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Abstract

Current single-locus-based analyses and candidate disease gene prediction

methodologies used in genome-wide association studies (GWAS) do not capi-

talize on the wealth of the underlying genetic data, nor functional data available

from molecular biology. Here, we analyzed GWAS data from the Wellcome

Trust Case Control Consortium (WTCCC) on coronary artery disease (CAD).

Gentrepid uses a multiple-locus-based approach, drawing on protein pathway-

or domain-based data to make predictions. Known disease genes may be used

as additional information (seeded method) or predictions can be based entirely

on GWAS single nucleotide polymorphisms (SNPs) (ab initio method). We

looked in detail at specific predictions made by Gentrepid for CAD and com-

pared these with known genetic data and the scientific literature. Gentrepid was

able to extract known disease genes from the candidate search space and predict

plausible novel disease genes from both known and novel WTCCC-implicated

loci. The disease gene candidates are consistent with known biological informa-

tion. The results demonstrate that this computational approach is feasible and a

valuable discovery tool for geneticists.

Introduction

Coronary artery disease (CAD) is the leading cause of

death and disability in the world (Lopez et al. 2006). Also

known as coronary heart disease, it involves narrowing of

the arteries and small blood vessels that supply blood and

oxygen to the heart, and is typically caused by the build-

up of plaque. Multiple risk factors have been identified
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for CAD that include family history, lipid levels, hyper-

tension, smoking, and diabetes (Swerdlow et al. 2012).

Heritability of CAD has been calculated to be between

40% and 50%, but only ~10% is explained by genetic

variations discovered to date (Peden and Farrall 2011).

The likely reason for the missing heritability is the com-

plex nature of the disease. Multiple genes and environ-

mental factors contribute to the phenotype, and causative

alleles may have small effects that are not detected by the

current methods used, such as genome-wide association

studies (GWAS). GWAS are designed to detect genetic

risk factors of complex diseases and quantitative traits

that are reasonably common in a population through the

assessment of correlations between genetic variants such

as single nucleotide polymorphisms (SNPs) and trait dif-

ferences. Unfortunately, rarer variants that are not directly

represented on the genotyping array, as well as common

variants with more modest effects, are harder to detect

because a highly stringent significance threshold is used

to correct for the number of false positives (Pearson and

Manolio 2008). SNPs that do not achieve genome-wide

statistical significance in these studies may still be of

importance.

Following detection of an association signal between a

SNP and the phenotype, the next step of identifying the

causal genetic basis is nontrivial for two reasons. First,

the SNP is most likely in linkage disequilibrium (LD)

with the true variant, as SNP chips contain only a selec-

tion of common variants and have incomplete coverage

of the genome. Second, even with knowledge of the true

variant, its functional significance may not be obvious as

the genetic architecture of the genome still remains

unclear. GWAS typically report the nearest neighboring

gene to the disease-associated SNP/locus, but this

assumption may not hold for all reported associations.

For instance, long range regulation and distal control ele-

ments suggest the disease gene may be near the significant

SNP but may not be the closest gene to it (Kikuta et al.

2007). Further to this, in work on simulated GWAS data,

it was found that synthetic associations can be created by

rarer alleles up to 2 Mbp from the true association signal

(Dickson et al. 2010), essentially lowering the resolution

of the association locus discovery. In recent work derived

from ENCODE, most variants from GWAS were shown

to be concentrated in regulatory regions of the DNA

(Maurano et al. 2012), with 40% enrichment of SNPs in

Deoxyribonuclease I (DNase I) hypersensitive sites

(DHS), and up to 76.6% in LD with a DHS. Around

40% of genes linked with a DHS are over 250 Kbp away

and not in LD with the SNP in the DHS.

In summary, the two main challenges in analyzing

GWAS data are the high false negative rate for genotype–
phenotype association, and low disease gene discovery

rate. With these shortcomings of GWAS in mind, we pre-

viously proposed a bioinformatic strategy to sift through

candidate genes near a larger number of SNPs by lower-

ing the significance threshold (Ballouz et al. 2011). The

increased number of genetic loci can be dealt with by

automated candidate gene prediction and prioritization

systems. There are currently many bioinformatic tools

available to predict and prioritize gene candidates which

have been reviewed elsewhere (Oti et al. 2011; Moreau

and Tranchevent 2012), each with varying underlying data

sources, inputs, algorithms, and ranking strategies. Several

tools have been adapted to allow the prioritization of

candidates from GWAS data (Holmans et al. 2009;

Raychaudhuri et al. 2009; Duncan et al. 2010; Wang et al.

