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CANDECOMP/PARAFAC: FROM DIVERGING COMPONENTS TO
A DECOMPOSITION IN BLOCK TERMS∗

ALWIN STEGEMAN†

Abstract. Fitting an R-component Candecomp/Parafac (CP) decomposition to a multiway
array or higher-order tensor Z is equivalent to finding a best rank-R approximation of Z. Such a
best rank-R approximation may not exist due to the fact that the set of multiway arrays with rank
at most R is not closed. In this case, trying to compute the approximation results in diverging CP
components. We present an approach to avoid diverging components for real I × J ×K arrays with
R ≤ min(I, J,K). We show that a CP decomposition (A,B,C) featuring diverging components
can be rewritten as a decomposition in block terms, where each block term corresponds to a group
of diverging components. Moreover, we show that if the diverging components occur in groups of
two or three, then the limiting boundary point X (i.e., the limit of the sequence of CP updates)
can be obtained by fitting an appropriate constrained Tucker3 model to Z, using the block term
decomposition of (A,B,C) as initial values. Our results are demonstrated by means of numerical
experiments.

Key words. tensor decomposition, low-rank approximation, Candecomp, Parafac, Schur de-
composition, block decomposition, diverging components

AMS subject classifications. 15A18, 15A22, 15A69, 49M27, 62H25
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1. Introduction. Tensors of order n are defined on the outer product of n linear
spaces, S�, 1 ≤ � ≤ n. Once bases of spaces S� are fixed, they can be represented
by n-way arrays. For simplicity, tensors are usually assimilated with their array
representation. Note that a two-way array is a matrix.

For n ≥ 3, a generalized rank and related decomposition of an n-way array was
introduced in 1927 [22], [23]. Around 1970, the same decomposition was reintroduced
in psychometrics [4] and phonetics [19] for component analysis of n-way data arrays.
It was then named Candecomp and Parafac, respectively. We denote the three-way
Candecomp/Parafac (CP) model, i.e., the decomposition with a residual term, as

Z =

R∑
r=1

ωr (ar ◦ br ◦ cr) + E ,(1.1)

where Z is an I × J ×K data array, ωr is the weight of term r, ◦ denotes the outer
product, and ‖ar‖ = ‖br‖ = ‖cr‖ = 1 for r = 1, . . . , R, with ‖ · ‖ denoting the
Frobenius norm (i.e., the square root of the sum-of-squares). To find the R terms
ar ◦ br ◦ cr and the weights ωr, an iterative algorithm is used which minimizes the
Frobenius norm of the residual array E . The most well-known algorithm is Alternating
Least Squares. For an overview and comparison of CP algorithms, see [24], [59], [6].
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292 ALWIN STEGEMAN

For later use, we mention that the CP model (1.1) is a special case of the Tucker3
model [60]. The latter is defined as

Z =

R∑
r=1

P∑
p=1

Q∑
q=1

grpq (ar ◦ bp ◦ cq) + E .(1.2)

Clearly, the case with R = P = Q and grpq = 0 if (r, p, q) �= (r, r, r) yields (1.1). The
R × P × Q array G with entries grpq is referred to as the core array. The matrices
A = [a1| . . . |aR], B = [b1| . . . |bP ] and C = [c1| . . . |cQ] are called the component
matrices.

A matrix form of the CP model (1.1) is

Zk = ACk B
T +Ek , k = 1, . . . ,K ,(1.3)

where Zk and Ek are the kth I × J frontal slices of Z and E , respectively, and Ck

is the diagonal matrix with row k of C as its diagonal. In (1.3), the weights ωr are
absorbed into A, B, and C.

We use the notation X = (S,T,U) · Y to denote the multilinear matrix multipli-
cation of an array Y ∈ R

I×J×K with matrices S (I2×I), T (J2×J), and U (K2×K).
The result of the multiplication is an I2 × J2 ×K2 array X with entries

xijk =

I∑
r=1

J∑
p=1

K∑
q=1

sir tjp ukq yrpq ,(1.4)

where sir, tjp, and ukq are entries of S, T, and U, respectively. Using this notation,
the Tucker3 model (1.2) can be written as Z = (A,B,C) · G + E .

CP and Tucker3 can be seen as generalizations of principal components analysis
or factor analysis for matrices. They can be used for exploratory component analysis
of three-way data. Such (real-valued) applications of CP and Tucker3 occur in psy-
chology [33], [29] and chemometrics [46]. Complex-valued CP is used in, e.g., signal
processing and telecommunications research [44], [45], [15]. Here, the decompositions
are mostly used to separate signal sources from an observed mixture of signals. Four-
way CP describes the basic structure of fourth-order cumulants of multivariate data
on which many algebraic methods for Independent Component Analysis (ICA) are
based [5], [13], [12], [7]. A general overview of applications of CP and Tucker3 can be
found in [30], [1].

The most attractive feature of CP is that, for fixed residuals, the vectors ar, br,
and cr and the weights ωr are unique up to sign changes and a reordering of the
summands in (1.1) under mild conditions [34], [53], [40], [43], [27], [8], [51].

In this paper, we consider the real-valued three-way CP model (1.1). The ap-
plication of CP may be hampered by nonexistence of a best fitting CP solution in
(1.1). As a consequence, diverging components occur in the sequence of CP updates
resulting from an iterative CP algorithm. We propose a method for dealing with such
situations when R ≤ min(I, J,K). But first, we discuss the problem of nonexistence
of a best fitting CP solution.

The rank (over the real field) of Z is defined in the usual way, i.e., the smallest
number of (real) rank-1 arrays whose sum equals Z. A three-way array has rank 1
if it is the outer product of three vectors, i.e., a ◦ b ◦ c. We denote tensor rank as
rank(Z). Let

SR(I, J,K) = {Y ∈ R
I×J×K | rank(Y) ≤ R} .(1.5)
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DIVERGING CP COMPONENTS IN BLOCK TERMS 293

Since the CP model (1.1) constitutes a sum of R rank-1 arrays, fitting the CP model
to Z boils down to solving the following minimization problem:

Minimize ||Z − Y|| subject to Y ∈ SR(I, J,K) .(1.6)

Hence, we are looking for a best rank-R approximation to Z. Assuming rank(Z) > R,
an optimal solution of (1.6) will be a boundary point of the set SR(I, J,K). However,
the set SR(I, J,K) is not closed for R ≥ 2, and the CP problem (1.6) may not have
an optimal solution because of this fact [16]. Nonexistence of an optimal solution
results in diverging rank-1 arrays when an attempt is made to compute a best rank-R
approximation to Z. This was conjectured by [35] and recently proven by [32]. We
refer to this phenomenon as diverging CP components, but it is also known as CP
“degeneracy” [20, 50]. In such cases, while running a CP algorithm, the decrease
of ||Z − Y|| becomes very slow, and some (groups of) columns of A, B, and C
become nearly linearly dependent, while the corresponding weights ωr become large
in magnitude. However, the sum of the corresponding rank-1 terms remains small
and contributes to a better CP fit. More formally, a group of diverging components
corresponds to an index set D ⊆ {1, . . . , R} such that

|ω(n)
r | → ∞ for all r ∈ D ,(1.7)

while

∥∥∥∥∥
∑
r∈D

ω(n)
r (a(n)r ◦ b(n)

r ◦ c(n)r )

∥∥∥∥∥ is bounded ,(1.8)

where the superscript (n) denotes the nth CP update of the iterative CP algorithm.
In practice and in simulation studies with random data Z, groups of diverging com-
ponents are such that the corresponding columns of A, B, and C become nearly
identical up to sign. Other forms of linear dependency are possible but exceptional
[56].

More than one group of diverging components may exist. In that case (1.7)–
(1.8) hold for the corresponding disjoint index sets. The slow convergence of the
CP objective function value is also referred to as being stuck in a “swamp” [38]. A
numerical example of diverging components is as follows. For a random 6 × 6 × 6
array Z and R = 6, a CP algorithm terminates with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1879 0.2128 0.7316 0.7093 0.7150 0.5485
0.0211 0.0349 0.1253 0.1583 0.1504 0.2090

−0.4753 −0.4874 −0.2498 −0.2604 −0.2582 0.4797
−0.3848 −0.3535 −0.1035 −0.1466 −0.1360 −0.6106
−0.7682 −0.7687 −0.5828 −0.5784 −0.5797 0.1383
−0.0133 0.0034 −0.1908 −0.2191 −0.2119 0.1826

⎤
⎥⎥⎥⎥⎥⎥⎦
,(1.9)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1556 −0.1605 −0.3042 −0.3089 0.3077 −0.6768
0.1043 −0.1188 −0.0284 −0.0466 0.0423 0.5075

−0.7401 0.7325 0.2446 0.2798 −0.2716 −0.2670
0.0657 −0.0775 0.3483 0.3707 −0.3649 −0.0148
0.6414 −0.6416 −0.2735 −0.2742 0.2741 0.3239

−0.0380 0.0766 0.8067 0.7820 −0.7883 −0.3285

⎤
⎥⎥⎥⎥⎥⎥⎦
,(1.10)
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294 ALWIN STEGEMAN

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.4598 −0.4478 −0.6200 −0.6267 −0.6251 −0.5416
−0.3797 −0.3738 −0.1736 −0.1695 −0.1709 0.6200
0.6055 0.6078 0.0237 0.0117 0.0150 0.1191

−0.0096 0.0234 0.4039 0.3636 0.3736 0.2102
−0.5263 −0.5381 −0.6454 −0.6638 −0.6593 0.1737
−0.0269 −0.0150 −0.0724 −0.0744 −0.0739 −0.4834

⎤
⎥⎥⎥⎥⎥⎥⎦
,(1.11)

and corresponding weights ω1 = 130.22, ω2 = 133.47, ω3 = 2083.3, ω4 = 6386.1,
ω5 = 8466.6, and ω6 = 4.44. Hence, in this example we have one group of two
diverging components (1 and 2), one group of three diverging components (3, 4, and
5), and one nondiverging component (6).

