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Abstract—We present CanDID, a platform for practical, user-
friendly realization of decentralized identity, the idea of empow-
ering end users with management of their own credentials.

While decentralized identity promises to give users greater
control over their private data, it burdens users with management
of private keys, creating a significant risk of key loss. Existing and
proposed approaches also presume the spontaneous availability
of a credential-issuance ecosystem, creating a bootstrapping
problem. They also omit essential functionality, like resistance to
Sybil attacks and the ability to detect misbehaving or sanctioned
users while preserving user privacy.

CanDID addresses these challenges by issuing credentials
in a user-friendly way that draws securely and privately on
data from existing, unmodified web service providers. Such
legacy compatibility similarly enables CanDID users to leverage
their existing online accounts for recovery of lost keys. Using
a decentralized committee of nodes, CanDID provides strong
confidentiality for user’s keys, real-world identities, and data,
yet prevents users from spawning multiple identities and allows
identification (and blacklisting) of sanctioned users.

We present the CanDID architecture and report on experi-
ments demonstrating its practical performance.

I. INTRODUCTION

Identity management lies at the heart of any user-facing

system, be it a social media platform, online game, or col-

laborative tool. Backlash against the handling of personal

information by large tech firms [2], [3] has recently spawned

a new approach to identity management called decentralized

identity—a.k.a. self-sovereign identity [7], [10], [32], [74].

Decentralized identity systems allow users to gather and

manage their own credentials under the banner of self-created

decentralized identifiers (DIDs). By controlling private keys

associated with DIDs, users are empowered to disclose or

withhold their credentials as desired in online interactions.

Enterprises also benefit by limiting the liability associated with

storage of sensitive user data [49].

The most commonly cited use cases for DIDs involve

users authorizing release of personal credentials from user

devices to websites [61]. For example, an online job applicant

might release a digitally signed credential from her university

showing that she has received a bachelor’s degree and a proof

of residency in the country in which she is applying. Initiatives

such as the Decentralized Identity Foundation [32] and Decen-

tralized Identifiers (DID) working group of W3C [74] are de-

veloping standards and use cases to support such transactions.

They largely fail, however, to address four main technical and

usability goals that we target in this work. Specifically, these

goals are especially challenging to achieve, as we seek to do,

in a privacy-preserving way:

1) Legacy compatibility: Most proposed decentralized identity

systems presume the existence of a community of issuers

of digitally signed credentials. But such issuers may not

arise—and existing credential issuers may not begin to

issue digitally signed variants of existing credentials—until

DID infrastructure sees use. The result is a bootstrapping

problem. A big impediment to DID adoption is the inability

of proposed systems to leverage the data on users available

in existing web services that don’t issue credentials.

2) Sybil-resistance: Proposed decentralized identity systems

do not deduplicate user identities. Unique per-user iden-

tities are critical, though, in many systems: anonymous

voting, fair currency distribution (“airdrops”) [14], etc.

3) Accountability: It is challenging both to provide user pri-

vacy, i.e., conceal users’ real-world identities, and achieve

compliance with regulations such as Know-Your-Customer

(KYC) / Anti-Money-Laundering (AML). Particularly im-

portant is an ability to screen users of the system, i.e.,

identify and bar identified criminal users on sanctions lists,

as is done in the sanctions screening process performed by

financial institutions.

4) Key recovery: In DID systems, users bear the burden of

managing their own private keys. Key recovery is poten-

tially the Achilles’ heel of such systems, as it is well known

that users regularly lose valuable keys. Billions of dollars

of cryptocurrency have vanished because of lost keys [60].

Proposed solutions to these problems are problematic in

various ways. For example, for key management / recovery,

users can delegate or escrow their private keys with an online

service (like Coinbase for cryptocurrency [4])—but that then

effectively re-centralizes identity management. W3C proposes

a quorum of trusted parties to enable key recovery, but omits

details [74]; Microsoft plans to unveil a new approach, but

details remain forthcoming at the time of writing [53].

The other three enumerated challenges, legacy compat-

ibility, Sybil-resistance, and (privacy-preserving) sanctions

screening, have seen little or no treatment in proposed decen-

tralized identity systems, and treatment relevant to such sys-

tems in only a few works in the research literature, e.g., [22],

[23], [26], [28], [38], [81].

A. CanDID

In this paper, we present CanDID1, a decentralized-identity

system that aims to address the four major challenges

highlighted above, while providing strong privacy properties.

CanDID can act as a freestanding service or can be coupled

1The name means “honestly presenting information”; we also use it to
signify that users “can do decentralized identities (DIDs)”.
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with other decentralized identity systems. It is decentralized

in the sense that it relies on a committee of nodes, which may

represent distinct entities.

CanDID consists of two subsystems: An identity system for

issuing and managing credentials, and a key recovery system.

1) Identity system: CanDID leverages an oracle—

specifically, either DECO [86] or Town Crier [85]—to port

identities and credentials securely from existing web services.

These services can be social media platforms, online bank

accounts, e-mail accounts, etc. The oracles used by CanDID

allow it to scrape websites in order to construct trustworthy

credentials without providers needing to explicitly create

DID-compatible credentials or even be aware of CanDID,

easing the way for bootstrapping a credential ecosystem.

Credential privacy: In support of its strong privacy ob-

jectives, CanDID allows users to construct credentials that

reveal information selectively via zero-knowledge arguments.

For instance, a user can construct a credential proving that

she is at least 18 years of age. In doing so, she need not

reveal her actual birthdate either to committee nodes or to

entities to which she presents the credential. Second, CanDID

provides strong membership privacy. Committee nodes and

web-identity providers not only cannot learn users’ real-world

identities, but cannot learn user membership, i.e., whether a

given real-world user is active in CanDID.

As in other DID schemes, e.g., [10], [32], [74], CanDID

supports the use of pairwise credentials. That is, it permits

users to generate credentials unique to each user-service rela-

tionship and unlinkable to those used in other relationships.

CanDID can in principle alternatively support fully anonymous

credentials. Conversely, CanDID is compatible with models in

which users register pseudonymous decentralized identifiers

(DIDs) on a blockchain or other distributed ledger.

Novel capabilities: Beyond credential issuance, CanDID’s

identity system includes two new and distinctive capabilities:

Sybil-resistance and sanctions screening.

a) Sybil-resistance: CanDID supports deduplication of

identities with respect to unique numerical identifiers like So-

cial Security Numbers. It uses a special-purpose MPC protocol

that is privacy-preserving, meaning values of identifiers used

for deduplication are hidden even from committee nodes.

b) Accountability: The CanDID committee can screen

users of the system so as to identify the credentials of suspect

users (e.g., those on sanctions lists). This operation is privacy-

preserving: the committee learns nothing about users not on

the list. In practice, sanctions lists identify individuals based on

their name / address, not unique identifiers [72]. Thus CanDID

supports fuzzy matching, i.e., tolerance of small edit-distance

variances. The committee can create a public revocation list

of credentials identified by the sanctions screening process.

CanDID performs privacy-preserving fuzzy matching using

secure multiparty computation (MPC), a technically chal-

lenging goal. We explore a range of performance-optimizing

techniques, including different data structures for representing

user attributes in secret-shared form in the system.

We show the basic workflow for credential issuance (without

sanctions screening) in Fig. 1a.
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(a) High-level credential-issuance workflow.
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(b) Key backup and recovery workflow.

Fig. 1: CanDID architecture overview and workflow.

2) Key-recovery system: Our approach allows users to

leverage existing web authentication schemes and engage in

a familiar, user-friendly workflow to recover their keys. Users

may store their private keys on whatever devices, (e.g., mobile

phones) that they use regularly. Users can back up their keys

with the CanDID committee (privately, via secret-sharing) and

prespecify recovery accounts on web services of their choice,

along with a recovery policy (e.g., authentication of 2-out-of-3

accounts). To recover her key, a user proves successful logins

under her chosen policy. Fig. 1b shows the recovery workflow.

Key-recovery privacy: CanDID’s use of oracles allows a user

to prove she was successful in logging into a preselected

account, but without revealing account information to com-

mittee nodes or CanDID use to web service providers. Naı̈ve

approaches, e.g., use of OAuth, would leak such information.

B. Contributions and Paper Organization

To summarize, CanDID offers a practical approach to decen-

tralized identity that overcomes several significant challenges.

In what follows, we present a brief background on oracles

(Sec. II), an overview of CanDID (Sec. III), its applications

(Sec. IV), and its system and security model (Sec. V).

Our main technical contributions are:

• Legacy-compatible credential issuance: CanDID leverages

oracle systems to construct user’s credentials based on data

with existing, unmodified web services (Sec. VI).

• Sybil-resistance: CanDID enforces deduplication of identi-

ties, meaning that it issues credentials in a manner that is

unique per user (Sec. VI).

• Accountability: The CanDID committee can identify creden-

tials associated with users who should be prevented from

using the system, e.g., appearing on a sanctions list, for fur-

ther action such as blacklisting. This process involves new

techniques for privacy-preserving fuzzy matching (Sec. VII).

• Key recovery: CanDID allows a user to store her key with

the CanDID committee to facilitate recovery. She may lever-

age existing online accounts to recover her key in a manner

that provides privacy for account identifiers (Sec. VIII).
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• Implementation and evaluation: We report on the perfor-

mance of a basic implementation of CanDID (Sec. IX).

We discuss related work (Sec. X) before concluding with a

discussion of future research directions (Sec. XI).

II. BACKGROUND: ORACLES

CanDID relies on an oracle system [27], [86], [59], [85]

for credential issuance and key recovery. An oracle relays and

provides assurance around the authenticity of data retrieved

from authoritative sources—typically web servers accessed via

a secure channel such as TLS. Specifically, it allows a prover

to prove (publicly or to a particular verifier) that a piece of

data originates with a particular source (e.g., as identified by

its TLS certificate)—and optionally prove arbitrary statements

about the data.

CanDID uses an oracle system to allow users to import

identities securely from existing systems. For example, Alice

can use the profile page of her Social Security Adminis-

tration (SSA) account to generate a credential attesting to

her Social Security Number (SSN). The idea is for Alice to

execute an oracle protocol—as the prover—to prove that a web

page fetched from the SSA website contains a string SSN:

123-45-6789 in the appropriate context.

Currently, the only oracle protocols that provide privacy for

user data and are legacy-compatible, i.e., require no modifi-

cation of data sources, are DECO [86] and Town Crier [85].

DECO is a three-party protocol between a prover P , verifier

V , and TLS server S. It allows P to convince V that a piece of

data—possibly private to P—retrieved from S satisfies a pred-

icate Pred. DECO relies on Multi-Party Computation (MPC)

to protect data privacy and authenticity, and zero-knowledge

proofs (ZKPs) to prove a predicate is satisfied. Having multiple

verifiers decentralizes the protocol. Town Crier accomplishes a

similar goal by using Trusted Execution Environments (TEEs),

like Intel SGX, to attest to the authenticity of TLS sessions

and prove statements about TLS plaintexts.

In general, Town Crier is faster than DECO, and can effi-

ciently handle much more complicated predicates than DECO.

Town Crier proofs are also publicly verifiable, while DECO

proofs are designated-verifier. Town Crier does, however,

introduce trust assumptions around TEEs called into question

by recent attacks (see, e.g., [54] for a survey).

CanDID can use either DECO or Town Crier, depending on

the desired trust model.

III. CANDID SYSTEM OVERVIEW

CanDID is a framework for issuing and managing creden-

tials. It is composed of two sub-systems: an identity system

that supports credential issuance and a key recovery system to

recover lost keys associated with credentials.

The key recovery system can be used for storage of any

secret, but we integrate it into CanDID for two reasons:

(1) Good key recovery is critical to safe use of CanDID

credentials; and (2) The key recovery system architecture

leverages the same tools as the credential issuance system.

The system goals common to the two sub-systems are:

1) Use of legacy credentials: Allow users to leverage cre-

dentials from existing systems.

2) Decentralization: Expose no single point of failure.

3) Membership privacy: Provide membership privacy, mean-

ing concealment of users’ real-world identities.

CanDID relies on a decentralized set of nodes, called the

CanDID committee. We assume the same committee for both

subsystems for convenience, but they can be distinct if desired.

We now review each sub-system in turn, specifying its goals

and explaining how we meet them.

A. Identity System

Fig. 2 is a visual overview of the key components and

workflows of CanDID’s identity subsystem. We refer to it

throughout our discussion in this subsection.

Goal: The overarching goal of CanDID’s identity system is

to convert commonly used legacy data to application-ready

decentralized credentials. While different applications con-

suming CanDID credentials may have different requirements,

they usually share common requirements, including:

1) Uniqueness: Include provisions to deduplicate user iden-

tities useful for applications like voting.

2) Non-transferability: Include preventive measures discour-

aging users from transferring their credentials.

3) Accountability: Provide a mechanism to trace and revoke

user identities based on their known real-world identities.

