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CANCERSIGN: a user-friendly 
and robust tool for identification 
and classification of mutational 
signatures and patterns in cancer 
genomes
Masroor Bayati1, Hamid R. Rabiee  1*, Mehrdad Mehrbod1, Fatemeh Vafaee  2, 

Diako Ebrahimi3, Alistair R. R. Forrest4 & Hamid Alinejad-Rokny4,5,6*

Analysis of cancer mutational signatures have been instrumental in identification of responsible 
endogenous and exogenous molecular processes in cancer. The quantitative approach used to 
deconvolute mutational signatures is becoming an integral part of cancer research. Therefore, 
development of a stand-alone tool with a user-friendly interface for analysis of cancer mutational 
signatures is necessary. In this manuscript we introduce CANCERSIGN, which enables users to identify 
3-mer and 5-mer mutational signatures within whole genome, whole exome or pooled samples. 
Additionally, this tool enables users to perform clustering on tumor samples based on the proportion of 
mutational signatures in each sample. Using CANCERSIGN, we analysed all the whole genome somatic 
mutation datasets profiled by the International Cancer Genome Consortium (ICGC) and identified a 
number of novel signatures. By examining signatures found in exonic and non-exonic regions of the 
genome using WGS and comparing this to signatures found in WES data we observe that WGS can 
identify additional non-exonic signatures that are enriched in the non-coding regions of the genome 
while the deeper sequencing of WES may help identify weak signatures that are otherwise missed in 
shallower WGS data.

Aberrant somatic changes in DNA resulting from endogenous sources (e.g. APOBEC-induced mutagenesis and 
DNA repair defects) and exogenous factors (e.g. tobacco smoking and UV radiation) are the hallmark of cancer. 
These alternations in DNA may have different forms, ranging from gross chromosomal rearrangements to single 
base substitutions1. The whole genome sequencing of tumor cells has shown that the number of mutations varies 
from less than one hundred per genome to hundreds of thousands depending on the cancer type and patient. 
Moreover, the type of mutation and sequence context of many cancer mutations are not random. For instance, 
C-to-T mutation within the CG (a.k.a. CpG) dinucleotide is a prevalent mutation in cancer and as its abundance 
is proportional to the age of patient it is referred to as an “aging” signature2. Many cancers also have a large num-
ber of C-to-T and C-to-G mutations within TCA and TCT trinucleotides3. These mutations are attributed to the 
aberrant changes in the level and activity of APOBEC enzymes. The mutational landscape of each cancer genome 
is thus a cumulative result of multiple mutational signatures, each caused by a unique process such as methyla-
tion, APOBEC mediated changes, etc.1.

Typically, signatures of mutational processes are determined by considering the trinucleotide context of single 
base substitutions. If all mutations are presented based on changes in the same DNA strand, there are 96 possible 
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different types of mutations within trinucleotide motifs4. In 2013, Alexandrov et al. proposed a mathematical 
framework for analysing mutational signatures4 based on these 96 types of mutations. Using a matrix factori-
zation algorithm, the authors uncovered 30 independent mutational signatures. They have recently updated the 
cancer mutational signature profiles by identifying 67 single base substitution mutational signatures5. Details of 
these signatures including their prevalence in each cancer type and potential etiology are available at the COSMIC 
database (http://cancer.sanger.ac.uk/cosmic/signatures 6).

The discovery of mutational signatures was a breakthrough in the field of cancer research. Therefore, the 
mathematical framework developed by Alexandrov et al.4 is now routinely used to identify novel mutational 
signatures and to study the processes involved in different cancers and in different patients. To help the progress 
of this field, we have developed a computational tool, CANCERSIGN, which enables the users to easily apply a 
matrix factorization analysis to cancer mutation datasets and receive a complete set of mutational signatures. 
Compared to the previously developed packages in R7–9, CANCERSIGN is unique in that it is a stand-alone pack-
age (i.e. it does not require additional software programming). Therefore, to use this tool, no programming skills 
are required. Additionally, it enables the users to perform de novo mutational signature analyses.