Diverging components cannot be interpreted and may thus be a serious problem
in the practical use of CP. In simulation studies involving randomly sampled data Z,
diverging components occur very often, with percentages of up to 50, 60, or even 100
[47], [49], [48]. Also, it has been shown that all 2 × 2 × 2 arrays of rank 3 (a set of
positive volume in R

2×2×2) have no optimal CP solution for R = 2 [16].
In practice, diverging components due to nonexistence of an optimal CP solution

are often avoided by imposing constraints in CP. For example, imposing orthogonality
constraints on the components matrices guarantees an optimal CP solution [32], and
an optimal CP solution exists for nonnegative Z under the restriction of nonnegative
component matrices [36]. Also, [37] shows that constraining the magnitude of the
inner products between pairs of columns of component matrices guarantees an optimal
CP solution. However, these constraints are not suitable for all applications of CP.

A different approach to deal with diverging components is as follows. In order to
guarantee the existence of an optimal solution, it has been proposed to consider the
following minimization problem instead [16]:

Minimize ||Z − Y|| subject to Y ∈ SR(I, J,K) ,(1.12)

where SR(I, J,K) denotes the closure of SR(I, J,K), i.e., the union of the set itself
and its boundary points in R

I×J×K . Naturally, (1.12) has an optimal solution. If
(1.6) has an optimal solution, then it is also an optimal solution of (1.12). If (1.6)
does not have an optimal solution, then the sequence of CP updates will converge
(assuming the CP algorithm minimizes ||Z − Y||) to an optimal solution of problem
(1.12). This optimal solution is a boundary point of SR(I, J,K) with rank larger than
R, and the sequence of CP updates converging to it will feature diverging components
[32].

To solve (1.12), we need to characterize the boundary points of SR(I, J,K) and
we need an algorithm to find an optimal boundary point. For R = 2, the boundary
points of S2(I, J,K) are determined by [16], and [41] show that (1.12) can be solved
by fitting a Tucker3 model with columnwise orthonormal component matrices and a
constrained 2 × 2 × 2 core array. For K = 2, the boundary points of SR(I, J, 2) are
characterized by [47], [49], [52], and [54] show that (1.12) can be solved for I × J × 2
arrays by fitting a Generalized Schur Decomposition (GSD), which has the matrix
form

Zk = Qa Rk Q
T
b +Ek , k = 1, 2 ,(1.13)

where Qa (I × R) and Qb (J × R) are columnwise orthonormal, and Rk are R × R
upper triangular. The set of arrays satisfying the GSD with perfect fit is identical
to SR(I, J, 2) [52]. Note that R ≤ min(I, J) must hold in the GSD. However, for
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R > min(I, J) the problem of diverging CP components does not seem to occur [49].
For a detailed discussion of the relations between CP and GSD, and a GSD algorithm,
we refer to [54].

In this paper, we propose a new constructive method to find an optimal boundary
point of (1.12) for general I × J ×K arrays with R ≤ min(I, J,K). We first try to
solve the CP problem (1.6). If the CP algorithm that is used terminates with a
CP decomposition (A,B,C) featuring diverging components, and we are convinced
that the CP problem does not have an optimal solution, then we proceed as follows.
We reorder the R rank-1 terms such that A = [A1 | . . . |Am], B = [B1 | . . . |Bm],
C = [C1 | . . . |Cm], with Aj , Bj , Cj having dj columns and defining a group of dj
diverging components if dj ≥ 2, and a nondiverging component if dj = 1, j = 1, . . . ,m.
We have R =

∑m
j=1 dj . Let Yj be the I × J ×K array defined by the dj components

in (Aj ,Bj ,Cj). Then rank(Yj) = dj , and Y =
∑m

j=1 Yj is the array defined by the
CP decomposition (A,B,C). We assume that for dj ≥ 2, the array Yj converges to
some Xj with rank(Xj) > dj . We show that for dj ∈ {2, 3}, such a limit Xj has a
Tucker3 decomposition Xj = (Sj ,Tj ,Uj) · Gj with a sparse dj × dj × dj core array
Gj in canonical form and with rank(Gj) = rank(Xj) > dj . The dj = 2 canonical
form follows from [16], and the dj = 3 canonical form is proven in this paper. A
nondiverging component, i.e., Yj with dj = 1, has a rank-1 limit Xj = (Sj ,Tj ,Uj) ·Gj

with core Gj of size 1×1×1. Hence, for max(dj) ≤ 3 the sequence of CP updates Y =∑m
j=1 Yj converges to a limit point X =

∑m
j=1 Xj that has a Tucker3 decomposition

with an R × R × R block-diagonal core array G = blockdiag(G1, . . . ,Gm), i.e., X =
(S,T,U) · G =

∑m
j=1(Sj ,Tj ,Uj) · Gj , with S = [S1 | . . . |Sm], T = [T1 | . . . |Tm],

and U = [U1 | . . . |Um]. The limit process is visualized below:

Y = (A1,B1,C1) + (A2,B2,C2) + · · · + (Am,Bm,Cm)⏐� ⏐� ⏐� ⏐�
X = (S1,T1,U1) · G1 + (S2,T2,U2) · G2 + · · · + (Sm,Tm,Um) · Gm

The decomposition of X is an example of a decomposition into block terms, introduced
in [9], [10], [11], where the block terms are (Sj ,Tj ,Uj) · Gj . We show that X is
a boundary point of SR(I, J,K) with rank(X ) > R. If the error sum-of-squares
corresponding to the sequence of CP updates is converging to the infimum of the CP
problem (1.6), then X is an optimal boundary point of problem (1.12). To obtain X
and its decomposition

∑m
j=1(Sj ,Tj ,Uj) · Gj from the CP decomposition (A,B,C),

we fit the decomposition
∑m

j=1(Sj ,Tj ,Uj) · Gj with blocks Gj in canonical form to
the data array Z, using initial values obtained from (A,B,C).

A brief illustration of our method for the CP solution (1.9)–(1.11) is as fol-
lows. We have one group of two diverging components, one group of three diverging
components, and one nondiverging component. We set m = 3, d1 = 2, d2 = 3,
and d3 = 1. After obtaining the limit point X and its decomposition into block
terms,

∑3
j=1(Sj ,Tj ,Uj) · Gj , the component matrices [S1 |S2 |S3], [T1 |T2 |T3], and

[U1 |U2 |U3] have condition numbers 21.8, 6.3, and 61.0, respectively. The core
blocks Gj are in sparse canonical form and do not contain large numbers. Hence, the
problems of diverging CP components have vanished. The error sum-of-squares of the
CP decomposition (1.9)–(1.11) equals ||Z −Y||2 = 54.5370. For the limit point X we
have ||Z − X||2 = 54.5336, which shows that the boundary point X is indeed a little
closer to Z than Y.

Compared to the previously considered cases of R = 2 in [41] and K = 2 in [54],
our method is much less restrictive by assuming only R ≤ min(I, J,K). However,
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diverging components do also occur for R > min(I, J,K); see [48]. Our restriction to
max(dj) ≤ 3 is due to the difficulty of proving canonical forms for dj ≥ 4. However,
groups of more than three diverging components (cases with dj ≥ 4) occur much
less often than groups of two or three diverging components. This can be seen in
our simulation study in section 5, and in [47]. Groups of more than three diverg-
ing components can be handled when proofs of canonical forms for dj ≥ 4 become
available.

Our procedure eliminates the nearly identical components and the large compo-
nent weights that occur when the CP problem does not have an optimal solution.
When imposing constraints in CP to guarantee an optimal solution is not suitable,
obtaining a decomposition of the limiting boundary point X may be a good alterna-
tive. A discussion of potential applications of our procedure is provided in section
6.

The CP decomposition is a Tucker3 decomposition with a diagonal core array.
Trying to compute a best-fitting CP decomposition of an R×R×R array can be seen
as an approximate diagonalization of the array. As an anonymous reviewer observed,
in this case the idea of packing groups of diverging CP components together in a
Tucker3 decomposition with block-diagonal core has an analogy with the problem of
matrix diagonalization. Indeed, suppose the R×R matrix Y has eigendecomposition
ACA−1, with C diagonal. If A is ill-conditioned, there will be large numbers in
A−1. In particular, if two eigenvectors in A are nearly identical up to sign, and the
corresponding eigenvalues are nearly identical, then the corresponding rank-1 terms
in ACA−1 feature large numbers and nearly cancel each other. In such a case, a
block-diagonal C may be computed in which the two nearly identical eigenvalues are
packed together in a 2×2 diagonal block, and the corresponding columns ofA are well
conditioned. See [17, section 7.6] for more details. In the above, it is assumed that
matrix Y is diagonalizable, which is analogous to array Y having a CP decomposition.
The full analogy with diverging CP components, however, would be to try to compute
a diagonalizable Y that minimizes ||Z−Y||, where Z is not diagonalizable.

This paper is organized as follows. In section 2, we present the details of our
approach to deal with diverging components. We use several results on decompositions
of arrays in SR(I, J,K) and decompositions in block terms. For ease of presentation,
these results are postponed until section 3. In section 4, we illustrate our approach by
means of examples. In section 5, we demonstrate our method in a simulation study.
Finally, section 6 contains a discussion of our findings.

We denote vectors as x, matrices as X, and three-way arrays as X . Entry xijk

of X is in row i, column j, and frontal slice k. We use ⊗ to denote the Kronecker
product, and � denotes the (columnwise) Khatri–Rao product, i.e., for matrices X
and Y with R columns, X�Y = [x1⊗y1| . . . |xR⊗yR]. The transpose ofX is denoted
as XT . We refer to an I × J matrix as having full column rank if its rank equals J ,
and as having full row rank if its rank equals I. We refer to the multilinear matrix
multiplication (II , IJ ,U) ·X with U nonsingular as a slicemix of X . A block-diagonal
three-way array is denoted as X = blockdiag(X1, . . . ,Xm), where the Xj have size
dj × dj × dj , and the diagonal (xiii, i = 1, . . . , n) of X consists of the diagonals of the
blocks.

2. From diverging CP components to a decomposition in block terms of
the limiting boundary point. Here, we give a detailed presentation of our approach
to deal with diverging CP components. Below, we sometimes refer to theoretical
results that can be found in section 3. A detailed understanding of these results is,
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however, not necessary to follow the exposition of our method.
We assume R ≤ min(I, J,K) and start with a CP decomposition (A,B,C) fea-

turing (groups of) diverging components. The CP decomposition has been obtained
as the output of a CP algorithm designed to solve the CP problem (1.6). Let

Y =

R∑
r=1

ar ◦ br ◦ cr(2.1)

be the array in SR(I, J,K) defined by the CP decomposition (A,B,C). In this
section, the weights ωr have been absorbed in the vectors ar, br, cr. We assume the
CP problem (1.6) does not have an optimal solution, and the diverging components
result from Y converging to a boundary point X of SR(I, J,K) with rank(X ) > R. If
the error sum-of-squares corresponding to the sequence of CP updates is converging to
the infimum of the CP problem (1.6), then the limit array X is an optimal boundary
point of problem (1.12).