4) Pairwise privacy: Allow users to generate pairwise

DIDs [75], i.e., a distinct DID for each application—to

prevent identity correlation across services.

To achieve these goals, CanDID relies on decentralized

oracle schemes like DECO and Town Crier to port data from

legacy web accounts to create credentials—e.g., on Alice’s

SSN, as in the example above. The CanDID committee nodes

act as verifiers in the porting protocol as needed. (For instance,

DECO relies on verifiers, but Town Crier doesn’t.)

a) Uniqueness and Non-Transferability: Even with se-

curely created credentials, meeting our goals of uniqueness

and non-transferability still presents a challenge. Achieving

uniqueness is difficult because, given that credential attributes

are private, and thus hidden from the CanDID committee, there

is no inherent obstacle to a user invoking the porting process

to generate an arbitrary number of credentials. Lack of per-

user credential uniqueness can be problematic in a number of

settings, e.g., in anonymous voting systems.

Non-transferability is challenging because there is no tech-

nical obstacle to a user revealing private keys to a colluding

party. This is already a serious problem, with credentials regu-

larly sold in underground online markets [40], yet current DID

proposals do not address it. Non-transferability is important for

a range of applications, e.g., for video-streaming services to

prevent sharing or gray-market sale of content among users.

CanDID addresses both challenges—uniqueness and non-

transferability—by making the system Sybil-resistant. Sybil-

resistance is achieved by deduplicating based on one or more

attributes. For example, Social Security Number (SSN)-based

deduplication would ensure the existence of at most one

pseudonym with associated SSN attribute “123-45-6789.”
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Fig. 2: Identity System overview through the lifecycle of a credential. Green indicates Sybil-resistant credentials, the final state.

To perform deduplication, committee nodes maintain a

secret-shared table of the target user attributes, e.g., SSNs.

A new user joining the system presents one or more pre-

credentials asserting various attributes. A pre-credential in

CanDID is any credential that has not yet been been dedu-

plicated. Given pre-credentials for the attributes over which

deduplication takes place (e.g., SSN), the committee performs

a privacy-preserving MPC deduplication protocol to check the

table for the existence of these attributes in an already-issued

credential. Only on confirming a user’s asserted attributes are

unique does the system issue her a fresh Sybil-resistant cre-

dential called a master credential. Fig. 2 depicts this process.

Making the system Sybil-resistant helps discourage creden-

tial transfer. Each user can obtain only one master credential

in CanDID, disincentivizing sale or transfer. Other deterrents

such as temporary revocation of misused credentials, revoca-

tion of stolen credentials can be effective for the same reason.

A key design question is which attributes to deduplicate

over. Our main focus here is on truly unique identifiers, like

Social Security Numbers (SSN) in the United States, for dedu-

plication. The use of unique identifiers allows efficient MPC

deduplication protocols, making this approach very practical.

CanDID can work with a different unique identifier for each

sub-population, e.g., SSN in US and Aadhaar in India.

Most, but not all of the world’s population, has such iden-

tifiers. The MPC techniques we introduce in Sec. VII can in

principle be adapted instead for deduplication over commonly

used identifiers, like name and address, which are “fuzzy,” i.e.,

error prone. This approach is very computationally intensive,

though, making practicality a subject of future work.

The master credential issued after deduplication often does

not contain all the attributes a user will want to use in interac-

tions with applications. For example, to vote, an age credential

is required. The CanDID committee can subsequently issue

context-based credentials for this purpose. As shown in Fig. 2,

a user presents pre-credentials (say, about “age”) and her

master credential to obtain this desired credential. Context-

based credentials inherit the Sybil-resistant property of the

master credential—only one credential per context is issued.

The challenge in this step is to ensure that pre-credentials

belong to the same person holding the master credential.

Otherwise, users might buy cheap stolen accounts [55] to

prove arbitrary claims. The CanDID committee checks that a

common attribute like name is same across the pre-credentials

and the master credential. This linking operation is privacy-

preserving, so nodes never learn user attributes.

b) Accountability: CanDID enables identification of sus-

pect users or known malefactors based on their real-world

identities, and permits subsequent listing of such users on a

committee-maintained, public revocation list, as seen in Fig. 2.

Any verifying party can check this list to ensure that a shown

credential is not revoked.

One common way to identify misbehaving users in financial

systems, for example, is through sanctions lists. Sanctions lists

include individuals, e.g., terrorists / traffickers, whose assets

have been blocked by government agencies, e.g., the Specially

Designated Nationals and Blocked Person (SDN) list pub-

lished by the U.S. Department of the Treasury. U.S. financial

institutions may not open accounts for individuals on the SDN

list, and regulators typically require that financial institutions

conduct periodic sanctions screening of their customers [36].

CanDID can support revocation of users on a sanctions list

or otherwise with known real-world identities in a privacy-

preserving fashion. For example, in the case of a sanctions

list, users must prove that they are not on the list in order to

obtain a credential. But CanDID must additionally determine

if an existing credential was issued to a person newly added

to a sanctions list. CanDID can enforce accountability of this

kind using a privacy-preserving MPC protocol. (See Sec. VII.)

CanDID can also support user-initiated revocation for lost

or stolen credentials and identity theft. Supporting any form

of revocation requires storing extra data that enables it—e.g.,

to revoke stolen credentials, the link between users’ unique-id

and pseudonym is stored. Depending on the type of data, this

could imply elevated risk of extreme events like catastrophic

breaches of enough committee nodes. Associated risks need to

be considered when deciding on the precise revocation policy.

c) Privacy: CanDID aims at strong privacy notions. Not

only are users’ attributes hidden from committee nodes, but

CanDID achieves attribute-membership privacy. This means

that committee nodes cannot determine, for a particular at-

tribute value, whether the system contains a credential with

that attribute value. We formalize this notion in Sec. V.

Supporting revocation based on real-world identities while

maintaining attribute privacy is one of the major technical

challenges in the design of CanDID. The reason is that in
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many cases, e.g., with sanctions lists, misbehaving individuals

are typically identified through attributes like names and

addresses, and not always by unique identifiers (particularly

as these lists may include foreign nationals). Matching is

an inexact process, as names may be misspelled, inconsis-

tently transliterated, etc. Consequently, CanDID stores target

attributes in secret-shared form and does searches by means of

privacy-preserving string matching. Specifically, CanDID uses

a newly developed MPC-based fuzzy matching technique op-

timized to scale in a practical way. We give details in Sec. VII.

Credential issuance in CanDID provides pseudonymity

through pairwise DIDs. Users can use different pseudonyms

with different applications. Even collusion among all applica-

tion providers is insufficient to link different pseudonyms.

B. Key Recovery System

Goal: The goal of the key recovery system in CanDID is

simply to prevent identity loss. Since identities are controlled

through keys, CanDID aims to provide a secure, user-friendly

key recovery solution. (CanDID does not address key theft.)

Like many other systems, CanDID envisages users storing

their private keys securely on personal devices, such as mobile

phones. Key backup / recovery is the Achilles’ heel of these

systems. Cryptocurrency wallets require secure physical stor-

age of printed word lists, an unfamiliar and onerous process

for most users. CanDID, in contrast, allows users to recover

their keys using existing legacy web authentication schemes.

CanDID thus provides users with a familiar and convenient

user experience during key recovery.

As shown in Fig. 3, a user enrolls in the key recovery

service in CanDID by providing their keys along with a

recovery policy. The CanDID committee stores a user’s key in

a secret-shared fashion, releasing it only upon the user meeting

the criteria specified in her policy. CanDID supports flexible

authentication policies that can combine several existing au-

thentication schemes. An example policy is 2-out-of-3 authen-

tication involving Facebook, Google, and Twitter accounts.

To authenticate, a user provides committee nodes with cor-

responding privacy-preserving proofs of account ownership.

We give details on the key recovery system in Sec. VIII.

IV. APPLICATIONS

Many of today’s processes for proving and validating user

identities online rely on multiple forms of documentation that

are shared among parties, often in non-standard ways across

siloed systems. Several challenges result:

1) Document and information authentication: Traditional au-

thentication of physical documents involves in-person no-

tarization and/or inspection of original document seals

or watermarks—neither of which is possible online.

Knowledge-based approaches to user authentication have

proven to be exploitable by hackers [20].

2) Data Accuracy: Personal information needs frequent up-

dating, as people change addresses, jobs, and even names

(e.g., upon marrying). Keeping information up-to-date yet

protected against unauthorized modification requires con-

siderable curatorial effort [20].

3) Securing PII: In a landscape of online interaction, en-

terprises that interact with consumers are responsible for

securing personally identifiable information (PII) against

compromise, a major technical challenge, as shown by

frequent breaches [42]. They assume a large liability risk

in storing customer PII [71].

In principle, identity federation can help address these chal-

lenges by standardizing identity management processes and

enabling external entities to serve as identity providers [50].

In practice, though, coalescing a critical mass of government

agencies and enterprises around a digital identity framework

requires funding, prioritization, coordination, and harmoniza-

tion at the state, federal, and international levels [20].

Decentralized identity management of the type supported in

CanDID offers a compelling alternative, as we now illustrate

with few examples.

A. Validating financial securities investor qualifications

Most jurisdictions prescribe strict rules for the offer, sale,

and distribution of securities to investors. These rules may

include investor validation through Know Your Customer

(KYC) and Anti-Money Laundering (AML) protocols, as

well as investor accreditation. For example, in the U.S.,

the Securities and Exchange Commission requires that most

investors participating in private securities offerings under

Regulation D be “Accredited,” typically by means of an asset,

net worth, or income threshold [13]. Accreditation today

is an onerous, time-consuming and largely manual process.

Regulatory violations resulting from inadequate diligence can

lead to cease-and-desist orders, monetary penalties, litigation,

and prosecution at both the business and employee level [63],

[62].

Current solutions: Validation of investors’ identity attributes

for KYC, AML, and investor accreditation and sophistication

typically involves teams of personnel reviewing copies of

multiple documents, such as tax returns, credit reports, national

identification, etc.—and annually updating records. Average

financial institution annual spend on global KYC alone is $48

million; average onboarding times are 30 days [58]. Moreover,

the highly sensitive information involved in accreditation is

exposed to multiple employees and organizations.

CanDID approach: Using CanDID, an investor can prove

accreditation to a broker-dealer using suitable context-based

credentials generated, e.g., from data on the website of the
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user’s brokerage firm. For instance, a credential can include the

claim that the investor’s assets exceed $1,000,000 (sufficient

for accreditation in the U.S.). The process can offer strong

privacy—and reduce the liability of PII storage assumed by

validating financial institutions—by disclosing no additional

information about the investor’s asset holdings. KYC / AML

compliance can be achieved using a context-based credential

showing that an investor has an active account with a financial

institution that performs such checks, as well as using Can-

DID sanctions screening. Users can periodically provide fresh

credentials as required by a broker-dealer.

B. Business-to-Business (B2B) Services

Businesses offering web-based services require client infor-

mation in order to identify legitimate users. For example, an

Asset Management Company A may subscribe to a Research

Company R’s service on behalf of its employees. R lacks a

direct relationship with A’s employees and thus cannot directly

authenticate them: a classic identity federation problem.

Current solutions: A common approach today is for A to send

R a list of A’s employees, along with their e-mail addresses.

Employee rosters, however, quickly go out of date, resulting

in stale records and incorrect user authentication. An alterna-

tive is creation of a federated identity relationship, typically

requiring a legal contract and manual systems integration—for

every customer of R’s service.

CanDID approach: CanDID enables A’s employees in this

scenario to generate context-based credentials proving that

they are employees, e.g., via online Human Resources records

with a provider used by A. R can then accept such credentials

as proof of eligibility for access to its services, and can impose

its own freshness requirements, e.g., requiring that a credential

be issued within a month of use. R need only maintain locally

a register of the classes of CanDID credentials it accepts.

C. Online Banking

It is challenging today for financial institutions to authen-

ticate new users conveniently and securely when they seek

to open accounts online. Fraudulent account openings create

significant losses for unwitting consumers [48].

Current solutions: Many financial institutions rely on physical

identity documents (e.g., driver’s licenses) presented digitally,

via photographs or video. Graphic design software, however,

enables creation of sophisticated falsified identity artifacts,

especially since physically embedded or hidden watermarks

cannot be digitally verified. Video is also subject to manipu-

lation in real time using, e.g., photo filter features developed

for image-sharing in social media [66].

CanDID approach: Using CanDID, a user can gather and

present credentials digitally in a secure manner, without cum-

bersome visual interactions and with considerable flexibility.

For example, a financial institution can require CanDID cre-

dentials for a subset of the following as prerequisites to autho-

rizing a bank account opening, and can risk-weight credential

types to achieve a balance between identity authentication

strength and flexibility: (1) Proof of address from an online

utility company statement, (2) Proof of identity through an

employer-issued W-2 form, (3) Proof of identity via academic-

institution enrollment, (4) Proof of account holding with an

acceptable financial institution (bank, credit card issuer, auto

loan lender, etc). Given the risks of forgery, some of these

proofs simply cannot be presented securely today using exist-

ing techniques, e.g., proof of address from a utility company.

