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ABSTRACT

Objective: Accurate extraction of breast cancer patients’ phenotypes is important for clinical decision support

and clinical research. This study developed and evaluated cancer domain pretrained CancerBERT models for

extracting breast cancer phenotypes from clinical texts. We also investigated the effect of customized cancer-

related vocabulary on the performance of CancerBERT models.

Materials and Methods: A cancer-related corpus of breast cancer patients was extracted from the electronic

health records of a local hospital. We annotated named entities in 200 pathology reports and 50 clinical notes

for 8 cancer phenotypes for fine-tuning and evaluation. We kept pretraining the BlueBERT model on the cancer

corpus with expanded vocabularies (using both term frequency-based and manually reviewed methods) to ob-

tain CancerBERT models. The CancerBERT models were evaluated and compared with other baseline models

on the cancer phenotype extraction task.

Results: All CancerBERT models outperformed all other models on the cancer phenotyping NER task. Both Can-

cerBERT models with customized vocabularies outperformed the CancerBERT with the original BERT vocabu-

lary. The CancerBERT model with manually reviewed customized vocabulary achieved the best performance

with macro F1 scores equal to 0.876 (95% CI, 0.873–0.879) and 0.904 (95% CI, 0.902–0.906) for exact match and

lenient match, respectively.

Conclusions: The CancerBERT models were developed to extract the cancer phenotypes in clinical notes and

pathology reports. The results validated that using customized vocabulary may further improve the performan-

ces of domain specific BERT models in clinical NLP tasks. The CancerBERT models developed in the study

would further help clinical decision support.
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INTRODUCTION

Breast cancer is one of the most prevalent and lethal cancers for

women in the United States. It is estimated that there will be about

250 000 patients diagnosed with breast cancer each year and around

40 000 deaths due to breast cancer.1 The development of precision

medicine has contributed new approaches to the better diagnosis,

prognosis, and treatments of breast cancers, with the ultimate goal

of selecting optimal treatments for individual patients.2–4 A repre-
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sentative example is the targeted therapy for breast cancer, which

uses different medications to treat patients with different hormone

receptors status, such as human epidermal growth factor receptor 2

(HER2) and estrogen receptor (ER). The application of precision

medicine and its related translational research need the support of

large amounts of cancer-specific patient clinical information. The

widely adopted electronic health record systems (EHRs) are funda-

mental sources to provide longitudinal and multiperspective patient

clinical data, which includes patients’ demographics, lab results, dis-

ease progress, treatments, and outcomes. Some of these data are

stored in the codified (structured) part of EHRs; however, a large

amount of information is distributed in the narrative text data, such

as the clinical notes and lab reports.5 How to effectively extract the

target information from the narrative text part of the EHRs data

remains an important research topic.6,7 Previous studies (detailed in

“Background” section) focused mainly on the rule-based and con-

ventional machine learning methods. The state-of-the-art language

models such as bidirectional encoder representations from trans-

formers (BERT)8 have shown significant improvement in many NLP

tasks; however, there is no cancer domain-specific BERT model for

downstream clinical NLP tasks, such as cancer phenotype extrac-

tion. In addition, there is no investigation of out-of-vocabulary

(OOV) issue for BERT-based model in cancer domain.

Objective
To address these gaps in current status of the cancer phenotyping ex-

traction, our contributions in this study include:

1. We developed and evaluated cancer domain-specific BERT

models (CancerBERT) that are able to extract comprehensive

collections of breast cancer-related phenotypes (ie, Hormone re-

ceptor type, Hormone receptor status, Tumor size, Tumor site,

Cancer grade, Histological type, Tumor laterality, and Cancer

stage) from both clinical notes and pathology reports in EHRs.

Our CancerBERT models significantly outperformed other

existing BERT-based models (eg, BlueBERT, BioBERT, and

CharBERT) on our name entity recognition (NER) task to ex-

tract target cancer phenotypes for breast cancer patients.

2. We also evaluated different methods to address the OOV issue

of original BERT models. Specifically, we used 2 approaches

(domain knowledge-based and statistics-based) to generate and

add additional cancer-specific words that were missing in the

original BERT vocabulary. We found that additional cancer-

specific words can further improve the performance of Cancer-

BERT model on the NER task.