From (A,B,C), we obtain the groups of diverging components as follows. Recall
that in a group of diverging components, the corresponding columns of A,B,C, when
normed to length 1, are nearly identical up to sign. Other forms of linear dependency
are possible but exceptional [56]. We put components s and t in the same group of
diverging components if∣∣∣∣∣

(
aTs at√

aTs as
√
aTt at

) (
bT
s bt√

bT
s bs

√
bT
t bt

) (
cTs ct√

cTs cs
√
cTt ct

)∣∣∣∣∣ > 0.95 .(2.2)

The left-hand side of (2.2), without absolute value, is known as the “triple cosine” and
is equal to the product of the cosines of the angles between each pair of vectors s and
t. Clearly, this approaches ±1 if and only if all three pairs of vectors s and t become
nearly proportional. The triple cosine is commonly used as an indicator of nearly
proportional CP components; see, e.g., Krijnen [31] or Rocci and Giordani [41]. The
triple cosine is equal to the cosine of the angle between the vectorized rank-1 terms
s and t, where the latter are fs = as ⊗ bs ⊗ cs and ft = at ⊗ bt ⊗ ct, respectively.
Indeed, the expression | (fTs ft)/(

√
fTs fs

√
fTt ft) | is equal to the left-hand side of (2.2).

For the practical use of criterion (2.2), one should realize that as the CP algorithm
runs longer (i.e., when a smaller convergence criterion is used) the triple cosine of two
diverging components in the same group will be closer to −1. Hence, if the CP
algorithm runs longer, the critical value 0.95 in (2.2) can be chosen larger. However,
it is our experience that a critical value of 0.95 captures all (and only) diverging
components when the convergence criterion is 1e-9 in the CP ALS (CP Alternating
Least Squares) algorithm; see the simulation study in section 5.

Let the R components of (A,B,C) be ordered such that A = [A1 | . . . |Am],
B = [B1 | . . . |Bm], C = [C1 | . . . |Cm], with Aj , Bj , Cj having dj columns and
defining a group of dj diverging components if dj ≥ 2, and a nondiverging component
if dj = 1. Let Yj be the I × J × K array defined by the dj CP components in
(Aj ,Bj ,Cj). Hence, Yj ∈ Sdj (I, J,K) and Y =

∑m
j=1 Yj . Regarding the convergence

of Yj , we assume the following.

Assumption I. Each array Yj , defined by a group of dj diverging components,
converges to an array Xj with rank(Xj) > dj .

It follows that the limit Xj of Yj can be approximated arbitrarily well by rank-dj
arrays. Hence, Xj ∈ Sdj (I, J,K).
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298 ALWIN STEGEMAN

From Assumption I and Lemma 3.2 (b), it follows that Yj with dj ≥ 2 has a
limit of the form Xj = (Sj ,Tj ,Uj) ·Gj with Sj , Tj , Uj columnwise orthonormal, and
Gj ∈ Sdj(dj , dj , dj) with rank(Gj) > dj , and all frontal slices of Gj upper triangular.
For a nondiverging component the array Gj is a scalar instead.

Next, we consider canonical forms of a dj ×dj ×dj array Gj ∈ Sdj(dj , dj , dj) with

rank(Gj) > dj . It has been shown in [16] that if Gj ∈ S2(2, 2, 2) has rank larger than
2, then it has rank 3, border rank 2, and there exist nonsingular L, M, N such that
(L,M,N) · Gj equals [

1 0 0 1
0 1 0 0

]
.(2.3)

Here, we denote the 2× 2× 2 array Gj with 2× 2 slabs G1 and G2 as [G1 |G2]. We
refer to (2.3) as the canonical form of a boundary array of S2(2, 2, 2) with rank larger
than 2.

For Gj ∈ S3(3, 3, 3) with rank larger than 3, we have the following result.
Lemma 2.1. Let Gj ∈ S3(3, 3, 3) have multilinear rank (3, 3, 3) and rank larger

than 3. If there exists a rank-3 sequence converging to Gj with three diverging compo-
nents, then for almost all Gj there exist nonsingular L, M, N such that (L,M,N) ·Gj

equals ⎡
⎣ 1 0 0 0 d 0 0 0 1

0 1 0 0 0 e 0 0 0
0 0 1 0 0 0 0 0 0

⎤
⎦ .(2.4)

It holds that rank(Gj) = 5.
Proof. See the appendix for the proof.
Under the conditions of Lemma 2.1, the limiting array Gj necessarily has rank 5.

When the assumption of multilinear rank (3, 3, 3) is dropped, a limit of rank 4 is also
possible. The multilinear rank is defined in section 3.

For a group of dj = 2 diverging components, the limit of Yj can be written as
Xj = (Sj ,Tj ,Uj) · Gj with Sj , Tj , Uj of rank 2, and Gj equal to the canonical
form (2.3). For the limit of a group of dj = 3 diverging components, we assume the
following.

Assumption II. The limit Xj of an array Yj , defined by a group of dj = 3 diverging
components, can be written as Xj = (Sj ,Tj ,Uj) · Gj with Sj , Tj , Uj of rank 3, and
Gj equal to the canonical form (2.4).

From the above, it follows that the limiting boundary point X =
∑m

j=1 Xj of

Y =
∑m

j=1 Yj satisfies a decomposition in block terms X =
∑m

j=1(Sj ,Tj ,Uj) · Gj ,
where Gj is a scalar for dj = 1, has canonical form (2.3) for dj = 2, and canonical
form (2.4) for dj = 3. We need the following assumption on this decomposition of X .

Assumption III. In the decomposition X =
∑m

j=1(Sj ,Tj ,Uj) · Gj of the limit-
ing boundary point X , the matrices S = [S1 | . . . |Sm], T = [T1 | . . . |Tm], U =
[U1 | . . . |Um] have rank R.

The following lemma states that we may assume that if dj = 1, then Gj is nonzero
in the decomposition of X . Otherwise, arrays close to X exist that are closer to the
data array Z.

Lemma 2.2. Let Z ∈ R
I×J×K with Z /∈ SR(I, J,K). Let X be as in Assumption

III, where S, T, U have rank R, and arrays Gj ∈ Sdj (dj , dj , dj) have rank(Gj) > dj
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if dj ≥ 2. If for some j, dj = 1 and Gj = 0, then an array X̃ exists with ||Z − X̃ || <
||Z − X||. Moreover, X̃ has a decomposition in block terms of the same form as X .

Proof. The proof is analogous to [16, Lemma 8.2]. At least one entry of Z −X is
nonzero, say entry (i, j, k) is equal to δ �= 0. Let X̃ = X + a ◦b ◦ c such that a ◦b ◦ c
is zero except for entry (i, j, k) which equals δ. This completes the proof.

Assumption III, Lemma 2.2, and Lemma 3.4 (b) imply that X is indeed a bound-
ary point of SR(I, J,K) with rank larger than R, if at most one group of three or more
diverging components is present (i.e., dj ≥ 3 for at most one j). If only groups of
two diverging components are present (i.e., max(dj) = 2), then Lemma 3.5 describes
the ambiguities in the decomposition X =

∑m
j=1(Sj ,Tj ,Uj) · Gj . That is, the limits

Xj = (Sj ,Tj ,Uj) · Gj of the groups of diverging components form unique block terms
in the decomposition, as do the limits of the nondiverging components.

If max(dj) ≤ 3, then the number of rank-1 terms in the decomposition of X can
be obtained from the canonical forms (2.3) and (2.4). Namely, each nonzero core
entry contributes one rank-1 term to the decomposition. Hence, each 2 × 2 × 2 core
block contributes three rank-1 terms, and each 3 × 3 × 3 core block contributes six
rank-1 terms. Obviously, each 1× 1× 1 core block contributes one rank-1 term. Since
the canonical form (2.3) has rank 3, it follows from Lemma 3.3 that the number of
rank-1 terms in the decomposition of X is equal to rank(X ) when max(dj) = 2.

In the remaining part of this section, we explain how the limiting boundary point
X and its decomposition X =

∑m
j=1(Sj ,Tj ,Uj)·Gj can be obtained, starting with the

CP decomposition (A,B,C) featuring diverging components. In section 2.1, we show
how to obtain a block Simultaneous GSD (SGSD) of Y from its CP decomposition
(A,B,C). The block SGSD has the form

Y =

m∑
j=1

Yj =

m∑
j=1

(S̃j , T̃j , Ũj) · G̃j ,(2.5)

where S̃j , T̃j , Ũj are columnwise orthogonal, and G̃j ∈ Sdj(dj , dj , dj) has all frontal
slices upper triangular. In section 2.2, we use the block SGSD (2.5) to compute initial
values for the decomposition

∑m
j=1(Sj ,Tj ,Uj)·Gj , which we then fit to the data array

Z to yield the decomposition of X . The analysis in section 2.2 holds for max(dj) ≤ 3
only. Below, we summarize the steps of our method, where the detailed computations
can be found in sections 2.1 and 2.2.

From CP with diverging components to a decomposition in block terms

Input: Data array Z ∈ R
I×J×K , and CP decomposition Y = (A,B,C) with groups

of two or three diverging components, obtained from an algorithm for solving the CP
problem (1.6). The number of components R satisfies R ≤ min(I, J,K).
Output: Decomposition in block terms X = (S,T,U) · G =

∑m
j=1(Sj ,Tj ,Uj) · Gj ,

where X is the limit point of Y and an optimal solution of (1.12).
1. Identify the groups of diverging components in A,B,C. For automatic iden-

tification, the criterion (2.2) may be used.
2. Simultaneously reorder the columns ofA,B,C such thatA = [A1 | . . . |Am],

B = [B1 | . . . |Bm], C = [C1 | . . . |Cm], with Aj , Bj , Cj having dj columns
and corresponding to a group of dj diverging components if dj ≥ 2, and a
nondiverging component if dj = 1. We have

∑m
j=1 dj = R.

