet.2016.01.011

282. Timmons BW, Cieslak T. Human natural killer cell subsets and acute

exercise: a brief review. Exerc Immunol Rev (2008) 14:8–23.

283. McBain JA, Eastman A, Nobel CS, Mueller GC. Apoptotic death in

adenocarcinoma cell lines induced by butyrate and other histone

deacetylase inhibitors. Biochem Pharmacol (1997) 53(9):1357–68.

doi: 10.1016/s0006-2952(96)00904-5

284. Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, et al.

Propionibacteria induce apoptosis of colorectal carcinoma cells via short-

chain fatty acids acting on mitochondria. Cell Death Differ (2002) 9(2):179–

88. doi: 10.1038/sj.cdd.4400935

285. Wei W, Sun W, Yu S, Yang Y, Ai L. Butyrate production from high-fiber diet

protects against lymphoma tumor. Leuk Lymphoma (2016) 57(10):2401–8.

doi: 10.3109/10428194.2016.1144879

286. Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, et al.

A fundamental bimodal role for neuropeptide Y1 receptor in the immune

system. J Exp Med (2005) 202(11):1527–38. doi: 10.1084/jem.20051971

287. Chen WC, Liu YB, Liu WF, Zhou YY, He HF, Lin S. Neuropeptide Y Is an

Immunomodulatory Factor: Direct and Indirect. Front Immunol (2020)

11:580378. doi: 10.3389/fimmu.2020.580378

288. Becker JC, Andersen MH, Hofmeister-Muller V, Wobser M, Frey L, Sandig

C, et al. Survivin-specific T-cell reactivity correlates with tumor response and

patient survival: a phase-II peptide vaccination trial in metastatic melanoma.

Cancer Immunol Immunother (2012) 61(11):2091–103. doi: 10.1007/s00262-

012-1266-9. 2012/ 05/09 edn.

289. Wick DA, Martin SD, Nelson BH, Webb JR. Profound CD8+ T cell

immunity elicited by sequential daily immunization with exogenous

antigen plus the TLR3 agonist poly(I:C). Vaccine (2011) 29(5):984–93.

doi: 10.1016/j.vaccine.2010.11.036

290. Stark FC, McCluskie MJ, Krishnan L. Homologous Prime-Boost Vaccination

with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High

Numbers of OVA-Specific CD8+ T Cells that Protect Against

Subcutaneous B16-OVA Melanoma. Vaccines (Basel) (2016) 4(4):44.

doi: 10.3390/vaccines4040044

Conflict of Interest: SMa is the Chief Development Officer at Ultimovacs AB,

a company that develops cancer vaccines and holds patent applications within the

field of cancer vaccines. SMa is also the founder of Immuneed AB and Vivologica

AB. AP is the Chief Executive Officer of multimmune GmbH, a company that

develops cancer “theranostics” based on tumor expression of membrane Hsp70.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Cuzzubbo, Mangsbo, Nagarajan, Habra, Pockley and McArdle.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums is

permitted, provided the original author(s) and the copyright owner(s) are credited and

that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Cuzzubbo et al. Cancer Vaccines: Adjuvant Potency

Frontiers in Immunology | www.frontiersin.org February 2021 | Volume 11 | Article 61524025

https://doi.org/10.1158/1535-7163.MCT-14-1015
https://doi.org/10.1158/1535-7163.MCT-14-1015
https://doi.org/10.1084/jem.187.10.1555
https://doi.org/10.2217/imt-2017-0082
https://doi.org/10.2217/imt-2017-0082
https://doi.org/10.1186/s40425-019-0650-9
https://doi.org/10.1126/science.aan4236
https://doi.org/10.1053/gast.2001.27224
https://doi.org/10.1073/pnas.0804812105
https://doi.org/10.1073/pnas.0804812105
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.1110591
https://doi.org/10.1016/j.immuni.2014.08.009
https://doi.org/10.1371/journal.pone.0209153
https://doi.org/10.1371/journal.pone.0209153
https://doi.org/10.1038/nrc2325
https://doi.org/10.1093/jnci/djs207
https://doi.org/10.1016/j.cmet.2016.01.011
https://doi.org/10.1016/s0006-2952(96)00904-5
https://doi.org/10.1038/sj.cdd.4400935
https://doi.org/10.3109/10428194.2016.1144879
https://doi.org/10.1084/jem.20051971
https://doi.org/10.3389/fimmu.2020.580378
https://doi.org/10.1007/s00262-012-1266-9
https://doi.org/10.1007/s00262-012-1266-9
https://doi.org/10.1016/j.vaccine.2010.11.036
https://doi.org/10.3390/vaccines4040044
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments
	Introduction
	Immunostimulatory Adjuvants
	Cytokines
	Toll-Like Receptor Ligands
	Saponins
	Stimulator of Interferon Genes Agonists

	Delivery System as Adjuvants
	Mineral Salts
	Emulsions
	Liposomes
	Virosomes
	Nanoparticles
	Novel Biomolecule-Based Targeting Strategies

	Combinatorial Strategies to Improve Cancer Vaccine Efficacy in the Immunosuppressive Context of Cancer Patients
	Combining Different Adjuvants to Induce More Extensive Immune Responses
	Blocking VEGF to Restore Tumor Vessels and Promote T Cell Homing to Tumors
	Depletion of Immunosuppressive Leucocyte Populations by Combining Chemotherapy With Cancer Vaccines
	Enhancing Cytotoxic T Lymphocyte Function by Combining Cancer Vaccines With Immune Checkpoint Inhibitors
	Combining Cancer Vaccine With Radiotherapy to Favor Antigen-Presentation by Cancer Cells

	Understanding and Manipulating the Patients’ “Life-Style” to Increase Vaccine Potency
	Conclusions
	Author Contributions
	Acknowledgments
	References