Application of CANCERSIGN is not limited to extracting mutational signatures based on nucleotides imme-
diately flanking the mutated site (i.e. tri-nucleotide motifs). It allows the users to extend the analysis to two bases 
on each side of the mutated base (i.e. penta-nucleotides motifs). According to a recent study10, taking larger 
sequence contexts into consideration provides a greater power to explain variability in genomic substitution 
probabilities. In addition, CANCERSIGN allows the user to select trinucleotides of interest, and determine their 
penta-nucleotide mutational signatures. Furthermore, it has a built-in clustering option to study the groupings 
of cancer samples based on the raw mutation counts and/or composition of mutational signatures. In this man-
uscript, we introduce CANCERSIGN and show the new mutational signatures obtained from a de novo analysis 
of whole genome ICGC dataset. This analysis was performed for each cancer type separately and resulted in 77 
mutational signatures. Each of the obtained signatures were shown to be highly similar to at least one of the 67 
signatures discovered recently by Alexandrov et al.5, except two signatures that potentially can be considered as 
novel.

Data and Methods
To develop CANCERSIGN and demonstrate its application, we used all the whole genome mutation datasets 
available at the International Cancer Genome Consortium (ICGC) data portal. A summary of the datasets used 
is shown in Supplementary Table S1.

A schematic of CANCERSIGN features is given in Fig. 1. Basically, this tool deciphers mutational signatures 
in somatic mutation datasets using a previously reported non-negative matrix factorization (NMF) model4. It 
is also capable to cluster the tumor samples based on either the contribution of deciphered signatures to their 
mutational profiles or the mutational burden in 3-mers or 5-mers motifs chosen by the user. It only requires a 
dataset of mutations in a simple format described in the tool manual (https://github.com/bcb-sut/CANCERSIGN 
and https://github.com/forrest-lab/CANCERSIGN). Note that this tool performs its analyses based on the hg19 
genome build.

CANCERSIGN then performs the requested analyses and outputs mutational signatures (3-mer and/or 5-mer 
formats) and clustering figures. The numerical outputs of the analyses are saved in a folder named “output” (refer 
to the CANCERSIGN manual). This data can be used to gain further insight into mutational processes in cancer. 
For example, the exposure matrix obtained from the NMF analysis, can be used to determine the prevalence of 
each mutational signature in each sample.

Estimation of mutational signatures. Each mutational signature is defined by a total of 96 types of muta-
tions within tri-nucleotide motifs4. Assuming that mg

i  represents the number of mutations of type i recorded in 
the mutational catalogue of sample g, then the mutational catalogue of multiple samples is represented by a matrix 
M (K × G):
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where, K represents the number of mutation types (K = 96 for tri-nucleotide signature analysis) and G represents 
the number of cancer samples. Therefore, the i th column of M has the number of each of 96 mutation types in the 
i th sample. Here, it is assumed that the mutational catalogue of each sample (i.e. each column of M) is the result 
of linear superposition of several mutational signatures4, each of which corresponds to a particular mutational 
process. Assuming that the number of mutational signatures is N, we need to factorize M into two matrices P and 
E with sizes K × N and N × G, respectively:

≈ ×M P E (1)

The expanded representation of the above equation is given by:
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Here, each column of P is interpreted as one mutational signature and each row of E represents the exposures 
of each mutational signature in the corresponding sample genome (i.e. the prevalence of each mutational signa-
ture in that sample). The process of estimating independent mutational signatures from a mutational catalogue 
matrix is done using a nonnegative matrix factorization (NMF) method. Note that the elements of the input 
catalogue matrix are nonnegative because they represent the number of mutations.

