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We consider two spacelike separated Dirac particles and construct five invariants under the spinor representa-
tions of the local proper orthochronous Lorentz groups. All of the constructed Lorentz invariants are identically
zero for product states. The behaviour of the Lorentz invariants under local unitary evolutions that act unitarily
on any subspace with fixed particle momenta is studied. All of the Lorentz invariants have invariant absolute
values on such subspaces if the evolutions are generated by local zero-mass Dirac Hamiltonians. Some of them
also for the case of nonzero-mass. Therefore, they are considered potential candidates for describing spinor en-
tanglement of two Dirac particles, with either zero or arbitrary mass. Furthermore, their relations to the Wootters
concurrence is investigated and their representations in the Foldy-Wouthuysen picture is given.

I. INTRODUCTION

The Dirac equation [1, 2] is used in the Standard Model
to describe leptons and quarks [3], in the Yukawa model of
hadrons to describe baryons [4], and in relativistic quantum
chemistry [5]. Without a mass term the Dirac equation ad-
mits solutions with definite chirality, so called Weyl particles
[6]. Dirac-like equations are also used to describe Dirac and
Weyl particles in solid state and molecular systems as well as
photonic crystals [7–11]. Emergent massless Dirac fermions
have been experimentally demonstrated in graphene [12] and
massless charged Weyl fermions have been demonstrated in
Weyl semimetal [13].

A quantum system is entangled if it is in a superposition
where some property of one subsystem is conditioned on a
property of another subsystem. Then this property of the sub-
system cannot be described independently of the property of
the other subsystem. The state of two spacelike separated
entangled subsystems can therefore not be fully described in
terms of local variables but have properties that require a non-
local description [14–16]. A commonly studied type of en-
tanglement in non-relativistic quantum mechanics is that be-
tween the spins of two spacelike separated spin- 1

2 particles
[15, 17–19]. It can be characterized by the Wootters concur-
rence [18, 19], a polynomial in the state coefficients that is in-
variant up to a U(1) phase under local unitary evolution of the
spins. In relativistic quantum mechanics the spinorial degree
of freedom of a spin- 1

2 particle is described by a four com-
ponent Dirac spinor. Entanglement and the associated non-
locality between the spinors of Dirac particles, as well as other
descriptions of entanglement between Dirac particles, has pre-
viously been investigated and discussed in multiple works, see
e.g. [20–38].

In this work we investigate the description of entanglement
between the spinorial degrees of freedom of two Dirac parti-
cles from an algebraic point of view. In particular we consider
the problem of how to construct polynomial entanglement in-
variants [39–41] on a subspace defined by fixed particle mo-
menta and spanned by spinorial degrees of freedom. We there-
fore search for polynomials that are zero for states prepared
using only local resources, but not for all states. Moreover, we
require that the polynomials are invariant up to a U(1) phase
under local unitary evolution on any subspace defined by fixed

particle momenta. Finally, we require that they are invariant
under action by the spinor representation of the local proper
orthochronous Lorentz groups. Such polynomials are consid-
ered potential candidates for describing entanglement of the
spinorial degrees of freedom.

To construct such candidate entanglement invariants, we
make the assumption that the state of any two spacelike sepa-
rated Dirac spinors can be expanded in a basis that is formed
from tensor products of the local basis elements used to de-
scribe single spinors. Given this assumption we derive five
Lorentz invariants and describe their properties under local
unitary evolutions generated by Dirac-like Hamiltonians with
as well as without a mass term. We discuss their relation to
the Wootters concurrence [18, 19], and finally investigate their
representation in the Foldy-Wouthuysen picture [42].

The outline of this paper is as follows. Sections II-V re-
view the relevant background material, discuss the physical
assumptions made and introduce the tools used to construct
the Lorentz invariants. In particular Section II introduces
the description of Dirac and Weyl particles and discusses the
physical assumptions. Section III describes the spinor rep-
resentation of the Lorentz group and the charge conjugation
transformation. In section IV we describe how to construct
bilinear forms invariant under the spinor representation of the
local proper orthochronous Lorentz transformations. Section
V describes the behaviour of these bilinear forms under lo-
cal unitary evolution generated by Dirac-like Hamiltonians.
Sections VI-VIII contain the results. In particular Section VI
describes how to construct candidate entanglement invariants
and gives five such invariants which is the main results of this
work. In Section VII we consider a few examples of spinor
entangled states. Section VIII gives the representation of the
Lorentz invariants in the Foldy-Wouthuysen picture. Section
IX is the discussion and conclusions.

II. DIRAC SPINORS

The Dirac equation was originally introduced in Ref. [1] to
describe a relativistic spin- 1

2 particle, or Dirac particle. For a
particle with mass m and charge q in an electromagnetic four-
potential Aµ(x) it can be written, with natural units ~ = c = 1,
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as
















∑

µ

γµ(i∂µ − qAµ(x)) − m

















ψ(x) = 0, (1)

or equivalently as
















−
∑

µ=1,2,3

γ0γµ(i∂µ − qAµ(x)) + qA0(x)I + mγ0

















ψ(x) = i∂0ψ(x),

(2)

where ψ(x) is a four component spinor

ψ(x) ≡





























ψ0(x)
ψ1(x)
ψ2(x)
ψ3(x)





























, (3)

which is a function of the four-vector x, and γ0, γ1, γ2, γ3 are
4 × 4 matrices that satisfy the Clifford relations

{γµ, γν} = 2gµνI, (4)

where gµν is the Minkowski metric with signature (+ − −−).
The matrices γ0, γ1, γ2, γ3 are not uniquely defined by the
Clifford relations and are chosen by convention. One choice
of these matrices that we use here is the so called Dirac matri-
ces or gamma matrices defined as

γ0 =

(

I 0
0 −I

)

, γ1 =

(

0 σ1

−σ1 0

)

,

γ2 =

(

0 σ2

−σ2 0

)

, γ3 =

(

0 σ3

−σ3 0

)

, (5)

where I is the 2×2 identity matrix andσ1, σ2, σ3 are the Pauli
matrices

I =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0
0 −1

)

.(6)

For a derivation of the Dirac equation see e.g. Ref. [2] Ch.
XI. In the following we frequently suppress the four-vector
dependence of ψ(x) where it is not crucial and simply write ψ.
The Dirac Hamiltonian HD can be identified in Eq. (2) as

HD = −
∑

µ=1,2,3

γ0γµ(i∂µ − qAµ) + qA0I + mγ0. (7)

We can define two additional useful matrices in the algebra
generated by the gamma matrices. The first is the matrix

C ≡ iγ1γ3 =

(

−σ2 0
0 −σ2

)

, (8)

which satisfies C = C† = C−1 and for each gamma matrix γµ

and its transpose γµT it holds that

γµT = CγµC. (9)

The second is the matrix

γ5 ≡ iγ0γ1γ2γ3 =

(

0 I

I 0

)

, (10)

which anticommutes with all the γµ

γ5γµ + γµγ5 = 0, (11)

and satisfies γ5 = γ5† = (γ5)−1.
A modified Dirac equation without a mass term was con-

sidered by Weyl in Ref. [6]
















−
∑

µ=1,2,3

γ0γµ(i∂µ − qAµ) + qA0I

















ψ = i∂0ψ. (12)

For this equation there are two invariant subspaces, defined by
the projectors PL =

1
2 (I − γ5) and PR =

1
2 (I + γ5), called the

left- and right-handed chiral subspace, respectively. Solutions
belonging to the right- or left-handed subspace, i.e., right-
handed particles ψR or left-handed particles ψL, are called
Weyl particles and have the form

ψR =





























ψ0

ψ1

ψ0

ψ1





























, ψL =





























ψ0

ψ1

−ψ0

−ψ1





























. (13)

For any t a solution to the Dirac equation can be expanded
in basis modes φ je

ik·x as

ψ(t, x) =
∫

k

dk
∑

j

ψ j,k(t)φ je
ik·x, (14)

where k is a wave three-vector, x is a spatial three-vector,
ψ j,k(t) are complex numbers, and φ j is a basis for the spinor
degree of freedom

φ0 =





























1
0
0
0





























, φ1 =





























0
1
0
0





























, φ2 =





























0
0
1
0





























, φ3 =





























0
0
0
1





























. (15)

The Dirac inner product is defined as

(ψ(t), ϕ(t)) =
∫

x

dxψ†(t, x)ϕ(t, x). (16)

We would like the basis modes to be orthogonal and normal-
izable with respect to this inner product. However, if we allow
the modes to extend over all three-space, i.e., if we let them
be infinite plane waves, the inner product (φ je

ik·x, φ je
ik′ ·x) is

ill defined. Since infinite plane waves are not supported on
a bounded domain the inner product (φ je

ik·x, φ je
ik′ ·x) does not

converge for any k and k′ and in particular is unbounded when
k = k′. Thus the basis modes are neither orthogonal nor nor-
malizable with respect to this inner product. Due to this prob-
lem Dirac opted to ad hoc impose the desired orthogonality
relations (φ je

ik·x, φle
ik′ ·x) = δ(k − k′)δ jl where δ(k − k′) is the

Dirac delta and δ jl is the Kronecker delta (See Ref. [2] Ch. IV
§ 23). Efforts to find a mathematically stringent framework
where these relations hold led to the theory of generalized
eigenfunctions and rigged Hilbert spaces [43, 44]. In this ap-
proach the momentum eigenmodes are not physically allowed
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states. Only Schwartz functions are allowed. These are func-
tions that are smooth and such that for sufficiently large x the
absolute values of the function and its derivatives to all orders
decrease faster than any reciprocal power of |x| (See e.g. Ref.
[45]). In this sense a Schwartz function is thus "localized" in a
spatial region. Moreover, Schwartz functions in spatial three-
space are Schwartz functions also in momentum three-space.
If the support in momentum space of a Schwartz function is
compact and sufficiently small it becomes experimentally in-
distinguishable from the point support of a momentum eigen-
mode (See Appendix A for a discussion).

A different approach to have orthogonal and normalizable
basis modes is to consider only modes in a finite spatial rect-
angular volume with periodic boundary conditions, so called
box quantization (See e.g. Refs. [46] and [47]). Then the in-
ner product as defined in Eq. (16) is well defined and there
is a countable number of allowed momentum modes which
satisfy the orthogonality relations (φ je

ik·x, φle
ik′ ·x) = Vδk,k′δ jl

where δk,k′ and δ jl are Kronecker deltas and V the volume of
the box. For a sufficiently large box the discrete set of k be-
comes experimentally indistinguishable from a continuous set
(See Appendix A for a discussion). Note that box quantiza-
tion is closely related to introducing an Infrared Cutoff (See
e.g. Refs. [47] and [48]).

In this work we use the momentum eigenbasis and assume
orthogonality and normalizability of the modes. Moreover,
as in References [20, 21, 24, 29, 31, 33, 37, 38] we consider
states with definite momenta. This is strictly only possible if
we assume boundary conditions that allow definite momenta
in a finite spatial volume similarly to box quantization. In
the rigged Hilbert space approach it can only be done as an
approximation. In the following we assume that the physical
scenario is such that it is motivated to treat a particle as having
a definite momentum while also being contained in a finite
spatial volume, even if only as an approximate description.

With these caveats we can consider the four-dimensional
subspace spanned by only spinorial degrees of freedom that is
obtained by fixing k, i.e., the subspace spanned by the modes
φ je

ik·x for a fixed k. The inner product (·, ·)k on such a sub-
space reduces to

(ψ(t), ϕ(t))k = ψ
†(t)ϕ(t). (17)

Similarly to References [21, 24, 31, 37, 38] we make the
assumption that the state of any two spacelike separated parti-
cles that have not interacted can be described as a tensor prod-
uct of single particle states ψ1(t) ⊗ ψ2(t). Furthermore, we
assume that the tensor products of elements of the single par-
ticle bases φ j1 eik1·x1 ⊗ φ j2e

ik2 ·x2 is a basis for the two-particle
states.

In the same vein we describe the two particles as belonging
to different Minkowski spaces. These two spaces should be
understood as the local descriptions of spacetime used by two
laboratories holding the respective particles. They could be
the same Minkowski space described by two different space-
like separated observers or alternatively Minkowski tangent-
spaces of two different points in spacetime in the sense of
General Relativity (See e.g. Ref. [49]).

The assumption that a tensor product structure is appropri-
ate to describe the state of the two particles in this situation is
not trivial. The motivation for using it is the assumption that
operations on one particle can be made jointly with operations
on the other, i.e., that such operations commute. However, it
is not clear that a description in terms of commuting operator
algebras and a description in terms of tensor product spaces
are always equivalent [50–52]. This open question is known
as Tsirelson’s Problem but for the case of two observers and
finite dimensional algebras of operators it has been argued
that a tensor product structure is not a restrictive assumption
[51, 52].

The Dirac or Weyl particles in solid state or molecular sys-
tems are quasiparticles with a linear dispersion relation. The
physical interpretation of such particles and the Hamiltonians
that describe their evolution is thus quite different from that
of Dirac or Weyl particles in relativistic quantum mechan-
ics. Nevertheless, they can be described by four component
spinors obeying Dirac-like equations. An effective Dirac par-
ticle in the 2D Dirac semimetal graphene is described by a
Hamiltonian that can be expressed on the form

H2D = ivDγ
0
∑

µ=1,2

γµ∂µ − µPI, (18)

where vD is the Dirac velocity and µP is the deviation of the
chemical potential from its half-filling value (See e.g. Ref.
[53] or [54]). Similarly, the Hamiltonian for a massless linear
Dirac particle in a 3D Dirac semimetal can be expressed on
the general form [9]

H3D = ivDγ
0

∑

µ=1,2,3

γµ∂µ. (19)

Examples of 3D Dirac semimetals include sodium bismuthide
(Na3Bi) [10, 55] and cadmium arsenide (Cd3As2) [56–58].

III. SPINOR REPRESENTATION OF THE LORENTZ

GROUP AND THE CHARGE CONJUGATION

In a spacetime described by General Relativity one can at
every non-singular point define the tangent vector space. This
tangent space is isomorphic to the Minkowski space (See e.g.
Ref. [49]). Here we make the assumption that we can neglect
the curvature of spacetime and describe the Dirac particle as
belonging to the Minkowski tangent space rather than the un-
derlying spacetime manifold.

A Lorentz transformation on the local Minkowski tangent
space to a point in spacetime does not only transform the
tangent space coordinates, but also induces an action on the
spinor in the point. This action is given by a representation
of the Lorentz transformation. Let Λ be the Lorentz trans-
formation and S (Λ) the induced action on the spinor. Then
ψ(x) → ψ′(x′) = S (Λ)ψ(x) where x′ = Λx (See e.g. Ref.
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[59]), and the Dirac equation transforms as
















∑

µ

γµ(i∂µ − qAµ) − m

















ψ(x) = 0

→
















∑

µ,ν

γµ(Λ−1)νµ(i∂ν − qAν) − m

















S (Λ)ψ(x) = 0. (20)

Invariance of the equation implies that

S −1(Λ)γµS (Λ) =
∑

ν

Λ
µ
νγ

ν. (21)

Thus, a Lorentz transformation corresponds in this way to a
transformation of the matrices γµ, but due to the invariance
of the Dirac equation the new matrices γ′µ must satisfy the
same Clifford relations {γ′µ, γ′ν} = 2gµνI. By Pauli’s Funda-
mental Theorem this implies that the transformation S (Λ) is
non-singular and unique up to a constant factor.

Pauli’s Fundamental Theorem. If for two sets of 4×4 matri-

ces γa and γ′a it holds that {γµ, γν} = 2gµνI = {γ′µ, γ′ν}, then

there exist a nonsingular S such that γ′µ = S γµS −1, and S is

unique up to a multiplicative constant.

Proof. See e.g. Ref. [60] or [61]. �

The Lorentz group is a Lie group and the connected com-
ponent that contains the identity element, the proper or-
thochronous Lorentz group, can be generated by exponentials
of its Lie algebra. Likewise, the representation of the proper
orthochronous Lorentz group acting on a spinor is a connected
Lie group. The generators S ρσ of the Lie algebra of the spinor
representation are defined by

S ρσ =
1
4

[γρ, γσ] =
1
2
γργσ − 1

2
gρσI. (22)

A finite transformation can be obtained as an exponential

S (Λ) = exp

















1
2

∑

ρ,σ

ωρσS ρσ

















, (23)

where ωρσ are real numbers. Products of these finite trans-
formations can be used to describe the spinor representation
of any proper orthochronous Lorentz transformation. See e.g.
Ref. [59]. This holds since the spinor representation of the
proper orthochronous Lorentz group is a connected matrix Lie
group (See e.g. Ref. [62] Ch. 3.8).