2010). In this study, we used the candidate disease

gene prediction tool, Gentrepid, which uses two general

approaches: a systems biology approach, looking at path-

way data and protein–protein interaction (PPI) data; along

with a novel functional approach whereby protein domains

parsed in sequences are used to infer function. Although

previous pathway analyses of the Wellcome Trust Case

Control Consortium (WTCCC) (2007) study data has

shown that including biomolecular information identifies

numerous known and novel pathways (Torkamani et al.

2008; Elbers et al. 2009), no domain-based homology

analysis has yet been performed on this dataset.

Because Gentrepid looks at interactions and similarities

between loci, it is particularly apt for analyzing the multi-

ple loci suggested by GWAS data. By looking at the

GWAS data holistically and incorporating protein infor-

mation, interactions and common features between loci

can be detected, thereby improving candidate disease gene

prediction outcomes. Gentrepid was originally bench-

marked (George et al. 2006) on a standard set of oligo-

genic diseases with Mendelian inheritance from Turner

et al. (2003). It was later benchmarked against other can-

didate gene prediction systems using GWAS data on type

II diabetes from the WTCCC (Wellcome Trust Case Con-

trol Consortium 2007) and DIAGRAM (Zeggini et al.

2007) studies (Teber et al. 2009). More recently, we per-

formed an assessment of the system’s ability to predict

candidate disease genes from GWAS data using several

analysis protocols (Ballouz et al. 2011) and compared the

results to the popular tools GRAIL (Raychaudhuri et al.

2009) and WebGestalt (Duncan et al. 2010).

Here, we demonstrate use of Gentrepid as a discovery

tool to select and prioritize valid disease candidates from

the CAD WTCCC GWAS (Wellcome Trust Case Control

Consortium 2007). Compared to the Framingham study

(de las Fuentes et al. 2012) and other meta-analyses, a

number of interesting novel genes are identified, some in

previously associated loci, which may be valuable to pur-

sue in further genetic and biochemical analyses.
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Materials and Methods

Data sourcing

For the genotype data, we obtained SNP association sum-

mary statistics from the WTCCC (Wellcome Trust Case

Control Consortium 2007) case–control studies of CAD.

We mapped these SNPs to 489,763 autosomal SNPs on

the genome assembly (build 36.3), of which 459,231 SNPs

were retained following WTCCC quality control (Well-

come Trust Case Control Consortium 2007). For geno-

type–phenotype relationship data, we extracted known

CAD disease genes and loci from the Online Mendelian

Inheritance in Man (OMIM) database (Hamosh et al.

2002). We queried the Morbid Map flat file by perform-

ing a text search for the disease name or parts thereof:

“Coronary artery disease”, “coronary heart disease”, and

“coronary”. The results were then manually filtered,

removing duplicate loci and merging adjacent loci. The

final list of known loci consisted of 19 cytogenetic bands

and 13 genes (Fig. 1).

Data preprocessing

We selected four SNP sets by iteratively lowering the

stringency threshold of the Cochran-Armitage P-value of

statistical significance for an association from the original

threshold used in the study. These were a highly signifi-

cant SNP set (HS, PGWA <5 9 10�7), a moderately high

significant set (MHS, PGWA ≤10�5), a moderately weak

significant set (MWS, PGWA ≤10�4), and a weakly signifi-

cant set (WS, PGWA ≤10�3). SNPs in close proximity

(within 50 Kbp) were merged into a single locus.

For each of the four significant SNP sets, we created

six gene search spaces, three based on SNP gene proxim-

ity, labeled the “nearest neighbor” (NN) approach (adja-

cent, nearest, and resident sets), and three based on SNP

gene distance labeled the “bystander” (BY) approach

(1 Mbp, 0.5 Mbp, and 0.1 Mbp sets). For the NN

approach, the resident set includes only genes with signif-

icant SNPs within the gene boundary. The nearest set

contains the closest gene to each SNP. In the adjacent set,

a gene is selected upstream and downstream of each SNP

on both strands of DNA, resulting mostly in four genes

for each SNP. For the BY approach, genes were pooled

from an interval around each SNP of window sizes of

1 Mbp, 0.5 Mbp, and 0.1 Mbp, respectively. As most

SNPs on the chip used by the WTCCC are in noncoding

regions, creating several different search spaces ensured

that likely genes were included in the analysis. The meth-

ods are fully described in the protocol development paper

(Ballouz et al. 2011) and a workflow diagram is provided

(Fig. S1).