Background
Previous works have developed different approaches to extract in-

formation from narrative data in EHRs. Manual chart review is a

feasible approach to extract the phenotypes from the clinical texts;

however, it is time-consuming and not cost-effective.9,10 Researchers

have developed approaches based on natural language processing

(NLP) to finish the task automatically. Before the deep learning era,

established studies mainly focused on rule-based, traditional ma-

chine learning-based methods, depending on the characteristic of the

data and specific tasks. Nguyen et al developed a rule-based pipeline

in 2015 to extract cancer-related phenotypes, including histological

type, cancer grade, primary site, and laterality, from the textual con-

tents of the pathology reports in EHRs.11 The F1 scores for different

variables range from 0.61 to 0.93, and a message producer/con-

sumer module was integrated into the pipeline to enable the real-

time processing of the reports. Yala et al12 developed a machine

learning algorithm to classify phenotypes of breast cancers. N-grams

were used as features and boosting algorithm was applied to do the

classification of phenotype status. The performances were robust,

with F1 scores ranging from 0.57 to 1 for different categories. How-

ever, the pipeline was designed for judging the status of phenotypes,

mainly binary classification; no detail information in the text can be

captured. The DeepPhe software was developed in 2017 to extract

cancer phenotypes from clinical records.13 It could extract a wide

range of breast cancer phenotypes from the EHRs through different

approaches, such as, rules, domain knowledge bases, and machine

learning methods. The interannotator agreement of the DeepPhe

range from 0.2 to 0.96.13 Qiu et al14 developed a convolutional neu-

ral network (CNN) model to extract the cancer primary site from

pathology reports, and the CNN model outperformed the tradi-

tional frequency vector space approach with a micro-F score of

0.722. A coarse-to-fine multi-task CNN model was further pro-

posed to extract the cancer primary site, laterality, and grade from

the pathology reports at the same time; this model obtained an F�1

score of 0.775 for extracting cancer primary site.15

These studies focused mainly on the rule-based and conventional

machine learning methods. The latest BERT-based models have

been developed in recent years and show great advantages in NLP

tasks compared to the traditional feature-based machine learning

approaches.8 For BERT-based models, previous works have shown

that using biomedical domain-specific text as training data can ob-

tain better performance compared to models trained on general-

domain language for tasks related to the biomedical domain.16–19 In

clinical domain, studies have explored using the advanced BERT-

based models to solve clinical information extraction tasks.16,17,20

These studies are mainly focusing on testing the BERT model on

clinical benchmark datasets, such as Informatics for Integrating Bi-

ology and the Bedside, SemEval, and MedSTS. Currently, only few

studies have applied the advanced deep learning models include

BERT to extract the cancer phenotypes for cancer patients. For ex-

ample, BERT models were applied to extract the clinical informa-

tion for breast cancer patients from Chinese clinical texts and

achieved F1 scores of 0.786 to 1 for different clinical concepts.21 It

is known that Chinese and English are different, and there are no

existing studies that have explored the BERT-based models to ex-

tract cancer phenotypes from clinical notes and pathology reports in

English. Furthermore, most BERT-based models deal with the OOV

issue by tokenizing an unknown word into multiple subwords that

exist in the vocabulary. In this case, the subword representations

may not capture the semantics of the whole word.22 Several studies

explored to improve the OOV issue by either using character-level

word embedding22,23 or building a brand-new domain specific vo-

cabulary to best match the training corpus.24 These studies obtained

promising results in benchmark tasks, but they need to train the

models from scratch, which need a huge training corpus and com-

puting sources.

METHODS

Data collection and annotation
The data used in this study were obtained from the EHRs of the Uni-

versity of Minnesota (UMN) Clinical Data Repository. The EHRs

of UMN contain the health records of 21 291 breast cancer patients

from year 2001 to 2018. We obtained the data with the approval of

UMN Institutional Review Board under #1210M22601.
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To develop the phenotype extraction algorithms, the reference

standards (ie, an annotated corpus) needed to be obtained through

chart review. To obtain the standard annotations, an annotation

guideline was first developed through iterative discussions. The

UMN team reviewed some of the pathology reports and clinical

notes to collect the different descriptions of the phenotypes in the

EHRs and formed the annotation guideline. We randomly sampled

200 pathology reports and 50 clinical notes of breast cancer patients

that contain 9685 sentences; 221 356 tokens were manually anno-

tated by 2 annotators (graduate students with clinical or pharmacy

background). The target entities were annotated in entity level.

Cohen’s kappa scores were calculated to ensure the consistency be-

tween the annotators. INCEpTION was used as the annotation

tool.25 Figure 1 shows several examples of the annotation.