The algorithm used in this framework consists of several iterative steps. The overall procedure is as follows. 
Each iteration starts with sampling from matrix M and creating a new bootstrapped matrix 

͜

M. To do this, each 
column of M (mutation counts of one input cancer genome) is considered a discrete probability distribution and 
is resampled to create the corresponding column of 

͜

M. Next, the bootstrapped matrix 
͜

M is factorized into matri-
ces P and E by applying the NMF algorithm. These steps will be repeated for a certain number of iterations (typi-
cally 600 iterations are enough to obtain a stable result). The resulting matrices obtained after each iteration are 
stored and grouped into two sets: P matrices and E matrices named SP and SE, respectively. The set of columns of 
matrices in SP are then clustered into N groups using a variation of the −k means clustering algorithm11. A simi-
larity measure between two columns is calculated using cosine similarity and the centroids of the clusters are 
obtained by averaging over the members of each cluster. The cosine similarity between the vectors A and B is 

Figure 1. Tool functionality map. This diagram abstracts the functional features of CANCERSIGN. The 
user can either choose to extract mutational signatures or cluster the tumor samples. Signatures can either be 
deciphered in the conventional format which are the spectrums over 96 mutation types (3-mer motifs) or in 
5-mer format. For extracting 5-mer signatures, the mutational motifs (penta-nucleotides) are determined based 
on the set of user defined 3-mer motifs and their flanking bases. In the clustering part, the user can choose 
different sets of features to cluster the samples. These feature sets are based on either counts of mutational motifs 
or based on the contribution of mutational signatures.

https://doi.org/10.1038/s41598-020-58107-2
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calculated as ⋅ ⋅ × ⋅A B A A B B/ ( ) ( ),  where A B represents the dot product of vectors A and B. Finally, the N 
centroids are combined to form the columns of a single matrix P , which is the matrix of mutational signatures. 
Since each column of matrix P corresponds to one specific row of matrix E, the procedure of clustering columns 
of matrices in SP naturally leads to clustering of rows of matrices in SE. Therefore, the final exposure matrix E  
(prevalence of mutational signatures) is constructed in a manner similar to P  after the clustering step. Finally, the 
results are evaluated by calculating the reproducibility of mutational signatures and the Frobenius reconstruction 
error of the NMF solution. The reproducibility is measured by calculating the average silhouette width of the 
result of clustering step, while the reconstruction error of the solution is quantified by the Frobenius norm of 

difference between matrix M, and its estimation obtained by the factorization algorithm, i.e., − ×M P EF
24. The 

overall procedure described above is carried out for different values of N; the number of deciphered signatures. 
The range of values for N can be specified by the user and the optimum value of N can be selected based on the 
aforementioned evaluation measures4. An optimum N leads to high reproducibility and low reconstruction error. 
CANCERSIGN produces an evaluation plot similar to the one proposed by Alexandrov et al.4.

CANCERSIGN is designed to carry out each iteration of the aforementioned algorithm, which consists of one 
bootstrap and a complete NMF decomposition, independent and in parallel with other iterations. This enables 
the user to distribute the whole task across CPU cores and speed up the procedure of extracting mutational signa-
tures. This tool also allows the user to specify the convergence criteria, the number of NMF iterations, the number 
of bootstrapping iterations and the number of CPU cores for parallelization.

Penta-nucleotide mutational signatures. In addition to extracting mutational signatures based on 
the immediately flanking nucleotides around the mutated site (tri-nucleotides), CANCERSIGN enables the 
user to further investigate the underlying mutational process, by expanding the mutational context to two bases 
upstream and downstream of the mutated base (penta-nucleotides). For this purpose, the user can choose an 
arbitrary set of mutations in tri-nucleotide motifs (up to 10 combinations). For each of these selected motifs, our 
tool quantifies the number of mutations in the corresponding 16 penta-nucleotide motifs (e.g. when the motif 
C[G > T]A is selected, 16 penta-nucleotide motifs of the form NC[G > T]AN are considered where N is each of 
four nucleotides). The mutation counts of penta-nucleotides in all samples are then used as the input to the NMF 
analysis, which produces a set of penta-nucleotide (or 5-mer) mutational signatures.

Clustering of samples. One important application of CANCERSIGN is clustering of tumor samples based 
on the contribution of mutational signatures (Exposure Matrix E in Eq. 1) or based on the mutation counts within 
selected motifs (Matrix M in Eq. 1). This feature allows the user to investigate heterogeneity of samples and to 
identify potential outlier samples. Additionally, this information can be used to investigate correlation with clin-
ical data including treatment history and survival outcomes.