Gentrepid data analysis and validation

We analyzed the data with the Gentrepid system, via an

in-house database and local standard database queries

written in structured query language. We used two modes

of input: one that utilizes known disease gene information

as seeds (seeded); and one that uses only genes within the

search space (ab initio). For seeded mode, we used 13

genes already associated with the disease listed in OMIM

(Table 1). We used the original three modules employed

by the system to predict and prioritize candidates: two

systems biology methods, common pathway scanning

(CPS), a pathway-based approach and PPI, a PPI method;

and common module profiling (CMP), a domain-based

homology approach. The systems biology methods are

based on the assumption that common phenotypes are

likely to be associated with proteins that partake in the

same complex or pathway (Badano and Katsanis 2002; Goh

et al. 2007). CMP is a technique based on the principle

that candidate genes have similar functions to disease genes

already determined for the phenotype (Jimenez-Sanchez

et al. 2001). These methods are described in detail in previ-

ous work (George et al. 2006; Ballouz et al. 2011).

We also developed and tested two novel modules that

search for genes that are targeted by common regulatory

factors. These modules are based on the finding that dis-

ruption of regulatory elements in the genome that control

gene expression levels can cause human diseases (Kleinjan

and Coutinho 2009). Disruptions in these elements (cis-

ruptions) could likely affect known disease genes, or novel

genes with similar regulatory elements. As in the CPS

module, significance of both the regulatory elements and

the miRNA target genes are calculated through the stan-

dard one-tailed Fishers test and a P-value is assigned to

each gene for prioritization.

The first of these modules, common regulatory targets

(CRT), searches for genes in the implicated loci that bind

transcription factors. Regulatory information was sourced

from oRegAnno (Griffith et al. 2008), an experimentally

derived and computationally predicted set of regulatory

data. In seeded mode, we searched for common transcrip-

tion factors that bind the regulatory elements of both the

search genes and the known disease genes used as seeds.

For the ab initio approach, CRT searches for enrichment

of genes with common regulation among the loci in the

gene search space.

A second regulatory module (MIR) looks for genes

among the implicated loci that are common miRNA tar-

gets and in regulatory hubs. Dysfunction of miRNAs is

believed to play a role in diseases of the heart, central

nervous system, and immune system (Meola et al. 2009).

MicroRNAs bind to mRNA, inhibiting protein synthesis

through repression of translation or degradation of
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mRNA. Mutations in miRNAs or miRNA target sites pre-

vent proper target recognition, leading to gene dysregula-

tion. MicroRNA data were gathered from mirBase

(Griffiths-Jones et al. 2008), a central online repository

for miRNA nomenclature, sequence data, annotation, and

target prediction. In seeded mode, MIR first searches for

miRNAs that target the known disease genes. The remain-

ing gene targets of these miRNAs are obtained from the
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Figure 1. Candidate disease gene prediction and prioritization heatmap for coronary artery disease (CAD) across the combined gene search spaces.

Panels on the left are seeded predictions made with known disease gene properties. Panels on the right are ab initio predictions. Prediction modules

used for each panel are annotated on the left, from CPS on the top, followed by CMP, PPI, CRT, and MIR, to the combined predictions shown on the

bottom panel. Within each of the 12 panels, the autosomes run along the x-axis, from 1 (left) to 22 (right), and the six gene search spaces

investigated run along the y-axis (annotated on the right), each sub divided from HS (top of wedge) to WS (bottom of wedge). The gene ranking key

is shown on the bottom left. The lightest colors represent highly prioritized genes, while black signifies no prediction or rank. Below the gene

predictions, the original GWAS SNP loci, colored by significance (key on bottom left), are compared to the OMIM loci (blue).
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database and searched for within the gene search space.

In ab initio mode, this method searches for enriched miR-

NAs and returns the gene targets.

We then assessed Gentrepid predictions using the five

modules on the GWAS-implicated loci relative to two val-

idation sets (Table 1). The first set was the 13 OMIM

known disease genes (known validation set). The second

set was the five genes determined as candidates by the

WTCCC study (WTCCC validation set). Finally, we stud-

ied novel predictions made by the Gentrepid modules and

compared these to other GWAS and the current litera-

ture, where available.

Results and Discussion

CAD is a chronic degenerative condition of the coronary

arteries involving the build-up of atherosclerotic plaques,

and a clinical presentation of myocardial infarction. CAD

patients recruited by the WTCCC study had a validated

history of either myocardial infarctions or coronary artery

bypass surgery prior to the age of 66 years (Wellcome

Trust Case Control Consortium 2007). For our analysis,

we collated a set of 13 known CAD disease genes

(Table 1) from OMIM. These relate to metabolism, trans-

port, and signaling of low-density lipoproteins (LDL).