V. SYSTEM AND SECURITY MODELS

We formalize our presentation of CanDID by presenting

our system and security models, along with notation and

discussion of key security properties.

A. System Model

The CanDID system involves three types of parties: users,

credential issuers, and credential verifiers.

Let U denote a user. Each user creates a public / private key

pair (pkU , skU ). For simplicity of exposition, and by analogy

with practice in cryptocurrencies, we use and refer to the

public key itself as a user identifier or pseudonym in CanDID.

CanDID supports the use of decentralized identifiers (DID) by

relying on a PKI-like infrastructure [15], [11] that stores the

mapping between DIDs and public keys. We will therefore

also use the terms DIDs and public keys interchangeably.

The committee in CanDID acts as the credential issuer.2

We assume a permissioned model for selecting committee

nodes. Let C denote the committee, which consists of n
nodes, {Ci}

n
i=1. The committee nodes store a secret key skC

jointly, used to issue credentials. The corresponding public

key pkC serves to verify credentials. Any party (e.g., CanDID

applications, committee nodes) can act as a credential verifier.

Credential: We adopt the definition of a credential from the

W3C Verifiable Credentials specification [80]. A credential is

defined as a set of claims made by an issuer, where each claim

is a statement about the user whose form is explained below.

Each credential also contains a context, used to indicate the

circumstances of its use.

Concretely, in CanDID, a credential contains a user iden-

tifier, context, one or more claims and a signature over the

credential body, as follows.

1) User identifier (pkU ): The pseudonymous identifier of the

subject of the credential. Also referred to as a pseudonym.

2) Context (ctx): A string denoting the circumstances for

credential use, e.g., “Voting at Company A.”

3) Claims ({claimi}): Each claimi = {ai, vi, Pi} contains an

attribute, value, and provider, as follows:

a) Attribute (a): A string denoting what the claim is about,

e.g., “Name.”

b) Value (v): The value of the attribute. A value is either

a plaintext string (e.g., “Alice”) or a commitment to it.

(The need for a commitment is explained later.)

c) Provider (P ): A string denoting the legacy web

provider used to source the claim, e.g., “ssa.gov.” This

field is optional.

We denote a set of claims by CS = {claimi}.

2Note that in the traditional view of DIDs, the role of an issuer is fulfilled
by legacy providers themselves. In contrast, CanDID uses DECO and Town
Crier to port data and issue credentials in a legacy-provider-oblivious way.



7

Notation Description

U User
C Committee
P Legacy provider

pkU User identifier
ctx Context
claim Claim
cred Credential

TABLE I: Notation

4) Signature (σ): The signature by the issuer over the user

identifier, context and claims.

We tabulate our notation in Table I. If there are k claims

in total, i.e., CS = {claimi}
k
i=1 then the signature of the

committee is, σ = SigskC ({pk
U , ctx, CS}). A credential looks

like cred = {pkU , ctx, CS, σ}. See Fig. 4 for an example

credential. (CanDID credentials are represented using JSON

format in our figures.) Note that CanDID achieves pairwise

pseudonymity by allowing users to choose different identifiers

for their different credentials.

Our notation largely follows the W3C spec. The main

difference is the introduction of an optional “Provider” field

in each claim, necessitated by our approach of sourcing

claims from existing providers. Additional metadata such as

credential expiry dates and porting protocol (e.g., DECO /

Town Crier) can also easily be supported.

To reflect CanDID’s deduplication process over a set of

attributes Attr, all CanDID credentials contain a claim with

attribute “dedupOver” and value Attr, amongst other claims.

B. Security Model

We now describe the adversarial model, trust assumptions,

as well as the security properties of CanDID. We defer the

game-based definitions to App. A due to lack of space.

Adversarial model: We allow the adversary to statically and

actively corrupt up to t of the n committee nodes, for t < n/3.

In addition, the adversary can corrupt any number of external

entities, such as users and applications.

We assume that CanDID committee nodes hold a (t, n)-
Shamir secret sharing [65] of a private key skC , with corre-

sponding public key pkC .

Communication model: We assume that communication

channels are asynchronous. We note, however, that the dis-

tributed key generation protocol [44] used upon system ini-

tialization to generate (skC , pkC) requires weak synchrony for

liveness, although not for safety.

Security Properties: CanDID aims to satisfy the follow-

ing properties in the adversarial model described above. We

present the properties informally here.

• Sybil-resistance (Def. 1): An adversary cannot obtain cre-

dentials associated with a larger number of distinct identities

than the number of users the adversary controls.

• Unforgeability (Def. 2): An adversary cannot forge the

credentials of honest users or otherwise impersonate them.

• Privacy: Credential-issuance and key-recovery (Def. 3

and Def. 4): It is infeasible for an adversary to learn user

attributes from observation of the credential-issuance and

key-recovery protocols respectively.

• Credential validity (Def. 6): An adversary can obtain

credentials only for real-world identities it controls.

• Unlinkability (Def. 7): The entities administering CanDID-

reliant applications cannot collude and link the respective

transactions of any given user. This definition applies only

in a weakened adversarial model that rules out malicious

committee nodes.

• Privacy: Credential-verification (Def. 8): An adversary

can learn about a user no more than the information the

user explicitly presents while using her credentials.

Assumptions on users’ legacy credentials: Some security

properties rely on assumptions about legacy credentials. The

credential validity property assumes that the adversary can

corrupt as many users as it wishes, but cannot obtain several

credentials of uncorrupted users. The precise amount of cre-

dential theft allowed depends on the policy in use, as discussed

in Sec. VI. And the Sybil-resistance property assumes that each

user has a unique-identifier. This assumption was made to ease

the security analysis.

VI. IDENTITY SYSTEM

We now present the details of CanDID’s identity system.

The overarching goal of this sub-system is to convert com-

monly used legacy data to Sybil-resistant, privacy-preserving

decentralized credentials. This goal is achieved in two steps.

First, CanDID converts a set of pre-credentials (Sec. VI-A) to

a master credential with a privacy-preserving deduplication

protocol (Sec. VI-B). Master credentials are Sybil-resistant

in that each user can only get one master credential, but

they are not intended to be used in interactions with ap-

plications. Rather, CanDID allows users to create context-

based credentials (Sec. VI-C) by linking application-specific

attributes (attested to by pre-credentials) to the master creden-

tial. E.g., For a voting application, an “age > 18” credential

can be issued. Context-based credentials also achieve cross-

applications unlinkability. Finally, in Sec. VI-D, we discuss

credential verification. We discuss accountability measures in

a subsequent section (Sec. VII).

A. From legacy data to pre-credentials

Recall from Sec. V-A that a claim is a tuple claim =
{a, v, P } where a is an attribute, v the value (or a com-

mitment to it), and P the source provider. A pre-credential

PC = (claim, π) is a verifiable claim in that π proves that

claim is authentic, i.e., the value associated with a is indeed

v, according to data from P . Pre-credentials are used to create

master credentials (in Sec. VI-B), as well as to link additional

attributes to create context-based credentials (in Sec. VI-C).

CanDID uses either DECO [86] or Town Crier [85], as

discussed in Sec. II, as an oracle to construct pre-credentials3.

We now explain pre-credential construction for both options.

3OAuth and OpenID Connect are alternatives. But we do not use them
as they are not privacy-friendly and more crucially, require explicit provider
support, thus very limited credentials are possible today.
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a) With DECO: When realized by DECO, π is a sig-

nature over claim signed by the CanDID committee in a

distributed fashion. Specifically, suppose committee nodes

{Ci} have signing keys {ski} for a threshold signature

scheme. The user U picks at least t committee nodes, e.g.,

(C1, . . . , Ct), and executes the DECO protocol to prove claim

with committee node Ci (as the verifier) for all i ∈ [t]. At the

end of each execution, Ci verifies DECO proofs (and hence

is convinced that claim is authentic) and generates partial

signature πi = Sigski(claim). U obtains π by combining {πi}.

b) With Town Crier: Town Crier uses a TEE to output

a proof π = SigskTEE
(claim) only if claim is authentic. Thus

Town Crier proofs are pre-credentials per se.

To prevent replay attacks, we straightforwardly extend the

above protocol to allow users to associate an public key pk

to a pre-credential. Namely, PC = (claim, pk, π) with π a

signature over (claim, pk).

B. Phase 1: Master credential issuance

Recall that master credentials in CanDID are made

Sybil-resistant—i.e., each user can only obtain one master

credential—through conversion of pre-credentials to master

credentials in a deduplication protocol.

The high level idea of deduplication is simple. The CanDID

committee stores registered users’ attributes in a table, denoted

IDTable. To register, U presents a set of pre-credentials

PCSU to the committee. The committee then checks if PCSU
matches any entry in IDTable. If not, the committee issues a

master credential to U and adds her information to the table.

Fig. 2 depicts this process.

1) Deduplication policies: A key design question in Can-

DID is which attribute(s) to deduplicate over. We adopt the

approach of using unique identifiers, such as Social Se-

curity Numbers (SSN)4 issued by the US government for

US residents, Aadhaar for Indian residents, etc. This policy

provides strong Sybil-resistance within a given population.

It also admits efficient privacy-preserving deduplication. The

basic idea each committee node stores locally IDTable =
{

PRF(skC , vU )
}

where vU is U ’s unique identifier (e.g., her

SSN) and skC is a secret key distributed across committee

members. When a new user attempts to register with a pre-

credential containing an identifier vU , the committee evaluates

ṽ = PRF(skC , vU ) and check if ṽ ∈ IDTable. If not, a

master credential is issued to U and ṽ is added to IDTable.

To prevent committee members from learning vU , PRF is

evaluated using multi-party computation (MPC), as we will

detail in Sec. VI-B2.

A limitation of our approach is that the vast majority, but

not all people or nations [1], have access to unique identifiers.

An important line of future work is instead using commonly

used identifiers, such as name and address. This approach can

in principle use techniques in Sec. VII, but the problem of

deduplicating is harder than sanctions screening.

4SSNs can be re-issued under some very limited circumstances [68]. A
2015 estimate suggests that 1% (5 million) of total SSNs are re-issued [67].
The consequent impact on Sybil-resistance though is limited, as in most cases
users cannot use the old SSN after re-issue.

Several practical considerations arise in our implementation

of Sybil-resistance approach. We discuss one such concern

briefly, leaving the rest to App. D. The impact of identity

theft on CanDID depends on the precise deduplication policy

in use. For example, requiring users to present several pre-

credentials per attribute forces an adversary to compromise

multiple accounts of the same user. Revocation can also help

mitigate the threat of identity theft, as discussed in App. D.
2) Protocol details: We now describe the credential is-

suance protocol assuming unique-identifier policy. Let a de-

note the attribute over which CanDID deduplicate users.
a) System setup: Recall that the committee C consists

of n nodes (C1, . . . , Cn). A threshold signature scheme [21]

T S = (KGen, Sig,Comb,Vf) is used by the committee to

issue credentials. To set up, the committee members exe-

cute a distributed key generation protocol [44] to generate

skC = (skCsig, sk
C
prf). At the end, Ci receives skCsig,i and

skCprf,i, secret shares of skCsig and skCprf respectively. Public keys

pkC = (pkCsig, pk
C
prf) are publicly known. Each committee node

initializes a local table IDTable := φ.
We adopt the standard notation [v] to denote a sharing of

v by committee nodes {Ci}
n
i=1, i.e., Ci has vi such that

v =
∑

i λivi where λ′s are Lagrange coefficients. We use

notation y ← f([x]) to denote a MPC evaluation of a function

f over secret-shared input x. We use a standard malicious-

secure MPC protocol based on Beaver triples [51] to evaluate

PRF([skCprf], ·). As part of the setup, the committee executes a

pre-processing phase to generate secret-shared random blind-

ing factors and commitments
{

[bi], g
bi
}

i
, enough for each

user. Our implementation uses the MP-SPDZ framework.5

Each user U generates a key pair (skU , pkU ). We refer to

pkU as U ’s pseudonym.
b) Pre-credential generation: Let v denote the ideal

value associated with attribute a for U . Let claim = (a,Cv)
where Cv = com(v, r) is a commitment to v with a witness

r. As described in Sec. VI-A, U generates a pre-credential

PC = (claim, pkU , πoracle). Note that we bind pkU to PC to

prevent replay attacks. For simplicity, we use the same public

key that will later be used to obtain the master credential.
c) Deduplication: Once the user U has generated a pre-

credential for her identifier v, the next step is to evaluate ṽ =
PRF(skC , v) via the following interactive protocol among U
and committee nodes C1, . . . , Cn.