The clustering of samples is performed using the k-means algorithm with Euclidian distance measure. For this 
purpose, the NbClust function from NbClust package12 in R is utilized which obtains the optimal number of clus-
ters automatically based on 30 indices. CANCERSIGN produces two plots to visualize the clustering results. The 
first plot is the result of principal component analysis (PCA) of samples based on the features used for the cluster-
ing. The second plot shows the values of these features in the samples within each cluster by using box charts. As 
mentioned above, the features selected for clustering can be either the contribution of signatures to the mutational 
profiles of samples or the mutation counts within motifs selected by the user. The numeric values of the results 
produced by CANCERSIGN are stored in the output folder for further analyses (see CANCERSIGN manual).

We have applied our tool to the mutational data of 18 cancer types with sufficient number of samples that 
were available in the ICGC database, last updated June 2017 (Supplementary Table S1). General information and 
statistics about the data can be found in the Supplementary Table S1. Details about our analyses, including the 
tool parameters, are provided in the Supplementary Information File. We performed all the analyses with com-
putational resources provided by the Telethon Kids Bioinformatics Server (30 CPU cores and 120 GB memory).

Results and Discussion
The results of separate analyses of whole genome mutation data from each of 18 tumor types reported in the 
ICGC database are presented in Supplementary Fig. S2A–R). The evaluation diagrams for each tumor type are 
presented in Supplementary Figs. S3–S20. These evaluation diagrams were used to determine the total num-
ber of mutational signatures presented in Supplementary Fig. S2. For each tumor type, the numerical values 
of the deciphered 3-mer signatures and the contribution of each signature to each tumor sample are provided 
in Supplementary Tables S2–S19. In total, CANCERSIGN identified 77 signatures across 18 tumor-types 
(Supplementary Fig. S2A–R). The majority of these signatures were highly similar (Cosine Similarity >50) to 
one or more of the recently reported 67 signatures by Alexandrov et al.5. But two of these signatures (one in 
stomach cancer and another one in nervous system cancer) had Cosine similarity of <50 with all the mentioned 
signatures, suggesting that they are possibly novel signatures that have not been identified by other studies so far 
(Fig. 2). For example, Supplementary Fig. S3 indicates nine mutational signatures deciphered from the mutational 
data of breast cancer samples using CANCERSIGN. For each of these nine signatures there is at least one previ-
ously reported signature which can be considered as a close match (Fig. 2). Supplementary Fig. S2D also shows 
the mutational signatures that CANCERSIGN has identified in stomach cancer samples. For this cancer type, one 
signature (Stomach CANCERSIGN Signature No. 2) does not resemble any of the previously reported signatures, 
i.e. it does not have >50% similarity to any of the previously reported COSMIC signatures (Fig. 2). Details of the 
correlations between all 77 signatures discovered by CANCERSIGN, and the signatures reported by Alexandrov 
et al.5 are given in the Supplementary Table S20. Hierarchical clustering of CANCERSIGN signatures based on 
their similarities to the Alexandrov signatures, revealed multiple CANCERSIGN signatures from different tum-
ors, are highly similar to the Alexandrov signatures (Supplementary Fig. S26).