The original data from the WTCCC had one highly

significant locus and six moderately associated loci. For

the least significant SNP association level generated (WS),

the data had 410 implicated loci, with ~49% overlap with

previously implicated regions from OMIM (Fig. 1). For

each of the four SNP sets created (HS, MHS, MWS, and

WS), six gene search spaces were generated (resident,

nearest, adjacent, 0.1 Mbp, 0.5 Mbp, and 1 Mbp), total-

ling 24 search space sets. The largest gene search space

was 2317 annotated genes (WS, 1 Mbp).

The number of predictions made by Gentrepid varied

by search space, and was at most 525 genes for the WS

1 Mbp search space (Fig. 2). Breaking this down by mod-

ule, Gentrepid CPS predicted up to 208 genes in seeded

mode; and up to 292 genes in ab initio mode. CMP seeded

predicted up to 18 genes and CMP ab initio mode pre-

dicted 197 genes. For PPI seeded, up to 39 genes interacted

with the known seed genes, with 19 genes passing the sig-

nificance test. PPI ab initio had over 1000 interacting

genes with 32 genes passing the significance test. The reg-

ulatory modules had very few predictions; CRT seeded

produced one gene prediction, MIR seeded predicted at

most one candidate, while MIR ab initio generated at most

five predictions. The top predictions are listed in Table 2

and the full list of significant predictions is in Table S1.

Table 1. Coronary artery disease validation sets.

Gene accession

(OMIM)

Genes names

(HGNC)

Gene IDs

(Entrez)

Search space set Significance level

1 Mbp 0.5 Mbp 0.1 Mbp A N R HS MHS MWS WS

OMIM

601470 CX3CR1 1524 X X X X X

147545 IRS1 3667 X X X X

152200 LPA 4018 X X X

603507 LRP6 4040 X X

163729 NOS3 4846 X X X

173510 CD36 948 X X X X X

600046 ABCA1 19

600660 MEF2A 4205

158105 CCL2 6347

604824 KL 9365

168820 PON1 5444

602447 PON2 5445

185250 MMP3 4314

WTCCC

605009 ADAMTS7 11173 X X X X X X X X

600160 CDKN2A 1029 X X X X X X X

600431 CDKN2B 1030 X X X X X X X X X

156540 MTAP 4507 X X X X X X X

611427 MTHFD1L 25902 X X X X X X X X X

The search space sets refer to the gene sets created by the different SNP-to-gene methods explained in the text: 1 Mbp, 1 Mbp interval set;

0.5 Mbp, 0.5 Mbp interval set; 0.1 Mbp, 0.1 Mbp interval set; A, adjacent set; N, nearest set; R, resident set. The significance levels refer to the

SNP stringency thresholds used: HS, highly significant; MHS, moderately high significant; MWS, moderately weak significant; WS, weakly signifi-

cant. OMIM genes are the genes from the Online Mendelian Inheritance in Man database. WTCCC are the candidates from the Wellcome Trust

Case Control Consortium study.
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Candidate predictions in previously
implicated loci

Our first assessment of the Gentrepid predictions tested

its ability to predict known disease genes and the disease

gene candidates from previous studies. We looked for the

predictions and ranks of known disease genes implicated

in CAD from the OMIM database, and for the candidate

disease genes implicated by the WTCCC study (Table 1).

Of the 13 OMIM disease genes implicated in CAD, up

to six were in at least one of the CAD gene search spaces

constructed from the WTCCC SNPs and seven were out-

side the search spaces and discarded from the validation

process. Four of these were detected by CPS from path-

ways using the seeded or ab initio method. Three of these

genes were supported by multiple SNPs in the GWAS

data. These were chemokine (C-X3-C motif) receptor 1

CX3CR1 (MIM 601470) in 3p22.1-3, a chemokine

involved in LDL signaling pathways; and CD36 (MIM

173510) and insulin receptor substrate 1 IRS1 (MIM

147545), which are both receptors in the adipocytokine

signaling pathway. A fourth gene, nitric oxide synthase 3,

NOS3 (MIM 163729) in 7q21.11, though only supported

by SNPs in the WS set, was predicted through CPS

seeded. Lipoprotein A (LPA, 6q27, MIM 152200), also

only supported by weak SNP association signals, was pre-

dicted through CMP (Table 2).

Of the five reported WTCCC genes of interest, all five

genes were predicted by Gentrepid by either CPS or CMP

(Table 2) and were highly ranked. Cyclin-dependent kin-

ases inhibitors CDKN2A/B (MIM 600160/MIM 600431)

and a phosphorylase MTAP (MIM 156540), associated

with a single highly significant locus (9p21), were pre-

dicted via common metabolic pathways along with a

modestly associated dehydrogenase MTHFD1L (6q25,

MIM 611427). The metalloproteinase ADAMTS7 (MIM

605009), implicated by a modest association (15q24), had

common domains with another metalloproteinase in the

gene search spaces.