The Lorentz group has three other connected components
besides the proper orthochronous subgroup. These are re-
lated to the proper orthochronous subgroup by the parity in-
version transformation P , the time reversal transformation T,
and the combined parity time transformation PT, respectively.
Likewise, the spinor representation of the Lorentz group has
three other connected components related to the spinor rep-
resentation of the proper orthochronous subgroup by the the
spinor representations of the parity inversion P, the time re-
versal T, and the parity time transformation PT, respectively.

The spinor representations of P and T are defined up to mul-
tiplication by a U(1) phase that is chosen by convention. The
representation of the parity transformation on the spinor can
be chosen as

S (P) = γ0. (24)

The representation of the time reversal transformation in-
volves the matrix C and a complex conjugation of the spinor.
Time reversal T of a spinor ψ can be chosen as ψ→ Cψ∗.

In addition to the Lorentz group we may consider also the
charge conjugation transformation C, charge parity CP, as well
as the charge parity time CPT transformation. As for P and T,
the spinor representation of the charge conjugation is defined
up to multiplication by a U(1) phase that is chosen by conven-
tion. Charge conjugation like time reversal involves complex
conjugation and can be chosen as ψ → iγ2ψ∗. The CP trans-
formation is the combination of charge conjugation and parity
inversion and is given by ψ → −iγ0γ2ψ∗ = iCγ5ψ∗. The CPT
transformation is the combination of charge conjugation, par-
ity inversion, and time reversal and is given by the matrix −iγ5

S (CPT) = −iγ5. (25)

See e.g. Ref. [63]. In the following we use these conventions
for the spinor representations of the P, T, and C transforma-
tions.

IV. INVARIANTS OF THE SPINOR REPRESENTATION

OF THE PROPER ORTHOCHRONOUS LORENTZ GROUP

A physical quantity is said to be Lorentz covariant if it
transforms under some representation of the Lorentz group.
In particular, a Lorentz covariant scalar that remains the same
under all Lorentz transformations is said to be a Lorentz in-
variant scalar. A Lorentz covariant scalar that changes sign
under parity inversion but is invariant under all other Lorentz
transformations is said to be a Lorentz pseudo-scalar. In the
following we refer to a covariant scalar that is invariant under
the proper orthochronous Lorentz group as a Lorentz invari-
ant. Thus, we do not distinguish between Lorentz scalars and
pseudo-scalars and call both Lorentz invariants.

From the form of the generators S ρσ of the spinor represen-
tation of the proper orthochronous Lorentz group in Eq. (22)
and the properties of the matrix C given in Eq. (9) we see that

S ρσT =
1
4

[γσT , γρT ] = −1
4

C[γρ, γσ]C = −CS ρσC. (26)

Therefore, for a finite transformation S (Λ) we have that
S (Λ)T = CS (Λ)−1C or equivalently S (Λ)TC = CS (Λ)−1. Us-
ing this we can construct a Lorentz invariant from spinors ψ
and ϕ as a bilinear form

ψT Cϕ, (27)

which transforms as ψT S (Λ)TCS (Λ)ϕ = ψT CS (Λ)−1S (Λ)ϕ =
ψTCϕ under the spinor representations of proper or-
thochronous Lorentz transformations (See e.g. Ref. [60]).
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Moreover, since γ0 = (γ0)T = (γ0)−1 and γ0C = Cγ0

it follows that ψT S (P)TCS (P)ϕ = ψTγ0Cγ0ϕ = ψTCϕ.
Thus, ψT Cϕ is invariant under parity transformation. Since
S (CPT) = −iγ5 and γ5C = Cγ5 and γ5 = (γ5)T = (γ5)−1 it fol-
lows that ψT S (CPT)TCS (CPT)ϕ = −ψTγ5Cγ5ϕ = −ψTCϕ.
Thus, ψTCϕ is not invariant under CPT transformations.

Next we can see that since γ5 anti-commutes with all γµ it
commutes with the generators S ρσ

[S ρσ, γ5] =
1
4

[γρ, γσ]γ5 − 1
4
γ5[γρ, γσ] = 0, (28)

and thus γ5 commutes with the spinor representations of
proper orthochronous Lorentz transformations S (Λ)γ5 =

γ5S (Λ). Therefore, we can construct an invariant of the spinor
representation of the proper orthochronous Lorentz group as
the bilinear form

ψTCγ5ϕ, (29)

which transforms as ψT S (Λ)TCγ5S (Λ)ϕ =

ψT CS (Λ)−1γ5S (Λ)ϕ = ψTCγ5S (Λ)−1S (Λ)ϕ = ψT Cγ5ϕ.
Moreover, since γ0γ5 = −γ5γ0 it follows that
ψT S (P)TCγ5S (P)ϕ = ψTγ0Cγ5γ0ϕ = −ψTCγ5ϕ. Thus,
ψT Cγ5ϕ is not invariant under parity transformation but
changes sign. Since S (CPT) = −iγ5 it follows that
ψT S (CPT)TCγ5S (CPT)ϕ = −ψTγ5Cγ5γ5ϕ = −ψTCγ5ϕ.
Thus, ψT Cγ5ϕ is not invariant under CPT transformations but
changes sign.

V. THE BEHAVIOUR OF THE LORENTZ INVARIANTS

UNDER UNITARY SPINOR EVOLUTION GENERATED BY

DIRAC-LIKE HAMILTONIANS

Here we consider a subspace spanned by only spinorial de-
grees of freedom, i.e., a subspace spanned by φ je

ik·x for a fixed
k. We consider an evolution that is generated by a Hamilto-
nian operator H and acts unitarily on all such subspaces. Then
it is required that (φ je

ik·x,Hφle
ik′ ·x) ∝ δk,k′ , otherwise the sub-

spaces are not invariant under the evolution. Therefore, to
have unitary action on the subspaces we consider Hamiltoni-
ans that do not depend on x.

We consider again the inner product

(ψ(t), ϕ(t))k = ψ
†(t)ϕ(t), (30)

and assume that H(s) is bounded and strongly continuous, i.e.,
limt→s ||H(t)ψ − H(s)ψ|| = 0 for all ψ and s where || · || is
the norm induced by the inner product. Then we have the
following theorem.

Theorem 1. Assume that t ∈ R → H(t) is a strongly contin-

uous map into the bounded Hermitian operators on a Hilbert

space H . Then there exists an evolution operator U(t, s)
such that for all ψ ∈ H it holds that ψ(t) = U(t, s)ψ(s) and

∂tU(t, s) = −iH(t)U(t, s). Moreover, the evolution operator

satisfies U(r, s)U(s, t) = U(r, t) and U(t, t) = I and can be

expressed as an ordered exponential

U(t, r) =T←{e−i
∫ t

r
H(s)ds}

≡
∞
∑

n=0

(−i)n

∫ t

r

∫ sn

r

∫ sn−1

r

. . .

· · ·
∫ s2

r

H(sn) . . .H(s1)ds1 . . . dsn−2dsn−1dsn.

Proof. See e.g. Ref. [64]. �

We can consider the conjugate transpose, and complex con-
jugate in the given basis, of the evolution operator

U(t, r)= T←{e−i
∫ t

r
H(s)ds}

U(t, r)†= T→{ei
∫ t

r
H(s)ds}

U(t, r)∗= T←{ei
∫ t

r
HT (s)ds}

(U(t, r)†)∗= T→{e−i
∫ t

r
HT (s)ds}. (31)

Assume now that for a time independent X it holds that
XH(s) = −H(s)T X for all s. Then we can see that
XT←{e−i

∫ t

0
H(s)ds} = T←{ei

∫ t

0
H(s)T ds}X, and it follows that

ψT (U(t, 0)†)∗XU(t, 0)ϕ

= ψTT→{e−i
∫ t

0
HT (s)ds}T←{ei

∫ t

0
HT (s)ds}Xϕ = ψT Xϕ. (32)

We now investigate the candidates X = C and X = Cγ5.
For products of distinct gamma matrices we have that

(γµ)TC = Cγµ

(γµγν)TC = −Cγµγν

(γµγνγρ)TC = −Cγµγνγρ

(γµγνγργσ)TC = Cγµγνγργσ, (33)

and

(γµ)TCγ5 = −Cγ5γµ

(γµγν)TCγ5 = −Cγ5γµγν

(γµγνγρ)TCγ5 = Cγ5γµγνγρ

(γµγνγργσ)TCγ5 = Cγ5γµγνγργσ. (34)

From this we can conclude that a Hamiltonian with terms of
the form

H2,3(t) = γµγνφµν(t) + γµγνγρκµνρ(t), (35)

satisfies CH2,3(t) = −(H2,3(t))TC. Moreover, a Hamiltonian
with terms of the form

H1,2(t) = γµηµ(t) + γµγνλµν(t), (36)

satisfies Cγ5H1,2(t) = −(H1,2(t))TCγ5. A Hamiltonian term
H0(t) = f (t)I proportional to the identity clearly is its own
transpose and commutes with both C and Cγ5.

The Dirac Hamiltonian has a term that is first degree in
gamma matrices, the mass term mγ0, and a second degree
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term
∑

µ=1,2,3 γ
0γµ(i∂µ − qAµ(t)). Moreover, it has a term pro-

portional to the identity, the coupling to the scalar potential
qA0(t)I. However, we can perform a change of variables to
remove any such zeroth degree term from the Hamiltonian.
If we define ψ′ = e−iθ(t)ψ the new Hamiltonian H′ satisfying
i∂tψ

′(t) = H′ψ′(t) is H′ = H+γ0 ∑

µ γ
µ∂µθ(t). This amounts to

a change of local U(1) gauge (See e.g. Ref. [65]). By choos-
ing θ(t) = −q

∫ t

t0
A0(s)ds we see that the term proportional to

the identity in H′ is qA0(t)I − q∂t

∫ t

t0
A0(s)dsI = 0. Apart from

the zeroth degree term H′ in general has terms of the same
degrees in the gamma matrices as H and cannot gain terms
with degrees different from those of H. Let U ′(t, t0) be the

evolution generated by H′. Then ψ(t) = e
−iq

∫ t

t0
A0(s)ds

ψ′(t) =

e
−iq

∫ t

t0
A0(s)ds

U ′(t, t0)ψ′(t0) = e
−iq

∫ t

t0
A0(s)ds

U ′(t, t0)ψ(t0).
Therefore, for any evolution UD(t, 0) generated by Dirac-

type Hamiltonians we can see that

ψT (UD(t, 0)†)∗Cγ5UD(t, 0)ϕ

= e−2iq
∫ t

0
A0(s)dsψT (U ′D(t, 0)†)∗Cγ5U ′D(t, 0)ϕ

= e−2iq
∫ t

0 A0(s)dsψTCγ5ϕ. (37)

Likewise, for any evolution UW (t, 0) generated by zero-
mass Dirac Hamiltonians we have

ψT (UW (t, 0)†)∗CUW (t, 0)ϕ

= e−2iq
∫ t

0
A0(s)dsψT (U ′W (t, 0)†)∗CU ′W (t, 0)ϕ

= e−2iq
∫ t

0
A0(s)dsψT Cϕ. (38)

We can consider a few additional or alternative Hamiltonian
terms from the literature. For example a coupling to a Yukawa
scalar boson gγ0φ [4], but this term behaves analogously to
the mass term. Coupling to a Yukawa pseudo-scalar boson
giγ0γ5φ on the other hand is cubic in the gamma matrices. So
is a Pauli-coupling iγ0γµγν∂νAµ to the vector potential (See
e.g. [66]). An electroweak type chiral coupling term to a
vector boson, e.g.

∑

µ gγ0γµ(I ± γ5)Zµ [67], contains terms
of degree 2 and 4 in the gamma matrices.

Thus, ψT Cγ5ϕ is invariant under evolution generated by
Dirac Hamiltonians up to a U(1) phase. More generally it
is invariant under evolution generated by Hamiltonians of the
type H1,2(t)+H0(t) up to a U(1) phase. Likewise, ψT Cϕ is in-
variant up to a U(1) phase under evolution generated by zero-
mass Dirac Hamiltonians. More generally it is invariant, up to
a U(1) phase, under evolution generated by Hamiltonians of
the type H2,3(t) + H0(t), which could include a pseudo-scalar
Yukawa term or a Pauli coupling.

Neither ψTCϕ norψT Cγ5ϕ is invariant under evolution gen-
erated by Hamiltonians that contain both a mass (or Yukawa
scalar) term and a Yukawa pseudo-scalar or Pauli coupling
term. Moreover, neither is invariant under evolution gener-
ated by Hamiltonians with electroweak type chiral coupling
to a vector boson.

We can consider the bilinear formsψT Cϕ orψT Cγ5ϕ also in
the context of Dirac or Weyl particles in solid state or molec-
ular systems. The Hamiltonian in Eq. (18) for Dirac particles
in 2D Dirac semimetals [53, 54], and the Hamiltonian in Eq.
(19) for zero-mass Dirac particles in 3D Dirac semimetals [9]
have only second and zeroth degree terms in the gamma ma-
trices. Thus, in both cases ψTCϕ and ψT Cγ5ϕ are invariant up
to a U(1) phase.

Additional terms that can be introduced in the Hamiltoni-
ans is the Semenoff mass term MS γ

0γ3 [7] and the Haldane
mass term MHγ

5γ0γ3 [68]. Since the Semenoff and Haldane
mass terms are both quadratic in gamma matrices, ψTCϕ and
ψTCγ5ϕ are still invariant up to a U(1) phase with these addi-
tions.

VI. CANDIDATE ENTANGLEMENT INVARIANTS

In this section we consider the issue of describing entangle-
ment between two Dirac spinors and construct five candidate
entanglement invariants which is the main result of this work.

A. Defining and describing spinor entanglement properties

A system of two particles can in general be entangled in
a multitude of qualitatively different ways. If two entangled
states can be deterministically transformed into each other
by local unitary evolution of the system and changes of lo-
cal reference frames they may be considered to be entangled
in equivalent ways. Moreover, if two states are identical up
to multiplication by a constant factor they may be considered
physically equivalent. Therefore, we may consider two en-
tangled states to be equivalently entangled if the states can
be transformed into each other by local unitary evolutions,
changes of local reference frames and multiplication by a con-
stant factor, and inequivalently entangled otherwise. In the
following we refer to the local unitary evolutions and changes
of local reference frames collectively as local reversible oper-

ations. In general a number of different properties of the en-
tanglement can be identified and used to distinguish inequiva-
lent types of entanglement. Any such property describing the
entanglement must be unchanged by local reversible opera-
tions [69–71]. Moreover, no entanglement property should be
present in states that can be created using only local resources,
i.e., product states. A general approach to the characterization
of this kind of entanglement properties has been described in
References [69, 70]. We follow this general approach here
and outline it below.

Any state ψAB of a system belongs to a setOψAB
that consists

of all states that can be obtained from ψAB by local reversible
operations. We refer to such a set OψAB

, as an orbit of the lo-
cal reversible operations. Any two different orbits are disjoint
and the Hilbert space can be fully decomposed into the collec-
tion of all such orbits. If the orbit OψAB

can be isomorphically
mapped to the orbitOφAB

by a map mc : ψAB → cψAB for some
c ∈ C − {0}, i.e., if the two orbits are identical up to element-
wise multiplication by a nonzero constant c, we can consider
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them physically equivalent. Let ÕψAB
be the equivalence class

of orbits that can be obtained from OψAB
by maps mc for all

c ∈ C − {0}.
If two states belong to different equivalence classes they

differ in some physical property that cannot be changed by
local reversible operations. Thus two entangled states ψAB

and φAB such that ÕψAB
, ÕφAB

are by definition inequiva-
lently entangled, i.e., entangled in qualitatively different ways.
This approach for describing different kinds of entanglement
in terms of inequivalence under local reversible operations has
been used for various systems of non-relativistic spin- 1

2 parti-
cles (See e.g. References [41, 69, 70, 72–80]).