• U sends [v] to committee members. To this end, the com-

mittee nodes send shares of a fresh random blinding factor

([b], B = gb) to U , from which U reconstructs b. ([b] can be

pre-generated during system setup for online efficiency or

generated on the fly.) U blinds v by computing v′ = b+ v
and a proof of correct blinding πblind

i = ZK-PoK{b, v, r :
v′ = b + v ∧ (gb = B) ∧ (com(v, r) = Cv)}. U sends

(pkU , v′, πblind, claim, πoracle) to all committee nodes.

• Each committee node Ci verifies the received proofs and

computes vi = v′/nλi − bi. It follows that Σn
i=1λivi = v.

• Committee nodes execute an MPC protocol to compute

ṽ = PRF([skCprf], [v]). Each committee node Ci asserts

5MP-SPDZ [45] does not guarantee robustness as the availability relies on
all committee members being online. In our setting, robustness is possible by
using other protocols, e.g., [51], we leave such integration for future work.
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1 {issuer: did:candid:committee,

2 context: "Master",

3 credentialSubject: {
4 id: did:candid:user123,

5 ssn: {

6 value: 123-45-6789 ,

7 provider: "SSA account",

8 },
9 name: {

10 value: Alice ,

11 provider: "SSA account"

12 },
13 deduplicatedOver: [ssn]

14 },
15 proof:{...}}

Fig. 4: A CanDID credential deduplicated over SSNs. Name

is used as a linking attribute to attach new claims. Gray boxes

indicate commitments to hide private information.

ṽ 6∈ IDTable and aborts if not. Ci adds (pkU , ṽ) to IDTable.

The pseudonym is stored to enable revocation later.

d) Credential issuance: The committee issues a master

credential by signing the claims in the pre-credential with a

“dedupOver” statement attached. Specifically, each node Ci

computes m = {pkU , “master”, claim, {“dedupOver”,{a}}
and generates a partial signature σCi = T S.Sig(skCsig,i,m). Ci

sends EncpkU (σ
C
i ) to U . After decrypting t valid partial sig-

natures
{

σCi
}

, U combines them to get a full signature σC =
T S.Comb(

{

σCi
}

) and constructs the master credmaster =

{pkU , “master”, claim, {“dedupOver”,{a}}, σC}.
See Fig. 4 for an example credential.

C. Phase 2: Context-based credential issuance

Master credentials are not intended for use in interactions

with applications because of the resulting linkability—and

their limited claims. We now show how a user can create

usable-credentials, using the master credential as an anchor.

We assume each application specifies a unique context

ctx (e.g., ctx = “Voting at company A”). In order to get a

credential for context ctx, U submits her master credential to

the committee, along with a set of claims {claimi} required

by ctx (e.g., age over 18 for the voting application.) The

committee verifies the claims and issues a credential for ctx

in a similar process as that for master credential issuance.

Two new challenges arise. First, we must ensure that

the newly added claims are valid (Def. 6), i.e., belong

to the user holding the master credential. Otherwise, ma-

licious users could rent or buy cheap stolen accounts to

add false claims [55]. Second, it’s desirable to support pair-

wise DIDs [75], i.e., make credentials for different contexts

independent (formally captured as unlinkability in Def. 7.)

But unlinkability poses a challenge for Sybil-resistance. If

two credentials are unlinkable, what prevents a user from

generating multiple unlinkable credentials? Below we discuss

how CanDID addresses the two challenges.

Claim validity: We enforce claim validity by matching at-

tributes in the new claim with those in the master credential.

Ideally, matching all the deduplication attributes Attr in the

master credential seems desirable. But in practice it is often

hard to find a provider showing all the desired attributes, e.g.,

SSNs are not available on most websites.

To overcome this problem, we include one or more addi-

tional linking attributes in the master credential. New claims

can be attached through these attributes. The linking attributes

need to be easily accessible and hard to alter on websites, and

reasonably unique. In our prototype system, we use name as

the sole linking attribute, denoted alink. (See Fig. 4.)

Users attach a zero knowledge proof proving that the name

attribute is same across the master credential and the new

claim; thus credential privacy is respected. Since names are

“fuzzy,” we develop a fuzzy matching circuit for this purpose.

Sybil-resistance within a context: To ensure Sybil-resistance,

CanDID credentials come with the field “context”. CanDID

ensures Sybil-resistance within a given context, i.e., enforces

the property that each user can get at most one credential per

context (Def. 1). This property does not interfere with issuance

of pairwise, i.e., unlinkable DIDs.

Context-based credential issuance protocol: We assume

each application specifies a unique context string ctx (e.g.,

“Voting for A”). Suppose user U has a master credential

credmaster. To get a new credential for context ctx, U submits

to the committee (pkUnew, credmaster,{PCnew}): a new identifier

to be used in context ctx, her master credential, and a set

of pre-credentials with new claims required by ctx. The

committee maintains a set of identifiers Issuedctx that have

already received a credential with this context. If pkU is not

in this set, a credential is issued. Protocol details are in App. C.

Finally (pkU , pkUnew) is added to Issuedctx.

Contexts can be shared across applications, e.g., an “age-

Above18” context (for voting, entry to a bar, etc.) avoiding

the need for individual issuance for each application. The

downside is that applications can collude and link users’ usage

patterns. CanDID can in principle be extended with suitable

anonymous credentials, e.g., [69], to meet this concern.

D. Credential verification

Any relying party can verify a user U ’s CanDID context-

based credential cred with associated identifier pk and asso-

ciated opened commitments. The relying party (denoted V)

checks that: (1) cred is properly signed by the committee; and

(2) pk does not appear in a public revocation list; and (3)

any commitment openings are valid. The verification protocol

(verifyCred) is specified in Fig. 16.

E. Security arguments

We now briefly argue the security of CanDID identity sub-

system. Proofs sketches can be found in App. B.

• Sybil-resistance: This follows from the integrity proper-

ties of oracle protocols [86], [85]. In particular, assuming

unique-identifier policy with a single identifier, an adversary

controlling N users can get at most N pre-credentials, thus,

at most N entries in IDTable (or Issuedctx).

• Unforgeability: Follows from unforgeability of signatures.

• Credential issuance privacy: From the privacy of oracle

protocols, generating a pre-credential for claim = (a,Cv)
doesn’t leak information about v. Second, since commitment
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is hiding, and MPC evaluation of ṽ = PRF([skCprf], [v])
guarantees privacy, A doesn’t learn v during issuance.

• Credential validity: This follows from the integrity prop-

erties of oracle protocols.

• Unlinkability across applications: Observe that the only

linkage between master credentials and context-based ones

are Issuedctx. As noted in Def. 7, for this property we assume

the adversary can not corrupt the committee members, hence

unlinkability follows.

• Credential verification privacy: First, unopened commit-

ments leak no information due to the hiding property.

Second, commitments hide the result of a zero-knowledge

proof (e.g., whether age is over 18), therefore opening it

doesn’t reveal more than what U indents to prove.

VII. ACCOUNTABILITY

As discussed in III, CanDID helps enforce accountability,

i.e., identification of misbehaving individuals, in a privacy-

preserving way. For concreteness, we use sanctions lists here

as an example of the how CanDID can enforce accountability

in this sense. Two related problems arise: (1) Registration

time compliance: When generating the master credential, the

client must show that their name (or other string field like

address) is not among those mentioned in the sanctions list.

In brief, we solve registration-time compliance by having the

client produce a SNARK proof. Secret-shares of users’ name,

address are stored in IDTable. (2) Periodic screening: If the

sanctions list is updated with new names, we must identify

and revoke any previously-issued credentials. This means

searching IDTable and context-specific sets Issuedctx to obtain

all pseudonyms issued to a matched user. The pseudonyms are

added to a public revocation list RL.
For both of these tasks, we must accommodate potential al-

ternate spellings of names. There is vast literature on searching

for fuzzy matches for a string in a database [84], [83]. In fact,

the US OFAC Sanctions list [73] provides a search tool that

given a name, queries the sanctions list for fuzzy matches

using a combination of Soundex codes [41] and the Jaro-

Winkler [76], [82] similarity measure.6 However, the challenge

for CanDID lies in the fact that this fuzzy string matching

needs to be performed in a secure computation framework.
To address these challenges, we implemented a fuzzy

matching algorithm, based on edit distance and c-shingles,

described below. We discuss other potential alternatives in an

extended version of the paper. See App. D-C for details on the

real world applicability of these techniques and optimizations.
Edit distance is an appropriate choice for transcription

errors, as discussed in [34], which surveys a series of studies

on transcriptions errors to find that a large percentage of them

are accounted for by less than 3 character typos. For example,

a study by Pollock and Zamora [57] cited by [34], finds that

more than 90% of transcription errors contain a single error.
Computing edit distance between a pair of points requires a

dynamic programming approach that has a large constant fac-

tor due the size of the alphabet. Hence to reduce cost, we use

6Although we could use DECO to generate a credential by querying this
online tool, this would require transmitting the user’s name in plaintext to the
service — an unnecessary privacy leakage we aim to avoid.

an approximation of edit distance known as c-shingles [33],

[25]. The c-shingles of a word w is the set of length c
consecutive substrings of w (ignoring order, repetition). Let

shc(w) denote the set of c-shingles of w ∈ Cn. As discussed

in [33], |shc(w)| ≤ n − c + 1 and if u = edit(w,w′), is

the edit distance between w,w′ ∈ Cn, then the distance be-

tween shc(w) and shc(w
′), denoted dist(shc(w), shc(w

′)) :=
|shc(w) \ shc(w

′)|+ |shc(w
′) \ shc(w)| ≤ (2c− 1)u.

Our approach is thus to use c-shingling as a filtering step: we

first compute the c-shingle intersection with every element in

the dataset to generate a set of matches, and compute the edit

distance just on these. Given shc(w) and shc(w
′), computing

dist is a simple set intersection problem. As a result, we can

benefit from precomputation by storing the c-shingling of each

name in the dataset and sanctions list. To carry this out in se-

cure computation, we must ensure that the dataset is accessed

in a query-independent way, otherwise the access pattern leaks

information. We address this with an oblivious sorting network

to sort the dataset by shingle distance, compute edit distances

on a fixed number of candidates.

We pad the lengths of full names in our prototype to a max-

imum length of 30, and set the edit distance threshold t = 3,

i.e. 10% of that. This also corresponds to the observations

from [34] above. We used the OFAC sanctions list as a source

of full name data, consisting of 20, 511 names, to determine

reasonable parameters. Since c-shingles are used as a filter

to winnow out values which are definitely not matches, the

smaller the number of candidates remaining after the filteration

step, the better. In particular, we found that the smallest

number of candidates remained, when the parameter c was set

to 2. In the case where c = 2, we considered the size of the

set {y | dist(shc(x), shc(y)) < (2c − 1)t, y ∈ the OFAC list}
over 1000 randomly chosen points in the OFAC list. The 90th

percentile for the size of this set was 16. Hence, we decided

to truncate the set of candidates to 15 after the filtering step.

We use the below producedure in both SNARK and MPC:

Parameters: To run this procedure to search for matches, we

need to fix threshold t, for x, y such that Edit(x, y) < t to

be considered matches, a parameter c for the c-shingles, a

parameter numCandidates, to fix the number of final candi-

dates we compare, so as to remain data and query oblivious.

Pre-computation: Pre-compute shingles = [shc(y)|y ∈ D].
Online computation:
1) For a client input string x compute the shc(x) and provide

a SNARK proof for it (to ensure correct computation).

2) Compute a boolean list candidates = [(y << 1|1) ∗
(dist(shc(x), shc(y)) < (2c− 1)) for y ∈ D].

3) Using bitonic sort [16], sort candidates in place, using the

comparator comp(a, b) = a == 0 ? a : b, i.e. push all

zero values to the back (these represent values that could

not possibly have edit distance less than t from x).

4) Retrieve the first numCandidates elements of

candidates to get a list finalCandidates = [y >>
1 for first numCandidates elements of candidates].

5) Finally, compute the set of matches by checking if

Edit(x, y) < t for y ∈ finalCandidates.

In the end, return the set of matched values. If this set is

empty, then nothing needs to be done. Else, it depends on
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whether this procedure was run as part of the registration time

compliance in a SNARK or periodic screening for the updated

sanctions list in MPC, an action is taken. For the former, a

prover is unable to generate a valid proof and hence, can’t

register without some out-of-band mechanism or extra checks.

In the latter case, the server expels matched values.

Note that this procedure will never return false positive

values such that their edit distance from the query was greater

than the chosen threshold t. However, false negatives may

occur, due truncating candidates based on a fixed parameter.

The procedure described above can be implemented as an

arithmetic circuit, which can then be compiled into either a

R1CS for use with a SNARK (for the registration-time screen-

ing) and as an MPC program (for the periodic screening). In

general, each multiplication gate in the circuit translates to one

constraint in the SNARK, and into one Beaver multiplication

for MPC. There are, however, some optimizations that are

possible in the SNARK setting but not in MPC. In particular,

to prove that a value s is non-zero in a SNARK requires only

a single constraint, s ·m = 1, where the client (who knows

s) can compute m the reciprocal of s iff s 6= 0. In MPC, this

must be performed using bit decomposition intsead.