We focused on 8 breast cancer phenotypes that describe the char-

acteristics of breast cancer, including the Hormone receptor type,

Hormone receptor status, Tumor size, Tumor site, Cancer grade,

Histological type, Tumor laterality, and Cancer stage. Targeted

breast cancer phenotypes, their potential values, and the according

examples in clinical text are shown in Table 1.

In total, 200 pathology reports and 50 clinical notes were anno-

tated by 2 annotators, the Cohen kappa score for annotations was

calculated to be 0.91. The annotation statistics are shown in Table 2.

Our model: CancerBERT
Pretraining on cancer domain-specific corpus

In this study, we trained cancer domain-specific BERT models (Can-

cerBERT) that are expected to better capture the semantics in can-

cer-specific clinical notes and pathology reports, thus improving the

performance of the task for extracting breast cancer-related pheno-

types. The CancerBERT models training process is illustrated in Fig-

ure 2.

The BERT-origin model was trained using Wikipedia and book

corpus15 using the original BERT vocabulary, which was also gener-

ated from Wikipedia and book corpus. The BlueBERT was further

pretrained on PubMed and MIMIC III data based on the BERT-

origin model using the same vocabulary.17 We kept pretraining the

CancerBERT models based on the BlueBERT model. For the pre-

training corpus, we extracted the 4 543 184 clinical notes and

1 278 805 pathology reports (about 1 billion tokens) for 21 291

breast cancer patients from UMN EHRs. The corpus was changed

to lower case, no other preprocessing was needed. Hereinafter, we

called the CancerBERT trained with original BERT vocabulary as

CancerBERTOrigVoc to differentiate other CancerBERT variants us-

ing customized vocabulary described below.

Constructing cancer domain-specific vocabulary for improving Can-

cerBERTOrigVoc models

As outlined above, the vocabulary of CancerBERTOrigVoc is identical

to the BERT-origin model15; thus, many special words and abbrevi-

ations in the clinical narratives cannot be covered. The OOV issue

may influence the performance of the language model. In the BERT-

based models, the WordPiece tokenizer26 was applied to deal with

the OOV issue. It tokenizes an unknown word into multiple sub-

words that exist in the vocabulary. For instance, the word “HER2”,

a breast cancer-related cell receptor gene, is not in the original

BERT vocabulary. It will be tokenized into “HER” and “2” by the

WordPiece tokenizer; and the model will then use the average (or

the first part) of their word embeddings to represent “HER2”. How-

ever, the word embeddings of “HER” and “2” cannot correctly rep-

resent the semantics of the term “HER2”. Thus, it may be helpful to

add the unknown word “HER2” into the original vocabulary to

train its own word embeddings. Thus, we further explored different

approaches to generate and incorporate cancer-specific vocabulary

in an attempt to further improve the performance of the Cancer-

BERTOrigVoc model.

In this study, we explored 2 ways to generate additional cancer-

related vocabularies to include in the original BERT vocabulary.

Method 1—Domain knowledge-based:

1. SpaCy27 tokenizer was used to tokenize the breast cancer train-

ing corpus from EHRs to produce a new list of words.

2. All unique words in the new word list that did not appear in the

original vocabulary were identified.

Figure 1. Examples of annotation in INCEpION.
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Table 1. Breast cancer phenotypes, their potential values, and examples in clinical texts

Phenotypes Values Examples of descriptions in clinical text

Hormone receptor type Positive, negative HER2 gene was amplified; estrogen receptor: positive

(95%, strong staining); tumor is PR negative (0%

staining)

Tumor size Numeric values describe volumes Tumor size: 1.0�0.5�0.7 cm

Tumor site Description of positions Tumor is at 12 o’clock position and 2 cm from the nip-

ple.

Cancer grade Numerical values: (1–3) Histologic grade: 1 of 3; Sample shows Nottingham

grade 2 lesions

Histological type Ductal carcinoma in situ (DCIS); lobular carcinoma in

situ (LCIS), etc.

Histologic type of invasive carcinoma: ductal carcinoma

in situ

Tumor laterality Right, left Specimen laterality: right breast;

Laterality: left tumor

Cancer stage TNM staging: TX, Tis, T1-4; NX, N0, N1-3; M0, M1 Pathologic stage is pT4 NX MX

HER2: human epidermal growth factor receptor 2.