A way to characterize the different inequivalent types of
entanglement in a system is to find parameters that can dis-
tinguish between the different equivalence classes of entan-
gled states. If we require that the parameters only distin-
guish different inequivalent forms of entanglement and not
between any other properties, we must require that the param-
eters are functions that do not vary within any equivalence
class. This implies that the parameters must be invariant un-
der local reversible operations and invariant under multipli-
cation of a state by any constant c ∈ C − {0}. We can con-
struct such parameters by finding a set of functions fi on the
Hilbert space that are invariant under local reversible oper-
ations with determinant 1 and homogeneous under multipli-
cation of a state by c ∈ C − {0}, i.e., functions fi invariant
under local reversible operations with unit determinant and
satisfying fi(cψAB) = ck(i) fi(ψAB) where k(i) is the degree of
homogeneity of fi. Then whenever fi , 0 and f j , 0 the
ratio f

k( j)
i

/ f
k(i)
j

has degree of homogeneity zero. Such a ra-
tio is thus both invariant under all local reversible operations
and invariant under multiplication of a state by a constant
c ∈ C − {0}. Therefore this kind of functions provide coordi-
nates parametrizing the set of equivalence classes ÕψAB

. If we
further require that the homogeneous functions fi are identi-
cally zero for all product states they can be used on their own
as witnesses of entanglement. Any nonzero value of such a
function implies that the state is entangled. We refer to the
homogeneous functions fi that are invariant under local re-
versible operations with determinant 1 and identically zero for
all product states as entanglement invariants.

If for two entangled states there exists a ratio between two
entanglement invariants with degree of homogeneity zero that
takes different values for the two states these two states do
not belong to the same equivalence class and are thus inequiv-
alently entangled. However, if for two states all such ratios
between entanglement invariants takes the same values, it is
not necessarily the case that the two states belong to the same
equivalence class. Thus a given set of entanglement invariants
may not be able to distinguish all inequivalent types of entan-
glement. If this is the case we say that the set only provides a
partial characterization of the entanglement properties of the
system. In general it is not possible to find a set of entangle-
ment invariants that distinguish all equivalence classes and the
characterization provided by the invariants is only partial.

One way to construct entanglement invariants is as homo-
geneous polynomials in the state coefficients that are invari-
ant under local reversible operations with determinant 1 and

identically zero for all product states. Characterizing entan-
glement using such polynomial invariants has previously been
done for different systems of non-relativistic spin- 1

2 particles
(See e.g. References [18, 19, 41, 74, 78, 80–86]).

If we consider entanglement of Dirac spinors we may ten-
tatively identify the local reversible operations acting on the
spinors as the set of local unitary spinor evolutions generated
by the set of allowed Dirac Hamiltonians together with the set
of possible changes of local reference frames, i.e., the local
spinor representations of the proper orthochronous Lorentz
transformations. Then, for a system of two Dirac particles
with definite momenta we have three conditions that tenta-
tively define a spinor entanglement property for pure states of
such particles.

(1) Non-existence for any state that can be created using
only local resources, i.e., any product state.

(2) Invariance under local evolutions generated by physi-
cally allowed Dirac Hamiltonians that act unitarily on
any subspace defined by fixed momenta.

(3) Invariance under changes of local inertial reference
frames, i.e., Lorentz invariance.

An alternative approach to describing entanglement focuses
on entanglement properties that can be quantified. In this ap-
proach a quantifiable entanglement property is required to be
non-increasing on average under any local operations assisted
by classical communication [87]. This condition is called en-
tanglement monotonicity [87]. To evaluate this condition one
needs to characterize the set of such local operations assisted
by classical communication and introduce measures of entan-
glement [88], which goes beyond the scope of this work.

B. Construction of invariants

Any entanglement invariant that can be used to describe
spinor entanglement properties as defined in Section VI A of
a system of two Dirac particles with definite momenta must
take the value zero for any product state, but not for all states.
Further it must be invariant under local evolutions with deter-
minant 1 generated by Dirac Hamiltonians that act unitarily
on any subspace defined by fixed momenta, i.e., any subspace
spanned by spinorial degrees of freedom, and be Lorentz in-
variant.

We can construct quantities with these properties by utiliz-
ing the features of the bilinear forms described in Sect. IV
ans Sect V. The bilinear forms ψT (x)Cγ5ϕ(x) and ψT (x)Cϕ(x)
are pointwise Lorentz invariant. For ψ and ϕ belonging to a
subspace spanned by spinorial degrees of freedom they are
invariant, up to a U(1) phase, under evolution that acts unitar-
ily on the subspace and is generated by Dirac Hamiltonians
and zero-mass Dirac Hamiltonians, respectively. Moreover,
ψT (x)Cψ(x) and ψT (x)Cγ5ψ(x) are identically zero due to the
antisymmetry of C and Cγ5.

Now, consider two spacelike separated observers Alice and
Bob each with their own laboratory containing a Dirac or
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Weyl particle. Let the two particles be in a joint state and
assume that Alice’s operations on the shared system can be
made jointly with Bob’s, i.e., assume that Alice’s operations
commute with Bob’s. We assume that we can use a tensor
product structure to describe the shared system and use the
tensor products φ jA

eikA·xA ⊗ φ jB
eikB·xB of local basis elements

as a basis. Then we can expand the state in this basis as

ψAB(t) =
∑

kA,kB

∑

jA , jB

ψ jA, jB,kA,kB
(t)φ jA

eikA ·xA ⊗ φ jB
eikB ·xB , (39)

where ψ jA, jB,kA,kB
(t) are complex numbers.

Next we assume that the state belongs to a subspace where
kA and kB are fixed, i.e., a subspace spanned by the spino-
rial degrees of freedom. Note that without this assumption
local unitary evolution generated by Dirac Hamiltonians in
general transforms a state where the spinorial degrees of free-
dom are entangled and not conditioned on the momenta, to a
state where the spinorial degrees of freedom are conditioned
on the momenta, even if it acts unitarily on every fixed mo-
menta subspace. Then the spinor entanglement cannot be de-
scribed independently of the momenta (See Appendix B for a
discussion). We suppress the indices kA, kB in the description
of the state and let ψ jk ≡ ψ jA ,kB,kA,kB

. The coefficients ψ jk can
be arranged as a matrix by letting j be the row index and k be
the column index. Let us denote this matrix ΨAB. Written out
it is

ΨAB ≡





























ψ00 ψ01 ψ02 ψ03

ψ10 ψ11 ψ12 ψ13

ψ20 ψ21 ψ22 ψ23

ψ30 ψ31 ψ32 ψ33





























. (40)

Transformations S A on Alice’s part of the system act from the
left and transformations S B on Bob’s part of the system act in
transposed form S T

B
from the right

ΨAB → S AΨABS T
B . (41)

Applying what we learned in Section IV we can now con-
struct invariants under action of the spinor representation of
the proper orthochronous Lorentz group in both Alice’s lab
and in Bob’s lab. A first simple invariant of degree 2 in the
coefficients of the state is

I1 =
1
2

Tr[ΨT
ABCΨABC], (42)

where the first C is understood to be defined in the basis of
Alice and the second in the basis of Bob. The invariance of I1

can be seen directly from its transformation properties under
local spinor representations of proper orthochronous Lorentz
transformations in Alice’s lab S A(ΛA) and Bob’s lab S B(ΛB)

1
2

Tr[ΨT
ABS T

A(ΛA)CS A(ΛA)ΨABS T
B(ΛB)CS B(ΛB)]

=
1
2

Tr[ΨT
ABCS −1

A (ΛA)S A(ΛA)ΨABCS −1
B (ΛB)S B(ΛB)]

=
1
2

Tr[ΨT
ABCΨABC]. (43)

Moreover, I1 is identically zero for product states. Written out
in terms of coefficients the invariant is

I1 = ψ00ψ11 − ψ01ψ10 + ψ02ψ13 − ψ03ψ12

+ψ20ψ31 − ψ21ψ30 + ψ22ψ33 − ψ23ψ32. (44)

If we divide ΨAB into four 2 × 2 block matrices, two diagonal
and two off-diagonal, we see that the invariant is the sum of
the determinants of these blocks.

By construction I1 is invariant under parity inversion in both
Alice’s and Bob’s lab in addition to the proper orthochronous
Lorentz group. Moreover, due to its construction it is invariant
under unitary evolution generated by local zero-mass Dirac
Hamiltonians, up to a U(1) phase, but not under evolution gen-
erated by nonzero-mass Dirac Hamiltonians.

We can construct three more invariants under the spinor
representation of the proper orthochronous Lorentz group in a
similar way. The Lorentz invariant

I2 =
1
2

Tr[ΨT
ABCγ5ΨABCγ5], (45)

is not invariant under P in either Alice’s or Bob’s lab. Fur-
thermore, it is invariant under unitary evolution generated by
local arbitrary mass Dirac Hamiltonians, up to a U(1) phase,
in both labs.

The Lorentz invariant

I2A =
1
2

Tr[ΨT
ABCΨABCγ5], (46)

is P invariant in Alice’s lab but not in Bob’s, and is only in-
variant under evolution generated by zero-mass Dirac Hamil-
tonians in Alice’s lab, up to a U(1) phase, but invariant under
unitary evolution generated by arbitrary mass Dirac Hamilto-
nians in Bob’s lab, up to a U(1) phase.

Finally, the Lorentz invariant

I2B =
1
2

Tr[ΨT
ABCγ5ΨABC], (47)

is invariant under P in Bob’s lab but not Alice’s lab, and is
only invariant under evolution generated by zero-mass Dirac
Hamiltonians in Bob’s lab, up to a U(1) phase, but invari-
ant under unitary evolution generated by arbitrary mass Dirac
Hamiltonians in Alice’s lab, up to a U(1) phase. Each of I2,
I2A and I2B is identically zero for product states. Written out
in terms of coefficients they are

I2 = ψ13ψ20 − ψ10ψ23 + ψ11ψ22 − ψ12ψ21

+ψ02ψ31 − ψ01ψ32 + ψ00ψ33 − ψ03ψ30, (48)

I2A = ψ00ψ13 − ψ03ψ10 + ψ02ψ11 − ψ01ψ12

+ψ22ψ31 − ψ21ψ32 + ψ20ψ33 − ψ23ψ30, (49)

I2B = ψ11ψ20 − ψ10ψ21 + ψ13ψ22 − ψ12ψ23

+ψ00ψ31 − ψ01ψ30 + ψ02ψ33 − ψ03ψ32. (50)

Each of these is a combination of the determinants of four
different 2 × 2 minors of ΨAB.
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If both Alice’s and Bob’s particles are Weyl particles, i.e.,
if the shared state is invariant under some combination of pro-
jections PA

L
or PA

R
by Alice and PB

L
or PB

R
by Bob, each of the

Lorentz invariants I1, I2, I2A and I2B reduces to 4(ψ00ψ11 −
ψ01ψ10) up to a sign. This is because the shared state has
the symmetry ψ jk = (−1)|LA|ψ( j−2)k = (−1)|LB|ψ j(k−2), where
|LA| = 1 if the state is invariant under PA

L
and zero otherwise,

|LB| = 1 if the state is invariant under PB
L

and zero otherwise,
and j,k are defined modulo 4. The polynomialψ00ψ11−ψ01ψ10

is the Wootters concurrence [18, 19]. Thus, for Weyl particles
the polynomials I1, I2, I2A and I2B become essentially equiva-
lent to the Wootters concurrence.

We can construct Lorentz invariants of degree four that are
P and CPT invariant in both Alice’s and Bob’s lab as I2

1 , I
2
2 ,

I2
2A

and I2
2B

. The invariants I1I2A and I2I2B are CPT invariant
in both labs but only P invariant in Alice’s lab, and I1I2B, I2I2A

are CPT invariant in both labs but only P invariant in Bob’s
lab. Finally, the invariants I1I2 and I2AI2B are CPT invariant in
both labs but not P invariant in either lab.

A degree four Lorentz invariant can be obtained as

I3 = −
1
4

Tr[ΨT
ABCΨABCΨT

ABCΨABC] +
1
2

I2
1

= −1
4

Tr[ΨT
ABCγ5ΨABCγ5ΨT

ABCγ5ΨABCγ5] +
1
2

I2
2

= det[ΨAB]. (51)

This Lorentz invariant is P and CPT invariant in both labs, lin-
early independent of I2

1 , I
2
2 , I2

2A
and I2

2B
, and identically zero

for product states. It is also invariant under unitary evolution
generated by arbitrary mass Dirac Hamiltonians in both labs,
up to a U(1) phase. Moreover, it is invariant under any local
SU(4) transformations by Alice and Bob, and even any local
SL(4,C) transformations S A, S B in Alice’s or Bob’s lab since
det[S AΨABS T

B
] = det[S A] det[ΨAB] det[S T

B
] = det[ΨAB]. Writ-

ten out in terms of coefficients it is

I3 =(ψ01ψ30 − ψ00ψ31)(ψ13ψ22 − ψ12ψ23)

+(ψ01ψ32 − ψ02ψ31)(ψ10ψ23 − ψ13ψ20)

+(ψ01ψ33 − ψ03ψ31)(ψ12ψ20 − ψ10ψ22)

+(ψ00ψ32 − ψ02ψ30)(ψ13ψ21 − ψ11ψ23)

+(ψ00ψ33 − ψ03ψ30)(ψ11ψ22 − ψ12ψ21)

+(ψ03ψ32 − ψ02ψ33)(ψ11ψ20 − ψ10ψ21). (52)

If both Alice’s and Bob’s particles are Weyl particles, i.e.,
if the shared state is invariant under some combination of pro-
jections PA

L
or PA

R
by Alice and PB

L
or PB

R
by Bob, the invariant

I3 is identically zero since for such states the rank of ΨAB is at
most 2.

Note that by using C and Cγ5 to construct the Lorentz in-
variants we have essentially used the spinor representations of
the T and CP transformations described in Section III. This
follows the same general idea as the construction of the Woot-
ters concurrence in non-relativistic quantum mechanics of us-
ing "state inversion" transformations to construct entangle-
ment invariants [19, 89, 90].

C. Characterization of spinor entanglement using the

invariants

The five invariants I1, I2, I2A, I2B and I3 are candidate en-
tanglement invariants for a system of two Dirac spinors, in-
variant under the local proper orthochronous Lorentz groups
as well as invariant up to a U(1) phase under local unitary
evolutions generated by either zero- or arbitrary mass Dirac
Hamiltonians as described in Section VI B. They provide a
partial characterization of the equivalence classes under these
local reversible operations. For a generic state all the five in-
variants are non-zero. This follows since the zero locus of
any non-constant homogeneous polynomial in the state coef-
ficients, i.e., any non-constant homogeneous polynomial on
C

16, is a lower dimensional subset of C
16 (See e.g. [91] or

[92] Ch. A.1.6.). Thus the ratios of these invariants with ho-
mogeneous degree zero can be used to partially characterize
inequivalent types of entanglement on almost all of the Hilbert
space. The condition that any of the invariants is zero defines
a lower dimensional subset of the Hilbert space with a nar-
rowed range of entanglement properties. Setting additional
invariants to zero produces progressively lower dimensional
subsets with increasingly constrained range of entanglement
properties.

The existence of further Lorentz invariants that are also in-
variant, up to a U(1) phase, under local unitary evolution gen-
erated by either zero- or arbitrary mass Dirac Hamiltonians
and are algebraically independent of I1, I2, I2A, I2B and I3 has
not be ruled out even though none have been found in this
work. Thus it has not been ruled out that a more complete
characterization of spinor entanglement properties using poly-
nomial Lorentz invariants can be found. However, any other
potentially more complete set of polynomial Lorentz invari-
ants still provides only a partial characterization of the spinor
entanglement properties. To see this we note that there exist
spinor entangled states for which I1, I2, I2A, I2B and I3 are all
zero. Thus entangled states exist that cannot be distinguished
from product states by any of the five invariants. This is true
also for any other set of polynomial Lorentz invariants. Due
to the properties of the spinor representation of the Lorentz
group there are entangled states for which no homogeneous
Lorentz invariant polynomial can be non-zero (See Appendix
E).

When the allowed local unitary evolutions of a spinor are
generated by Dirac Hamiltonians with nonzero mass the set
of local unitary transformations of that spinor that can be im-
plemented forms a dense subset of a Lie group G

Cγ5

U
of uni-

tary transformations. The group G
Cγ5

U
consists of all unitary

transformations that preserve the bilinear form ψT Cγ5ϕ up to
a U(1) phase and is isomorphic to U(1) × Sp(2) where Sp(2)
is the compact symplectic group of 4 × 4 matrices (See e.g.
Ref. [62] Ch. 1.2.8). Therefore any continuous function that
is invariant, up to a U(1) phase, under local unitary evolutions
of the spinor generated by Dirac Hamiltonians with nonzero
mass is invariant, up to a U(1) phase, under local operations
in G

Cγ5

U
on the spinor. See Appendix F for a discussion.