VIII. KEY RECOVERY SYSTEM

Existing DID systems, e.g., [10], [53], [74], require users

to store private keys securely and reliably. They burden

users and create exactly the same pitfalls that have affected

cryptocurrencies—namely re-centralization via exchanges like

Coinbase or the onus of the “mnemonic seed” backup

method [60]. Loss of private keys in DID systems equates

with a loss of credentials—and, at best, the time-consuming

process of having all credentials re-issued.

The key-recovery subsystem in CanDID aims to remedy

this situation by providing a user-friendly solution. It leverages

workflows that closely resemble those in the identity subsys-

tem. CanDID allows users to back up their DID keys with the

CanDID committee, which stores users’ keys securely using

secret sharing. The most appealing feature of key recovery in

CanDID is that users can employ legacy web authentication

schemes to retrieve their backed-up keys. Two benefits result:

(1) CanDID offers a familiar authentication experience to

users and (2) CanDID can leverage the existing infrastructure

and often sophisticated authentication policies of popular web

service providers.

CanDID allows users to choose arbitrarily flexible au-

thentication policies for recovery. Upon enrollment, a user

can specify a set of authentication providers and an access

structure over them, e.g., a user’s policy might require proving

successful login to any 2-out-of-3 predetermined accounts on

Facebook, Google and Amazon. The committee enforces the

specified policy for key release.

In principle, all of this would be possible straightforwardly

using OAuth [39], [9], but OAuth has a serious privacy

limitation: it leaks real-world identities of users to the CanDID

committee and use of CanDID to authentication providers.

Instead, CanDID uses privacy-preserving proofs of account

ownership, similar in style to those in Sec. VI-B2. We now

describe enrollment and recovery processes for a simplified,

single-provider policy. Extension to policies with multiple

authentication providers is straightforward.

Enrollment: To enroll, i.e., back up her key, a user U picks

a random ephemeral identifier pkUeph and generates a pre-

credential PC = ((“account id”,CidUP
), pkUeph, π) containing

an commitment to U ’s account identifier associated with the

authentication provider (idUP ). A difference from the protocol

in Sec. VI-B2 is that the pre-credential is now bound to an

ephemeral user identifier pkUeph different from that in the iden-

tity system, to prevent correlation across the two subsystems.

Pre-credentials are verified through a verification protocol

(verifyCred), where user proves knowledge of skUeph. Similar

to Sec. VI-B2, the committee nodes run MPC to compute

pidUP = PRF([skCprf], [id
U
P ]). The user then secret-shares her

private key skU across the committee. Ci stores (pidUP , sk
U
i ).

Recovery: To retrieve a lost key, the enrollment process

is replicated to compute pidUP . Given pidUP , Ci fetches

(pidUP , sk
U
i ) and returns share skUi to the user.

Security Arguments: We now briefly argue the security of

CanDID key recovery. Proofs sketches can be found in App. B.

• Unforgeability: This follows because the nodes never learn

the backed-up key. Moreover, the key is released only to the

real owner, guaranteed by the integrity of oracle systems.

• Key recovery privacy: This follows the same argument as

credential privacy in the identity subsystem.

Extensions: In Sec. X, we compare CanDID with existing

key management approaches, such as physical access-control

(a.k.a., cold storage) and password protection for keys. These

approaches can be composed with CanDID to construct rich

hybrid policies. These are just examples meant to illustrate

how access-control policies in CanDID can be enriched. Other

access-control mechanisms that we don’t discuss here, e.g.,

social or fourth-factor authentication [24], biometrics, two-

factor authentication, etc., can be considered in a similar way.

IX. IMPLEMENTATION AND EVALUATION

We implemented the key components of CanDID’s iden-

tity system and evaluated their performance. To generate

pre-credentials, we built on top of DECO [86] and Town

Crier [85], and compared their performance. We implemented

the master credential issuance protocol in Sec. VI using

SSN as the deduplication attribute. Finally, we implemented

our MPC-based protocol for accountability in Sec. VII, with

sanctions screening as the example target application.

We used the MP-SPDZ [45] framework for MPC. We in-

stantiated zero-knowledge proofs with a standard a proof sys-

tem [19] implemented in libsnark [12]. We used jsnark [47] to

build circuits for our zero-knowledge proofs. CanDID creden-

tials contain commitments; we used a circuit-friendly scheme,

Pedersen commitments over the Baby jubjub curve [78].

Environment: We conducted experiments on machines that

we believe representative of typical workloads for CanDID.

The machine modeling an “end-user” runs on a Lenovo

ThinkPad x270 Laptop, with 16 GB of RAM, an Intel i7-

7600U CPU, and an SSD for storage. For the oracle verifier,
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DECO Town Crier
Offline

(4.7Mbps)
Offline
(1Gbps)

Online

Generate SSA pre-cred. 475.69 4.27 8.61 0.39s
Generate RentCafe pre-cred. 475.69 4.27 10.10 1.01

Linking name via ZKP - - 0.94 0.94
Sanctions-list check (optional) - - 1501.54 1501.54

Deduplication via PRF - - 0.01 0.01

Total time 475.69 4.27 18.76 2.35
Including sanc. list check 475.69 4.27 1520.3 1503.89

TABLE II: Estimated time taken to get a master credential.

All times in seconds. DECO offline time is measured in two

networks with differing uplink bandwidth. DECO online time

is similar for both networks, we use 4.7Mbps connection for

experiments.

we use a desktop running an Intel i7-6700K CPU with 32 GB

of RAM and an SSD for storage. The end-user is located in

a residential network with a bandwidth of 33Mbps/4.7Mbps

(down/uplink). For MPC, we use a committee of four nodes

running on AWS t2.2xlarge instances with 8 vCPU, 32 GB of

RAM and EBS-backed SSD storage. In all experiments, the

user and the committee nodes communicate via WAN.

Experiment scenarios: To demonstrate the capabilities of

CanDID, our experiment simulates the process of creating

a master credential for user U after deduplication over U ’s

SSN and verification that her name and address pair do not

appear in a public sanctions list L. In practice it is hard

to find a single data source with all three attributes, but

CanDID allows flexible combination from multiple sources.

Our experiment showcases a combination of two: SSN and

name from the Social Security Administration (SSA) website;

name and address from a popular rent portal (RENTCafe),

where name serves an the linking attribute (Sec. VI-C). We

evaluate the performance of the following three procedures:

1) U generates pre-credentials for (SSN, name) and (name,

addr.) from SSA and RENTCafe respectively. (Sec. IX-A)

2) U proves that two pre-credentials are linked via name and

that her (name, address) pair does not appear in L. The

committee verifies the proofs, deduplicates over SSN, and

issues a master credential. (Sec. IX-B)

3) To maintain compliance with sanctions lists, CanDID sup-

ports periodic checks for newly added names. (Sec. IX-C)

A. Pre-credential generation

We used the SSA website as a trusted source for SSNs, legal

names whereas the RENTCafe website for name, addresses.

The SSA website does not directly expose users’ SSNs. We

instead use an equivalent attribute for deduplication: SSA user-

names. Each username is mapped uniquely and permanently

to an SSN upon registration for an SSA account. The specific

endpoint we used is https://secure.ssa.gov/myssa/myhub-api/

getAccesses. It returns a JSON response with a user’s SSA

website username and the legal name (including middle name

and suffix, e.g., jr).

For users’ addresses, we used the profile page on

the rent portal (https://XXX.securecafe.com/resident-services/

XXX/profile.aspx) [URL modified for anonymity]. It returns

an HTML page containing the utility user’s name and address.

The runtime for generating pre-credentials is reported in the

first row of Table II for both DECO and Town Crier options.

1) DECO: To generate pre-credentials, we extended DECO

with ZKP circuits to prove that: (1) requests sent to the data

sources are well-formed; and (2) (Pedersen) commitments of

responses are correctly computed. The ZKP circuits used to

generate SSA and RENTCafe pre-credentials contain 218,677

and 266,030 constraints respectively.

We used DECO in CBC-HMAC mode, i.e., the underlying

ciphersuite is CBC-HMAC. The total runtime of the DECO

option includes the DECO handshake, 2PC-encryption of the

request, and the generation of aforementioned ZKPs. DECO

uses offline preprocessing which can be run before the user

input is known. We report the runtime of offline and online

phases separately. Each benchmark was taken over 100 runs.

Means are reported in Table II.

The offline preprocessing involves uploading a lot of data.

Therefore, offline runtime depends heavily on end-user’s up-

link bandwidth. For instance, using an AWS instance capable

of 1 Gbps uplink resulted in an offline runtime of just 4.27s.

2) Town Crier: We instrumented Town Crier with web

scrapers for SSA and Con Edison websites, and added SGX

code for generating Pedersen commitments over the Baby

Jubjub curve. To generate pre-credentials, a user logs into the

data source from a browser. A Chrome extension we created

captures and transfers the resulting session cookies to Town

Crier. Town Crier then scrapes the data sources for the desired

information (using the cookies to authenticate) and outputs an

attested commitment. We measured the total runtime for 100

runs and report the mean in Table II.

B. Master credential generation

To get a master credential, the user submits previously

generated pre-credentials to the committee and proves: (1)

the same name appears across pre-credentials; and (2) the

pair (name, address) is not present on the system’s sanctions

list L. After verifying these proofs, the committee performs

deduplication and issues a master credential. Table II breaks

down the time taken for each step in the issuance process.

1) Proof of name matching across pre-credentials: To

allow for differences in naming conventions across websites

(e.g. differing uses of middle names and initials), the user

constructs a ZK proof that shows that the name commitments

in the two pre-credentials are within a Levenshtein distance

threshold. This links the pre-credentials together. The circuit

we generated for this purpose has 18,139 constraints. Over 100

runs, the proof generation took 1.2 seconds, while verification

took 0.006 seconds on average.

2) Proof of non-existence in the sanctions list: We follow

a similar strategy to prove non-existence as the OFAC search

tool (See Sec. VII)—namely, we use fuzzy matching tech-

niques to search for names and perfect matching7 to search

for addresses. Thus the latter can employ fast distributed PRF

7Addresses in many countries, e.g., the U.S., are typically checked against
a master database and standardized e.g., [79].

https://secure.ssa.gov/myssa/myhub-api/getAccesses
https://secure.ssa.gov/myssa/myhub-api/getAccesses
https://XXX.securecafe.com/resident-services/XXX/profile.aspx
https://XXX.securecafe.com/resident-services/XXX/profile.aspx
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Fig. 5: Circuit size for proving that a 30-character string is not

in a sanctions list using jsnark. The x-axis is the number of

points in the list and the y-axis is the number of gates in the

circuit. Edit distance is calculated on the first 15 words that

constituted c-shingle matches.

techniques. In this section, we only focus on the former, i.e.,

fuzzy matching of U ’s name.

We implemented the SNARK technique in Sec. VII for

registration time compliance, i.e., proving non-membership of

any fuzzy matches for a client’s “name” string s in a sanctions

list L. We used the parameters discussed there. In our circuits,

we hard-code the list L, since this is presumably public. We

padded the input string and all dataset entries to a length

of 30 characters and designed the circuits so that the circuit

execution is independent of the client’s input string s. Hence,

the circuit size depends only on the size of L.

Fig. 5 shows how the cost of computing proof of non-

membership in the sanctions list L of a name string s scales

as the size of L increases. We present these costs in terms

of the number of multiplication gates (same as the number

of R1CS constraints) in the circuit generating the proof, as

they represent the dominant computational costin the proof

execution. Due to limitations in jsnark’s ability to compile

large circuits, we partitioned the circuit into components that

could be individually analyzed. These include the Base circuit

which calculates the c-shingles for the input string, SetDiff

which is called to compute the set difference between the

set of c-shingles for the input and each of the strings in L,

Sort for sorting the dataset strings by c-shingles threshold,

and calculating final Edit Distances. The sum of the sizes of

these components is the size of the full circuit to prove that a

dataset L has no fuzzy match for s, allowing us to estimate

its size.

As the OFAC sanctions list contained 25, 511 name strings

at the time of writing, we wanted to evaluate the size of the

complete circuit for dataset L sizes up to 215 ≈ 32, 000 strings.