https://doi.org/10.1038/s41598-020-58107-2
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The 67 mutational signatures reported previously, is based on the analysis of all tumor types together. These 
signatures seem to be a consensus and represent trends across all tumor types. However, this global mutational 
signature analysis of multiple cancer types might produce results that are biased toward signatures of the tumors 
with more samples in the dataset. Furthermore, pooling somatic mutations obtained from whole exome sequenc-
ing with that of whole genome data can be another source of bias that is not considered in the previous studies. 
These issues have been discussed in a recent review by Nik-Zainal and Morganella13. Nevertheless, our tool can be 
used to extract mutational signatures for all tumors together, or for each tumor separately. Typically, researchers 
use mixed datasets (whole genome + whole exome) to extract mutational signatures. CANCERSIGN is able to 
provide an option for users to extract mutational signatures from the whole genome, whole exome or pooled 
data. Figure 3 shows the analysis of whole genome, whole exome and whole exome + whole genome (mixed) 
profiles of breast cancer samples (The evaluation diagrams for these analyses are presented in Supplementary 
Figs. S3, S21 and S22). For pooled data (WGS + WXS) we identified ten signatures (Fig. 3A), whereas for whole 
genome data we identified nine signatures (Fig. 3B). The CANCERSIGN Signature No. 7 in Fig. 3A disappeared 
from the whole genome analysis and seems to be a WXS-specific signature. We then analysed breast cancer 
whole exome data and identified only five signatures (Fig. 3C). CANCERSIGN Signature No. 4 in Fig. 3C is 
identical to CANCERSIGN Signature No. 7 in Fig. 3A and CANCERSIGN Signature No. 1 in Fig. 3C has not 
appeared in either pooled or whole genome data. As a result, there are two signatures (No. 1 and No. 4 in Fig. 3C) 
in our analyses that seems to be associated with only whole exome data. To find out if this is a sequencing bias, 
we extracted exome parts of whole genome breast cancer samples; here, CANCERSIGN identified three signa-
tures (Fig. 4A) that are identical with three of the five whole exome analysis signatures (No. 2, No. 3 and No.5 
in Fig. 4B). CANCERSIGN Signatures No. 1 and No. 4 in Fig. 3C did not appear in this analysis, suggesting that 
these two signatures are specific for whole exome samples. Our detailed investigation of the breast cancer whole 
exome samples revealed that these samples have been sequenced ~2.5x more deeply than whole genome sam-
ples. This may indicate that the two WXS-specific signatures are rare signatures and can be seen in the deeply 
sequenced samples. We then extracted non-coding regions of the WGS breast cancer samples and used them as 
an input for CANCERSIGN. This analysis revealed nine signatures (Fig. 4C) that are identical to the results for the 
whole genome data (Fig. 4D); interestingly, five of the nine signatures did not appear in the analysis of the WXS 
samples or exonic regions of the WGS samples, suggesting that these five signatures are potentially specific to the 
mutations occurring in non-coding regions of the genome.

Figure 2. Correlation of 77 signatures identified by CANCERSIGN with 67 previously reported signatures by 
Alexandrov et al.5. Here, each cell indicates percentage of similarity between signatures identified by our tool 
and previously reported signatures. Those signatures with less than 50% similarity with previously reported 
signatures have been highlighted.

https://doi.org/10.1038/s41598-020-58107-2
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CANCERSIGN is also able to cluster tumor samples based on the contribution of mutational signatures to 
the mutational profile of samples or based on mutation counts in the profile of samples. This clustering analysis 
can be informative, because the results can be used along with clinical data such as subtype, response to thera-
pies, and overall survival to identify potential biological associations. To demonstrate the clustering feature of 

Figure 3. Mutational signatures deciphered from whole genome profiles, whole exome profiles and mixed (by 
pooling whole genome and whole exome) profiles of breast cancer samples. (A) For the mixed data. (B) For the 
whole genome data. (C) For the whole exome data.

https://doi.org/10.1038/s41598-020-58107-2
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CANCERSIGN, breast cancer samples were clustered based on the contribution of 3-mer mutational signatures 
deciphered in our whole genome analysis. The cluster assignments for the samples are provided in Supplementary 
Table S21 and the results are illustrated in Fig. 5. Figure 5A, which shows the PCA of samples based on the con-
tribution of signatures, shows a clear separation among these clusters. Figure 5B provides more details about 
the contribution of these signatures to the profiles of samples within each cluster. According to this figure, 
CANCERSIGN Signature No. 7 in cluster 1 and CANCERSIGN Signatures No. 3 and No. 6 in cluster 3, have the 
highest contributions. This observation suggests that the mutational processes associated with these signatures 
may be potential biomarkers for these clusters.