Novel candidate disease gene predictions

Our next assessment was to analyze the candidate disease

gene predictions that had not been previously reported at

the time of the generation of the data. First, we looked at

the candidates predicted in loci that were previously

implicated but had no known or candidate disease gene,

as not all the loci listed in OMIM have candidates. Of 15

previously determined disease loci, all contained WS

SNPs. Only five loci contained MWS SNPs and one locus

contained MHS SNPs. None of the previously implicated

loci were detected at the HS level. The largest numbers of

SNPs were associated with 2q36.3 and 3p22-p21 in which

CX3CR1 (MIM 601470) and IRS1 (MIM 147545) have

previously been identified as the disease genes. Predictions

within previously determined loci for which a known

gene has not been determined were based on very weak

genetic signals, typically one, or at most two WS SNPs.

Figure 2. Number of significant predictions for CAD. The data are split across SNP/gene sets and are represented on a log10 scale. As per the

key, the total predictions are shown by the purple bar, seeded mode predictions are the shapes in light grey with black border, ab initio

predictions in white with black border. CMP predictions as triangles, CPS predictions as diamonds, PPI predictions as horizontal bars, CRT

predictions as crosses, MIR predictions as circles, and the combined predictions as squares. The WS sets and 1 Mbp mappings had the most

prediction results.
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They include tyrosine kinase 2 TYK2 (MIM 176541) in

19q13, regulatory factor X RFX5 (MIM 601863)

in 1q21.2, fragile histidine triad FHIT (MIM 601153) in

3p14.2, and the tumor necrosis factor receptors

TNFRSF10A-D (MIM 603611, MIM 603612, MIM

603613, MIM 603614) in 8p21.2.

In addition, 15 alternative gene predictions were made

for loci with previously determined disease genes. Of

these, the IjB kinase complex-associated protein IKBKAP

(MIM 603722) in 9q31.2 was recently shown to be differ-

entially regulated in patients with acute myocardial infarc-

tion compared to controls (Dabek et al. 2009). The

disease gene previously implicated for this region is the

ATP-binding cassette ABCA1 (MIM 600046).

Common pathway candidates

We then looked at the novel candidates from each of the

modules for the regions implicated by our novel methodol-

ogy and SNP/gene mappings. Two of the most significant

pathways predicted by Gentrepid CPS in loci novel to the

WTCCC study were diabetes related. In the “Type II diabe-

tes mellitus” pathway (MWS set, Ppath,adjacent = 0.005),

three genes in three novel loci (10q23, 13q34, 20p11) were

implicated in addition to the known disease gene IRS1

(MIM 147545). In the MWS set, the “Insulin signaling

pathway” was the most significant (Ppath,nearest = 0.0003).

Patients with T2D are known to have a higher risk of

CAD. The possible commonality of pathways underlying

CAD and T2D was raised by Torkamani et al. (2008) based

on their analysis of the WTCCC data. In addition two

hypoxia-related pathways suggested hypoxia-inducible fac-

tor HIF1A (MIM 603348) as a candidate. Overall, 56 novel

pathways were predicted in ab initio mode across all the

gene search spaces (Table S2).

We also wished to compare our pathway results to pre-

dictions from the Framingham study (de las Fuentes et al.

2012) which used variable set enrichment analysis (VSEA)

to uncover significant pathways. Of the 25 pathways they

found to be significant, the “Rac 1 cell motility signaling

pathway” was the only significant pathway in both our

studies. Of the 18 genes predicted by this pathway in the

Framingham study, CPS ab initio and seeded module

(Table S1) predicted three of those genes: RAC1 (Ras-

related C3 botulinum toxin substrate 1, MIM 602048),

PDGFRA (Alpha-type platelet-derived growth factor

receptor, MIM 173490), and PLD1 (phospholipase D1,

phosphatidylcholine-specific, MIM 602382) (PWS,adja-

cent = 0.007). WASF1 (Wiskott-Aldrich syndrome protein

family member 1, MIM 605035), and the enzyme LIM

domain kinase (LIMK1, MIM 601329,

PWS,0.5 Mbp = 0.018) were not in the Framingham study

but were predicted by our method. LIMK1 (MIMT
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601329) may be involved in cardiovascular disease

through its interactions with BMP type II receptor

(BMPR2, MIM 600799) (Scott and Olson 2007).