3. (Block SGSD: section 2.1). For each Yj = (Aj ,Bj ,Cj), compute Yj =

(S̃j , T̃j , Ũj) · G̃j in (2.5) as follows. If dj = 1, then S̃j = Aj , T̃j = Bj ,
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300 ALWIN STEGEMAN

Ũj = Cj , and G̃j = 1. If dj ≥ 2, then compute Aj = S̃j R
(j)
a (QR-

decomp), and Bj = T̃j L
(j)
b (QL-decomp), and set R

(j)
k = R

(j)
a C

(j)
k (L

(j)
b )T ,

k = 1, . . . ,K. For Hj given by (2.7), compute the singular value decomposi-

tion Hj = Q1 DQT
2 . Set Ũj = (Q†

2)
T .

4. (Initial values: section 2.2). From the block SGSD (2.5), we obtain initial

values S
(0)
j , T

(0)
j , U

(0)
j , G(0)

j , j = 1, . . . ,m, for fitting the decomposition∑m
j=1(Sj ,Tj ,Uj) · Gj . For dj = 1, set S

(0)
j = Aj , T

(0)
j = Bj , U

(0)
j = Cj , and

G(0)
j = 1. For dj ∈ {2, 3}, set S(0)

j = S̃jG̃
(j)
1 and T

(0)
j = T̃j . For dj = 2, set

U
(0)
j equal to (2.9), and G(0)

j equal to (2.8) with a = b = 0. For dj = 3, set

U
(0)
j equal to (2.11), and G(0)

j equal to (2.10) with a = b = c = f = α = β =
γ = δ = ε = 0.

5. Using the initial values and the Alternating Least Squares algorithm of [28], fit
the (constrained Tucker3) decomposition (S,T,U)·G =

∑m
j=1(Sj ,Tj ,Uj)·Gj

to Z with

Gj =

⎧⎨
⎩

1 if dj = 1 ,
canonical form (2.3) if dj = 2 ,
canonical form (2.4) if dj = 3 ,

where S,T,U and the nonzero entries of core G = blockdiag(G1, . . . ,Gm) are
free parameters.

6. Normalize (most of) the nonzero core entries of each Gj to one. For dj ∈
{2, 3}, premultiply the core slices by (G

(j)
1 )−1, and normalize the resulting

second and third slices. Postmultiply Sj by G
(j)
1 , and Uj by the inverse slice

normalization(s). For dj = 3, only one of d and e in (2.4) can be normalized
to one when both are nonzero.

2.1. From diverging CP components to a block SGSD. Here, we show
how to obtain the block SGSD (2.5), i.e., Y =

∑m
j=1 Yj =

∑m
j=1(S̃j , T̃j , Ũj) · G̃j ,

where S̃j , T̃j , Ũj are columnwise orthogonal, and G̃j ∈ Sdj(dj , dj , dj) has all frontal
slices upper triangular. Existence of the block SGSD follows from the fact that each
group of dj diverging components defines an array Yj ∈ Sdj (I, J,K), and Lemma 3.2

(b) applied to each Yj . Next, we show how to obtain Yj = (S̃j , T̃j , Ũj) · G̃j .

If dj = 1, then we set S̃j = Aj , T̃j = Bj , Ũj = Cj , and G̃j = 1. Next,

suppose dj ≥ 2. Let Aj = S̃j R
(j)
a be a QR-decomposition of Aj , with S̃j (I × dj)

columnwise orthonormal, and R
(j)
a (dj × dj) upper triangular. Let Bj = T̃j L

(j)
b be a

QL-decomposition of Bj , with T̃j (J×dj) columnwise orthonormal, and L
(j)
b (dj×dj)

lower triangular. Then the matrix form (1.3) of the CP decomposition of Yj can be
written as

Aj C
(j)
k BT

j = S̃j (R
(j)
a C

(j)
k (L

(j)
b )T ) T̃T

j = S̃j R
(j)
k T̃T

j , k = 1, . . . ,K ,(2.6)

where C
(j)
k denotes the dj × dj diagonal matrix with row k of Cj as its diagonal. The

right-hand side of (2.6) defines an SGSD of Yj . Hence, Yj = (S̃j , T̃j , IK) · Rj , where

Rj is the dj × dj ×K array with upper triangular frontal slices R
(j)
k .

As in the proof of Lemma 3.2 (b), it follows that there exists Ũj (K×dj) column-

wise orthonormal such that Rj = (Idj , Idj , Ũj) · G̃j , with G̃j ∈ Sdj (dj , dj , dj). The
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matrix Ũj can be obtained as follows. For a d × d upper triangular matrix R, let
vech(R) denote the d(d+1)/2×1 vector obtained by stacking the entries in the upper
triangular part of R above each other. Let

Hj = [vech(R
(j)
1 ) | . . . | vech(R(j)

K )] .(2.7)

If the singular value decomposition ofHj is given byHj = Q1 DQT
2 , where the dj×dj

diagonal matrix D contains the singular values, then we may take Ũj = (Q†
2)

T , where

Q†
2 is the pseudoinverse of Q2. Note that the rank of Hj is equal to the mode-3 rank

of Rj , and is less than or equal to dj by Rj = (Idj , Idj , Ũj) · G̃j .

Hence, it follows that Yj = (S̃j , T̃j , Ũj) · G̃j .

2.2. From a block SGSD to the limiting boundary point. If max(dj) ≤ 3,
then we may obtain the limiting boundary point X and its block term decomposition
as follows. As stated above, X satisfies the block term decomposition X = (S,T,U) ·
G =

∑m
j=1(Sj ,Tj ,Uj) · Gj , with Sj , Tj , Uj of rank dj , and core blocks Gj having

canonical form (2.3) for dj = 2, and (2.4) for dj = 3. This decomposition of X can
be obtained by fitting it as a constrained Tucker3 model to the data array Z. The
constraints in this Tucker3 model are the core entries of G = blockdiag(G1, . . . ,Gm)
that are equal to zero. The nonzero core entries of each Gj and the component matrices
S, T, U are treated as free parameters. An Alternating Least Squares algorithm for
fitting this constrained Tucker3 model can be found in [28]. Below, we explain how
initial values for this algorithm can be obtained from the block SGSD of Y in (2.5).

We denote the initial values of
∑m

j=1(Sj ,Tj ,Uj) ·Gj as S
(0)
j , T

(0)
j , U

(0)
j , and G(0)

j .

For dj = 1, we set S
(0)
j = Aj , T

(0)
j = Bj , U

(0)
j = Cj , and G(0)

j = 1. For dj ∈ {2, 3},
we do the following. We may assume that Yj = (S̃j , T̃j , Ũj) · G̃j is close to its limit

point Xj . Hence, G̃j is close to a dj × dj × dj array that can be transformed to either
canonical form (2.3) or to canonical form (2.4).

In the case dj = 2, we write G̃j = [G̃
(j)
1 | G̃(j)

2 ]. Let T
(0)
j = T̃j . Next, we

premultiply the slices of G̃j by (G̃
(j)
1 )−1, and postmultiply S̃j by G̃

(j)
1 . The latter

gives S
(0)
j = S̃jG̃

(j)
1 . We obtain

G̃j =

[
1 0 a c
0 1 0 b

]
.(2.8)

By assumption, a ≈ b. Next, we subtract (a + b)/2 times G̃
(j)
1 from G̃

(j)
2 , and

postmultiply Ũj by the inverse of this slicemix. The latter yields

U
(0)
j = Ũj

[
1 0
−u 1

]−1

= Ũj

[
1 0
u 1

]
,(2.9)

with u = (a+ b)/2. Finally, we take G(0)
j as in (2.8) with a = b = 0.

In the case dj = 3, we write G̃j = [G̃
(j)
1 | G̃(j)

2 | G̃(j)
3 ]. Let T

(0)
j = T̃j . Next, we

premultiply the slices of G̃j by (G̃
(j)
1 )−1, and postmultiply S̃j by G̃

(j)
1 . The latter

gives S
(0)
j = S̃jG̃

(j)
1 . We obtain

G̃j =

⎡
⎣ 1 0 0 a d f α δ ν

0 1 0 0 b e 0 β ε
0 0 1 0 0 c 0 0 γ

⎤
⎦ .(2.10)
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By assumption, a ≈ b ≈ c and α ≈ β ≈ γ (see the proof of Lemma 2.1 in the

appendix). Next, we subtract (a+ b+ c)/3 times G̃
(j)
1 from G̃

(j)
2 , and (α+ β + γ)/3

times G̃
(j)
1 from G̃

(j)
3 , and postmultiply Ũj by the inverse of this slicemix. In G̃j , we

set a = b = c = 0 and α = β = γ = 0.
By assumption, δe ≈ εd (see the proof of Lemma 2.1 in the appendix). We

subtract (δ/d + ε/e)/2 times G̃
(j)
2 from G̃

(j)
3 , and postmultiply Ũj by the inverse of

this slicemix. In G̃j , we set δ = ε = 0. Finally, we subtract f/ν times G̃
(j)
3 from G̃

(j)
2 ,

and postmultiply Ũj by the inverse of this slicemix. In G̃j , we set f = 0. We take

G(0)
j equal to (2.10) with a = b = c = f = α = β = γ = δ = ε = 0. It follows that the

matrix U
(0)
j is obtained as

U
(0)
j = Ũj

⎡
⎣ 1 0 0

−u 1 0
−w 0 1

⎤
⎦
−1 ⎡
⎣ 1 0 0

0 1 0
0 −x 1

⎤
⎦
−1 ⎡
⎣ 1 0 0

0 1 −y
0 0 1

⎤
⎦
−1

(2.11)

= Ũj

⎡
⎣ 1 0 0

u 1 y
w x xy + 1

⎤
⎦ ,

with u = (a+ b+ c)/3, w = (α + β + γ)/3, x = (δ/d+ ε/e)/2, and y = f/ν.

3. Theoretical results. In this section, we present results on decompositions
for arrays in SR(I, J,K) and decompositions in block terms. These results are referred
to in section 2, where the details of our method are discussed. For ease of presentation
we postpone the results until the current section.