Figure 4. Mutational signatures deciphered from the whole genome profiles, whole exome profiles, exonic 
section of whole genome profiles and non-coding regions of whole genome profiles of breast cancer samples. 
(A) CANCERSIGN also analysed exonic sections of WGS breast cancer samples and identified three signatures. 
(B) In the analysis of whole exome sequencing breast cancer samples, CANCERSIGN detected five signatures. 
(C) In the analysis of non-coding regions of the WGS breast cancer samples, CANCERSIGN detected nine 
signatures, in which five of them seem to be non-coding specific signatures. (D) Nine signatures discovered 
from whole genome analysis of breast cancer sample by CNCERSIGN.

https://doi.org/10.1038/s41598-020-58107-2
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Another feature of CANCERSIGN is to decipher mutational signatures based on mutations within specific 
5-mer motifs. To demonstrate this feature, we selected two 3-mer motifs (TCA and TCT) and two mutation 
types (C > T and C > G) as an input (i.e. T(C > G)A, T(C > G)T, T(C > T)A and T(C > T)T). These mutations are 
attributed to APOBEC enzymes and are the most abundant mutations in many cancer types14,15. CANSERSIGN 
first quantified the number of mutations within all possible 5-mer motifs that include the selected 3-mer motifs, 
then performed the mutational analysis for the resulting mutational profiles (for example, for C > G mutation 
within the 3-mer TCA motif, 16 possible 5-mers exists, i.e. NT(C > G)AN where N:A, C, G, or T). This process 
revealed four 5-mer mutational signatures as shown in Fig. 6. The evaluation diagram for this analysis is given in 
Supplementary Fig. S23. The numerical values of the 5-mer signatures and their contribution to the profiles of 
breast cancer samples are provided in Supplementary Table S22.

Comparison with other tools. We have compared our tool with its well-known counterparts which have 
been developed for similar purposes: SomaticSignatures7, SigneR8 and deconstructSigs9. The deconstructSigs 

Figure 5. Clustering the samples of breast cancer using CANCERSIGN. (A) PCA of breast cancer tumor 
samples based on the contribution of 3-mer mutational signatures. The points are coloured based on clustering 
assignments. (B) Each box in the plot represents the contribution of one mutational signature to the mutational 
profiles of the samples within one cluster.

Figure 6. Deciphering whole genome 5-mer mutational signatures for breast cancer. The 5-mer mutational 
signatures extracted from whole-genome samples of breast cancer. Here, we have chosen four 3-mer motifs, 
namely T(C > G)A, T(C > G)T, T(C > T)A and T(C > T)T, to expand to 5-mer motifs and extracted the 
corresponding 5-mer signatures.
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package is different from other tools as it is designed to determine the optimal linear combination of pre-defined 
mutational signatures that most accurately reconstructs the mutational profile of a single tumor sample9, whereas 
others are designed to extract de novo mutational signatures from a cohort. Table 1 compares the tools based on a 
set of features. Note that this comparison only considers relevant features of these tools rather than all capabilities. 
Please refer to the corresponding papers for more information7–9.

The tools were applied to a simulated dataset of mutations. We constructed the simulated dataset as follows: 6 
signatures were selected from the list of mutational signatures presented at the COSMIC database6 (signatures 1, 
2, 3, 17, 21 and 29) as the underlying mutational processes, producing our simulated mutational catalogue. The 
mutational load (total mutations) for each sample was determined by taking a random number from a Rayleigh 
distribution with parameter σ = 8000 (this distribution was used since we observed that the histogram of muta-
tional loads for samples of a cancer is often unimodal and positively skewed, and the average of mutational loads 
across all samples and all cancer types is near 10’000 which is approximately equal to the mean of a Rayleigh dis-
tribution with scale parameter of 8000). In the next step, the vector of mutations for each sample was generated 
by a linear combination of the 6 signatures where the 6 coefficients were determined randomly (for each set of 
coefficients, we selected 6 random numbers between 0 to 1, then normalized them such that they sum to 1, and 
finally multiplied them with the amount of mutational load of the sample). The aforementioned algorithm was 
used to generate 400 samples to form the simulated mutational catalogue.

We tried to apply CANCERSIGN, SomaticSignatures and SigneR to the simulated dataset in an equal condi-
tion. However, SigneR, due to its Bayesian framework, is not scalable to large mutational catalogues containing 
several hundreds of samples. Consequently, it was not feasible to test SigneR on the simulation dataset and the 
comparison was made between CANCERSIGN and SomaticSignatures.