The group GCγ5
of all linear transformations that preserve the
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bilinear form ψT Cγ5ϕ up to a U(1) phase is isomorphic to
U(1)×Sp(4,C) where Sp(4,C) is the symplectic group of 4×4
matrices (See e.g. Ref. [62] Ch. 1.2.4). The group GCγ5

is the
smallest connected matrix Lie group that contains G

Cγ5

U
and

the spinor representation of the proper orthochronous Lorentz
group as subgroups. Any continuous Lorentz invariant func-
tion that is also invariant, up to a U(1) phase, under local uni-
tary evolutions generated by Dirac Hamiltonians with nonzero
mass is invariant, up to a U(1) phase, under local operations
in GCγ5

. See Appendix F for a discussion.

Similarly, when the allowed local unitary evolutions of a
spinor are generated by Dirac Hamiltonians with zero mass
and a coupling to a Yukawa pseudoscalar boson the set of lo-
cal unitary transformations that can be implemented forms a
dense subset of a Lie group GC

U
of unitary transformations.

The group GC
U

consists of all unitary transformations that pre-
serve the bilinear form ψT Cϕ up to a U(1) phase and is iso-
morphic to U(1) × Sp(2). Therefore any continuous function
that is invariant, up to a U(1) phase, under local unitary evolu-
tions of the spinor generated by Dirac Hamiltonians with zero
mass and a coupling to a Yukawa pseudoscalar boson is in-
variant, up to a U(1) phase, under local operations in GC

U
on

the spinor. The group GC of all linear transformations that
preserve the bilinear form ψTCϕ up to a U(1) phase is iso-
morphic to U(1) × Sp(4,C). The group GC is the smallest
connected matrix Lie group that contains GC

U
and the spinor

representation of the proper orthochronous Lorentz group as
subgroups. Any continuous Lorentz invariant function that is
also invariant, up to a U(1) phase, under local unitary evolu-
tions generated by Dirac Hamiltonians with zero mass an a
coupling to a Yukawa pseudoscalar boson is invariant, up to a
U(1) phase, under local operations in GC . See Appendix F for
a discussion.

If the allowed local unitary evolutions of a spinor are gener-
ated by Dirac Hamiltonians with zero mass and no additional
couplings the set of local unitary transformations that can be
implemented forms a dense subset of the group GC

U
∩ G

Cγ5

U

of unitary transformations that preserve both the bilinear form
ψT Cϕ and the bilinear formψT Cγ5ϕ up to a U(1) phase, which
is isomorphic to U(1)× SU(2)× SU(2). Therefore any contin-
uous function that is invariant, up to a U(1) phase, under local
unitary evolutions of the spinor generated by Dirac Hamilto-
nians with zero mass and no additional couplings is invari-
ant, up to a U(1) phase, under local operations in GC

U
∩ G

Cγ5

U

on the spinor. The group GC ∩ GCγ5
of all linear transfor-

mations that preserve both the bilinear form ψT Cϕ and the
bilinear form ψT Cγ5ϕ up to a U(1) phase is isomorphic to
U(1)×SL(2,C)×SL(2,C). The group GC ∩GCγ5

is the small-
est connected matrix Lie group that contains GC

U
∩ G

Cγ5

U
and

the spinor representation of the proper orthochronous Lorentz
group as subgroups. Any continuous Lorentz invariant func-
tion that is also invariant, up to a U(1) phase, under local
unitary evolutions generated by Dirac Hamiltonians with zero
mass and no additional couplings is invariant, up to a U(1)
phase, under local operations in GC ∩ GCγ5

. See Appendix F
for a discussion.

The Lorentz invariant |I1| is invariant under GC ⊗GC , while
|I2| is invariant under GCγ5 ⊗ GCγ5

, |I2A| is invariant under
GC ⊗GCγ5

and |I2B| is invariant under GCγ5 ⊗GC . The Lorentz
invariant |I3| is invariant under U(1)×SL(4,C)⊗U(1)×SL(4,C)
and thus invariant under GC ⊗GC , GCγ5 ⊗GCγ5

, GC ⊗GCγ5
and

GCγ5 ⊗GC . A subset of the Lorentz invariants that are invari-
ant up to a U(1) phase under a shared group can be use to
partially characterize orbits of this shared group. For example
the subset I1 and I3 can be used to partially characterize orbits
of GC ⊗GC and the subset I1, I2, I2A, I2B, I3 can be used to par-
tially characterize orbits of GC∩GCγ5⊗GC∩GCγ5

. But a subset
the Lorentz invariants that are invariant up to a U(1) phase for
a shared group cannot distinguish between two orbits of re-
versible operations that are both contained in the same orbit
of this shared group.

The absolute values of the Lorentz invariants |I1|, |I2|, |I2A|,
|I2B| and |I3| can be used to construct Lorentz invariants also
for states that are incoherent mixtures, i.e., mixed states.
Mixed states are represented by positive semi-definite Hermi-
tian matrices that are the analogues of density matrices. Each
absolute value of a Lorentz invariant can be extended to a
Lorentz invariant on the set of such density matrices through
a convex roof extension [93–95] (See Appendix G for a dis-
cussion). Any such convex roof extension is identically zero
on the set of separable states, i.e., the set of states that are
incoherent mixtures of product states.

We can consider a set of incoherent mixtures of states with
the same definite momentum degrees of freedom. In this case
the convex roof extension of a Lorentz invariant is invariant
under the same local unitary evolutions generated by Dirac
Hamiltonians as the absolute value of the Lorentz invariant it
is derived from. Since the Lorentz invariants |I1|, |I2|, |I2A|, |I2B|
and |I3| have only been defined for definite momenta the case
of incoherent mixtures of states with different momenta can-
not be treated this way. In particular we can obtain incoherent
mixtures from a pure state without definite momenta by par-
tially tracing over the momentum degrees of freedom. Such
reduced density matrices do not have well defined transfor-
mation properties under local unitary evolution generated by
Dirac Hamiltonians and the convex roof extensions of |I1|, |I2|,
|I2A|, |I2B| and |I3| are in general not invariant (See Appendices
B and G for a discussion).

From the matrix ΨAB one can construct the analogue of the
one-party reduced density matrix for Alice’s particleΨABΨ

†
AB

,
and likewise the one-party reduced density matrixΨT

AB
Ψ∗

AB
for

Bob’s particle. The rank and determinant of the these reduced
density matrices are invariant under the spinor representation
of the local proper orthochronous Lorentz groups, as well as
under local unitary evolution generated by Dirac Hamiltoni-
ans. However, in general their eigenvalues are not invariant.
Other one-party reduced matrices with eigenvalues that are in-
variant under the spinor representations of the local proper or-
thochronous Lorentz groups, as well as invariant, up to a U(1)
phase, under local unitary evolution generated by either zero-
or arbitrary mass Dirac Hamiltonians can be constructed. See
Appendix D for a discussion.

For a local unitary evolution generated by a time indepen-
dent nonzero-mass Dirac Hamiltonian on Alice’s side the ab-
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solute values of I1 and I2A oscillate with a constant time aver-
age. For zero momentum and four-potential the angular fre-
quency of oscillation is 2mA where mA is the mass of Alice’s
particle. Likewise, for a local unitary evolution generated by a
time independent nonzero-mass Dirac Hamiltonian on Bobs’s
side the absolute values of I1 and I2B oscillate, and for zero
momentum and four-potential the angular frequency of oscil-
lation is 2mB where mB is the mass of Bob’s particle. The
angular frequencies 2mA and 2mB are the same as those of
the Zitterbewegung [96] of the respective Dirac particle. See
Appendix C for details.

In the context of Dirac particles in 2D and 3D Dirac
semimetals we can see from the discussion in Section V that
the absolute values of I1, I2, I2A, I2B and I3 are invariant under
local unitary evolution generated by Hamiltonians of the form
given in Eq. (18) for Dirac particles in 2D Dirac semimet-
als [53, 54], and Hamiltonians on the form given in Eq. (19)
for Dirac particles in 3D Dirac semimetals [9]. Moreover, we
can add Semenoff mass terms MS γ

0γ3 [7] and Haldane mass
terms MHγ

5γ0γ3 [68] and still maintain the invariance of the
absolute values of I1, I2, I2A, I2B and I3.

VII. EXAMPLES OF SPINOR ENTANGLED STATES

Here we consider a few examples of entangled states to
illustrate how the quantities I1, I2, I2A, I2B and I3 distinguish
them. Reference [24] studied the generation of entanglement
between the spinorial degrees of freedom of two Dirac par-
ticles. In particular it considered the so called spinor "EPR-
state" 1/

√
2(φA

0 ⊗ φB
1 − iφA

1 ⊗ φB
0 ). For this state only I1 is non-

zero and it attains the absolute value 1/2 which is its maximal
absolute value for normalized states. Since I1 is Lorentz in-
variant it attains the same absolute value for all states related
to this state by spinor representations of local Lorentz trans-
formations. Assuming zero mass for both particles it attains
the absolute value 1/2 also on all states related to the spinor
EPR-state by unitary evolution generated locally by zero-mass
Dirac Hamiltonians. The same state or equivalent states were
considered also in [21, 29, 35, 37].

In a similar way we can construct a state 1/
√

2(φA
1 ⊗ φB

3 −
φA

2 ⊗φB
0 ) for which only I2 is non-zero and attains the absolute

value 1/2, its maximal absolute value for normalized states.
The state 1/

√
2(φA

0 ⊗φB
0 −φA

1 ⊗φB
3 ) is such that only I2A is non-

zero and attains the absolute value 1/2, its maximal absolute
value for normalized states. The state 1/

√
2(φA

1 ⊗ φB
1 − φA

2 ⊗
φB

0 ) is such that only I2B is non-zero and attains the absolute
value 1/2, its maximal absolute value for normalized states.
An example of a state such that I1 = I2 = I2A = I2B = 0 but I3

attains the absolute value 1/16, its maximal absolute value for
normalized states, is 1/2(φA

0⊗φB
1+φ

A
3⊗φB

0+iφA
2⊗φB

3+iφA
1⊗φB

2 ).
We may also consider chiral versions of the EPR state con-

structed from spinors with definite chirality. For example,
with right-handed chirality of both Alice’a and Bob’s spinors
a chiral EPR state is 1/

√
8[(φA

1 +φ
A
3 )⊗ (φB

0 +φ
B
2 )− i(φA

0 +φ
A
2 )⊗

(φB
1 + φ

B
3 )]. For this state the Lorentz invariants I1, I2, I2A and

I2B all attain their maximum possible absolute values over the
normalized states while I3 = 0.

Entanglement as the result of a decay process of a parti-
cle with zero spin into a particle-antiparticle pair was con-
sidered in Ref. [33]. An example of a state that can be
given an interpretation as the result of such a decay process is
1/
√

2(φA
0 ⊗φB

3 −iφA
1 ⊗φB

2 ). For this state only I1 is non-zero and
attains the absolute value 1/2, its maximal absolute value for
normalized states. Another state that can similarly be given
such an interpretation but which is symmetric with respect to
Alice and Bob is 1/2(φA

0⊗φB
3 +φ

A
3 ⊗φB

0 −φA
1 ⊗φB

2 −φA
2 ⊗φB

1 ). For
this state I2A = I2B = 0 but I1, I2 and I3 attain their respective
maximal absolute values over the normalized states.

VIII. THE FOLDY-WOUTHUYSEN REPRESENTATION

The Pauli equation was originally introduced in Ref. [97]
to describe a non-relativistic spin- 1

2 particle. For a particle
with mass m and charge q in an electromagnetic four-potential
Aµ(x) it can be written, in natural units ~ = c = 1, as

i∂0χ =

[

qA0I + mI +
1

2m

∑

µ=1,2,3

(i∂µ − qAµ)2I

− iq

2m

∑

µ,ν=1,2,3
µ,ν

σµσν∂µAν

]

χ, (53)

where χ is a two component spinor. We identify the Pauli
Hamiltonian as

HP = qA0I + mI +
1

2m

∑

µ=1,2,3

(i∂µ − qAµ)2I

− iq

2m

∑

µ,ν=1,2,3
µ,ν

σµσν∂µAν. (54)

For two spacelike separated Pauli spinors undergoing evolu-
tion generated locally by Pauli Hamiltonians and acting uni-
tarily on a subspace spanned by the spin degrees of freedom
the invariant of the evolution describing the spin entanglement
is the Wootters concurrence [18, 19].

Since the Pauli equation is used to describe non-relativistic
spin- 1

2 particles it is expected that it is related to an approxi-
mation of the Dirac equation valid for low momenta and weak
fields. Moreover, since the Pauli Hamiltonian acts only on a
two component spinor it would be required for this case that a
transformation can take the Dirac Hamiltonian to a block di-
agonal form with two 2 × 2 blocks, to a good approximation.
A method to recover the Pauli Hamiltonian as an approxima-
tion to the Dirac Hamiltonian in the low momentum weak field
limit is the Foldy-Wouthuysen transformations [42]. This pro-
cedure creates from the Dirac Hamiltonian through a series of
canonical transformations a Hamiltonian that is a series ex-
pansion in 1/m. Each canonical transformation eliminates the
Hamiltonian terms that are not on the block diagonal form
to one higher order in 1/m. The generators of such canoni-
cal transformations are in general functions of the momentum
and the four-potential and its derivatives. In each step the state
and the Hamiltonian transform according to
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ψ(n) = eiS nψ(n−1),

H(n) = eiS n H(n−1)e
−iS n − ieiS n∂te

−iS n , (55)

where S n is the generator of the nth transformation and ψ(n)

and H(n) are the resulting spinor and Hamiltonian, respec-
tively. The first two canonical transformations in the Foldy-
Wouthuysen procedure are generated by

S 1 =
i

2m

∑

µ=1,2,3

γµ(i∂µ − qAµ),

S 2 =
q

4m2
γ0

∑

µ=1,2,3

γµ(∂µA0 + ∂0Aµ). (56)

These two transformations result in the Hamiltonian

HFW(2) = qA0I + mγ0 +
1

2m
γ0

∑

µ=1,2,3

(i∂µ − qAµ)2

− iq

2m
γ0

∑

µ,ν=1,2,3
µ,ν

γµγν∂νAµ + O
(

1
m2

)

. (57)

To first order in 1/m the Hamiltonian HFW(2) can be decoupled
into two Pauli Hamiltonians acting on the upper two and lower
two components of the spinor, respectively (See Ref. [42] for
details). The third transformation adds the spin-orbit coupling
and the Darwin term and subsequent transformations add ad-
ditional relativistic corrections to the two Pauli Hamiltonians.

Now we consider the case of a fixed momentum subspace,
i.e., a subspace spanned by spinorial degrees of freedom, and
how the bilinear forms ψT Cϕ and ψT Cγ5ϕ on such a space
are represented in the Foldy-Wouthuysen picture. From Eq.
(56) together with Eq. (34) we can see that Cγ5S 1 = −S T

1 Cγ5

and Cγ5S 2 = −S T
2 Cγ5. From Eq. (56) together with Eq.

(33) we can see that CS 1 = S T
1 C and CS 2 = −S T

2 C. There-
fore, ψTCγ5ϕ = ψT

(1)Cγ
5ϕ(1) = ψT

(2)Cγ
5ϕ(2), but ψTCϕ =

ψT
(1)Ce−2iS 1ϕ(1) = ψ

T
(2)CeiS 2 e−2iS 1 e−iS 2ϕ(2).

Next we define Ψ(n)
AB
= eiS A

n . . . eiS A
1ΨAB(eiS B

1 )T . . . (eiS B
n )T

where S A
i

is the generator of the ith transformation on Al-
ice’s side and S B

i
is the generator of the ith transformation

on Bob’s side. The representation of I1 in the second step
Foldy-Wouthuysen picture is in general a function ofΨ(2)

AB
, the

momenta, the four-potentials and their derivatives

I1 =
1
2

Tr[Ψ(2)T
AB

CeiS A
2 e−2iS A

1 e−iS A
2Ψ

(2)
AB

CeiS B
2 e−2iS B

1 e−iS B
2 ].(58)

The representation of I2 on the other hand is still a polynomial
in the state coefficients

I2 =
1
2

Tr[Ψ(2)T
AB

Cγ5Ψ
(2)
AB

Cγ5]. (59)

Like I1 the representations of I2A and I2B are functions of the
momenta, the four-potentials and their derivatives

I2A =
1
2

Tr[Ψ(2)T
AB

CeiS A
2 e−2iS A

1 e−iS A
2Ψ

(2)
AB

Cγ5], (60)

I2B =
1
2

Tr[Ψ(2)T
AB

Cγ5Ψ
(2)
AB

CeiS B
2 e−2iS B

1 e−iS B
2 ]. (61)

However, I3 is still a polynomial in the state coefficients

I3 = det[Ψ(2)
AB

], (62)

since it is a determinant and the Foldy-Wouthuysen transfor-
mations are unitary matrices with the first two being determi-
nant one.