Domain homology candidates

Protein domains are highly conserved globular structures

each with their own biochemical function (Finn et al.

2008). In combination, domains can be used to assign a

function to a protein and its gene (Patthy 2003). Thus

using domain homology, genes with unknown functions

can potentially be identified as candidates. Gentrepid

CMP seeded found five genes with similarities to LDL

receptor-like protein LRP6 (MIM 603507) in the gene

search spaces; two genes homologous to the lipoprotein

carrier LPA (MIM 152200): PLG (MIM 173350) and

LPAL2 (MIM 611682); and a matrix metalloproteinase

(MMP15, MIM 602261) similar to MMP3 (MIM 185250),

involved in extracellular matrix (ECM) breakdown (Table

S3). Many plausible candidates were predicted by CMP

ab initio (Table S4). Cell–cell and ECM adhesion, as well

as their remodeling, featured prominently. Genes with the

strongest genetic support are the vascular adhesion factors

SEZ6L (22q11.23, MIM 607021) and CSMD2 (1p35.1,

MIM 608398). Adhesion between the cell and the ECM is

implicated by multiple integrins and matrix metallopro-

teases as well as by transforming growth factor TGFBI

(MIM 601692) and periostin POSTN (MIM 608777).

TGFBI (MIM 601692) binds to type I, II, and IV colla-

gens. Other adhesion genes predicted were adhesion

G-protein coupled receptors. Lipid signaling was also

implicated by phospholipases, DAG kinases, and protein

kinase C-like genes (Table S4).

Predictions from the PPI module

For the PPI module, where the search was limited to

direct interaction partners, the sets with more genes (1

and 0.5 Mbp) and less stringent significant thresholds

(WS and MWS) had the greatest number of predictions

in both seeded and ab initio modes. Some of the predic-

tions were the same as those from the CPS and CMP

modules, such as the chemokine receptors CCR1, 2, 3,

and 5 (MIM 601159, MIM 601267, MIM 601268, and

MIM 601373) that interact with known disease gene

CCL2 (MIM 158105), and LIMK1 (MIM 601329) that

interacts with ABCA1 (MIM 600046) (Fig. 3 and Table

S5).

The significant predictions of the PPI ab initio module

are listed in Tables S6, S7. Visualizations of the interac-

tions (Fig. 4) implicate protein interaction hubs such

as the ubiquitin-conjugating enzyme UBE2G2 (MIM

603124) or the ubiquitin-specific processing protease

USP7 (MIM 602519). The ubiquitin–proteasome complex

and proper protein degradation are involved in cardiovas-

cular physiology and disease with roles in endothelial

function and atherosclerosis (Depre et al. 2010).

Predictions from regulatory modules

Very few predictions were returned for the Gentrepid reg-

ulatory modules MIR and CRT. For CRT, the known
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SMAD3

RPTOR

HSP90AB1

GRIN2B

TP53BP2

TUB
GRB2

HNRNPU
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Figure 3. CAD PPI seeded interactions. The genes in magenta are the known OMIM seed genes used for the PPI module. The lines represent an

interaction. The different colors represent the gene search space the interaction arises from. Resident set interactions in blue, nearest set in red,

adjacent set in green, 0.1 Mbp set in yellow, 0.5 Mbp set in orange, and 1 Mbp set in purple.
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IRS1 (MIM 147545) gene was the sole prediction. For the

MIR module, IRS1 (MIM 147545) was the only signifi-

cant prediction in seeded mode. The miRNAs that impli-

cated this gene were mir-126, known to be involved in

angiogenesis (Van Solingen et al. 2009) and mir-145,

involved in vascular smooth muscle differentiation (Cordes

et al. 2009) and possibly CAD (Fichtlscherer et al. 2010).

In ab initio mode, several genes were predicted from

the WS sets which were all implicated by the family of

miRNAs from the mir-181 precursor (Table S8). The

homeobox CDX2 (MIM 600297), transcription factor

GATA6 (MIM 601656) and axin interactor AIDA (MIM

612375) are regulated by the mir-181 family. Mir-181 tar-

get genes are involved in myogenesis, muscle regeneration

(Naguibneva et al. 2006), and hematopoiesis (Chen et al.

2004). GATA6 (MIM 601656) mutations are known to

cause congenital heart defects (Maitra et al. 2009). Thus

risk alleles of this transcription factor could plausibly con-

tribute to CAD. AIDA (MIM 612375) is highly expressed

in the heart and skeletal muscle, also making it an

interesting candidate (Rui et al. 2007). Predictions of a

read-through transcript TGIF2-C20orf24 and DNA meth-

yltransferase DNMT1 (MIM 126375) by their common

regulator mir-148 are interesting predictions, as mir-148a

also promotes skeletal muscle differentiation (Zhang et al.