Table 2 . Annotation statistics

Total number Total unique entities

Annotated statistics Documents 200 NA

Total sentences 9685 NA

Total tokens 221 356 NA

Name entity statistics Hormone receptor type 1673 29

Hormone receptor status 436 14

Tumor size 540 305

Tumor site 329 173

Cancer grade 271 15

Tumor laterality 1192 4

Cancer stage 173 38

Histological type 1070 95

Figure 2. The training process of CancerBERT models. The CancerBERT models were pretrained based on the BlueBERT model. The process in the red box was

implemented in this study. BERT: bidirectional encoder representations from transformers.
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3. A researcher with clinical background reviewed the newly iden-

tified words and selected 397 cancer-related words for vocabu-

lary expansion.

Method 2—Frequency-based:

1. SpaCy27 tokenizer was used to tokenize the breast cancer train-

ing corpus from EHRs to produce a new list of words.

2. All unique words in the new word list that did not appear in the

original vocabulary were identified.

3. The 997 most frequent words in the new word list were selected

for vocabulary expansion (the original BERT vocabulary per-

mits a maximum of 997 new words).

To compare the effect of using the cancer domain-customized

vocabulary on the CancerBERT performance, we pretrained 3 Can-

cerBERT models with different sets of vocabulary (described below)

based on BlueBERT model:

1. CancerBERTOrigVoc: used the original BERT vocabulary.

2. CancerBERTCustVoc_397: used the original BERT vocabulary þ
397 cancer-related words based on domain knowledge.

3. CancerBERTCustVoc_997: used the original BERT vocabulary þ
997 cancer-related words based on the term frequency.

Fine-tuning CancerBERT models along with other BERT-based

models

BERT-based models could be further fine-tuned on annotation data

to solve specific downstream tasks. The extraction of breast cancer-

related phenotypes from texts can be framed as an NER task. The

NER is one of the most important tasks in information extraction of

text data. It classifies every token in the text into predefined entity

classes.28 In this study, we have 8 types of name entities: Hormone

receptor type, Hormone receptor status, Tumor size, Tumor site,

Cancer grade, Histological type, Tumor laterality, and Cancer stage.

The annotated training set was used for the BERT-based model fine-

tuning. For major hyperparameters, the max sequence length was

set to 128, the training batch size was set to 32, and training epoch

was set to 10. The hyperparameters were chosen based on the mem-

ory and computing power of our GPU resources. We fine-tuned our

CancerBERTOrigVoc, CancerBERTCustVoc_397, and CancerBERTCust-

Voc_997 models, along with the original BERT-large,15 BioBERT,16

BlueBERT,17 CharBERT,22 and character-BERT23 models on the

NER task. All the BERT-based models in this study are uncased.

The original BERT-large model was pretrained on Wikipedia and

BookCorpus.15 The BioBERT model was pretrained on PubMed ab-

stract and PMC full articles that contain about 18 billion words.16

BlueBERT model was pretrained on PubMed abstract and MIMIC-

III that contain about 4.5 billion words.17 The CharBERT was pre-

trained on Wikipedia corpus that contains 2.5 billion words.22

Character-BERT was pretrained on Wikipedia corpus then further

pretrained on MIMIC-III clinical notes and PMC OA biomedical pa-

per abstracts.23

Evaluation
We evaluated the 3 CancerBERT models along with other models

on the NER task for cancer phenotyping extraction. We applied

name entity level evaluation for the NER task. Twenty of the anno-

tated data were used as a test set. The F1 score was used as an evalu-

ation metric. For overall performance, the microaverage F1

(calculating precision and recall by counting the sums of the true

positives, false negatives, false positives for all classes, and then cal-

culating F1 score) and macroaverage F1 (arithmetic mean of all per-

class F1 scores) were used. Following the n2c2 evaluation metrics,29

we evaluated in both exact match and lenient match ways for name

entities. For exact match, the entity boundary of predicted entity

and gold standard should be same, while for lenient match, the en-

tity boundary of predicted entity and gold standard can be over-

lapped.

We developed BiLSTM-CRF models as the baseline models for

the NER task comparison. The input features for the BiLSTM-CRF

models are the pretrained word embeddings. We compared the 4 dif-

ferent word embeddings (ie, Word2Vec model pretrained on Google

News,30 Word2Vec model pretrained on our breast cancer corpus,

Global Vectors for Word Representation (GloVe) model pretrained

on Wikipedia,31 and GloVe model pretrained our breast cancer cor-

pus) as features and finally chose the GloVe trained on Wikipedia

corpus31 as the baseline for further comparison since it obtained the

best performance among the 4 word embeddings for cancer pheno-

type extraction task.