IX. DISCUSSION AND CONCLUSIONS

We have considered the problem of describing the spinor
entanglement of two Dirac particles with definite momenta
held by spacelike separated observers Alice and Bob. We re-
viewed some properties of the Dirac equation, the spinor rep-
resentation of the Lorentz group and the charge conjugation,
and discussed properties of Lorentz invariant bilinear forms.
The assumption was made that we can neglect curvature and
describe both Alice and Bob as being in a Minkowski space.
Further, we assumed that it is in some way physically moti-
vated to use a description where particle momentum eigen-
modes have a finite spatial extent. Lastly, we assumed that the
tensor products of the single particle momentum eigenmodes
is a basis for the two-particle states.

Given these assumptions and using the properties of the
Lorentz invariant bilinear forms we have constructed five
polynomials I1, I2, I2A, I2B, and I3 in the state coefficients of
the two spacelike separated Dirac particles, that are invari-
ant under the spinor representations of the local proper or-
thochronous Lorentz groups. The invariants, I1, I2, I2A, I2B,
are of degree 2 and I3 is of degree 4. Each of these Lorentz
invariants is identically zero for all product states but does not
take the value zero for all other states.

The four Lorentz invariants of degree 2 can each be ex-
pressed as a sum of four determinants of 2 × 2 matrices of
state coefficients. For the case of two particles with definite
chirality, i.e., Weyl particles, these invariants reduce to a sin-
gle determinant, the Wootters concurrence [18, 19].

We considered evolutions that are generated by local
Hamiltonians and act unitarily on subspaces with fixed mo-
menta, i.e., subspaces spanned by the spinorial degrees of
freedom. The polynomial I2 is invariant, up to a U(1) phase,
under such local unitary evolution generated locally by Dirac
Hamiltonians. The polynomial I1 is invariant, up to a U(1)
phase, only for zero-mass Dirac Hamiltonians. The polyno-
mial I2A is invariant, up to a U(1) phase, for arbitrary-mass
Dirac Hamiltonians acting on Bobs side but only for zero-
mass Dirac Hamiltonians acting on Alice’s side. Similarly,
I2B is invariant, up to a U(1) phase, for arbitrary-mass Dirac
Hamiltonians acting on Alice’s side but only for zero-mass
Dirac Hamiltonians acting on Bob’s side. The fifth Lorentz
invariant, I3, is invariant, up to a U(1) phase, under any local
unitary evolution, physically allowed or not.

For a system of two Dirac particles with definite momenta
the conditions of non-existence for product states, invariance
under local evolutions generated by physically allowed Dirac
Hamiltonians that act unitarily on any subspace defined by



13

fixed particle momenta, and Lorentz invariance were tenta-
tively considered as the conditions defining a spinor entan-
glement property. With this definition two spinor entangled
states that can be transformed into each other by physically al-
lowed local unitary evolution and changes of reference frame
have the same entanglement properties. The polynomials
I1, I2, I2A, I2B, and I3 can be used to partially characterize such
spinor entanglement properties, i.e., partially characterize the
qualitatively different ways that two Dirac spinors can be en-
tangled.

For the case of incoherent mixtures of spinor entangled
states the Lorentz invariants |I1|, |I2|, |I2A|, |I2B|, and |I3| can be
extended to Lorentz invariant functions on the set of such in-
coherent mixtures through convex roof extensions [93–95].
Thus these convex roof extensions provide a partial character-
ization of the qualitatively different types of spinor entangle-
ment of incoherent mixtures. All such convex roof extensions
are by definition identically zero for the separable states, i.e.,
for the incoherent mixtures of product states.

The constructed polynomials were considered also in the
context of Dirac and Weyl quasiparticles in condensed matter
and molecular systems. In particular, they are all invariant, up
to a U(1) phase, for local evolution generated by the Hamil-
tonians describing a Dirac particle in the 2D Dirac semimetal
graphene [53, 54] and the Hamiltonians describing a particle
in 3D Dirac semimetals [9]. This holds also if Semenoff [7]
or Haldane [68] mass terms are added to the Hamiltonians.

We considered examples of spinor entangled states charac-
terized by the Lorentz invariants. For each invariant there exist
states for which only that invariant is nonzero. Only I1 is non-
zero for the so called spinor "EPR-state" previously discussed
in the literature [21, 24, 29, 35, 37].

If the local evolution on Alice’s side is generated by a
time independent nonzero-mass Dirac Hamiltonian the abso-
lute values of I1 and I2A oscillate with constant time aver-
age. The frequency of oscillation is the same as that of the
Zitterbewegung [96] of Alice’s Dirac particle. Likewise, for
a local evolution on Bobs’s side generated by a time inde-
pendent nonzero-mass Dirac Hamiltonian the absolute values
of I1 and I2B oscillate with the Zitterbewegung frequency of
Bob’s Dirac particle.

Finally, we considered the Foldy-Wouthuysen representa-
tions of the polynomial invariants. It was found that in gen-
eral the invariants I1, I2A, and I2B become functions of the mo-
menta and four-potentials and their derivatives after the two
first Foldy-Wouthuysen transformations. Only I2 and I3 are
still purely polynomials in state coefficients.

Several previous works [20, 25–28, 30, 31, 33, 37, 38] have
investigated entanglement of two Dirac particles by studying
non-local correlations and in particular the violation of Bell-
inequalities [15, 16]. This approach requires the identification
of appropriate Bell inequalities together with choices of mea-
surement operators that allow non-local correlations to be ob-
served. In contrast the approach in this work constructs alge-
braic quantities from the state coefficients and does not require
identification of measurement operators, but also does not di-
rectly demonstrate the potential for non-local correlations.

Many previous works have investigated entanglement of

two Dirac particles in the context of a Quantum Field The-
ory formalism [20, 21, 24–29, 31–35, 38] including non-local
correlations between Dirac particles [20, 25–28, 31, 33, 38],
generation of entanglement [24, 29, 32], and entanglement in
non-inertial frames [34]. In a Quantum Field Theory formal-
ism the Dirac spinor is reinterpreted as an operator valued
Dirac field acting on a Hilbert space. In the context of such
a formalism the Lorentz invariants constructed in this work
can be reinterpreted as Lorentz invariants of the Dirac field
since this field still transforms under the spinor representation
of the Lorentz group. The Hilbert space in a Quantum Field
Theory formalism on the other hand is typically constructed to
transform under an infinite dimensional representation of the
Lorentz group. The Hilbert space basis vectors are labelled
by momentum and a spin degree of freedom chosen so that
the infinite dimensional representation of the Lorentz group
acts on the spin degree of freedom conditioned on the parti-
cle momentum. Since this spin degree of freedom transforms
conditioned on the momentum it does not have a complete
physical interpretation independently of the momentum.

One consequence of the spin degree of freedom in a Quan-
tum Field Theory formalism being defined in a momentum
dependent way is that taking the partial trace over the mo-
mentum in general leads to reduced spin density matrices
that are not physically meaningful and do not transform un-
der any representation of the Lorentz group [22]. Only in
the case of definite particle momentum can the reduced spin
density matrix be given a physical meaning and has well de-
fined transformation properties. For the same reason spin en-
tanglement between two particles in this kind of formalism
can in general not be meaningfully described independently
of the particle momenta. If one nevertheless constructs the
reduced two particle spin density matrix one finds that the
mathematical counterpart of spin entanglement is in general
dependent on the inertial frame and does not have well defined
transformation properties [23]. See Appendix H for a discus-
sion of the infinite dimensional representation of the Lorentz
group. In contrast the action of the spinor representation of the
Lorentz group is not conditioned on the momentum and there-
fore physically meaningful reduced density matrices for Dirac
spinors can be constructed by taking the partial trace over the
momenta. These transform under the spinor representations of
the local proper orthochronous Lorentz groups. Moreover, the
Lorentz invariants |I1|, |I2|, |I2A|, |I2B|, and |I3| can be extended
to Lorentz invariant functions on the set of such reduced two-
spinor density matrices through convex roof extensions [93–
95] (See Appendix G for a discussion).

The five Lorentz invariants in this work were constructed
to describe spinor entanglement for the case of definite parti-
cle momenta but whether similar constructions can be made
for the case of Dirac particles without definite momenta is an
open question. Another open question is that of describing
quantifiable spinor entanglement properties, i.e., spinor entan-
glement properties that satisfy a condition of non-increase on
average under any local operations assisted by classical com-
munication [87].
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Appendix A: Real and rational numbers as quantifiers in

experiments

A measurement quantifying a property is an operational
procedure that terminates and results in an output number that
is registered by the experimenter. Only finitely many such
procedures can be performed in any given experiment and the
registry holding the output numbers has finite capacity.

A real number is defined as the limit of a Cauchy sequence
of rational numbers [98]. If the sequence terminates the limit
is a rational number itself. If the limit is not a rational number
the sequence does not terminate. Formulated differently, an
irrational number is represented in a base-n positional numeral
system as a non-terminating and non-recurring sequence of
digits for any n.

Therefore, no finite capacity registry can hold an irrational
number, and thus the output numbers from any experiment is
necessarily a finite set of rational numbers. The elements of
a finite set of rational numbers are multiples of their greatest
common divisor q. Thus, the experiment cannot distinguish
between a continuous spectrum R and the discrete spectrum
nq, n ∈ Z. Hence, for any experimental setup it is possible
to use a model where the measurable quantities take only a
discrete set of values.

Appendix B: The case without definite particle momenta

The assumption of fixed particle momenta was made so that
spinor entanglement could be studied without involving mo-
mentum degrees of freedom. However, this assumption is not
physically trivial and as described in Sect. II it can be made
in some models, such as those using box quantization, but in
others not. In a model using a rigged Hilbert space descrip-
tion it can only be done as an approximation. Moreover, even
if a given model allows for fixed momenta one may wish to
consider physical scenarios without this restriction.

Therefore we consider the qualitative description of spinor
entanglement for the case where the momentum is not fixed.
A general initial state ψAB with multiple momentum compo-
nents can be written as

ψAB =
∑

kA ,kB

∑

jA , jB

ψ jA , jB,kA,kB
φ jA

eikA ·xA ⊗ φ jB
eikB ·xB . (B1)
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Since the Dirac Hamiltonian HD has a term −i
∑

µ=1,2,3 γ
0γµ∂µ

that contains derivatives with respect to the spatial coordinate
it is clear that the evolution of Alice’s spinor is conditioned
on the initial particle momentum kA. Therefore the evolution
of the spinorial degrees of freedom is described by a set of
unitaries U(kA, t) indexed by kA and acting on the terms of
the state with the corresponding momentum, where in general
U(kA, t) , U(kA

′, t) if kA , kA
′. Likewise, the evolution

of Bob’s particle is described by a set of unitaries U(kB, t)
indexed by kB where in general U(kB, t) , U(kB

′, t) if kB ,

kB
′.
Let us for simplicity consider an evolution that preserves

the subspaces defined by fixed momentum. A state initially
without entanglement in the momentum degrees of freedom
but without definite particle momenta such as

ψAB =
1
√

8
[φ1(eik1

A
·xA + eik2

A
·xA) ⊗ φ1(eik1

B
·xB + eik2

B
·xB )

+φ0(eik1
A
·xA + eik2

A
·xA ) ⊗ φ0(eik1

B
·xB + eik2

B
·xB)],

(B2)

is evolved conditioned on the initial momenta to a state

ψAB(t) =
1
√

8
[(U(k1

A, t)φ1eik1
A
·xA + U(k2

A, t)φ1eik2
A
·xA)

⊗(U(k1
B, t)φ1eik1

B
·xB + U(k2

B, t)φ1eik2
B
·xB )

+(U(k1
A, t)φ0eik1

A
·xA + U(k2

A, t)φ0eik2
A
·xA )

⊗(U(k1
B, t)φ0eik1

B
·xB + U(k2

B, t)φ0eik2
B
·xB )],

(B3)

where the spinor states are in general conditioned on the mo-
menta. Thus, in the case without definite particle momenta the
spinor entanglement cannot be described on its own without
involving the momentum degrees of freedom.

Appendix C: The constant momenta and four-potentials limit of

I1, I2A, and I2B

The absolute value of the Lorentz invariant I1 is not invari-
ant under unitary evolution generated by local nonzero-mass
Dirac Hamiltonians in Alice’s lab or in Bob’s lab. The ab-
solute values of the Lorentz invariants I2A and I2B are only
invariant under unitary evolution generated by local nonzero-
mass Dirac Hamiltonians in Bobs’s and in Alice’s lab, respec-
tively. Moreover, I1 is the only Lorentz invariant found in this
work that is non-zero for the spinor "EPR-state" considered in
Refs. [21, 24, 29, 35, 37].

We therefore study the behaviour of I1, I2A and I2B when
the evolution is generated in both labs by nonzero-mass Dirac
Hamiltonians. In particular we consider their time dependen-
cies relative to fixed inertial frames of Alice and Bob, i.e.,
relative to Alice’s time tA and Bob’s time tB.

If all momenta and four-potentials are zero the evolution is
generated by the Hamiltonians HA = mAγ

0 and HB = mBγ
0 in

Alice’s and Bob’s labs respectively. It the state at tA = 0 and

tB = 0 is Ψ0
AB

the time dependencies of the Lorentz invariant
I1 given by

I1(tA, tB) =
1
2

Tr[ΨT
ABCΨABC]

=
1
2

Tr[Ψ0T
ABCe−2imAγ

0tAΨ0
ABe−2imBγ

0tBC]

= e−2i(mAtA+mBtB)(ψ0
00ψ

0
11 − ψ0

01ψ
0
10)

+ e−2i(mAtA−mBtB)(ψ0
02ψ

0
13 − ψ0

03ψ
0
12)

+ e2i(mAtA−mBtB)(ψ0
20ψ

0
31 − ψ0

21ψ
0
30)

+ e2i(mAtA+mBtB)(ψ0
22ψ

0
33 − ψ0

23ψ
0
32). (C1)

Thus, in the fixed inertial frames of Alice and Bob the value
of I1 is periodic in tA with period π/mA and periodic in tB with
period π/mB. So while the absolute value of I1 is not invariant
its tA average and tB average are invariant in this limit. Note
in particular that for each of the constituent determinants, e.g.
e−2i(mAtA+mBtB)(ψ0

00ψ
0
11 − ψ0

01ψ
0
10), the absolute value is constant

in tA and tB. Thus, in this limit the absolute value of the Woot-
ters concurrence of the respective spinor components is in-
variant. Note further that a nonzero constant scalar potential
A0 does not affect the absolute value of I1 or the constituent
concurrences since it only generates a U(1) phase.

Similarly, for I2A we have

I2A(tA) =
1
2

Tr[ΨT
ABCΨABCγ5]

=
1
2

Tr[Ψ0T
ABe−imAγ

0tACe−imAγ
0tAΨ0

ABCγ5]

= e−2imAtA (ψ0
00ψ

0
13 − ψ0

03ψ
0
10)

+ e−i2mAtA (ψ0
02ψ

0
11 − ψ0

01ψ
0
12)

+ e2imAtA (ψ0
22ψ

0
31 − ψ0

21ψ
0
32)

+ e2imAtA (ψ0
20ψ

0
33 − ψ0

23ψ
0
30), (C2)

which is periodic in tA with a period π/mA, and for I2B we
have

I2B(tB) =
1
2

Tr[ΨT
ABCγ5ΨABC]

=
1
2

Tr[Ψ0T
ABCγ5Ψ0

ABe−imBγ
0tBCe−imBγ

0tB ]

= e−2imBtB (ψ0
11ψ

0
20 − ψ0

10ψ
0
21)

+ e−2imBtB (ψ0
00ψ

0
31 − ψ0

01ψ
0
30)

+ e2imBtB (ψ0
13ψ

0
22 − ψ0

12ψ
0
23)

+ e2imBtB (ψ0
02ψ

0
33 − ψ0

03ψ
0
32), (C3)

which is periodic in tB with a period π/mB.
The angular frequencies of the values of the invariants, 2mA

or 2mB, are the same as that of the Zitterbewegung [96] of the
respective Dirac particle. For an electron or positron this fre-
quency is approximately 1.55×1021 radians per second which
may be challenging to observe. But for Dirac quasiparticles it
may be less difficult, see e.g. Ref. [99].