2012).

Further case study: CAD meta-analyses

A recent meta-analysis GWA on CAD called the CARDIo-

GRAMplusC4D study (Deloukas et al. 2012) discovered

15 novel association loci and listed 20 likely candidate

genes. We again wished to compare our method to this

study’s results. First, we checked if their significant loci

were a subset of the less significant loci from the WTCCC

and found very few overlaps. Whether these overlaps are

simply due to chance or a significant association that was

missed in the stringent threshold is hard to determine.

Nonetheless, we still wished to see if our method was

capable of selecting appropriate candidates from this new

set of loci. We then took the novel loci, mapped them to

their adjacent genes and ran Gentrepid, comparing their

candidates with our predictions. Of the 20 genes that

were selected as candidates from the CARDIoGRAMp-

lusC4D study, 16 genes were mapped by our adjacent

SNP-to-gene mapping, and Gentrepid predicts and priori-
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Figure 4. CAD PPI ab initio interactions for the MHS and MWS sets. The genes in magenta are the known OMIM seed genes used for the PPI

module. The lines represent an interaction. The different colors represent the gene search space the interaction arises from. Resident set

interactions in blue, nearest set in red, adjacent set in green, 0.1 Mbp set in yellow, 0.5 Mbp set in orange, and 1 Mbp set in purple.
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tizes 11 of these genes (Table 3 and Table S9). Gentrepid

also made three alternate predictions: the leucine-rich

PPR motif-containing protein, mitochondrial gene

(LRPPRC, MIM 607544), mitogen-activated protein

kinase kinase kinase 4 (MAP3K4, MIM 602425) and gua-

nylate cyclase soluble subunit beta-1 (GUCY1B3, MIM

139397). GUCY1B3 (MIM 139397) is known to interact

with the endothelial NOS (NOS3, MIM 163729), a gene

associated with ischemic heart disease and hypertension

(Casas et al. 2004). Our analyses once again showed that

the system was capable of making valid predictions based

on biological knowledge, and also generate novel hypoth-

eses based on enrichment of common pathways and func-

tional domains within the data.

Caveats

Although we aimed to predict and prioritize a list of can-

didate disease genes, there still remains a reasonably high

probability (50/50 at worst) that a result is a false posi-

tive. From our methods paper (Ballouz et al. 2011), we

calculated the specificity of the system to be between 0.55

and 1, depending on the method used. Further to this,

even the list of candidates used to validate our study

may also be false positives, and therefore skew our calcu-

lations. For instance, the 6q25 locus was not replicated in

other studies (Kathiresan et al. 2009) and therefore the

MTHFD1L (MIM 611427) gene may be a false-positive

result. However, the OMIM validation set contained

genes that were selected by our system, thereby validating

the technique to some extent. Also, by demonstrating

that Gentrepid selected at least half of the candidates

from the CARDIoGRAMplusC4D, the system appears

competitive with meta-analysis methods used by

researchers to determine candidates. The system also

made alternate predictions which might be of interest

too. Another point to note is the low concordance of the

pathway enrichment results with the Framingham study

(de las Fuentes et al. 2012). A few reasons for this

include the fact that we used different gene data sets as

input to which the methods are highly sensitive to (Glaab

et al. 2012). A very highly annotated gene in one set yet

missing in the other will skew results depending how the

significance is calculated. Although it would have been

reassuring to have obtained a larger overlap in the path-

ways, it nonetheless brings to light how dependent the

methods, in particular gene set enrichment, are on the

underlying data.

Table 3. CAD predictions made by Gentrepid for the CARDIoGRAMplusC4D loci.

Gene accession

(OMIM) Gene (HGNC)