However, due to limitations of the compiler, were only able

to compile and evaluate the full circuit for dataset sizes up to

16, 000. To circumvent this limitation and understand the per-

formance for a dataset as large as we wanted, we used the sum

Fig. 6: Number of multiplication gates in the circuit for

searching for a particular string of length 30 in a dataset. The

x-axis is the number of points in the dataset and the y-axis is

the number of multiplication gates in the compiled circuit.

of component costs, as described above, to estimate the cost

of the full circuit. We validated our estimation method using

the circuits we were able to compile.As Fig. 5 shows, our es-

timates match the compiled circuit sizes exactly. In particular,

weestimate 2.8 × 107 multiplication gates would be required

to compute the circuit for a dataset size of 25, 511 strings by

summing the costs of its components. We confirmed that the

prover time depends linearly on the number of multiplication

gates by running benchmarks with up to 10 million repeated

multiplications. Using these micro-benchmarks, we estimate

that the prover time for a user to prove non-membership in

a list of size 25, 511 is 25.03 minutes. We discuss further

optimizations and practical considerations in App. D-C.

3) Distributed PRF: We instantiate a PRF using

MiMC [17], which is widely conjectured to be a PRF

and runs very efficiently in arithmetic circuits. The main

parameter for MiMC is the number of rounds. [17] prescribe

using ⌈log3(p)⌉ rounds, where the circuit being computed

is over a prime field Fp. Since we are using a 255-bit prime

p, we set the number of rounds to be 161. This resulted in a

circuit with 322 multiplication gates, which takes 38±1ms of

CPU-time across four nodes in MP-SPDZ, as averaged over

10 trials of 10 runs each. Additionally, users need to prove

correct blinding of MPC inputs (Sec. VI-B2) which can be

done very efficiently with Generalized Schnorr Proofs [29].

C. Privacy-preserving screening via MPC

As discussed in Sec. VII, in addition to having users prove

that they are not on a target list L, such as a sanctions list,

CanDID permits the committee to check periodically for newly

sanctioned names, searching for them in the stored dataset D.

More concretely, recall from Sec. VII, that the target list, L,

is a public, dynamic list of strings and D is a private secret-

shared dataset. We use lookup interchangeably with searching

for a string in D. Periodically, a lookup is performed on D, for

each string s newly added to L.We implemented this feature

and ran experiments using MP-SPDZ. As in the experiments

with jsnark, unfortunately, the compiler for MP-SPDZ does not

support very large circuits, . Due to this limitation, we were

unable to compile experiments to simulate very large datasets
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stored in D. While we leave optimizations to the MP-SPDZ

compiler as future work, we compiled and ran circuits for

lookups, simulating as large sizes of datasets as compiled on

our server machine, without running out of memory. We also

compiled and ran experiments to get circuit sizes for the sub-

components of a lookup operation up to the circuit size that

compiled. For larger dataset sizes, we theoretically estimated

the circuit sizes for each of the component operations of

a single lookup and correspondingly estimated the cost of

searching for a single string, similarly to our methodology for

estimating the cost for proof of non-existence in a sanctions

list. To verify our findings, we also estimated the cost at

smaller dataset sizes. As the graph in Fig. 6 shows, the circuits

that did compile match and thus validate the accuracy of our

estimates.

Given a dataset D of n strings to be searched, a single

lookup requires computation of: (1) n set differences between

sets of size 30− 2+1 = 29, (2) n “less than” comparisons of

6-bit integers, (3) n multiplications, (4) running bitonic sort

on an array of length n, where the comparator is an equality

test on a single bit, (5) running 15 edit-distance computations

on 30-character strings and where each character is 5 bits

in length. We use these components to estimate the cost

of the full search circuit. See Fig. 6 for the estimated and

observed circuit sizes (measured in terms of multiplication

gates) in the experiment for the full search. Our estimates

also match up with the observed circuit size for the smaller

sub-components. We omit the estimates for sub-components

from our graphs for clarity. Given the estimated number of

multiplication gates, we can now estimate the time taken for

the circuit to run. On our server machine, averaged over 10
trials of 10, 000 multiplications each, a single multiplication

runs in 41.8± 0.4µs CPU time across 4 nodes. For a dataset

of size 1 million, the circuit would contain 13.2 billion gates

and require a total of 155± 2h of compute time. At the time

of this writing, our server instance cost US $0.376 per hour of

compute time. Thus, searching for a single string in a dataset

of 1 million names, across 4 nodes, would cost approximately

$58.2 ± 0.6. In terms of actual time taken for the operation,

this computation can be significantly faster than ≈ 155 hours,

since our reported experiments do not include parallelization

as discussed below.

X. RELATED WORK

Anonymous credentials: A long line of works, e.g., [30],

[31], [37], [69], construct anonymous credential schemes that

allow a user to prove she has a credential without revealing

additional information. Even if a verifier and issuer collude

in such schemes, they cannot learn the identity of the user to

whom a credential was issued or how and where it was used.

Most prior works assume but do not show how to achieve

Sybil-resistant credential issuance. Limited exceptions include

Proof-of-personhood [23], which proposes periodic in-person

meetings. To the best of our knowledge, CanDID is the first

practical system to issue generic Sybil-resistant credentials

without explicit provider-support—which it does using DECO/

Town Crier to port arbitrary legacy data.

As presented, CanDID offers a credential issuance proto-

col based on pseudonyms, as is standard in proposed DID

schemes, but has privacy limitations. Adaptation of CanDID

to a blockchain-friendly anonymous credential scheme like

Coconut [69] is a direction for future work.

Decentralized Identity (DID): There are several standards /

specifications for [80], [74], [32] and implementations of [6],

[10], [53] decentralized identity systems today. All suffer from

a basic bootstrapping problem: they presume the existence of

an ecosystem of credential issuers, but specify no path to its

realization. A second issue with existing DID specs is their

lack of user-friendly key management solutions [35], [53].

These two issues form the main focus in CanDID, which is

compatible with existing approaches.

Accountable privacy: Screening users for, e.g., sanctions, in

CanDID is a form of accountable privacy, that is, enforce-

ment of anonymity with provisions for conditional revoca-

tion. Previous works have explored accountable privacy as

a general goal [26], [77], for cryptocurrency [38], and for

surveillance [64], but not specifically user screening of the

type we address in CanDID.

Key recovery: Mnemonic seeds [56] written on a physically

secured piece of paper are a common way to back up private

keys today. This approach offers strong security against remote

adversaries, but offers poor usability and is unfamiliar to

many users. In contrast, CanDID offers users a familiar user

experience by relying only on legacy providers.

Password-Protected Secret Sharing (PPSS) [18], [43] uses a

committee like CanDID, but incorporates password-protection

as an additional layer to protect users’ keys even if all commit-

tee nodes collude. The downside is again limited usability. If a

user forgets and hasn’t appropriately backed up her password,

she can forever lose access to her key. In contrast, CanDID

makes it relatively hard to lose keys, as it leverages the

recovery policies offered by legacy providers.

Calypso [46] presents a policy-based, decentralized frame-

work for recovery of encrypted documents that could be

adapted to recovery of keys and in principle be extended to

support privacy-preserving proofs of account ownership as in

the CanDID key-recovery subsystem.

XI. CONCLUSION

We have presented CanDID, a practical, user-friendly real-

ization of self-sovereign identity built with legacy compatibil-

ity as a first-class property. CanDID’s Identity System allows

privacy-preserving conversion of arbitrary legacy data into cre-

dentials, thereby supporting bootstraping of a DID ecosystem.

CanDID’s Key Recovery System allows users to manage DIDs

using existing identity providers as a means to protect against

key / identity loss. CanDID additionally provides functionality

such as Sybil-resistance and accountability, that is critical for

many applications. Finally, we describe example use cases, and

demonstrate CanDID’s practicality through a fully functional

implementation of the CanDID Identity System.

While many interesting directions for future work present

themselves, we highlight two. A natural next step for CanDID

is to use anonymous credential schemes [69] to achieve
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anonymity (instead of pseudonymity). Doing so in a way

that achieves regulatory compliance, e.g., supports efficient

sanctions screening, presents a significant challenge. Another

important line of exploration is stronger mobile / dynamic

adversarial models [52]. These models raise challenges such as

how to manage large MPC state during changes in committee

composition. We discuss more directions in App. E.
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APPENDIX A

SYSTEM API AND SECURITY DEFINITIONS

We formalize our presentation of security definitions now.

Adversary classes: Our security definitions involve two

classes of adversary. The first, denoted by A1, can statically

and actively corrupt up to t of the n committee nodes, for

t < n/3. The second class of adversary, denoted by A2, cannot

Identity System and Key Recovery System

• setup(): Choose deduplication attributes Attr = {a1, . . . , ak}.
Initialize a public revocation list RL.

• keyGen(1λ) → (pk, sk): Key generation. Could be instantiated by
the user locally or by the committee nodes in a distributed fashion.
We assume pkC is public in below API.

• issuePreCred(pkU , Stmt) → π: Pre-credential generation. The
protocol used could be either DECO or Town Crier.

• issueMasterCred(skC , skU , pkU , {claimi, πi}
k

i=1
) → credmaster:

Master credential issuance. Instantiated in a distributed fashion be-
tween the committee nodes. The credential has an identifier pkU , k
input claims and a special dedupOver claim.

• issueCtxCred(skC , skU , credmaster, {pk
U
new, ctx, {claimi, πi}

m

i=1
}) →

cred: Context-based credential issuance. Instantiated in a distributed
fashion between the committee nodes. The credential has an identifier
pkUnew , context ctx and the m claims.

• verifyCred(skU , cred, c) → true/false: Verification protocol for
both master, context-based credentials. Instantiated by a two-party
protocol between the verifying party and user.

• sanctionsScreening(v,RL): Screening protocol. A joint protocol
between the committee nodes to revoke a user identity v present in a
sanctions list.

• keyEnroll(skC , skU , policy, {claimi, πi}
n

i=1
): Key enrollment pro-

tocol. User provides key, authentication policy with n legacy providers
and corresponding identifiers in the claims. (Authentication with
DECO or Town Crier.)

• keyRecover(skC , {claimi, πi}
m

i=1
) → skU : Key recovery protocol.

User proves ownership of enough legacy provider accounts. (Authen-
tication with DECO or Town Crier.)

Fig. 7: CanDID system API.

corrupt any committee nodes. Both classes of adversary can

corrupt any number of users and applications in the system.

We use A1 in our security definitions to model privacy with

respect to committee nodes and A2 to model privacy with

respect to external entities.

System API: Fig. 7 specifies the CanDID API. For the

purposes of our security definitions, we use the term C-DID to

denote a DID system with this API (CanDID or an alternative

embodiment). In some of our security definitions, the adver-

sary has unlimited access to the entire CanDID API, which

we model for conciseness as an oracle O∗. In our security

definitions, the adversary may also have access to an external

account oracle O∗ext that models the legacy providers called by

CanDID.

Our games contain interactive protocols between adversary

and the challenger, where the adversary can see protocol

transcripts.

Definition 1 (Sybil-resistance). A C-DID system is

Sybil-resistant with respect to a set of attributes

Attr if, for any stateful PPT adversary A1,

Pr
[

Gsybil(λ,A1,O
∗
ext,Attr) =⇒ 1

]

≤ negl(λ).

Informally, this definition captures the infeasibility of an

adversary to obtain more credentials than the number of

users it controls. The definition is parametrized by the set

of deduplication attributes Attr. Fig. 14 specifies the game,

in which the adversary initializes x identities, and can then

create as many credentials as needed. The adversary wins by

generating > x valid credentials such that all of them have

(i) the same context; and (ii) the claim {“dedupOver”,Attr}.
The latter ensures that the deduplication process happens over
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the right set of attributes.

Definition 2 (Unforgeability). A C-DID system offers

unforgeability if, for any stateful PPT adversary A1,

Pr
[

Gunforge(λ,A1,O
∗
ext,O

∗
sk) =⇒ 1

]

≤ negl(λ).

This definition captures that it must be infeasible for an ad-

versary to impersonate users, i.e., forge signatures with users’

DID keys. Fig. 13 specifies the game, in which the challenger

first creates a key pair (pkU , skU ), and the adversary gets

access to skU through a special oracle O∗
skU

that allows calling

any CanDID API with the user key parameter set to skU . The

adversary wins by producing a valid signature over a fresh

message.

Definition 3 (Credential issuance privacy). A C-DID system

offers credential issue privacy if, for any stateful PPT adver-

sary A1, and any X ∈ {issueMasterCred, issueCtxCred},
∣

∣

∣
Pr

[

Gprivacy
X (λ,A1,O

∗
ext) =⇒ 1

]

− 1
2

∣

∣

∣
≤ negl(λ).

Definition 4 (Key recovery privacy). A C-DID system offers

key recovery privacy if, for any stateful PPT adversary A1,
∣

∣

∣
Pr

[

Gprivacy
keyRecovery(λ,A1,O

∗
ext) =⇒ 1

]

− 1
2

∣

∣

∣
≤ negl(λ).

We provide three games, one for each of

issueMasterCred, issueCtxCred and keyRecovery

(Fig. 9, Fig. 10 and Fig. 11).