More generally we can consider the case of constant mo-
menta pA

µ , pB
µ and constant four-potentials AA

µ , A
B
µ in Alice’s
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and Bob’s labs. Then the Hamiltonians HA and HB are inde-
pendent of tA and tB, respectively, and the evolution is eiHAtA ⊗
eiHBtB . The absolute value of I1 is then periodic in tA with

a period π/
√

∑

µ=1,2,3(pA
µ + AA

µ )2 + m2
A

and periodic in tB with

a period π/
√

∑

µ=1,2,3(pB
µ + AB

µ )2 + m2
B
. Likewise, I2A is peri-

odic in tA with a period π/
√

∑

µ=1,2,3(pA
µ + AA

µ )2 + m2
A

and I2B

is periodic in tB with a period π/
√

∑

µ=1,2,3(pB
µ + AB

µ )2 + m2
B
.

Appendix D: Reduced one-party matrices

From the matrix ΨAB containing the state coefficients of the
shared state of Alice and Bob we can construct reduced ma-
trices associated to either Alice’s lab or Bob’s lab. Depending
on the construction these have different transformation prop-
erties under the spinor representations of the local proper or-
thochronous Lorentz groups.

First we consider the analogues of reduced density matri-
ces from non-relativistic quantum mechanics. These are con-
structed as

ρA≡ ΨABΨ
†
AB

ρB≡ ΨT
ABΨ

∗
AB, (D1)

where ρA is the reduced density matrix corresponding to Al-
ice’s lab, and ρB is the reduced density matrix corresponding
to Bob’s lab. For transformations S A in Alice’s lab and trans-
formations S B in Bob’s lab these matrices transform as

ΨABΨ
†
AB
→ S AΨABS T

BS ∗BΨ
†
AB

S
†
A

ΨT
ABΨ

∗
AB→ S BΨ

T
ABS T

AS ∗AΨ
∗
ABS

†
B
. (D2)

Since the local unitary evolutions generated by Dirac
Hamiltonians and the spinor representations of proper or-
thochronous Lorentz transformations are full rank, and since
for a complex matrix X we have rank[XX†] = rank[X],
it follows that both local unitary evolution and proper or-
thochronous Lorentz transformations preserve the rank of ρA

and of ρB and rank[ρA] = rank[ρB] = rank[ΨAB]. If the shared
state of Alice and Bob is a product state rank[ΨAB] = 1 and
thus the reduced density matrices ρA and ρB are both rank 1.
Such reduced density matrices are called pure. If on the other
hand the shared state is entangled the reduced density matrix
corresponding to Alice and the reduced density matrix cor-
responding to Bob both have rank 2 or greater. A reduced
density matrix with rank at least 2 is called mixed. Moreover,
since spinor representations of proper orthochronous Lorentz
transformations have determinant 1 and the local unitary evo-
lutions generated by Dirac Hamiltonians have determinants
with absolute value 1 it follows that both preserve the determi-
nant of the reduced density matrices and det[ρA] = det[ρB] =
det[ΨAB] det[Ψ†

AB
] = |I3|2.

The eigenvalues of ρA and ρB are preserved by local uni-
tary evolution generated by Dirac Hamiltonians and under the

spinor representations of rotations, but in general they are not
preserved under the spinor representations of Lorentz boosts.
Therefore the measures of mixedness used in non-relativistic
quantum mechanics that are functions of the eigenvalues such
as the purity and the von Neumann entropy are in general not
invariant. The purity is defined for a reduced density matrix
normalized to have trace 1 as Tr[ρ2]. A pure reduced density
matrix with trace 1 is a projector, i.e., ρ2 = ρ and Tr[ρ2] = 1.
For a mixed reduced density matrix with trace 1 we instead
have ρ2

, ρ and Tr[ρ2] < 1. Thus a purity of less than one
indicates entanglement in the shared state of Alice and Bob.
The von Neumann entropy is defined as −Tr[ρ ln(ρ)] [100]
and for a normalized reduced density matrix it is zero when
the reduced density matrix is pure but nonzero otherwise.

While the purity and von Neumann entropy are in general
not invariant under Lorentz transformations the preservation
of the rank implies that they are still indicators of entangle-
ment for normalized states. If a reduced density matrix is nor-
malized to have unit trace, a von Neumann entropy greater
than zero indicates entanglement of the shared state. Like-
wise, for a reduced density matrix normalized to have unit
trace a purity of less than one indicates entanglement of the
shared state.

Beyond the reduced density matrices we can construct other
reduced matrices associated with either Alice’s lab or Bob’s
lab. There are such matrices that transform non-trivially only
under the spinor representation of the proper orthochronous
Lorentz group acting in the lab they are associated with, and
that are explicitly invariant under the spinor representation
of the proper orthochronous Lorentz group acting in the lab
they are not associated with. Their eigenvalues are invariant
under the spinor representations of the proper orthochronous
Lorentz groups in both labs. One such matrix is

ρ̃A ≡ CΨABCΨT
AB. (D3)

It is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Bob’s particle and in-
variant, up to a U(1) phase, under unitary evolutions generated
by zero-mass Dirac Hamiltonians of Bob’s particle. Its eigen-
values are invariant under spinor representations of proper
orthochronous Lorentz transformations acting on both parti-
cles and invariant, up to a U(1) phase, under unitary evolu-
tions generated by zero-mass Dirac Hamiltonians acting on
both particles. In particular det[ρ̃A] = det[ΨAB]2 = I2

3 and

Tr[ρ̃A] = 2I1 and the eigenvalues are 1/2(I1−
√

I2
1 − 4I3) with

multiplicity 2 and 1/2(I1 +

√

I2
1 − 4I3) with multiplicity 2.

Similarly, the matrix

ρ̃B ≡ CΨT
ABCΨAB, (D4)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Alice’s particle and
invariant, up to a U(1) phase, under unitary evolutions gen-
erated by zero-mass Dirac Hamiltonians of Alice’s particle.
Its eigenvalues are invariant under spinor representations of
proper orthochronous Lorentz transformations acting on both
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particles and invariant, up to a U(1) phase, under unitary
evolutions generated by zero-mass Dirac Hamiltonians act-
ing on both particles. In particular det[ρ̃B] = det[ΨAB]2 =

I2
3 and Tr[ρ̃B] = 2I1 and its eigenvalues are the same as

those of ρ̃A, i.e., 1/2(I1 −
√

I2
1 − 4I3) with multiplicity 2 and

1/2(I1 +

√

I2
1 − 4I3) with multiplicity 2.

Since for square matrices of the same dimension X, Y we
have that rank[XY] ≤ min(rank[X], rank[Y]) it follows that
rank[ρ̃A] = rank[ρ̃B] ≤ rank[ΨAB] = rank[ρA] = rank[ρB].
Therefore if I3 , 0 we have rank[ρ̃A] = rank[ρ̃B] =
rank[ρA] = rank[ρB] = 4 and if I3 = 0 but I1 , 0 we have
2 = rank[ρ̃A] = rank[ρ̃B] ≤ rank[ρA] = rank[ρB] < 4.

The matrix

η̃A ≡ Cγ5ΨABCγ5ΨT
AB, (D5)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Bob’s particle and in-
variant, up to a U(1) phase, under unitary evolutions gener-
ated by arbitrary-mass Dirac Hamiltonians of Bob’s particle.
Its eigenvalues are invariant under spinor representations of
proper orthochronous Lorentz transformations acting on both
particles and invariant, up to a U(1) phase, under unitary evo-
lutions generated by arbitrary-mass Dirac Hamiltonians acting
on both particles. In particular det[η̃A] = det[ΨAB]2 = I2

3 and

Tr[η̃A] = 2I2 and its eigenvalues are 1/2(I2 −
√

I2
2 − 4I3) with

multiplicity 2 and 1/2(I2 +

√

I2
2 − 4I3) with multiplicity 2.

Similarly, the matrix

η̃B ≡ Cγ5ΨT
ABCγ5ΨAB, (D6)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Alice’s particle and
invariant, up to a U(1) phase, under unitary evolutions of Al-
ice’s particle generated by arbitrary-mass Dirac Hamiltonians.
Its eigenvalues are invariant under spinor representations of
proper orthochronous Lorentz transformations acting on both
particles and invariant, up to a U(1) phase, under unitary evo-
lutions generated by arbitrary-mass Dirac Hamiltonians act-
ing on both particles. In particular det[η̃B] = det[ΨAB]2 = I2

3
and Tr[η̃B] = 2I2 an its eigenvalues are the same as those of

η̃A, i.e., 1/2(I2 −
√

I2
2 − 4I3) with multiplicity 2 and 1/2(I2 +

√

I2
2 − 4I3) with multiplicity 2.
Since rank[η̃A] = rank[η̃B] ≤ rank[ΨAB] = rank[ρA] =

rank[ρB] it follows that if I3 , 0 we have rank[η̃A] =
rank[η̃B] = rank[ρA] = rank[ρB] = 4 and if I3 = 0 but I2 , 0
we have 2 = rank[η̃A] = rank[η̃B] ≤ rank[ρA] = rank[ρB] < 4.

The matrix

ζ̃A ≡ CΨABCγ5ΨT
AB, (D7)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Bob’s particle and
invariant, up to a U(1) phase, under unitary evolutions of

Bob’s particle generated by arbitrary-mass Dirac Hamiltoni-
ans. Its eigenvalues are invariant under spinor representations
of proper orthochronous Lorentz transformations acting on
both particles and invariant, up to a U(1) phase, under uni-
tary evolutions generated by arbitrary-mass Dirac Hamiltoni-
ans for Bob’s particle and zero-mass Dirac Hamiltonians for
Alice’s particle. In particular det[ζ̃A] = det[ΨAB]2 = I2

3 and

Tr[ζ̃A] = 2I2A. The eigenvalues are 1/2(I2A−
√

I2
2A
+ 4I3) with

multiplicity 2 and 1/2(I2A +

√

I2
2A
+ 4I3) with multiplicity 2.

Similarly, the matrix

ζ̃B ≡ Cγ5ΨT
ABCΨAB, (D8)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Alice’s particle and
invariant, up to a U(1) phase, under unitary evolutions of
Alice’s particle generated by zero-mass Dirac Hamiltonians.
Its eigenvalues are invariant under spinor representations of
proper orthochronous Lorentz transformations acting on both
particles and invariant, up to a U(1) phase, under unitary
evolutions generated by arbitrary-mass Dirac Hamiltonians
for Bob’s particle and zero-mass Dirac Hamiltonians for Al-
ice’s particle. In particular det[ζ̃B] = det[ΨAB]2 = I2

3 and

Tr[ζ̃B] = 2I2A. The eigenvalues are 1/2(I2A−
√

I2
2A
+ 4I3) with

multiplicity 2 and 1/2(I2A +

√

I2
2A
+ 4I3) with multiplicity 2.

Since rank[ζ̃A] = rank[ζ̃B] ≤ rank[ΨAB] = rank[ρA] =
rank[ρB] it follows that if I3 , 0 we have rank[ζ̃A] =
rank[ζ̃B] = rank[ρA] = rank[ρB] = 4 and if I3 = 0 but I2A , 0
we have 2 = rank[ζ̃A] = rank[ζ̃B] ≤ rank[ρA] = rank[ρB] < 4.

The matrix

κ̃A ≡ Cγ5ΨABCΨT
AB, (D9)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Bob’s particle and
invariant, up to a U(1) phase, under unitary evolutions of
Bob’s particle generated by zero-mass Dirac Hamiltonians.
Its eigenvalues are invariant under spinor representations of
proper orthochronous Lorentz transformations acting on both
particles and invariant, up to a U(1) phase, under unitary
evolutions generated by arbitrary-mass Dirac Hamiltonians
for Alice’s particle and zero-mass Dirac Hamiltonians for
Bob’s particle. In particular det[κ̃A] = det[ΨAB]2 = I2

3 and

Tr[κ̃A] = 2I2B. The eigenvalues are 1/2(I2B−
√

I2
2B
+ 4I3) with

multiplicity 2 and 1/2(I2B +

√

I2
2B
+ 4I3) with multiplicity 2.

Similarly, the matrix

κ̃B ≡ CΨT
ABCγ5ΨAB, (D10)

is invariant under the spinor representations of proper or-
thochronous Lorentz transformations of Alice’s particle and
invariant, up to a U(1) phase, under unitary evolutions of
Alice’s particle generated by arbitrary-mass Dirac Hamilto-
nians. Its eigenvalues are invariant under spinor representa-
tions of proper orthochronous Lorentz transformations acting
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on both particles and invariant, up to a U(1) phase, under uni-
tary evolutions generated by arbitrary-mass Dirac Hamiltoni-
ans for Alice’s particle and zero-mass Dirac Hamiltonians for
Bob’s particle. In particular det[κ̃B] = det[ΨAB]2 = I2

3 and

Tr[κ̃B] = 2I2B. The eigenvalues are 1/2(I2B−
√

I2
2B
+ 4I3) with

multiplicity 2 and 1/2(I2B +

√

I2
2B
+ 4I3) with multiplicity 2.

Since rank[κ̃A] = rank[κ̃B] ≤ rank[ΨAB] = rank[ρA] =
rank[ρB] it follows that if I3 , 0 we have rank[κ̃A] =
rank[κ̃B] = rank[ρA] = rank[ρB] = 4 and if I3 = 0 but I2A , 0
we have 2 = rank[κ̃A] = rank[κ̃B] ≤ rank[ρA] = rank[ρB] < 4.

1. Mixedness of reduced density matrices in relation to

maximal absolute values of the invariants I1, I2, I2A, I2B and I3

When the absolute value of a determinant | det[X]| is max-
imized over the complex d × d matrices X subject to a con-
straint Tr[XX†] = N for some N ∈ R+ we have that XX† =
Nd−1Id where Id is the d × d identity matrix. This follows
since XX† is a positive Hermitian matrix and its eigenval-
ues zi satisfy (1/d

∑

zi)d ≥ ∏

zi, i.e., the arithmetic mean
is greater or equal to the geometric mean, with equality if
and only if z1 = z2 = · · · = zd. Restated this inequality
is (1/d Tr[XX†])d ≥ det[XX†]. Thus if Tr[XX†] = N and
the maximal value of det[XX†] subject to this constraint is
achieved it follows that XX† = Nd−1Id. Since det[XX†] =
det[X] det[X†] = | det[X]|2 this implies that the maximal value
of | det[X]| is achieved. Therefore, when |I3| takes its maximal
value for a given normalization of a state the reduced density
matrices are proportional to the identity. If we consider re-
duced density matrices of two Dirac spinors, normalized to
have trace one, the minimal purity is achieved for a reduced
density matrix proportional to the identity matrix and is 1/4.
For the same case the von Neumann entropy reaches its maxi-
mal value ln(4). A reduced density matrix for which the purity
is minimal or equivalently the von Neumann entropy maximal
is called maximally mixed. The corresponding shared entan-
gled state is called maximally entangled. Since I3 is a determi-
nant it is invariant under local SL(4,C) transformations. It is
a general property of polynomials in the state coefficients in-
variant under local SL(4,C) transformations that they achieve
their maximal absolute value on a set of maximally entangled
states as shown in Theorem 1 of Ref. [84].

The other four Lorentz invariants I1, I2, I2A and I2B are
not invariant under local SL(4,C) and thus Theorem 1 of
Ref. [84] does not apply. Their maximal absolute values
for a given normalization are not necessarily reached on a
set that consists of only maximally entangled states. Each
of I1, I2, I2A and I2B is a sum of four determinants of 2 × 2
non-overlapping minors of ΨAB such that each pair of minors
form either two full rows, two full columns, or does not form
a single full row or column. Let Mk be the minors corre-
sponding to one of the invariants. Then if the given invari-
ant has achieved its maximal absolute value for a normal-
ized state the minors satisfy Mk M

†
k
= ωkI where ωk ≥ 0

and
∑

k ωk = 1/2. The eigenvalues of the reduced den-
sity matrix are 1/4 ± 1/2

√
1/4 − 4(ω2ω3 + ω1ω4 + x1) and

1/4 ± 1/2
√

1/4 − 4(ω2ω3 + ω1ω4 + x2) where x1 and x2 are
the eigenvalues of M1M

†
3 M4 M

†
2 + M2 M

†
4 M3M

†
1 . Optimiz-

ing over the Mk gives that the values of x1 and x2 satisfy
−2
√
ω1ω2ω3ω4 ≤ x1 ≤ 2

√
ω1ω2ω3ω4 and −2

√
ω1ω2ω3ω4 ≤

x2 ≤ 2
√
ω1ω2ω3ω4 with any values of x1 and x2 in these in-

tervals independently achievable. It follows that 0 ≤ (ω2ω3 +

ω1ω4 + x1) ≤ 1/16 and 0 ≤ (ω2ω3 + ω1ω4 + x2) ≤ 1/16
with any values in these intervals of the two expressions in-
dependently achievable. Therefore, if any of I1, I2, I2A and
I2B achieves its maximal absolute value the eigenvalues of
the reduce density matrices are constrained to the form 1/4 −
α, 1/4+α, 1/4+β, 1/4−β for 0 ≤ α ≤ 1/4 and 0 ≤ β ≤ 1/4 but
any such α and β are allowed. Consequently, for a normalized
state any value of the purity between 1/2 and 1/4 or alterna-
tively any value of the von Neumann entropy between ln(2)
and ln(4) is compatible with a maximal absolute value of any
of the Lorentz invariants I1, I2, I2A and I2B. Thus a maximal
absolute value of any of the Lorentz invariants I1, I2, I2A and
I2B only implies an upper bound on the purity of 1/2 or equiv-
alently a lower bound of ln(2) of the von Neumann entropy.