The parameters of the analysis were set as follows. The range of values of N (number of signatures to decipher) 
was set from 2 to 12. The maximum number of bootstraps for each N was set to 100 for CANCERSIGN, and the 
number of replicates (nReplicates) for SomaticSignatures was set to 20. With these settings, the tools consumed 
approximately the same amount of time (~45 minutes) to decipher mutational signatures from our simulated 
dataset (using a typical computer with four 1.7 GHz CPU cores and 8GB memory). According to Supplementary 
Fig. S24, both tools have correctly found N = 6 as the optimal number of underlying mutational signatures (the 
knee point in the diagram of summary statistics of SomaticSignatures7, and the point with a high reproducibil-
ity and the lowest reconstruction error in the evaluation diagram of CANCERSIGN). The obtained mutational 
signatures are shown in Supplementary Fig. S25. By a simple visual comparison, we can conclude that both tools 
have deciphered almost identical signatures which are also identical to the original selected signatures (signatures 
1, 2, 3, 17, 21 and 29 from the COSMIC database). This test shows that both tools can produce valid results when 
analysing catalogues of somatic signatures.

We also compared the tools in terms of time efficiency. Note that the number of replicates for 
SomaticSignatures is equivalent to the number of bootstraps for CANCERSIGN. It is observed that in the same 
amount of time (~45 minutes), the number of bootstraps performed by CANCERSIGN was more than the num-
ber of replicates in the process of SomaticSignatures (100 vs. 20). Thus, we can conclude that CANCERSIGN 
performs the analyses faster than SomaticSignatures.

Conclusion
Systematic analyses of mutations in tumor biopsies from a large number of cancer types have identified at least 
67 mutational signatures, each pointing to distinct molecular mechanisms acting on cellular DNA. The compu-
tational method used to extract mutational signatures is becoming an integral part of cancer research. Therefore, 
in recent years, a number of studies have focused specifically on the development of bioinformatics tools for 
analysis of mutational signatures. In the present study, we reported the development of a stand-alone tool called 
CANCERSIGN, which does not require any programming skills to be used. This tool has several unique features. 
Firstly, it has been optimized to run parallel computational analysis in order to speed up de novo mutational 
signature extraction. Secondly, it enables the extraction of 5-mer mutational signature profiles in addition to the 

Usage

Method of selecting 
optimum number of 
extracted signatures

Option of extracting 
5-mer mutational 
signatures

Option of clustering 
the samples based on 
motifs or signatures Implementation

CANCERSIGN
Deciphering de novo 
mutational signatures

Specified by user by 
inspecting the diagrams 
of reproducibility and 
reconstruction error

Yes Yes R

SomaticSignature
Deciphering de novo 
mutational signatures

Specified by user by 
inspecting the diagrams of 
residual sum of squares and 
explained variance

No No R

SigneR
Deciphering de novo 
mutational signatures

Automatically specified 
by empirical Bayesian 
treatment to the Poissonian 
NMF model

No No R

deconstructSigs

Obtain the optimal 
linear combination of 
pre-defined mutational 
signatures

— No No R

Table 1. A comparison between packages for analysis of mutational catalogues.
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commonly used 3-mer signature patterns. Thirdly, using the clustering features of this tool, differences between 
patients and/or tumor types can be investigated based on the contribution of mutational signatures to the muta-
tional profiles of samples or based on their mutation counts within specific motifs. In addition, using this tool, 
we identified a number of novel signatures. Overall, CANCERSIGN is a multi-functional and user-friendly com-
putational tool for accurate and quick analysis of mutation signatures and clustering of tumor samples. This tool 
is a stand-alone package, is freely available, and does not require any specific computational skills to run. We’ve 
previously shown that Markov model of probabilities can be used to quantify the “representation” of motifs (e.g. 
D-ratio) and so to distinguish under-represented and over-represented motifs in HIV-1 and human genomes16,17. 
As an interesting future study, we plan to use D-ratio to re-implement NMF algorithm and use the new algorithm 
to accurately identify cancer mutational signatures without using alignment.

Data availibility
All supplementary files are available on the journal website.
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