All our privacy games are similar and capture the following:

the adversary learns a pseudonym of the user who initiates

each query and which legacy providers are used, but otherwise

learns nothing else about users’ real identities or attributes

during the credential issue, key recovery protocols. This should

hold regardless of the state of the external world or the actions

of other users. To model this, our games allow the adversary

to explicitly configure the state of the external world (through

O∗ext), and to control the actions of all the users except for

two, which are assumed both to have accounts at the same

service providers. The challenger picks one of the two users

at random, calls a CanDID API (specified below), and reveals

resulting outcome (if any) to the adversary. The adversary

tries to guess which of the two users was picked. The API

is issueMasterCred in Fig. 9, issueCtxCred in Fig. 10,

keyEnroll and keyRecover in Fig. 11.

We now present definitions expressing what it means for

a credential to be valid. Recall that a credential is a set of

claims. We first define what it means for an individual claim

to be valid. We adopt the model assumption that for any given

attribute in a claim, there exists an ideal value associated with

the holder of a given pseudonym. For example, for the attribute

“address”, the ideal value for Alice is “Wonderland.” We also

assume that values of each attribute a lie in a metric space. Let

∆a denote the distance operator used by CanDID to compare

two values for attribute a. Our definitions are as follows.

Definition 5 (Claim validity). A claim about an attribute a is

said to be δa-valid if it asserts a value v′ that differs from the

ideal value v by at most δa, i.e., ∆a(v, v
′) ≤ δa.

Definition 6 (Credential validity). A credential is valid if any

given claim in the credential about an attribute a is δa-valid.

External account oracle OP
ext

1 :
State: L is a set of tuples of the form (id, a, v) where id is an user identifier,
a an attribute, and v the corresponding value.

2 : init(Linit): L = Linit. Can only be called once.

3 : update(id, a, v′): If ∃(id, a, v) ∈ L, replace it with (id, a, v′).

4 : delete(id): Remove all (id, , ) from L if exist.

5 :
getProof(id, a)→ v, π: If ∃(id, a, v) ∈ L, return v with a proof π. Return
⊥ otherwise. (We omit the construction of π. See Sec. VI-A.)

6 :
getOwnershipProof(id)→ π: If ∃(id, , ) ∈ L, return a proof of account
ownership. Return⊥ otherwise. (We omit the construction of π. See Sec. VI-A.)

Fig. 8: Modelling a legacy provider P through an oracle.

We allow some fuzziness in our definitions to model errors

expected to arise in practice. The fuzziness bound δa denotes

the quantum of error we expect for an attribute a, which

typically depends on the existence of a standard convention

to represent the attribute. For attributes like Date of Birth

and SSN containing numbers in well-accepted conventions,

we set δa = 0. For other attributes like name and address, we

expect some fuzziness due to typographical errors, inconsistent

punctuaction, etc., so typically δa > 0.

Definition 7 (Unlinkability across applications). A C-DID

system offers unlinkability if, for any stateful PPT adversary

A2,
∣

∣Pr
[

Gunlink(λ,A2,O
∗
ext) =⇒ 1

]

− 1
2

∣

∣ ≤ negl(λ).

This definition expresses the infeasibility of adversarial

applications to collude and link the transactions of any given

user. In this game, we are concerned about privacy from ex-

ternal entities only, i.e., we use A2. We exclude any auxiliary

information (e.g., IP address, time of use) that A2 learns in the

real world in our modelling that allows an adversary to trivially

break unlinkability. Fig. 12 specifies the game, in which the

adversary presents two master credentials of her choice. A

random one is picked to generate a context-based credential,

and the adversary must guess which one was picked.

Definition 8 (Credential verification privacy (informal)).

Given a function F that maps user data to credential at-

tributes, an adversary A1 learns negligibly more about any

given user than the output of F .

This captures that it must be infeasible for an adversarial

verifying party to glean more information about users than

what is presented. We only provide an informal definition since

this property comes from the zero-knowledge property in the

two oracle systems we use, DECO and Town Crier. DECO

uses zero-knowledge arguments to guarantee that negligible

information other than the output of F is leaked to the

adversary. And, Town Crier relies on a TEE to provide a

similar guarantee. Readers can refer to [70] for ZK-formalism

for TEE.

APPENDIX B

SECURITY PROOFS

In this appendix, we sketch the security proofs of our

constructions.

Sybil-resistance Gsybil: On line 3, the adversary provides a

context ctx. Two possibilities ensue:
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Gprivacy
issueMasterCred(λ,A1,O

∗

ext)

1 : pkC, skC ← keyGen(1λ)

2 : A1 calls OP
ext.init(L) such that (id0, a, v0), (id1, a, v1) ∈ L

3 :
(pk, sk),

{

a, id0, id1, P
}

← A
O∗,O∗

ext
1

(pkC) where O∗ does not allow

calling issueMasterCred with {a, v0/1} as one of the claim; and OP
ext does

not allow calling delete or update with id0/1

4 : b←$ {0, 1}

5 : vb, π = OP
ext.getProof(id

b, a)

6 : cred← issueMasterCred(skC, sk, pk, {a, vb, P, π})

7 : b′ ← A
O∗,O∗

ext
1

(cred) where O∗ is same as on line 3.

8 : return b = b′

Fig. 9: Credential privacy game for issueMasterCred assum-

ing unique-identifier deduplication policy over an attribute a.

Gprivacy
issueCtxCred(λ,A1,O

∗

ext)

1 : pkC, skC ← keyGen(1λ)

2 : For each i ∈ [m], A1 calls O
Pi
ext .init(L) such that

(id0
i , ai, ), (id1

i , ai, ), (id0
i , alink, v), (id

1
i , alink, v) ∈ L

3 : pk, sk, cred, ctx, {ai, id
0
i , id

1
i , Pi}

m
i=1 ← A

O
∗,O∗

ext
1

(pkC) where O
Pi
ext

cannot call delete or update with id
0/1
i , ∀i ∈ [m]

4 : b←$ {0, 1}

5 : For each i ∈ [m], (vi, πi) = O
Pi
ext .getProof(id

b
i , ai)

6 : For each i ∈ [m], (v, π′

i) = O
Pi
ext .getProof(id

b
i , alink)

7 : cred← issueCtxCred(skC, sk, cred,
{

pk, ctx,{ai, vi, πi}
m
i=1

,
{

alink, v, π
′

i

}m

i=1

}

)

8 : b′ ← A
O

∗,O∗
ext

1
(cred)

9 : return b = b′

Fig. 10: Credential privacy game for issueCtxCred.

1) ctx = “master”: The adversary gets credentials with this

context only through issueMasterCred API of CanDID.

2) ctx 6= “master”: The adversary gets credentials with this

context only through issueCtxCred API of CanDID.

We argue that the adversary cannot win the game in either

case now. Recall that we assume each user holds an ideal

value corresponding to each attribute in Attr. Say, the adver-

sary control x users. Then in the master credential issuance

protocol, the use of IDTable ensures that the adversary gets

x master credentials. Note that this definition crucially relies

on credential validity (Def. 6), as otherwise, adversary can get

arbitrary credentials. Similarly, in the context-based credential

issuance protocol, the use of a per-context set Issuedctx ensures

that each master credential gets one credential with ctx.

Unforgeability Gunforge: In the identity subsystem, users’

key never leaves their device. During the protocols, they use

it only to sign challenges issued as part of verifyCred. Thus,

unforgeability for this subsystem follows in a straightforward

way. In the key recovery subsystem, users’ key is backed-

up with the committee in a secret-shared form. But an A1

adversary cannot access it since it controls < t nodes. The

unforegability guarantee here follows from the security against

existential forgery attacks provided by the signature scheme.

Further, the key is revealed only to the owner that proves their

identity, i.e., unforgeability relies on the integrity of underlying

oracle systems.

Credential issue privacy Gprivacy
issueMasterCred: We argue that

Gprivacy
keyRecovery(λ,A1,O

∗

ext)

1 : pkC, skC ← keyGen(1λ)

2 : For each i ∈ [m], A1 calls O
Pi
ext .init(L) such that (id0

i , , ), (id1
i , , ) ∈

L

3 : sk, policy,
{

id0
i , id

1
i , Pi

}m

i=1
← A

O
∗,O∗

ext
1

(pkC) where O
Pi
ext does not

allow calling delete or getOwnershipProof with id
0/1
i , ∀i ∈ [m]

4 : b←$ {0, 1}

5 : For each i ∈ [m], πi = O
Pi
ext .getOwnershipProof(id

b
i )

6 : keyEnroll(skC, sk, policy,
{

Pi, id
b
i , πi

}m

i=1

)

7 : A
O

∗,O∗
ext

1
(pkC) where O∗

ext is same as in line 3

8 : For each i ∈ [m], π′

i = O
Pi
ext .getOwnershipProof(id

b
i )

9 : sk← keyRecover(skC,
{

Pi, id
b
i , π

′

i

}m

i=1

)

10 : b′ ← A
O

∗,O∗
ext

1
where O∗

ext is same as in line 3

11 : return b = b′

Fig. 11: Key recovery privacy game when using DECO/ Town

Crier as the means of authentication.

Gunlink(λ,A2,O
∗

ext)

1 : pkC, skC ← keyGen(1λ)

2 :
cred0master, cred

1
master, pk, sk, ctx, {ai, vi, πi}

m
i=1

← A
O∗,O∗

ext
2

(pkC)

where O∗ does not allow calling issueCtxCred with cred
0/1
master and context

ctx

3 :
Check if ∀cred ∈

{

cred0master, cred
1
master

}

,
Vf

pkC
({cred.pk, “master”, cred.CS} , cred.σ) = true. Otherwise,

return 0

4 : cred← issueCtxCred(skC, sk, credbmaster,
{

pk, ctx,{ai, vi, πi}
m
i=1

}

)

5 : b′ ← A
O

∗,O∗
ext

2
(cred)

6 : return b = b′

Fig. 12: Unlinkability game.

the the adversary cannot win the game as it does not learn

any information allowing it to distinguish the two execution

paths. We will be assuming unique-identifier policy. We give

a series of hybrids. The game G0 is same as above. We

unroll issueMasterCred now and analyze what the adversary

learns. In lines 6, 7 the adversary learns value commitments

Cvb and any outputs of DECO and Town Crier. In line 9, the

adversary learns a blinded value and a blinding proof. In lines

13, 14 the adversary learns a output of a MPC computation

PRF([skCprf], [v
b]). In line 7 of the game, the adversary learns

the credential signature revealed on line 7 (note that all

other information in the credential is already known to the

adversary).

The first hybrid G1 is same as G0 except the value

commitments are replaced with a random value from the

group (output group of the commitment scheme). As the

Pedersen’s commitment scheme we are using provides secrecy,

the adversary will be unable to distinguish the two hybrids. In

addition, we are relying on the secrecy provided by the DECO

and Town Crier schemes in this step.

In the second hybrid G2, the blinded values are replaced

with a random value from the group. Moreover, the zero-

knowledge proof (πblind) is also replaced with random values.

As the blinding factor is unknown to the adversary, it will be

unable to distinguish the two games.

In the third hybrid G3, the PRF is replaced with a random
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Gunforge(λ,A1,O
∗

ext,O
∗

sk)

1 : pkC, skC ← keyGen(1λ)

2 : pkU , skU ← keyGen(1λ)

3 : c∗, σ∗ ← A
O

∗,O∗

skU
,O∗

ext

1
(pkC, pk), let chals denote the set of all challenges

produced by A1 in calls to verifyCred(skU , , c)

4 : return Vfpk(c
∗, σ∗) ∧ (c∗ /∈ chals)

Fig. 13: Unforgeability game. A special oracle O∗sk is provided

that gives access to any CanDID API with the user key set to

sk.

Gsybil(λ,A1,O
∗

ext,Attr)

1 : pkC, skC ← keyGen(1λ)

2 : A1 calls O∗

ext.init(L) where |L| = x

3 : ctx, creds← A
O

∗,O∗
ext

1
(pkC)

4 :
Check if ∀cred ∈ creds,Vf

pkC
({cred.pk, ctx, cred.CS}, cred.σ) = true ∧

{“dedupOver”,Attr} ∈ cred.CS. Otherwise, return 0

5 : return |creds| > x

Fig. 14: Sybil-resistance game. Note that O∗ext.init can only

be called once.

oracle and the adversary will be unable to distinguish the

two games. Note that the adversary is not allowed to call

issueMasterCred with v0/1 on lines 3 and 7 for two reasons:

(i) to ensure that line 6 does not abort as the values are

already used; and (ii) to ensure that the PRF output is not

revealed through a committee node. The latter is problematic

as it acts as a pseudonym, allowing the adversary (through

a committee node) to learn if v0/1 is being called on line

6. In addition, the adversary is not allowed to call external

account oracle to delete / update the values, as that might

cause issueMasterCred to abort.

In the fourth hybrid G4, the signature is replaced with a

signature over a random group element. Since the adversary

does not know the commitment openings, the adversary cannot

distinguish the two signatures.

The proof sketches for the rest two privacy games follow

very similar ideas.