Appendix E: The zero locus of all homogeneous polynomial

Lorentz invariants

It is not clear if additional homogeneous polynomials ex-
ist, beyond I1, I2, I2A, I2B and I3 and their algebraic com-
binations, that are invariant under the proper orthochronous
Lorentz group as well as local unitary evolution generated by
either zero- or arbitrary mass Dirac Hamiltonians. But even
if such additional polynomials exist it is not possible to dis-
tinguish all inequivalent forms of entanglement using homo-
geneous polynomial Lorentz invariants. The zero locus of the
set of all such polynomials, i.e., the set of states for which no
such polynomial is non-zero, contains entangled states. The
entangled states in the zero locus cannot be distinguished by
these polynomials from product states.

One way to see why there is entangled states in the zero lo-
cus is to note that there exist parametrized families of spinor
representations of local Lorentz boosts for which some entan-
gled states are eigenstates. Theses parametrized families are
such that by varying the parameters the eigenvalues multiply-
ing the eigenstates can be any positive real number. No homo-
geneous polynomial can be invariant under the action of such
a family of spinor representations of Lorentz boosts unless it
is identically zero on all such eigenstates of the family.

As an example we can consider the family of states

α(φ0 − φ2) ⊗ (φ0 − φ2) + β(φ0 − φ2) ⊗ (φ1 + φ3)

+γ(φ1 + φ3) ⊗ (φ0 − φ2) + δ(φ1 + φ3) ⊗ (φ1 + φ3). (E1)

As long as αδ − βγ , 0 the corresponding state is entangled
and ΨAB has rank 2. Otherwise the state is a product state and
ΨAB has rank 1.

This family of states are eigenstates of the family
exp

(

aγ0γ3
)

⊗exp
(

bγ0γ3
)

of spinor representations of Lorentz

boosts parametrized by a, b ∈ R and where exp
(

aγ0γ3
)

acts
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on Alice’s particle and exp
(

bγ0γ3
)

acts on Bob’s particle. The
eigenvalues are e−(a+b) and thus the eigenvalue can be any pos-
itive real number for some choice of a and b.

Note that this reason why the zero locus of all the ho-
mogeneous Lorentz invariant polynomials contain entangled
states is analogous to the reason why for a system of three
or more non-relativistic two-component spinors the zero lo-
cus of all polynomials invariant under local SL(2,C) opera-
tions contain entangled states [101]. An example are the so
called W-states defined for three or more non-relativistic two-
component spinors [101].

Appendix F: The local reversible operations and the invariance

groups of |I1|, |I2|, |I2A |, |I2B| and |I3|

In Section VI A the local reversible operations were defined
as the local operations that can be implemented by local uni-
tary evolution of the system and changes of local reference
frames. The unitary evolutions were defined in Section V as
generated by time dependent, bounded and strongly continu-
ous Hamiltonians. The set of local reversible transformations
that can be implemented on a pair of Dirac spinors thus de-
pends on the set of physically allowed Hamiltonians. A few
different classes of Hamiltonians defined in terms of different
degrees in the gamma matrices were considered in Section V.

In this Appendix we elaborate on the properties of the sets
of reversible operations, including properties that depend on
the specific class of allowed Hamiltonians. We also consider
the different groups of transformations that leave the bilinear
forms ψT Cϕ and ψTCγ5ϕ and the polynomials I1, I2, I2A, I2B

and I3 invariant up to a U(1) phase. The relations between
these groups and the sets of reversible operations are de-
scribed. For this purpose we use the following Theorem

Theorem 2. Let G be a continuous connected group gener-

ated by the elements exp(Xit) for t ∈ R and Xi ∈ S where S

is a set of matrices. Then exp((aXi + bX j)t) and exp([Xi, X j]t)
are in the closure cl G of G for all a, b, t ∈ R and Xi, X j ∈ S .

Let h be the real Lie algebra spanned by the Xi ∈ S and the

commutators [Xi, X j] for Xi, X j ∈ S . Let H be the connected

matrix Lie group that is generated by the exponentials exp(Zi)
for Zi ∈ h. Then G is a dense subset of H, i.e., for any h ∈ H

every neighbourhood of h contains at least one element of G.

If G contains its limit points we have that G = H.

Proof. Let X, Y be such that exp(Xt) ∈ G and exp(Yt) ∈ G for
all t ∈ R. Consider the Baker-Campbell-Hausdorff formula

exp(aXt) exp(bYt) = exp

(

aXt + bYt + [aX, bY]
t2

2
+ O(t3)

)

,

(F1)

where the third and higher order terms in t are denoted O(t3).
From this formula follows that

(

exp
(

ta

n
X

)

exp
(

tb

n
Y

))n

= exp
(

(aX + bY)t + O
(

1
n

))

,(F2)

where first and higher order terms in 1
n

are denotedO( 1
n
). Tak-

ing the limit n → ∞ gives exp((aX + bY)t). Thus a sequence
of elements in G exists that converges to exp((aX + bY)t). By
definition exp((aX + bY)t) is a limit point of G and belongs to
cl G for all t ∈ R. Next consider

(

exp
(

t

n
X

)

exp
(

t

n
Y

)

exp
(

− t

n
X

)

exp
(

− t

n
Y

))n2

=exp
(

[X, Y]t2 + O
(

1
n

))

. (F3)

Taking the limit n → ∞ gives exp([X, Y]t2). Exchanging the
roles of X and Y gives the limit exp([Y, X]t2) = exp(−[X, Y]t2).
Thus exp([X, Y]t) is a limit point of G and belongs to cl G for
all t ∈ R. Let Z be the smallest real matrix Lie algebra that
contains all X, Y such that exp(Xt) ∈ G and exp(Yt) ∈ G for
all t ∈ R. By concatenated use of Eq. (F2) and Eq. (F3)
we see that every exp(Z) for Z ∈ h is in cl G. Moreover if
H is the connected matrix Lie group generated by the exp(Z)
for Z ∈ h, by definition every h ∈ H can be expressed as
h = exp(Z1) exp(Z2) . . . exp(Zm) for Z j ∈ h. Therefore every
h ∈ H is in cl G. Since G is a subgroup of H we have that
cl G = H. See also e.g. Ref. [92] Ch. 1.3.3. or Ref. [62] Ch.
3.3. �

Based on Theorem 2 we can make the following Corollary

Corollary 1. Let G be a continuous connected group gener-

ated by the elements exp(Xit) for t ∈ R and Xi ∈ S where S is

a set of matrices. Let h be the real Lie algebra spanned by the

Xi ∈ S and the commutators [Xi, X j] for Xi, X j ∈ S . Let H be

the connected matrix Lie group that is generated by the expo-

nentials exp(Zi) for Zi ∈ h. Let F be a subset of H such that

for any g ∈ G every neighbourhood of g contains an element

in F and let F be a semigroup. Then F is a dense subset of H,

i.e., for any h ∈ H every neighbourhood of h contains at least

one element of F. If F contains its limit points we have that

F = H.

Proof. Consider exp(Xt) for X ∈ S , t ∈ R and a neighbour-
hood Uǫ of exp(Xt) defined by Uǫ ≡ {exp(Xt) +Wǫ| ||W ||2 ≤
1} for some ǫ > 0, where || · ||2 is the spectral norm. By
assumption for every X ∈ S , t ∈ R, and ǫ > 0 there exists
an element f ∈ F such that f ∈ Uǫ . Since the spectral
norm is submultiplicative we have that ||WM||2 ≤ ||M||2 for
every matrix M and every W such that exp(Xt) + Wǫ ∈ Uǫ .
Therefore for any product ǫnM0W1M1W2M2 . . .WnMn where
||Wk||2 ≤ 1 for all k we have ||ǫnM0W1M1W2M2 . . .WnMn||2 ≤
ǫn||M0||2||M1||2 . . . ||Mn||2. Let the Mk be matrices with
finite spectral norm that do not depend on ǫ and con-
sider sequences (ǫ j,W jk) such that ǫ j > ǫ j+1 > 0
and ||W jk||2 ≤ 1 with lim j→∞ ǫ j = 0. Then we
have that lim j→∞ ||ǫn

j
M0W j1M1W j2 M2 . . .W jnMn||2 ≤

lim j→∞ ǫ
n
j
||M0||2||M1||2 . . . ||Mn||2 = 0 and thus

lim j→∞ ǫ
n
j
M0W j1M1W j2M2 . . .W jnMn = 0 for any posi-

tive integer n.
Denote by O (ǫ) any sum on the form

∑

k

∑

n>0 ǫ
n
j
M0,kW j1,k M1,kW j2,kM2,k . . .W jn,kMn,k where

the Ml,k have finite spectral norm and do not depend on ǫ

and ||W jl,k||2 ≤ 1 for all jl, k. Then for any X, Y ∈ S and
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any ǫ j > 0 by assumption there exist elements f1, f2 ∈ F

such that f1 f2 = exp
(

ta
n

X
)

exp
(

tb
n

Y
)

+ O
(

ǫ j

)

. By the
Baker-Campbell-Hausdorff formula we have

(

exp
(

ta

n
X

)

exp
(

tb

n
Y

)

+ O
(

ǫ j

)

)n

=exp
(

(aX + bY)t + O
(

1
n

))

+ O
(

ǫ j

)

, (F4)

where first and higher order terms in 1
n

are denoted O( 1
n
).

Taking the limit n → ∞ and ǫ j → 0 gives exp((aX +

bY)t). Since F is a semigroup ( f1 f2)n ∈ F for any n > 0
and thus exp((aX + bY)t) is a limit point of F for all t ∈
R. Similarly, for any X, Y ∈ S and any ǫ j > 0 by as-
sumption there exist elements f1, f2, f3, f4 ∈ F such that
f1 f2 f3 f4 = exp

(

t
n
X
)

exp
(

t
n
Y
)

exp
(

− t
n
X
)

exp
(

− t
n
Y
)

+ O
(

ǫ j

)

.
By the Baker-Campbell-Hausdorff formula we have

(

exp
(

t

n
X

)

exp
(

t

n
Y

)

exp
(

− t

n
X

)

exp
(

− t

n
Y

)

+ O
(

ǫ j

)

)n2

=exp
(

[X, Y]t2 + O
(

1
n

))

+ O
(

ǫ j

)

. (F5)

Taking the limit n → ∞ and ǫ j → 0 gives exp([X, Y]t2). Ex-
changing the roles of X and Y gives the limit exp([Y, X]t2) =
exp(−[X, Y]t2). Since F is a semigroup ( f1 f2 f3 f4)n ∈ F for
any n > 0 and thus exp([X, Y]t) is a limit point of F for all
t ∈ R. Let Z be the smallest real matrix Lie algebra that con-
tains all X, Y such that exp(Xt) ∈ G and exp(Yt) ∈ G for all
t ∈ R. By concatenated use of Eq. (F4) and Eq. (F5) we
see that every exp(Z) for Z ∈ h is in cl F. Moreover if H

is the connected matrix Lie group generated by the exp(Z)
for Z ∈ h, by definition every h ∈ H can be expressed as
h = exp(Z1) exp(Z2) . . . exp(Zm) for Z j ∈ h. Therefore ev-
ery h ∈ H is in cl F. Since F is a subset of H we have that
cl F = H. �

1. The set of local unitary operations

Let S H be a convex set of time independent bounded Hamil-
tonians and let S H(t) be the set of time dependent strongly
continuous Hamiltonians such that H(t) ∈ S H(t) if and only
if H(t)|t=s ∈ S H for all s. We then consider the set of unitary
transformations that can be implemented by evolutions gener-
ated by H(t) ∈ S H(t). To do so we first look at the unitary trans-
formations defined as products of exponentials exp(iH j∆ j) for
H j ∈ S H

eiHn∆n eiHn−1∆n−1 . . . eiH1∆1 eiH0∆0 , (F6)

where ∆ j ∈ R. If for any H j,Hk ∈ S H we have that aH j +

bHk ∈ S H for all a, b ∈ R and i[H j,Hk] ∈ S H the set of
skew-Hermitian matrices iH j for H j ∈ S H is a real matrix Lie
algebra and the set of all unitary transformations on the form
in Eq. (F6) is a connected matrix Lie group. Even if the set
of skew-Hermitian matrices iH j for H j ∈ S H is not a matrix
Lie algebra we can consider the Lie algebra sH obtained as

the R-algebra over iH j and [iH j, iHk] for H j,Hk ∈ S H . Let
GsH be the connected matrix Lie group that is generated by
the exponentials exp(zt) for t ∈ R and z ∈ sH . By Theorem 2
the set of all unitary transformations on the form in Eq. (F6)
form a dense subset of GsH .

If the zero matrix is in the relative interior of S H , i.e., if the
intersection of some neighbourhood of the zero matrix with
the affine hull of S H is contained in S H , the unitary transfor-
mation exp(iH j∆ j) for H j ∈ S H can be exactly implemented
by an evolution generated by a Hamiltonian in S H(t) for any
∆ j ∈ R. For any ∆ j there is some sufficiently large time in-
terval [0, t] for which we can choose a time dependent Hamil-
tonian H(s) = H j f (s) where f (s) is bounded, continuous and
such that f (0) = f (t) = 0,

∫ t

0
f (s)ds = ∆ j, and H j f (s) ∈ S H

for all s ∈ [0, t]. Thus every unitary on the form in Eq. (F6)
can be implemented by evolutions generated by H(t) ∈ S H(t).
Furthermore, since any unitary transformation that can be im-
plemented by an evolution generated by H(t) ∈ S H(t) is in GsH

it follows that these unitary transformations is a dense subset
of GsH .

If the zero matrix is not in the relative interior of S H but
the transformations exp(iH j∆ j) for ∆ j ∈ R is a compact one-
parameter group for every H j ∈ S H we can still implement
an arbitrarily good approximation of the unitary transforma-
tions in Eq. (F6) using Hamiltonians in S H(t) for any ∆ j ∈ R.
Compactness implies that there exists a P > 0 such that
exp(iH jP) = I and thus it is sufficient to consider P ≥ ∆ j ≥ 0.
Since S H is a convex set each factor exp(iH j∆ j) where ∆ j > 0
can be approximated arbitrarily well for a time interval [0,∆ j]
by exp(iH(t)) where H(t) = H j−1+ (H j−H j−1) t

ǫ
for 0 ≤ t ≤ ǫ,

H(t) = H j+1 + (H j − H j+1)∆ j−t

ǫ
for ∆ j − ǫ ≤ t ≤ ∆ j and

H(t) = H j for ǫ ≤ t ≤ ∆ j − ǫ for arbitrarily small ǫ > 0. This
construction provides a continuous family of transformations
parametrized by ǫ with exp(iH j∆ j) as the limit point when
ǫ → 0. Moreover, since any unitary transformation that can
be implemented by an evolution generated by H(t) ∈ S H(t) is
in GsH it follows from Theorem 2 and Corollary 1 that for any
unitary transformation g ∈ GsH every neighbourhood of g con-
tains a unitary operation that can be generated by H(t) ∈ S H(t).

We can conclude from the above that the set of unitary
transformations that can be implemented by evolutions gen-
erated by H(t) ∈ S H(t) is a dense subset of GsH if either the
zero matrix is in the relative interior of S H or if the trans-
formations exp(iH∆) for ∆ ∈ R is a compact one-parameter
group for every H ∈ S H .