First, however, we introduce some definitions. A mode-j vector of an I × J ×K
array is defined as a vector that is obtained by varying the jth index and keeping the
other two indices fixed. Hence, a mode-2 vector has size J × 1. The mode-j rank of
the array is the rank of the set of mode-j vectors. The multilinear rank is defined as
the triplet (mode-1 rank, mode-2 rank, mode-3 rank). The border rank of an array Y,
which we denote by brank(Y), is defined as [3] [16]:

brank(Y) = min{R : Y can be approximated arbitrarily well by arrays of rank R } .
(3.1)
Hence, if brank(Y) = R, then Y ∈ SR(I, J,K) but Y /∈ SR−1(I, J,K).

We denote the set of arrays satisfying the R-component SGSD [61] [14] with
perfect fit as PR(I, J,K), i.e.,

PR(I, J,K) = {Y ∈ R
I×J×K | Yk = Qa Rk Q

T
b , k = 1, . . . ,K} ,(3.2)

where Yk denotes the kth frontal slice (I × J) of Y, matrices Qa (I × R) and Qb

(J ×R) are columnwise orthonormal and Rk are R×R upper triangular.

3.1. Results on decompositions of arrays in SR(I, J,K). We need the
following lemma.

Lemma 3.1. Let R ≤ min(I, J,K), and Y = (S,T,U) · G with columnwise
orthonormal S (I×R), T (J×R), and U (K×R). Then Y ∈ SR(I, J,K) if and only
if G ∈ SR(R,R,R), and Y ∈ SR(I, J,K) if and only if G ∈ SR(R,R,R). Moreover,
the representation exists for any Y ∈ SR(I, J,K) and any Y ∈ SR(I, J,K), and we
may take S = IR if R = I, T = IR if R = J , and U = IR if R = K.

Proof. See [16, Theorem 5.2] for the proof.
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Lemma 3.1 implies that any array in SR(I, J,K) has a Tucker3 representation
(S,T,U) · G with columnwise orthonormal component matrices and a core array of
size R×R×R. Moreover, the array is an interior (boundary) point if and only if its
core array G is an interior (boundary) point of SR(I, J,K).

The following result states that arrays in SR(I, J,K) have a perfect-fitting SGSD
for R ≤ min(I, J). Moreover, for R ≤ min(I, J,K) they have a Tucker3 representation
(S,T,U) · G with columnwise orthonormal component matrices and an R × R × R
core array G with all frontal slices upper triangular.

Lemma 3.2.

(a) For R ≤ min(I, J) it holds that SR(I, J,K) ⊆ PR(I, J,K).
(b) For R ≤ min(I, J,K) and Y ∈ SR(I, J,K), it holds that Y = (S,T,U) · G

for some S, T, U columnwise orthonormal, and some G ∈ SR(R,R,R) with
all frontal slices upper triangular. Moreover, Y ∈ SR(I, J,K) if and only if
G ∈ SR(R,R,R).

Proof. We know from [14] that SR(I, J,K) ⊂ PR(I, J,K). Let Z be a boundary
point of SR(I, J,K) with rank larger than R. Then Z can be approximated arbitrarily
closely from SR(I, J,K) and, hence, the best-fitting SGSD problem for Z yields an
infimum of zero. Since the SGSD problem always has an optimal solution [54], it
follows that this infimum must be attained, and that Z ∈ PR(I, J,K). This proves
(a).

The proof of (b) is as follows. Statement (a) implies that Y = (S,T, IK) · R for
some S and T columnwise orthonormal, and some R ∈ R

R×R×K with all frontal slices
upper triangular. Analogous to Lemma 3.1 we have that R ∈ SR(R,R,K), and that
Y ∈ SR(I, J,K) if and only if R ∈ SR(R,R,K). Moreover, Lemma 3.1 yields that
R = (IR, IR,U) · G for some U columnwise orthonormal, and G ∈ SR(R,R,R). Also,
R ∈ SR(R,R,K) if and only if G ∈ SR(R,R,R). It holds that G = (IR, IR,U

T ) · R,
which shows that G has all frontal slices upper triangular. The proof is complete by
observing that Y = (S,T, IK) · (IR, IR,U) · G = (S,T,U) · G.

3.2. Results on decompositions in block terms. Here, we consider a de-
composition in block terms, as introduced in [9], [10], [11]. Let a Tucker3 decom-
position X = (S,T,U) · G satisfy G = blockdiag(G1, . . . ,Gm), S = [S1 | . . . |Sm],
T = [T1 | . . . |Tm], and U = [U1 | . . . |Um], where Gj has size dj × dj × dj and parts
Sj , Tj , Kj have dj columns. The core blocks Gj are assumed to have multilinear rank
(dj , dj , dj). The decomposition in block terms can be written as

X = (S,T,U) · G =

m∑
j=1

(Sj ,Tj ,Uj) · Gj .(3.3)

We set R =
∑m

j=1 dj and assume S, T, U have rank R, which implies rank(X ) =
rank(G). The block-diagonal G is also called the direct sum of G1, . . . ,Gm. As stated
in [16], it is conjectured [57] that rank(G) equals the sum of rank(Gj), j = 1, . . . ,m.
However, only in the following case a proof of this is known.

Lemma 3.3. Let G = blockdiag(G1, . . . ,Gm), with Gj of size dj × dj × dj. If
dj ≥ 3 for at most one j, then

rank(G) =
m∑
j=1

rank(Gj) .(3.4)

Proof. See [26] for the proof.
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The following result states that under the condition of Lemma 3.3, array X in
(3.3) is a boundary point of SR(I, J,K) with rank larger than R if each Gj is a
boundary point of Sdj (dj , dj , dj) with rank larger than dj (for dj ≥ 2).

Lemma 3.4. Let X be as in (3.3), where S, T, U have rank R, max(dj) ≥ 2,
arrays Gj ∈ Sdj(dj , dj , dj) have multilinear rank (dj , dj , dj), rank(Gj) > dj if dj ≥ 2,
and rank(Gj) = 1 if dj = 1, j = 1, . . . ,m.

(a) It holds that X ∈ SR(I, J,K) and brank(X ) = R.
(b) If dj ≥ 3 for at most one j, then X is a boundary point of SR(I, J,K) with

rank(X ) =
∑m

j=1 rank(Gj) > R.

Proof. Since Gj ∈ Sdj (dj , dj , dj), each term (Sj ,Tj ,Uj) · Gj in (3.3) can be ap-
proximated arbitrarily closely by rank-dj arrays. Adding the approximating sequences
for j = 1, . . . ,m yields an arbitrarily close approximation of X from SR(I, J,K). This
implies X ∈ SR(I, J,K) and brank(X ) ≤ R. It is shown in [49, Proposition 1.1] that
brank(X ) is at least equal to the mode-j rank of X , for j = 1, 2, 3. Since each Gj

has multilinear rank (dj , dj , dj), it follows that G has multilinear rank (R,R,R). The
matrices S, T, U having rank R implies that X also has multilinear rank (R,R,R).
Hence, by [49], brank(X ) ≥ R. Together with brank(X ) ≤ R, this completes the
proof of (a).

Next, we prove (b). Since S, T, U have rank R, we have rank(X ) = rank(G). The
condition of (b), together with Lemma 3.3, implies that rank(X ) =

∑m
j=1 rank(Gj).

The assumptions on rank(Gj) complete the proof.

3.3. Uniqueness of a decomposition in block terms. The decomposition
in block terms (3.3) is called essentially unique if any alternative decomposition X =∑m

j=1(S̄j , T̄j , Ūj) · Hj satisfies S̄j = Sπ(j)Lπ(j), T̄j = Tπ(j)Mπ(j), Ūj = Uπ(j)Nπ(j),

and Hj = (L−1
π(j),M

−1
π(j),N

−1
π(j)) · Gπ(j), for nonsingular matrices Lπ(j), Mπ(j), Nπ(j),

and a permutation π of (1, . . . ,m). Hence, the only existing ambiguities are nonsin-
gular transformations between the matrices Sj , Tj , Uj and the core blocks Gj , and a
permutation of the summands in (3.3).

Let the decomposition of X satisfy the assumptions of Lemma 3.4 and let max(dj)
= 2. For dj = 2 and Gj equal to (2.3), we have (L,M,N) · Gj = Gj , with

L =

[
1 −1
0 1

]
, M =

[
1 0

−1 1

]
, N =

[
1 2
0 1

]
.(3.5)

Since any Gj ∈ S2(2, 2, 2) with rank(Gj) > 2 can be transformed to (2.3), it follows
that the decomposition in block terms is not essentially unique. However, the following
result states that such nonsingular transformations of single 2× 2× 2 core blocks are
the only other ambiguities in the decomposition. This implies that the block terms
(Sj ,Tj ,Uj) ·Gj in the decomposition remain separated in alternative decompositions.

Lemma 3.5. Let X be as in (3.3), where S, T, U have rank R, max(dj) = 2,
and arrays Gj ∈ Sdj(dj , dj , dj) have rank(Gj) > 2 if dj = 2, and rank(Gj) = 1 if
dj = 1, j = 1, . . . ,m. Then the ambiguities in the decomposition in block terms (3.3)
are those under essential uniqueness, and nonsingular transformations of the form
(L,M,N) · Gj = Gj , for dj = 2.

Proof. See the appendix for the proof.

4. Some examples. Here, we illustrate the method outlined in section 2.

Example I. We generate a random 5× 5× 5 array Z and set R = 3. For random
initial values and a convergence criterion of 1e-9, the CP ALS algorithm terminates
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after 11100 iterations with diverging components and objective value ||Z − Y||2 =
61.9711. Nearly the same result is obtained for many other random initial values,
which is evidence that the CP problem does not have an optimal solution. The
obtained component matrices are

A =

⎡
⎢⎢⎢⎢⎣

0.1307 0.4772 −0.4756
0.3896 0.8494 −0.8545
0.8207 0.1133 −0.1140

−0.3238 −0.1421 0.1308
0.2295 −0.1332 0.1164

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0.0617 −0.1033 0.0971
−0.3512 −0.5379 0.5368
−0.4254 0.7695 −0.7717
−0.1941 −0.0181 0.0015
0.8089 −0.3279 0.3269

⎤
⎥⎥⎥⎥⎦ ,

(4.1)

C =

⎡
⎢⎢⎢⎢⎣

0.7150 −0.2729 0.2792
−0.1566 0.6723 −0.6654
0.0509 −0.4897 0.5039
0.3136 −0.4824 0.4743

−0.6027 −0.0335 0.0187

⎤
⎥⎥⎥⎥⎦ ,(4.2)

with corresponding weights ω1 = 5.22, ω2 = 188.27, and ω3 = 188.95. Clearly,
components 2 and 3 form a group of diverging components, while component 1 is
nondiverging. Hence, we set m = 2, d1 = 1, and d2 = 2.