RESULTS

Performance comparison of CancerBERT models with

other BERT models on the cancer phenotyping NER

task
The evaluation results for CancerBERT and other BERT-based mod-

els pretrained in the general biomedical and clinical corpora are

shown in Table 3. The strict and lenient match F1 scores are shown

in the table (lenient match F1 in parenthesis). The scores were aver-

aged scores based on 10 runs, numbers in bold indicate the highest

score and asterisk indicates the number is statistically higher than

other methods (CI: 0.95). All 3 CancerBERT models outperformed

the baseline models and other BERT models. The CancerBERTCust-

Voc_397 model obtained the best performance on 4 of 8 entities and

obtained the best overall macro F1 scores (0.876 for strict match

and 0.904 for lenient match) and micro F1 scores (0.909 for strict

match and 0.933 for lenient match). Overall, the performance of

CancerBERTCustVoc_397 model significantly surpassed other models;

the CancerBERTCustVoc_997 model also obtained good performance.

We explored the total number of unique annotated tokens for

each name entity category and how many of them could be identi-

fied in the original BERT vocabulary, customized BERT vocabulary

based on frequency (for CancerBERTCustVoc_997 model), and cus-

tomized BERT vocabulary based on domain knowledge (for Cancer-

BERTCustVoc_397 model). The results are shown in Table 4.

We extracted the word embeddings of all unique tokens for each

name entity category from the CancerBERTCustVoc_997 and Cancer-

BERTCustVoc_397 models and visualized the word embeddings for

these tokens in a 2-dimensional plot using t-distributed stochastic

neighbor embedding (t-SNE).32 Examples of token clusters are

shown in Figure 3. Figure 3a and b shows the clusters of Cancer

stage (eg, ptis, n2a, pn1a, and t1c), Hormone receptor status (eg, er-

positive, er-negative, and receptor-positive), and Tumor laterality

(eg, left-sided, right-sided, and b-left) obtained from CancerBERT-

CustVoc_397 model. Figure 3c and d shows the clusters of Hormone re-

ceptor type (eg, estrogen, progesterone, and her2), Hormone

receptor status (eg, equivocal, amplified, and nonamplified), and

Histological type (eg, dcis, lcis, lobular, and adenocarcinoma)

obtained from CancerBERTCustVoc_997 model. Some words in the
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plots are the newly added words that were not in the original BERT

vocabulary, for example, “ptis”, “n2a”, and “pn1a” in Cancer

stage; “er-positive”, “er-negative”, and “receptor-positive” in Hor-

mone receptor status; “left-sided” and “right-sided” in Tumor later-

ality; “estrogen”, “progesterone”, and “her2” in Hormone receptor

type, and “dcis” and “lcis” in Histological type. The visualization of

the entire 426 unique tokens is provided in the Supplementary file.

DISCUSSION

Unstructured EHRs data contain valuable information of patients

that can be used for clinical decision support, translational re-

search. In our breast cancer patient corpus, each patient has about

60 pathology reports and over 200 clinical notes. The density of

the targeted information is relatively low. As shown in Table 2, all

name entities have been annotated for more than 100 cases. The

Hormone receptor type, Tumor laterality, and Histological type

are the most frequent entities with more than 1000 cases. The lan-

guage usage for some entities is uniform, only several unique enti-

ties exist. For example, for the 1241 Tumor laterality cases, most

of them are either “left” or “right”. It is relatively easy for the NER

models to identify those uniform entities. Some entities are various

in the clinical texts. For instance, the Tumor site and Tumor size

have 173 and 305 unique expressions, respectively, in the anno-

Figure 3. Examples of token clusters in the visualization of word embeddings obtained from CancerBERTCustVoc_397 (a and b) and CancerBERTCustVoc_997 (c and d)

models using t-SNE. BERT: bidirectional encoder representations from transformers; t-SNE: t-distributed stochastic neighbor embedding.

Table 4. Coverage of unique annotated tokens for different BERT vocabularies stated as token count (percentage of total number of unique

annotated tokens)

Total number of

unique annotated tokens

Exist in original

BERT vocabulary

Exist in customized BERT

vocabulary based on

frequency

Exist in customized BERT

vocabulary based on

domain knowledge

Hormone receptor type 33 14 (42.4%) 22 (66.7%) 26 (78.8%)

Hormone receptor status 11 4 (36.4%) 6 (54.5%) 8 (72.7%)

Tumor size 160 62 (38.7%) 62 (38.7%) 62 (38.7%)

Tumor site 146 88 (60.3%) 95 (65.1%) 95 (65.1%)

Cancer grade 20 15 (75.0%) 15 (75.0%) 18 (90.0%)

Tumor laterality 10 4 (40.0%) 6 (60.0%) 8 (80.0%)

Cancer stage 58 12 (20.7%) 18 (31.0%) 52 (89.7%)

Histological type 72 28 (38.9%) 53 (73.6%) 58 (80.6%)

Total 426 178 (41.8%) 227 (53.3%) 274 (64.3%)

BERT: bidirectional encoder representations from transformers.
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tated data, which make them relatively difficult to extract for all

models.