Credential issue privacy Gprivacy
issueCtxCred: The information

revealed to the adversary in this game is same as in the game

for issueMasterCred, minus the PRF outputs. (The lesser

information allows calling O∗ unrestrictively on lines 3, 8.)

Key recovery privacy Gprivacy
keyManage: We discuss differences

w.r.t the game for issueMasterCred and argue security.

In this game, the adversary learns PRF outputs of all the

m provider user identifiers. We also similarly restrict the

adversary from learning the pseudonyms and win the game

by restricting calls to getOwnershipProof, thus disallowing

calls to key recovery functions with id0/1.

Credential validity: Under an assumption that each user

holds only one ideal value, credential validity follows directly

from the integrity guarantee offered by the oracle protocols—

DECO and Town Crier.

Unlinkability Gunlink: Recall that A2 does not control com-

mittee nodes. An A2 adversary learns negligible information

about the protocol execution issueCtxCred on line 4. This is

because, first, we ensure failure cannot act as a distinguisher

Creating context-specific credentials

1 :
Input: User U holding credmaster with a claim about attribute alink. U also
inputs a pairwise id pkUnew, context ctx. Committee C comprising n servers jointly

holding skC . Each node also maintains a context-specific set Issuedctx.

2 : Output: C outputs success and U holds a credential with context ctx (or) fail.

3 : Offline: For each i ∈ [k], nodes in C have secret-shared blinds [bi].

4 : Pre-credential generation:

5 :
Generate PC0 = (claim0, pkUnew, π

oracle) and PC0link =
(claim0

link, pk
U
new, π

oracle
link ).

6 : User U :

7 :

Let v and v′ denote the value of attribute alink in credmaster and claim0
link

respectively (r, r′ denote corresp. commitment witness). Generate ZKP πlink =
ZK-PoK{r, v, r′, v′ : com(v, r) = Cv ∧ com(v′, r′) = Cv′ ∧
∆(v, v′) <= δalink

} where δalink
is public.

8 : Send
{

PC0,PC0link, π
link, credmaster, pk

U
new

}

to all committee nodes.

9 : Node Ci:

10 :
Verify the signatures on credmaster,PC

0,PC0link using pkUnew. Check that the

same (allowed) provider appears in claim0 and claim0
link.

11 : Verify ZKP πlink using Cv from credmaster and Cv′ from claim0
link.

12 : If (pkUmaster, ) ∈ Issuedctx, abort and return fail.

13 :

Add (pkUmaster, pk
U
new) to Issuedctx. Compute m =

{pkUnew, “ctx”, claim
0, {“attachedUsing”, alink} and a partial signature

σC

i = T S.Sig(skCsig,i,m). Send Enc
pkUnew

(σC

i ) to U .

14 : User U :

15 :

Decrypt t valid partial signatures
{

σC

i

}

and combine them with

σC = T S.Comb(
{

σC

i

}

) and constructs a credential cred =

(pkUnew, “ctx”, claim
0, {“attachedUsing”, [alink]}, σ

C).

Fig. 15: Context-specific credential issuance protocol over a

context ctx and fresh pairwise user identifier.

through the checks, restrictions on lines 2, 3. Second, if the

protocol succeeds in both execution paths, then final credential

cred is made up of inputs provided by the adversary. (Observe

that in this game, the adversary provides the oracle proofs

himself unlike our previous games.) Thus the adversary learns

negligible information in this process.

Credential verification privacy: We enumerate the different

information learned by an A1 adversary about user attributes

throughout CanDID.

Say a user intends to reveal the output of function F over

their data (e.g., reveal age>18). Then, during the issuance

process, the adversary learns commitments to the output of

F through committee nodes. As commitments are hiding, this

does not reveal anything. Further, the zero-knowledge property

of the oracle system ensures that nothing else is revealed to

the adversary.

During the verification process, the adversary learns the

outputs of F through a verifier. But, this process does not

leak more information than that.

APPENDIX C

CONTEXT-BASED CREDENTIAL ISSUANCE PROTOCOL

We now describe the protocol to obtain a context-based

credential for an application. Say, the application requires

users to obtain a new claim claim0 (we only consider one

claim for simplicity). Let alink denote the linking attribute

(e.g., “name”). While it is possible to have a set of linking

attributes, we assume the set contains just one attribute for

ease of explanation.
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Credential verification (verifyCred)

1 : Input: User U inputs cred and skU . Verifying party V inputs a challenge c.
The public key to check credentials pk is a public input.

2 : Output: V outputs success or fail.

3 : User U :

4 : Send (cred, σ) to V where σ = Sig
skU (c).

5 : Verifying party V :

6 : Check if Vf
cred.pkU (c, σ) ∧Vfpk(cred.body, cred.σ) .

Fig. 16: Verification for master credentials, context-based

credentials and pre-credentials.

The changes to the master credential issuance phase before

are as follows. With unique-identifier policy, users additionally

prove a claim about the linking attribute by using the same

provider used to source the unique identifier. The restriction

to use the same provider is to ensure that the claim belongs

to the same user. The rest of the protocol remains the same.

We describe the protocol for one claim in Fig. 15. Extending

it to support multiple claims is straightforward. A credential

ready to be used in a voting application generated can be

using the master credential in Fig. 4. We also include the

deduplication claim “dedupOver” in the final credential for

completeness.

APPENDIX D

PRACTICAL CONSIDERATIONS

A. Interacting with legacy providers

a) Selecting web providers: The providers usable in

CanDID are those that allow the desired attributes Attr to

be accessed online. It is critical, however, that users not be

able to alter these attribute values. Nationally assigned unique

identifiers (e.g., SSNs), as used in our unique-identifier policy,

are typically not user modifiable. Attributes used in a string-

matching policy, e.g., name and address, may be user-alterable,

however. So care is required in choosing providers that prohibit

or limit such alteration.

b) Handling website changes: The effort required to

handle website changes is dependent on whether or not the

data is available through a popular API endpoint. For key

recovery in particular, the provider pool is small and they all

offer API endpoints. Thus handling API changes is no different

to that currently done by third-party apps that use these API.

However, in case API endpoints are unavailable, additional

engineering effort to monitor the site is needed to provide a

seamless user experience.

B. Additional security considerations

a) Catastrophic breaches: Our unique-identifier policy

leverages data that may be sensitive. For example, SSNs in the

United States are often used as secrets for user authentication.

Our MPC-based approach to identity deduplication conceals

these values by secret-sharing them.

What happens, though, if the committee C is completely

compromised (i.e., t + 1 nodes are corrupted)? In this case,

an adversary can reconstruct IDTable, thereby learning the

identifiers of registered users.

To facilitate revocation, IDTable may include bindings be-

tween each user identifier and a pseudonym associated with

that user’s CanDID credentials. IDTable, however, does not

link users’ numerical identifiers with any other identifying

information. For example, if SSNs are used for deduplication,

then a breach will reveal the SSNs of registered users, but

not the names associated with these SSNs. Consequently, an

adversary would be unable to exploit IDTable to perform

identity theft or otherwise jeopardize users.

b) Fake accounts and identity theft: It is fairly easy to

buy fake or stolen accounts online [55]. The impact of such

compromised accounts on CanDID depends on the precise

deduplication policy in force. For example, it is possible to

require a user to present a set of m > 1 pre-credentials / proofs

in support of claimed attributes Attr, forcing an adversary to

compromise multiple accounts of the same user in order to

steal her identity. The higher m, the harder identity theft in

CanDID becomes, but at the cost of usability / convenience.

An important mitigation is the ability of users in CanDID

to revoke credentials. A user that can recover access to online

accounts associated with the compromised identifier v—a re-

quirement to deal with the root problem of identity theft—can

revoke her CanDID credentials. The requirements for reissuing

revoked credentials are choice subject to flexible per-user

and/or systemwide policy setting. For example, re-issuance of

a revoked master credential might require presentation of a

larger set of pre-credentials than initial issuance.

c) Errors in fuzzy matching: Any fuzzy matching tech-

nique is a heuristic for identifying whether two transcribed

strings correspond to the same real-world data. Hence, fuzzy

matching techniques are prone to a small percentage of false

positive / negative errors. In practice, such errors are typically

small in number, and handled through a manual review.

Implementing a similar process in CanDID would seem to

necessitate a privacy violation as user data would have to be

reconstructed. Thus, there seems to be an inherent conflict

between privacy and the ability to do manual fraud detection.

We note that it might be possible to get the best of both

worlds if the manual review process can be automated and

implemented in MPC.

C. Real-world applicability of fuzzy matching techniques

a) The OFAC sanctions list: One use-case of the fuzzy

matching techniques evaluated above, as discussed is screening

for the OFAC sanctions list. The sanctions list search tool [8]

provides a way to search the sanctions list based on various at-

tributes including name, address and ID number. Of these, only

the search for matching names is conducted in a fuzzy manner

and that for other attributes is based on whether an exact match

was found in the sanctions list database. For the fuzzy matches,

the results are ranked in decreasing order of similarity score.

We reverse engineered the formula for the computation of this

score and found that given two names, A and B, the score

equals 40×Soundex?(A,B)+60×Jaro−Winkler(A,B). Here

Soundex? returns 1 if A and B have the same Soundex code

(and 0 otherwise). The function Jaro−Winkler is actually

the maximum of the Jaro-Winkler distance over A and B and

the average Jaro−Winkler over the parts of the names A and



21

B. In the year 2019, the OFAC list was updated a total of 204
times. Of the entries modified (added, updated or removed)

in 2019, approx. 1000 were individuals and about half of this

number had a unique identifier (e.g. passport number, national

ID number). Hence, one could imagine around 500 runs of

screening in MPC over the course of the year for OFAC list

compliance, which remains in the realm of practical for an

identity system to be used for financial applications. While the

fuzzy matching approach generalizes to applications beyond

the OFAC sanctions list, this analysis provides an example

frequency of checks for the MPC-based privacy-preserving

screening.

b) The c-shingles approach: In both our applications of

fuzzy matching, we chose to use the c-shingles approach,

because is massively parallelizable. The step where the c-

shingles of the input are compared with the c-shingles of

strings in a list L (or dataset D in the case of the screening

using MPC) is “embarrassingly” parallel, and is the dominant

cost in the proof of non-existence in L—providing opportunity

for major speedup. We leave the parallelization as future work.

c) Proof of non-existence in the sanctions list: As seen in

Table II, when included as part of credential issuance, proving

non-existence in a sanctions list L takes ≈ 25 minutes and is

the dominant component of the total issuance time. We argue

this is reasonable for a few reasons: 1) sanctions list screening

is one-time and is much faster than what a background

check takes—often several days [5]; 2) the parallelizability

of the c-shingles approach discussed above. Moreover, there

are faster options. One is using TEEs. Another is using an

oracle to prove absence from a sanctions list according to an

authoritative online search tool, e.g., [8].

APPENDIX E

LIMITATIONS AND FUTURE DIRECTIONS

a) Revocation trade-offs: To facilitate sanctions screen-

ing, IDTable may store bindings between users’ personal data

(name, address) and their pseudonyms. On the other hand, to

facilitate user revocation, IDTable might also need to store

sensitive identifiers (SSN). Enabling both types of revocation

incurs a small risk, because, a catastrophic breach of > t
nodes will leak the link between sensitive identifiers and their

personal data. Thus it seems as though, either—only one of the

two kinds of revocation can be supported—or—extra risk will

be incurred. This undesirable trade-off might not be necessary

though, as for example in Sec. IX, we use usernames instead of

SSNs, thus the risk of identity theft is lesser. But it is unclear

how much lower the risk is and further a less sensitive 1-to-1

identifier might not always be available; so better solutions are

desirable.

b) Providing unlinkability from committee nodes: The

use of pairwise DIDs provides unlikablity across verifiers from

all parties, except the committee nodes. To overcome this, we

would need to use blind signatures like in [69] when issuing

context-based credentials so that committee nodes never learn

pairwise DIDs. The integration is trickier, as naively done,

revocation could be hampered since DIDs are now anonymous.

One way to balance the two seemingly conflicting goals is to

store pairwise DIDs in a secret-shared form. Designing such

a protocol is a direction of future work.

c) Stronger non-transferability: Creating a Sybil-

resistant system prevents uncontrolled transfer/sale of

CanDID credentials. But a user can still share the limited

credentials they have. Now we discuss ways to extend

CanDID to discourage all transfer.

One way to detect transfer is anomaly detection. By mon-

itoring the use of credentials, applications can detect transfer

and then take some action. For example if a video-streaming

credential is being used more than once simultaneously, then it

must have been shared. The actions can be varied: a credential

could be temporarily revoked, or the user could be forced to

re-issue a new credential. More serious actions can be taken

too: as real-world identities are tied to CanDID credentials,

legal remedies can be availed.

A direction of future work is to integrate prior cryptographic

techniques [30] into CanDID to get stronger all-or-nothing

non-transferability guarantee, i.e., sharing any one credential

means sharing all of them.
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