Next, we compute the block SGSD of Y in (2.5), as indicated in section 2.1. We
get G̃1 = 1 and

G̃2 = [G̃
(2)
1 | G̃(2)

2 ] =

[ −3.1467 −2.2131 −1.2184 3.9918
0 −3.7274 0 −1.3416

]
.(4.3)

Next, we compute the initial values of the decomposition in block terms
∑m

j=1(Sj ,Tj ,Uj)·
Gj , as indicated in section 2.2. After premultiplying both slices of (4.3) by (G̃

(2)
1 )−1,

we obtain the array [
1 0 0.3872 −1.5217
0 1 0 0.3599

]
.(4.4)

Hence, we have a ≈ b in (2.8) indeed. After computing the initial values of the
decomposition in block terms, we fit it as a constrained Tucker3 decomposition to
Z using the ALS algorithm of [28] with convergence criterion 1e-12. After only 38
iterations, the algorithm terminates with X = (S,T,U) · G with

G =

⎡
⎣ 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0

⎤
⎦ .(4.5)

The component matrices S, T, U have condition numbers 5.66, 1.62, and 7.18, re-
spectively, which proves that the problems of diverging components have vanished.
We have ||Z − X||2 = 61.9705, which shows that the limiting boundary point X is
indeed a little closer to Z than Y.

Example II. A brief discussion of this example is contained in section 1. We
generate a random 6 × 6 × 6 array Z and set R = 6. For random initial values
and a convergence criterion of 1e-9, the CP ALS algorithm terminates after 19645
iterations with diverging components and objective value ||Z−Y||2 = 54.5370. Nearly
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the same result is obtained for many other random initial values, which is evidence
that the CP problem does not have an optimal solution. The obtained component
matrices are given by (1.9)–(1.11) with corresponding weights ω1 = 130.22, ω2 =
133.47, ω3 = 2083.3, ω4 = 6386.1, ω5 = 8466.6, and ω6 = 4.44. Hence, we have one
group of two diverging components, one group of three diverging components, and
one nondiverging component. We set m = 3, d1 = 2, d2 = 3, and d3 = 1.

Next, we compute the block SGSD of Y in (2.5), as indicated in section 2.1.
We report only the computations for the group of three diverging components. The
results for the group of two diverging components are analogous to Example I. We

get G̃2 = [G̃
(2)
1 | G̃(2)

2 | G̃(2)
3 ] equal to

⎡
⎣
−4.6523 2.3364 −5.6641 1.3904 3.1486 −0.8284 1.0044 −0.9592 −2.7747

0 −4.9265 −1.5300 0 1.7271 −4.6452 0 1.0335 0.7191
0 0 3.5192 0 0 −1.1872 0 0 −0.7418

⎤
⎦.

(4.6)

Next, we compute the initial values of the decomposition in block terms
∑m

j=1(Sj ,Tj ,Uj)·
Gj , as indicated in section 2.2. Again, we report only the results for the group of three

diverging components. After premultiplying the slices of (4.6) by (G̃
(2)
1 )−1, we obtain

the array⎡
⎣ 1 0 0 −0.2989 −0.8528 1.1149 −0.2159 0.1008 0.8126

0 1 0 0 −0.3506 1.0477 0 −0.2098 −0.0805
0 0 1 0 0 −0.3374 0 0 −0.2108

⎤
⎦ .(4.7)

Hence, we have a ≈ b ≈ c and α ≈ β ≈ γ in (2.10) indeed. Also, δe = 0.1056 ≈ εd =
0.0687. After computing the initial values of the decomposition in block terms, we
fit it as a constrained Tucker3 decomposition to Z using the ALS algorithm of [28]
with convergence criterion 1e-12. After 137 iterations, the algorithm terminates with
X = (S,T,U) · G. The core array is given by G = blockdiag(G1,G2,G3), with G1 equal
to (2.3), G3 = 1, and

G2 =

⎡
⎣ 1 0 0 0 1 0 0 0 1

0 1 0 0 0 −1.2265 0 0 0
0 0 1 0 0 0 0 0 0

⎤
⎦ .(4.8)

The component matrices S, T, U have condition numbers 21.8, 6.3, and 61.0, respec-
tively. We have ||Z − X||2 = 54.5336, which shows that the limiting boundary point
X is indeed a little closer to Z than Y.

5. Simulation study. Here, we demonstrate the method presented in section 2
in a simulation study. For sizes 10 × 10 × 10, 20 × 10 × 10, and 100 × 15 × 10, we
generate 100 random arrays Z and use the CP ALS algorithm to try to solve the CP
problem (1.6). For the 10×10×10 arrays we consider both R = 5 and R = 6. For the
20× 10× 10 and 100× 15× 10 arrays we use R = 6. For each array, we run CP ALS
10 times with random starting values, and keep the solution (A,B,C) with smallest
error ||Z −Y||2. We use convergence criterion 1e-9 in CP ALS. If (A,B,C) features
diverging components in groups of no more than three components, then we apply
our method to obtain the optimal boundary point X and its decomposition in block
terms X =

∑m
j=1(Sj ,Tj ,Uj) · Gj . We fit this decomposition to Z as a constrained

Tucker3 decomposition by using the ALS algorithm of [28] with convergence criterion
1e-9. The groups of diverging components are identified by criterion (2.2).
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In Table 1 we report the frequencies of solutions with and without diverging
components, and also the sizes of the groups of diverging components. As can be
seen, diverging components occur for 70, 79, 74, and 62 percent of the arrays. Also,
larger groups of diverging components occur much less often than smaller groups, with
one group of two diverging components making up more than 45 percent of all cases
with diverging components. Of the 10× 10× 10 arrays, 65 had diverging components
for both R = 5 and R = 6. Only 5 had diverging components for R = 5 but not for
R = 6. The converse is true for 14 arrays. Finally, 16 arrays did not have diverging
components for both R = 5 and R = 6.

Table 1

Frequencies of CP solutions with and without diverging components. The column 2 contains
cases with one group of two diverging components and R− 2 nondiverging components; the column
2 + 2 contains cases with two groups of two diverging components and R − (2 + 2) nondiverging
components; et cetera.

I × J ×K R No div. comp. 2 2 + 2 2 + 2 + 2 3 3 + 2 4 4 + 2 5 Total cases

10× 10 × 10 5 30 43 6 0 14 3 4 0 0 100

10× 10 × 10 6 21 38 16 1 14 5 3 1 1 100

20× 10 × 10 6 26 43 12 0 13 6 0 0 0 100

100× 15× 10 6 38 39 10 0 12 1 0 0 0 100

In Table 2 we give a summary of the application of our method to all cases of diverging
components except those with a group of four or five diverging components. We report
the maximal number of iterations needed by the ALS algorithm to fit the constrained
Tucker3 decomposition. As can be seen, the algorithm does not need many iterations.
The value of 1695 for 10×10×10 is an outlier, with all other iteration counts for these
arrays being less than or equal to 430. Next, we compare the error term ||Z − Y||2
(from fitting CP) to ||Z − X||2 (from fitting the constrained Tucker3 model). We
report the minimal and maximal percentage of relative error decrease

100

( ||Z − Y||2 − ||Z − X||2
||Z − Y||2

)
.(5.1)

In all cases, the boundary point X is closer to Z than Y, which suggests that X is
indeed an optimal boundary point. Also, the percentage of relative error decrease is
very small in all cases. Hence, the CP solution array Y is very close to the optimal
boundary point X .

The results of the simulation study demonstrate that our method works fine for
arrays of large sizes, and is robust with respect to the size I × J ×K, the number of
components R, and the number of groups of diverging components. Also, the results
validate our Assumptions I and II in section 2, at least for random data.

6. Discussion. In this paper, we have proposed, analyzed, and demonstrated a
novel method to deal with diverging CP components due to the nonexistence of an
optimal solution to the CP problem for I × J × K arrays with R ≤ min(I, J,K).
Contrary to K = 2 treated in [54] and R = 2 treated in [41], we have no known
decomposition yielding the closure of the rank-R set. Also, contrary to the case R = 2,
the number of diverging components (if they occur) is not known in advance. Because
of these issues, we propose to first try solving the CP problem. When this results in
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Table 2

Results of applying the method in section 2 to the cases of diverging components in Table 1 with
groups of no more than three diverging components. The columns contain the maximal number of
iterations needed for fitting the block term decomposition, and the minimal and maximal percentage
of relative error decrease.

I × J ×K R max(iters) minimal (5.1) maximal (5.1) Total cases

10× 10 × 10 5 1695 0.0005 0.0015 66

10× 10 × 10 6 373 0.0002 0.0021 74

20× 10 × 10 6 261 0.0002 0.0014 74

100 × 15× 10 6 196 0.0001 0.0006 62

diverging components, and we are convinced that the CP problem does not have an
optimal solution, then we fit a particular decomposition in block terms (interpreted
as Tucker3 with a constrained block-diagonal core) with initial values obtained from
the final CP update. When only groups of two or three diverging components are
present, we have shown that this results in a decomposition in block terms of the
limiting boundary point X . Each block term has a dj×dj×dj core array in canonical
form and, for dj = 2, 3, it is the limit of a group of dj diverging components. For
dj = 1, the block term is the rank-1 limit of a nondiverging component.

The decomposition of X does not feature nearly identical vectors or large weights,
and may still be interpretable to the researcher. When imposing orthogonality or
nonnegativity constraints in CP (to guarantee an optimal solution) is not suitable,
obtaining a decomposition of the limiting boundary point X may be a good alter-
native. Since the decomposition of X is not of CP form (but Tucker3 with only few
nonzero core entries), the application must allow this. Various such applications in
the social and behavioral sciences can be found in [33]. Chemometric applications are
only suitable if the CP structure does not represent some chemical “law” underlying
the data; see [46, Chapter 10] for an overview. If the aim is to speed up computations
on the data by doing them on a simple-structure decomposition close to the data array
Z rather than on Z itself, then our method may be of use as well. Such applications
can be found in scientific computing, for example the approximation on a grid of a
function f(x, y, z) by triple products of one-dimensional functions; see [2] and [18].