For the NER task, the BiLSTM þ CRF model outperformed

BERT-large origin model for several phenotypes. All other BERT

models trained on clinical domain corpus significantly outperformed

the BERT-large origin model and baseline BiLSTM-CRF models. In

this study, all 3 CancerBERT models outperformed the baseline

model and other state-of-the-art BERT models. It is within expecta-

tion that pretraining BERT models on domain-specific corpus could

improve the performance of downstream tasks. In addition, we found

that adding the cancer domain specific words to the dictionary of the

CancerBERT model can further improve the performance. In this

study, we applied 2 methods to add cancer domain-specific words to

expand the original BERT vocabulary, adding words based on do-

main knowledge or frequency. Both methods improve the perfor-

mance for the cancer phenotype extraction task. Two character-based

BERT models (character-BERT and CharBERT)22,23 were also evalu-

ated and compared with our models for the NER task. The character-

based BERT models do not tokenize each word into subwords; in-

stead, they use additional layers (eg, CNN, gated recurrent unit) to

represent each word using character-level embeddings to avoid the

OOV issue. Though the character-based BERT models may improve

the robustness (eg, better handle misspelling issues) compared to the

word-based BERT models, they are relatively slower to pretrain and

need more computing sources. Our CancerBERTCustVoc_397 and Can-

cerBERTCustVoc_997 models both significantly outperformed the

character-based BERT models for the cancer phenotype extraction

task, which indicate the advantage of using domain specific vocabu-

lary for specific downstream tasks compared to the character-based

BERT models. Table 4 indicates that both methods to build custom-

ized vocabularies could better cover the unique tokens for all name

entity categories (except Tumor size) compared to the original BERT

vocabulary. The domain knowledge-based vocabulary expansion ap-

proach covers more tokens compared to the frequency-based expan-

sion approach. Figure 3 visualizes partial word embeddings of the

annotated tokens obtained from the CancerBERTCustVoc_397 and Can-

cerBERTCustVoc_997 models and clear clusters of different cancer name

entity categories could be identified from the figure. It indicates that

the pretrained CancerBERT models with customized vocabulary

could capture the semantics of different name entities.

We also analyzed the prediction errors produced by our Cancer-

BERTCustVoc_397 model and found that there are mainly 3 error

types. The first is boundary mismatch, which usually happens when

the name entity contains multiple tokens, eg, Tumor size and Tumor

site. For example, in a sentence “The tumor measures 2 cm in length

and 1 cm in width”, the whole Tumor size entity is “2 cm in length

and 1 cm in width”, but our model only captured “2 cm in length”.

The second type of error is missing (false negative). For example,

“mx” should be predicted as Cancer stage, but it was predicted as

label “O”. And the third error type is mixing up the entities. For ex-

ample, the number “3” could refer to both Cancer stage and Cancer

grade, sometimes the model could not differentiate them.

This study has certain limitations. We trained the CancerBERT

models with customized vocabulary using the breast cancer patient

narrative corpus extracted from the EHRs. The corpus contains 5.8

million documents (1 billion tokens); however, it was extracted

from a single hospital (UMN), the corpus may not be comprehensive

enough to reflect all characteristics of clinical narratives. Another

limitation is that all the models were only evaluated on our NER

task. In the future, we will further improve our model by integrating

corpus from other healthcare institutions and evaluate its generaliz-

ability. We will also try different methods (eg, using MedSpaCy33

for tokenization) to generate new words. We plan to annotate more

data to evaluate our models on other downstream clinical NLP

tasks, such as relation extraction and text classification.

CONCLUSIONS

In this study, a CancerBERT model and its 2 variations with cancer

domain vocabulary were developed to extract the 8 breast cancer-

related phenotypes from clinical notes and pathology reports in the

UMN EHRs. They all outperformed all other existing models; the

best model had average macro F1 scores of 0.876 for exact match

and 0.904 for the lenient match. We also validated that customized

vocabulary may further improve the performance of domain specific

BERT models in clinical NLP tasks.
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