CARDIoGRAMplusC4D

SNP Method Common biological support Score Rank

190030 FES rs17514846 CMP-ab Pkinase_tyr ○ 2

165070 FLT1 rs9319428 CMP-ab Pkinase_tyr ○ 2

193002 SLC18A1 rs264 CMP-ab MFS_1 ○ 1

604190 SLC22A4 rs273909 CMP-ab MFS_1 ○ 1

131243 EDNRA rs1878406 CMP-s 7tm_1 ● 3

173350 PLG rs4252120 CMP-s Kringle ●●●● 1

605460 ABCG8 rs6544713 CMP-s ABC_tran ● 2

147880 IL6R rs4845625 CPS-ab IL 6 signaling pathway|

Role of ERBB2 in signal transduction

and oncology

◊◊◊ 1

607544 LRPPRC rs6544713 CPS-ab IL 6 signaling pathway|

Role of ERBB2 in signal transduction

and oncology

◊◊◊ 1

605459 ABCG5 rs6544713 CPS-s Nuclear receptors in lipid metabolism

and toxicity

* 2

139396 GUCY1A3 rs7692387 CPS-s Long-term depression * 6

139397 GUCY1B3 rs7692387 CPS-s Long-term depression * 6

609708 LPL rs264 CPS-s Low-density lipoprotein (LDL) pathway

during atherogenesis

◊◊ 1

602425 MAP3K4 rs4252120 CPS-s MAPKinase Signaling Pathway * 8

Method: ab, ab initio; s, seeded. Common biological support column depends on method. For CMP-s, common gene and common domain are

listed. For CMP-ab, only the common domain. For CPS-s and CPS-ab, the common pathway is listed. For PPI-s, the HGNC gene name of the gene

(s) are listed. For MIR-s, the common miRNA ID is listed. For CRT, the common oRegAnno ID is listed. Gentrepid scoring: CMP-ab: ○○○○○, log
v2 ≥ 2.5; ○○○○, 2 ≤ log v2 < 2.5; ○○○, 1.5 ≤ log v2 < 2; ○○, 1 ≤ log v2 < 1.5; ○, log v2 < 1. CMP-s: ●●●●, Sc > 0.7; ●●●, Sc > 0.6; ●●,
Sc > 0.5; ●, Sc > 0.4. Other: ◊◊◊◊, P < 0.005; ◊◊◊, P < 0.01; ◊◊, P < 0.025; ◊, P < 0.05; *, not significant. Rank represents ranking score in prior-

itization of gene in module, not overall ranking. Genes in bold are candidate predictions not selected by the CARDIoGRAMplusC4D.
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Conclusions

We performed an extensive analysis of the GWAS data

for CAD. The approach used four sets of significant SNPs

filtered at different significance thresholds. Gene search

spaces were generated in six different ways and the result-

ing sets analyzed with the Gentrepid candidate gene pre-

diction system. The results show that using a less

stringent significance threshold increases the noise in the

system, yet even so brings out likely candidate disease

genes. Looking beyond the nearest gene in order to find

suitable disease candidates, in both the adjacent and BY

approaches, is also valuable for the analysis of GWAS

data, in particular for the gene desert regions with regula-

tory elements.

Which method is best?

Biological filtering improves the amount of knowledge

extracted from the study. Using the blind method (ab ini-

tio), no prior disease gene information is required, allow-

ing for the discovery of novel pathways and regulatory

elements that may be important in the disease that were

not previously considered, along with protein domains

attributing novel functions to the mechanisms behind the

disease. The few functionally annotated miRNAs that pro-

duced predictions had relevant biological functionality in

the phenotype and it would be very interesting to prod

further into these, in particular genes GATA6 (MIM

601656) and AIDA (MIM 612375). MicroRNA research is

expanding and will produce motivating hypotheses rele-

vant to disease. Further to this, genes such as RAC1

(MIM 602048), LIMK1 (MIM 601329), SEZ6L (MIM

607021), and CSMD2 (MIM 608398) also warrant further

investigation as they were predicted by multiple methods

or had strong genetic support.

Generally, we recommend the use of the adjacent gene

method or genes within a 0.1–0.5 Mbp interval to create

the search space sets. Most systems use biological path-

ways and GO terms to predict disease gene candidacy

(Tranchevent et al. 2011), therefore the use of CMP

would be recommended as it is unique to Gentrepid.

Although there are alternate methods that capitalize on

gene and pathway enrichment analysis (Raychaudhuri

et al. 2009; Duncan et al. 2010; de las Fuentes et al.

2012) and PPI data (Jensen et al. 2011), our method

incorporates multiple methods along with functional pro-

tein domain information. The Gentrepid webserver is

available for free usage by educational and nonprofit

research institutes (https://www.gentrepid.org). Registra-

tion is free and data are stored remotely and securely.

Each of the methods highlighted here can be performed

with the exception of the regulatory modules CRT and

MIR under development. The only input required is a list

of SNPs or markers and an optional phenotype for the

seeded mode.

As in all candidate disease gene methods, it is still diffi-

cult to perform a fair assessment of the results without

further biochemical functional studies. Overall, we believe

our pipeline is a suitable methodology for generating

plausible hypotheses from GWAS. The study demon-

strates that using existing knowledge and a holistic multi-

ple loci approach provides insight into what is a very

complex disease.
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