As in the caseK = 2, convergence to identical eigenvalues with only one associated
eigenvector is the underlying cause of a group of diverging components (see the proof
of Lemma 2.1 in the appendix).

Our method does not involve advanced algorithms, but uses CP ALS and a con-
strained Tucker3 ALS algorithm instead. Although we need to run a CP algorithm
resulting in diverging components first, the fitting of the constrained Tucker3 decom-
position requires very little time.

The result of diverging CP components having a limit in the form of a particular
Tucker3 decomposition is in line with [21] who explains diverging CP components as
“Parafac trying to model Tucker variation.” See also [39].

Some questions that remain unanswered are as follows. Diverging CP components
also occur for R > min(I, J,K); see, e.g., [48]. More research is needed to determine
whether such cases can also be treated by fitting a suitable decomposition in block
terms. Another extension of our method would be to prove canonical forms such as
(2.3) and (2.4) for sizes dj × dj × dj with dj ≥ 4. Also this will be the subject of
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future research.
Another open problem is the uniqueness of the decomposition in block terms. In

Lemma 3.5 we have shown that although the decomposition of X in block terms is not
essentially unique, the block terms remain separated in any alternative decomposition.
This result was obtained for groups of two diverging components only. In the proof
(see the appendix) we use the knowledge of the canonical forms of 2 × 2 × 2 arrays
of rank 3. For an analogous proof when one group of three diverging components
is present, more results on canonical forms of 3 × 3 × 3 arrays of rank 5 are needed.
Alternatively, the analogue of Lemma 3.3 for the border rank may be of help. However,
particular counterexamples to the additivity of border rank are shown by [42]. One
property that is the same for 2 × 2 × 2 core blocks and 3 × 3 × 3 core blocks is the
following. For Gj equal to (2.4) we have (L,M,N) · Gj = Gj , with

L =

⎡
⎣ 1 −d 0

0 1 0
0 0 1

⎤
⎦ , M =

⎡
⎣ 1 0 0

0 1 0
0 −e 1

⎤
⎦ , N =

⎡
⎣ 1 1 de

0 1 2de
0 0 1

⎤
⎦ .(6.1)

Hence, also here the decomposition in block terms is not essentially unique, but the
block terms themselves may still be unique.

Appendix. Proofs. Proof of Lemma 2.1. By Lemma 3.2 (b), there exist or-
thonormal L, M, N such that (L,M,N) ·Gj has all frontal slices upper triangular. By
assumption, Gj has multilinear rank (3, 3, 3). We also assume that Gj has a nonsin-
gular slicemix, i.e., (I3, I3,U) · Gj has a nonsingular frontal slice for some nonsingular
U. This is true for almost all Gj . In fact, if Gj does not have a nonsingular slicemix,
then its upper triangular slices have a zero on their diagonals in the same position.
We apply a slicemix to Gj such that its first slice is nonsingular. Next, we premultiply
the slices of Gj by the inverse of its first slice. Then Gj is of the form

Gj = [G
(j)
1 |G(j)

2 |G(j)
3 ] =

⎡
⎣ 1 0 0 a d f α δ ν

0 1 0 0 b e 0 β ε
0 0 1 0 0 c 0 0 γ

⎤
⎦ .(A.1)

By assumption, there exists a sequence Y(n) in S3(3, 3, 3) converging to Gj , and
rank(Gj) > 3.

Since a matrix cannot be approximated arbitrarily well by a matrix of lower
rank, it follows that the approximating sequence Y(n) in S3(3, 3, 3) has multilinear
rank (3, 3, 3) and a nonsingular slicemix for n large enough. Moreover, by Lemma 3.2
we may assume without loss of generality that Y(n) has the form (A.1). We denote
the entries of Y(n) with subscript n, i.e., an, . . . , fn and αn, . . . , νn. Hence,

Y(n) = [Y
(n)
1 |Y(n)

2 |Y(n)
3 ] =

⎡
⎣ 1 0 0 an dn fn αn δn νn

0 1 0 0 bn en 0 βn εn
0 0 1 0 0 cn 0 0 γn

⎤
⎦ .(A.2)

Next, we consider the rank-3 decomposition (A(n),B(n),C(n)) of Y(n), which can

be written as Y
(n)
k = A(n) C

(n)
k (B(n))T , where diagonal matrix C

(n)
k has row k of

C(n) as its diagonal, k = 1, 2, 3. Since Y
(n)
1 = I3, matrices A(n) and B(n) are

nonsingular. Without loss of generality, we set C
(n)
1 = I3. Then (A(n))−1 = (B(n))T

and Y
(n)
k = A(n) C

(n)
k (A(n))−1 for k = 2, 3. Hence, slices Y

(n)
2 and Y

(n)
3 have the

same eigenvectors. Moreover, their three eigenvectors are linearly independent, and
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their eigenvalues are on the diagonals of C
(n)
2 and C

(n)
3 , respectively. Since Y

(n)
2 and

Y
(n)
3 have eigenvalues an, bn, cn and αn, βn, γn, respectively, we obtain

C(n) =

⎡
⎣ 1 1 1

an bn cn
αn βn γn

⎤
⎦ .(A.3)

Next, we show that in the limit a = b = c and α = β = γ. From Krijnen, Dijkstra,
and Stegeman [32] we know thatA(n), B(n), and C(n) converge to matrices with ranks

less than 3. The eigendecomposition Y
(n)
k = A(n) C

(n)
k (A(n))−1 converges to frontal

slice Gk of G, k = 2, 3. Hence, the eigenvectors in A(n) converge to those of Gk,
k = 2, 3. Suppose A(n) has a rank-1 limit. Then Gk has only one eigenvector and
three identical eigenvalues, k = 2, 3. Hence, a = b = c and α = β = γ. Suppose A(n)

has a rank-2 limit [a1 a2 a3]. Without loss of generality, let a1 and a2 be linearly
independent. If a3 is proportional to either a1 or a2, then B(n) = (A(n))−T has
large numbers in only two columns. This violates the assumption of three diverging
components; see (1.7). Hence, a3 is in the linear span of {a1, a2} and not proportional
to a1 or to a2. Recall that these are eigenvectors of Gk, k = 2, 3. For an eigenvalue
λ of Gk, we define the eigenspace

Ek(λ) = {x ∈ R
3 : Gkx = λx} , k = 2, 3 .(A.4)

It holds that λ1 �= λ2 implies Ek(λ1) ∩ Ek(λ2) = {0}. If a, b, c are distinct, then
a1, a2, a3 would be linearly independent, which is not the case. Without loss of
generality, let a = b. Then a3 ∈ E2(a) ∩ E2(c), which is impossible if a �= c. Hence,
it follows that a = b = c. The proof of α = β = γ is analogous.

As Y(n) → Gj , we first assume that the eigenvalues an, bn, cn are distinct and the

eigenvalues αn, βn, γn are distinct. It can be verified that the eigenvectors of Y
(n)
2

associated with eigenvalues an, bn, cn are, respectively,

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ dn

bn−an

1
0

⎞
⎠ ,

⎛
⎜⎝

dnen+fn(cn−bn)
(cn−an)(cn−bn)

en
cn−bn
1

⎞
⎟⎠ .(A.5)

Since the eigenvectors of Y
(n)
2 and Y

(n)
3 (in terms of αn, . . . , νn) are equal, we have

dn
bn − an

=
δn

βn − αn
,

en
cn − bn

=
εn

γn − βn
,(A.6)

dnen + fn(cn − bn)

(cn − an)(cn − bn)
=

δnεn + νn(γn − βn)

(γn − αn)(γn − βn)
.

We assume that Gj has d �= 0, e �= 0, f �= 0, δ �= 0, ε �= 0, and ν �= 0. This holds
for almost all Gj . Next, we show that this implies δe = εd. Let g(n) = bn − an → 0
and h(n) = cn − bn → 0. From (A.6) we get βn − αn = (δn/dn) g(n) → 0 and
γn − βn = (εn/en)h(n) → 0. Obviously, also cn − an and γn − αn converge to zero.
Substituting these expressions into the third equation of (A.6) yields

dnen + fn h(n)

(g(n) + h(n))h(n)
=

δnεn + νn (εn/en)h(n)

((δn/dn) g(n) + (εn/en)h(n)) (εn/en)h(n)
.(A.7)
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Without loss of generality, let l = limn→∞(g(n)/h(n)) be finite. Cancelling h(n)−1

on both sides of (A.7) and rewriting gives

dnen+fn h(n) =

(
g(n) + h(n)

(δn/dn) g(n) + (εn/en)h(n)

)
en
εn

(δnεn+νn (εn/en)h(n)) .(A.8)

Letting n → ∞ on both sides yields

de =

(
l + 1

(δ/d) l + (ε/e)

)
e

ε
δε .(A.9)

Simplifying gives δe = εd.
Hence, we have Gj equal to (A.1) with a = b = c, α = β = γ, and δe = εd.

Subtracting a times G
(j)
1 from G

(j)
2 and α times G

(j)
1 from G

(j)
3 is a nonsingular

transformation that sets the diagonals of G
(j)
2 and G

(j)
3 to zero. Next, we subtract

δ/d times G
(j)
2 from G

(j)
3 , and f/ν times G

(j)
3 from G

(j)
2 . This transformation is non-

singular unless fδ = dν, which implies that Gj has mode-3 rank 2. After multiplying

G
(j)
3 by ν−1, we obtain canonical form (2.4).
In our analysis above, we assumed that d, e, f, δ, ε, ν are nonzero. Next, we

consider some of the other possibilities. Note that this is not necessary to prove
Lemma 2.1, since these cases are exceptions to almost all Gj . From the above, it
follows that δn en ∼ εn dn. Suppose d = 0. Then δe = 0. Taking into account that Gj

has mode-3 rank 3, this yields three possibilities. If e = 0 and δ �= 0, then f �= 0. If
δ = 0 and e �= 0, then fε �= eν. If δ = e = 0, then ε �= 0 and f �= 0. It can be verified

that in all three cases, we get canonical form (2.4) after mixing and normalizing G
(j)
2

and G
(j)
3 . Note that in some cases, slice G

(j)
2 of the canonical form has only one

nonzero entry. The situations where we suppose that e = 0 or δ = 0 or ε = 0 can
be dealt with analogously. The canonical form (2.4) with d = 0 and e = 1 was first
discovered in [39, sect. 7].

It remains to consider the cases where the eigenvalues an, bn, cn and αn, βn, γn
are not all distinct. Below, we show that such cases can be left out of consideration.
We only consider cases where some of an, bn, cn are identical. Cases where some of
α, β, γ are identical can be treated analogously. If an = bn �= cn for n large enough,

then we must have dn = 0 to obtain three linearly independent eigenvectors of Y
(n)
2 .

This is due to the upper triangular form of Y
(n)
2 in (A.2). This implies that d = 0 in

the limit, which does not hold for almost all Gj .
The case an �= bn = cn can be dealt with analogously. Here, we must have en = 0

to obtain three linearly independent eigenvectors of Y
(n)
2 in (A.2). This implies that

e = 0 in the limit, which does not hold for almost all Gj .
Next, suppose an = cn �= bn for n large enough. To obtain three linearly inde-

pendent eigenvectors of Y
(n)
2 in (A.2), we must have dnen + fn(cn − bn) = 0. Since

cn − bn → c − b = 0, this implies that de = 0 in the limit, which does not hold for
almost all Gj .

Finally, we consider the case an = bn = cn for n large enough. To obtain three

linearly independent eigenvectors of Y
(n)
2 in (A.2), we must have dn = en = fn = 0.

This implies that d = e = f = 0 in the limit, which does not hold for almost all Gj .
Finally, we prove that rank(Gj) = 5 when Gj equals (2.4) with at least one of d

and e nonzero. First, note that rank(Gj) ≤ 5 follows from the maximal rank of 3×3×2

arrays (slices G
(j)
1 and G

(j)
2 ) being 4 [25], and the fact that slice G

(j)
3 requires one
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additional rank-1 term. Next, we show that rank(Gj) ≥ 5. As in [39], we use [34,
Corollary 1’, p.108], which implies

rank(Gj) ≥ min
u�=0

(rank(uG
(j)
1 + vG

(j)
2 + wG

(j)
3 )) + rank3(Gj)− 1 ,(A.10)

with rank3(Gj) denoting the mode-3 rank of Gj . Using (2.4) yields rank(Gj) ≥ 3+3−
1 = 5.

Proof of Lemma 3.5. Without loss of generality, we set Gj = 1 if dj = 1 and Gj

equal to canonical form (2.3) if dj = 2. Premultiplying S, T, U by nonsingular matri-
ces does not change the uniqueness properties of the decomposition. We premultiply
by matrices that transform each of S, T, U to [ IRO ]. The uniqueness properties of
the decomposition do not depend on the all-zero rows of the component matrices [58,
p. 401], [55, Lemma 3.4]. Hence, without loss of generality, we consider the decom-
position (3.3) with X = (IR, IR, IR) · G. We denote an alternative decomposition as
(S̄, T̄, Ū) · H, with S̄, T̄, and Ū nonsingular R × R matrices. The nonsingularity of
S̄, T̄, Ū follows from [55, Proposition 3.3].

The multilinear rank of H must be equal to that of G, which equals (R,R,R).
This implies that each 2×2×2 core block of H has multilinear rank (2, 2, 2), and each
1× 1× 1 core block is nonzero. Moreover, Lemma 3.3 implies that each 2× 2× 2 core
block of H must have rank 3. The 2 × 2 × 2 core blocks of H either have canonical
form (2.3) or canonical form [

1 0 0 1
0 1 −1 0

]
,(A.11)

where (2.3) has border rank 2 and (A.11) has border rank 3 [16, sect. 7]. As we will
see below, the 2× 2× 2 core blocks of H must have canonical form (2.3).

A Kruskal-type essential uniqueness condition for a decomposition (3.3) with
2 × 2 × 2 core blocks having canonical form (A.11) has been proven in [10, Theorem
5.6]. In our case, we may have scalar core blocks as well, and the 2× 2× 2 core blocks
have canonical form (2.3). Since the techniques of [10] do not seem to be of use in
our case, we focus on equating the decomposition to its alternative.

First, we consider the case where only one 2 × 2 × 2 core block is present. In
particular, we set R = 3, m = 2, d1 = 1, and d2 = 2. Hence, the core G is as in (4.5).
Let H = blockdiag(H1,H2), where H2 has 2 × 2 slices H21 and H22, and H1 = 1
without loss of generality. We equate the two decompositions as (S̄−1, T̄−1, IR) · G =
(IR, IR, Ū) · H. We set S̄−1 = [s1 s2 s3] and T̄−1 = [t1 t2 t3]. The equations for the
three slices of the decomposition are as follows:

s1 t
T
1 =

[
u11 0
0T u12 H21 + u13 H22

]
, s2 t

T
2 +s3 t

T
3 =

[
u21 0
0T u22 H21 + u23H22

]
,

(A.12)

s2 t
T
3 =

[
u31 0
0T u32H21 + u33H22

]
,(A.13)

where uji denote the entries of Ū.
If uj1 �= 0, then uj2 H21 + uj3 H22 = O, j = 1, 3. Since H2 has multilinear rank

(2, 2, 2), the latter implies uj2 = uj3 = 0. If u11 �= 0 and u31 �= 0, then rows 1 and 3
of Ū are proportional. Hence, at least one of u11 and u31 must be zero. If uj1 = 0,
then uj2 H21 + uj3 H22 must have rank 1, j = 1, 3. However, this is not possible for
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real uj2 and uj3 when H2 has canonical form (A.11). Hence, we have shown that H2

must have canonical form (2.3).

Without loss of generality, we assume that H2 is equal to its canonical form. The
equations (A.12)–(A.13) become

s1 t
T
1 =

⎡
⎣ u11 0 0

0 u12 u13

0 0 u12

⎤
⎦ , s2 t

T
2 + s3 t

T
3 =

⎡
⎣ u21 0 0

0 u22 u23

0 0 u22

⎤
⎦ ,(A.14)

s2 t
T
3 =

⎡
⎣ u31 0 0

0 u32 u33

0 0 u32

⎤
⎦ .(A.15)

If u11 = u31 = 0, then u12 = u32 = 0 and rows 1 and 3 of Ū are proportional.
Combined with the above, this leaves two possibilities only: either u11 �= 0 and
u31 = 0, or u11 = 0 and u31 �= 0. In the first case, it follows from (A.14)–(A.15) that
S̄−1, T̄−1, and Ū have the following form:

S̄−1 =

⎡
⎣ ∗ 0 0

0 ∗ ∗
0 ∗ ∗

⎤
⎦ , T̄−1 =

⎡
⎣ ∗ 0 0

0 ∗ ∗
0 ∗ ∗

⎤
⎦ , Ū =

⎡
⎣ ∗ 0 0

0 ∗ ∗
0 0 ∗

⎤
⎦ .(A.16)

Since S̄ and T̄ have the same structure as S̄−1, T̄−1, it follows that the alternative
decomposition (S̄, T̄, Ū) · H falls within the ambiguities stated in Lemma 3.5. In the
case u11 = 0 and u31 �= 0 the same is true, but the ordering of the two blocks has
been reversed.

When only one 2× 2× 2 core block is present, together with several scalar blocks
(and not just one), an analogous approach as above can be used. We conclude this
proof by considering the case of two 2 × 2 × 2 core blocks. Together with the proof
above, this should convince the reader that Lemma 3.5 is true for any combination of
2× 2× 2 and 1× 1× 1 core blocks.

Let R = 4, m = 2, and d1 = d2 = 2. Analogous to (A.12)–(A.13), we have

sj t
T
j + sj+1 t

T
j+1 =

[
uj1 H11 + uj2 H12 O

O uj3 H21 + uj4 H22

]
, j = 1, 3 ,

(A.17)

sj−1 t
T
j =

[
uj1 H11 + uj2 H12 O

O uj3 H21 + uj4 H22

]
, j = 2, 4 ,(A.18)

with Hki the slices ofHk. It follows from (A.18) that either uj1 H11+uj2 H12 has rank
1 or uj3 H21+uj4 H22 has rank 1, j = 2, 4. As observed above, this is impossible when
H1 and H2 both have canonical form (A.11). Suppose H1 has canonical form (2.4)
and H2 has canonical form (A.11). Then (A.18) implies that uj1 H11 + uj2 H12 has
rank 1 for j = 2, 4. Since H1 has canonical form (2.4), we get (u21 u22) proportional
to (u41 u42). Since H2 has multilinear rank (2, 2, 2), it follows from (A.18) that
u23 = u24 = u43 = u44 = 0. But then rows 2 and 4 of Ū are proportional. We
conclude that both H1 and H2 must have canonical form (2.4).
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Without loss of generality, we assume that H1 and H2 are equal to their canonical
form. The equations (A.17)–(A.18) become

sj t
T
j + sj+1 t

T
j+1 =

⎡
⎢⎢⎣

uj1 uj2 0 0
0 uj1 0 0
0 0 uj3 uj4

0 0 0 uj3

⎤
⎥⎥⎦ , j = 1, 3 ,(A.19)

sj−1 t
T
j =

⎡
⎢⎢⎣

uj1 uj2 0 0
0 uj1 0 0
0 0 uj3 uj4

0 0 0 uj3

⎤
⎥⎥⎦ , j = 2, 4 .(A.20)

From (A.20), it follows that u21 = u23 = u41 = u43 = 0. Also, exactly one of u22 and
u24 is nonzero, and exactly one of u42 and u44 is nonzero. Suppose u22 �= 0. To avoid
rows 2 and 4 of Ū being proportional, this implies u24 = 0, u42 = 0, and u44 �= 0.
From the form of the rank-1 matrices in (A.20), we obtain that s1 = (∗ 0 0 0)T ,
t2 = (0 ∗ 0 0)T , s3 = (0 0 ∗ 0)T , and t4 = (0 0 0 ∗)T . Together with the form of the
matrices in (A.19), this implies that t1 = (∗ ∗ 0 0)T , s2 = (∗ ∗ 0 0)T , t3 = (0 0 ∗ ∗)T ,
and s4 = (0 0 ∗ ∗)T . Moreover, u13 = u14 = 0 and u31 = u32 = 0. From the forms of
S̄−1, T̄−1, and Ū we conclude that the alternative decomposition (S̄, T̄, Ū) · H falls
within the ambiguities stated in Lemma 3.5. The same is true if we suppose that
u24 �= 0 and u22 = 0, but then the ordering of the two blocks has been reversed.
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