Now consider a convex set of bounded Hamiltonians S H

such that the set of all unitary transformations that can be im-
plemented by strongly continuous Hamiltonians in S H(t) leave
the bilinear form ψTCϕ invariant, up to a U(1) phase. Then,
since ψTCϕ is a continuous function on the Hilbert space it is
invariant, up to a U(1) phase, also under all transformations
in the Lie group GsH . By an analogous argument there is a
Lie group preserving the bilinear form ψT Cγ5ϕ, up to a U(1)
phase, for every set of unitary transformations implemented
by strongly continuous Hamiltonians, that preserve ψTCγ5ϕ

up to a U(1) phase. We therefore construct these Lie groups
for three specific cases of Hamiltonians; The Dirac Hamilto-
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nians with non-zero mass, the Dirac Hamiltonian with zero
mass and the Dirac Hamiltonian with zero mass and a cou-
pling to a Yukawa pseudo-scalar boson.

Consider a Dirac particle with momentum k, non-zero mass
m and allow any bounded time dependent values of the elec-
tromagnetic four-potential Aµ. The Dirac Hamiltonian for this
case is on the form

HD = −
∑

µ=1,2,3

γ0γµ(kµ − qAµ(t)) + qA0(t)I + mγ0. (F7)

For any time independent Hamiltonian on the form HD =
∑

µ=1,2,3 aµγ
0γµ + bγ0 where aµ, b ∈ R the elements exp(iHDt)

for t ∈ R form a compact one-parameter group. Thus
from Theorem 2 and Corollary 1 follows that the set of uni-
tary transformations generated by strongly continuous Dirac
Hamiltonians of the kind in Eq. (F7) is dense in the connected
matrix Lie group G

Cγ5

U
generated by the exponentials of the

real Lie algebra spanned by the 11 linearly independent matri-
ces iγ0, γ1, γ2, γ3, iγ0γ1, iγ0γ2, iγ0γ3, γ1γ2, γ1γ3, γ2γ3 and iI.
If we allow arbitrary Hamiltonians of the type H1,2(t) + H0(t)
described in Eq. (36) any unitary transformation in G

Cγ5

U
can

be exactly implemented. The matrix iI generates the group
U(1) and the other matrices generate the group of unitary
transformations that preserve the bilinear form ψTCγ5ϕwhich
is isomorphic to Sp(2) the compact symplectic group of 4 × 4
matrices (See e.g. Ref. [62] Ch. 1.2.8). Thus G

Cγ5

U
is isomor-

phic to U(1) × Sp(2).
Next, consider a Dirac particle with momentum k and

zero mass with a coupling to a Yukawa pseudo-scalar boson
giγ0γ5φ, and allow any bounded values of the electromagnetic
four-potential Aµ(t). The Dirac Hamiltonian for this case is on
the form

HD = −
∑

µ=1,2,3

γ0γµ(kµ − qAµ(t)) + qA0(t)I + giγ0γ5φ.(F8)

For any time independent Hamiltonian on the form HD =
∑

µ=1,2,3 aµγ
0γµ + biγ0γ5 where aµ, b ∈ R the elements

exp(iHDt) for t ∈ R form a compact one-parameter group.
Thus from Theorem 2 and Corollary 1 follows that the set
of unitary transformations generated by strongly continuous
Dirac Hamiltonians of the kind in Eq. (F8) is dense in the
connected matrix Lie group GC

U
generated by the exponentials

of the real Lie algebra spanned by the 11 linearly indepen-
dent matrices γ0γ5, iγ1γ5, iγ2γ5, iγ3γ5, iγ0γ1, iγ0γ2, iγ0γ3,
γ1γ2, γ1γ3, γ2γ3 and iI. If we allow arbitrary Hamiltonians
of the type H2,3(t) + H0(t) described in Eq. (35) any unitary
transformation in GC

U
can be exactly implemented. The matrix

iI generates the group U(1) and the other matrices generate
the group of unitary transformations that preserve the bilinear
form ψT Cϕ which is isomorphic to Sp(2). Thus GC

U
is isomor-

phic to U(1) × Sp(2).
Lastly, consider a zero mass Dirac particle with momentum

k and allow any bounded values of the electromagnetic four-
potential Aµ(t). The Dirac Hamiltonian for this case is on the
form

HD = −
∑

µ=1,2,3

γ0γµ(kµ − qAµ(t)) + qA0(t)I. (F9)

For any time independent Hamiltonian on the form HD =
∑

µ=1,2,3 aµγ
0γµ where aµ ∈ R the elements exp(iHDt) for t ∈ R

form a compact one-parameter group. Thus from Theorem
2 and Corollary 1 follows that the set of unitary transfor-
mations generated by strongly continuous Dirac Hamiltoni-
ans of the kind in Eq. (F9) is dense in the connected matrix
Lie group generated by the exponentials of the real Lie al-
gebra spanned by the 7 linearly independent matrices iγ0γ1,
iγ0γ2, iγ0γ3, γ1γ2, γ1γ3, γ2γ3 and iI. If we allow arbitrary
Hamiltonians with only second and zeroth degree terms in
the gamma matrices any unitary transformation in this Lie
group can be exactly implemented. The matrix iI generates
the group U(1) and the other matrices generate the group of
unitary transformations that preserve both the bilinear form
ψTCϕ and the bilinear form ψT Cγ5ϕ which is isomorphic to
SU(2) × SU(2). Thus the Lie group is GC

U
∩ G

Cγ5

U
and is iso-

morphic to U(1) × SU(2) × SU(2).

2. The invariance groups of |I1|, |I2|, |I2A|, |I2B| and |I3|

In Section F 1 the connected matrix Lie group GC
U

of all
unitary operations that preserve ψTCϕ up to a U(1) phase
was described. Since ψT Cϕ is a continuous function and in-
variant also under the spinor representation of the proper or-
thochronous Lorentz group it follows from Theorem 2 that it
is invariant, up to a U(1) phase, under the smallest connected
matrix Lie group that contains GC

U
and the spinor representa-

tion of the proper orthochronous Lorentz group as subgroups.
Similarly, ψT Cγ5ϕ is invariant, up to a U(1) phase, under the
smallest connected matrix Lie group that contains G

Cγ5

U
and

the spinor representation of the proper orthochronous Lorentz
group as subgroups. Here we describe these Lie groups.

The generators of the spinor representation of the proper
orthochronous Lorentz group from Eq. (22) are given by
S ρσ = 1

4 [γρ, γσ]. Thus, the Lie algebra of the spinor rep-
resentation of the proper orthochronous Lorentz group is the
R-algebra over the matrices γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and
γ2γ3.

The Lie algebra of GC
U

is the R-algebra over the matrices
γ5γ0, iγ5γ1,iγ5γ2, iγ5γ3, iγ0γ1, iγ0γ2, iγ0γ3, γ1γ2, γ1γ3, γ2γ3

and iI. The smallest Lie algebra that contains both this algebra
and the Lie algebra of the spinor representation of the proper
orthochronous Lorentz group is the R-algebra over the 21 ma-
trices γ5γ0, iγ5γ0, γ5γ1, γ5γ2, γ5γ3, iγ5γ1, iγ5γ2, iγ5γ3, γ0γ1,
γ0γ2, γ0γ3, iγ0γ1, iγ0γ2, iγ0γ3, γ1γ2, γ1γ3, γ2γ3, iγ1γ2, iγ1γ3,
iγ2γ3, and iI. The matrix iI generates the group U(1) and
the remainder of these matrices generate the group of linear
transformations that preserve the bilinear form ψTCϕ which
is isomorphic to Sp(4,C) the symplectic group of 4× 4 matri-
ces (See e.g. Ref. [62] Ch. 1.2.4). Thus a continuous function
on the Hilbert space that it is invariant, up to a U(1) phase,
under GC

U
and under spinor representations of local proper or-

thochronous Lorentz transformations is invariant, up to a U(1)
phase, also under all transformations in the connected matrix
Lie group GC isomorphic to U(1) × Sp(4,C).

The Lie algebra of G
Cγ5

U
is the R-algebra over the matri-
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ces iγ0, γ1,γ2,γ3, iγ0γ1, iγ0γ2, iγ0γ3, γ1γ2, γ1γ3, γ2γ3 and
iI. The smallest Lie algebra that contains both this algebra
and the Lie algebra of the spinor representation of the proper
orthochronous Lorentz group is the R-algebra over the 21 ma-
trices γ0, iγ0, γ1, γ2, γ3, iγ1, iγ2, iγ3, γ0γ1, γ0γ2, γ0γ3, iγ0γ1,
iγ0γ2, iγ0γ3, γ1γ2, γ1γ3, γ2γ3, iγ1γ2, iγ1γ3, iγ2γ3, and iI.
The matrix iI generates the group U(1) and the remainder
of these matrices generate the group of linear transformations
that preserve the bilinear form ψT Cγ5ϕ which is isomorphic
to Sp(4,C). Thus a continuous function on the Hilbert space
that it is invariant, up to a U(1) phase, under G

Cγ5

U
and under

spinor representations of local proper orthochronous Lorentz
transformations is invariant, up to a U(1) phase, also under all
transformations in the connected matrix Lie group GCγ5

iso-
morphic to U(1) × Sp(4,C).

We can consider also the Lie algebra of GC
U
∩ G

Cγ5

U
which

is the R-algebra over the matrices iγ0γ1, iγ0γ2, iγ0γ3, γ1γ2,
γ1γ3, γ2γ3 and iI. The smallest Lie algebra that contains both
this algebra and the Lie algebra of the spinor representation
of the proper orthochronous Lorentz group is the R-algebra
over the 13 matrices γ0γ1, γ0γ2, γ0γ3, iγ0γ1, iγ0γ2, iγ0γ3,
γ1γ2, γ1γ3, γ2γ3, iγ1γ2, iγ1γ3, iγ2γ3, and iI. The matrix iI

generates the group U(1) and the remainder of these matri-
ces generate the group of linear transformations that preserve
both the bilinear form ψTCγ5ϕ and the bilinear form ψT Cϕ

which is isomorphic to SL(2,C) × SL(2,C). Thus a contin-
uous function on the Hilbert space that it is invariant, up to
a U(1) phase, under GC

U
∩ G

Cγ5

U
and under spinor representa-

tions of local proper orthochronous Lorentz transformations
is invariant, up to a U(1) phase, also under all transformations
in the connected matrix Lie group GC ∩ GCγ5

isomorphic to
U(1) × SL(2,C) × SL(2,C).

In conclusion, continuous functions on the Hilbert space of
two Dirac spinors that are constructed to be invariant under
local reversible operations as defined in Sections III, V and
VI A are automatically invariant under a Lie group G1 ⊗ G2

where the local groups G1 and G2 depend on the classes of
physically allowed local Hamiltonians. For the case of a lo-
cal Dirac Hamiltonians with nonzero mass, the local group
is GCγ5

. For a local Dirac Hamiltonian with zero mass and
a coupling to a Yukawa pseudo-scalar boson, the local group
is GC . For massless local Dirac Hamiltonians without addi-
tional couplings the local group is GC ∩ GCγ5

. The function
|I1| is invariant under GC ⊗ GC , while |I2| is invariant under
GCγ5 ⊗ GCγ5

, |I2A| is invariant under GC ⊗ GCγ5
and |I2B| is

invariant under GCγ5 ⊗ GC . The function |I3| is invariant un-
der U(1)×SL(4,C)⊗U(1)×SL(4,C) and thus invariant under
GC⊗GC , GCγ5⊗GCγ5

, GC⊗GCγ5
and GCγ5⊗GC . It is the orbits

of these respective groups that can be partially distinguished
by the Lorentz invariant polynomials.

Appendix G: Lorentz invariance of the convex roof extensions of

|I1|, |I2|, |I2A |, |I2B| and |I3|

The Lorentz invariants |I1|, |I2|, |I2A|, |I2B| and |I3| are defined
for sums of tensor products of Dirac spinors. Every such

sum ξ ≡ ∑

i j ψi jφi ⊗ φ j however can be mapped to a posi-
tive semi-definite Hermitian rank 1 matrix ξξ† which up to a
positive multiplicative constant is a projector onto the sub-
space spanned by ξ. Note that ξ and eiαξ for α ∈ R are
mapped to the same ξξ†, but up to multiplication of ξ by such
a U(1) phase there is a one-to-one correspondence between
the set of ξ and the set of ξξ†. Therefore we can view func-
tions on the set of ξ that are invariant under multiplication
of ξ by a U(1) phase, such as |I1|, |I2|, |I2A|, |I2B| and |I3|, as
functions on the set of matrices ξξ†. The matrices ξξ† trans-
form under the spinor representation S (ΛA) ⊗ S (ΛB) of lo-
cal proper orthochronous Lorentz transformationsΛA ⊗ΛB as
ξξ† → S (ΛA) ⊗ S (ΛB)ξξ†S (ΛA)† ⊗ S (ΛB)†.

Given the set of matrices ξξ† we can consider conical sums
of such matrices, i.e.,

∑

k pkξkξ
†
k

where pk ≥ 0. These coni-
cal sums are positive semi-definite Hermitian matrices and are
the analogues of density matrices. Such a density matrix ρ can
in general be decomposed as a conical sum of rank 1 matri-
ces ξξ† in more than one way, i.e., the decomposition is not
unique.

Any continuous real valued function g defined on the rank 1
matrices ξξ† can be extended to a function on the set of density
matrices as a convex roof extension [93–95]. The convex roof
extension g∪ of g is defined as

g∪(ρ) ≡ inf
pk≥0,ξk |ρ=

∑

k pkξkξ
†
k

∑

k

pkg(ξkξ
†
k
), (G1)

where the infimum is taken over all possible decompositions
of ρ. While the formal definition of a convex roof extension is
straightforward it may be difficult to calculate.

Now consider a spinor representation of local proper or-
thochronous Lorentz transformations acting on ρ and the ξk as
ρ→ ρ′ and ξk → ξ′

k
. Since Lorentz transformations are invert-

ible it follows that ρ can be decomposed as ρ =
∑

k pkξkξ
†
k

if
and only if ρ′ can be decomposed as ρ′ =

∑

k pkξ
′
k
ξ
′†
k

. There-
fore the set of decompositions of ρ is in one-to-one correspon-
dence with the set of decompositions of ρ′.

Next assume that the function g is invariant under the spinor
representations of local proper orthochronous Lorentz trans-
formations. Then g(ξkξ

†
k
) = g(ξ′

k
ξ
′†
k

) for all ξk and thus
∑

k pkg(ξkξ
†
k
) =

∑

k pkg(ξ′
k
ξ
′†
k

) for all pk, ξk. Therefore, it fol-
lows that the convex roof extension g∪ of g is invariant un-
der the spinor representations of local proper orthochronous
Lorentz transformations. Examples of such functions g that
can be given Lorentz invariant convex roof extensions are
|I1|, |I2|, |I2A|, |I2B| and |I3|. Note that since |I1|, |I2|, |I2A|, |I2B|
and |I3| are identically zero for product states their convex roof
extensions are identically zero for any ρ that can be decom-
posed as a conical sum

∑

k pkξkξ
†
k

where all ξkξ
†
k

correspond
to product states, i.e., any separable state.

Density matrices can be used to describe states that are in-
coherent mixtures, for example states where there are uncer-
tainties in the preparation procedure. If no uncertainty ex-
ists in the momentum degrees of freedom and all states in the
incoherent mixture have the same definite momenta, any de-
composition of the density matrix involves only ξkξ

†
k

with the
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same definite momenta. Therefore all such ξkξ
†
k

transform the
same way when acted on by the evolution operator. Thus in
this case the convex roof extension g∪ of a Lorentz invariant
g is not only Lorentz invariant but also invariant under the
same class of unitary evolutions as g. For incoherent mix-
tures without definite momenta the convex roof extensions of
the Lorentz invariants |I1|, |I2|, |I2A|, |I2B| or |I3| are not defined
since the Lorentz invariants themselves have not been defined
for this case.

One way that density matrices on the form ρ =
∑

k pkξkξ
†
k

can appear is as the result of taking the partial trace over the
momentum degrees of freedom. If a state ψAB with multiple
momentum components is considered

ψAB =
∑

kA,kB

∑

jA , jB

ψ jA, jB,kA,kB
φ jA

eikA ·xA ⊗ φ jB
eikB·xB , (G2)

we can treat the terms corresponding to the different pairs of
momenta kA, kB independently. From these we can construct
a Hermitian 16|kA, kB|×16|kA, kB|matrix M where |kA, kB| is
the number of different pairs of momenta and choose it such
that it is composed by 16×16 block matrices MkA ,kB;mA,mB

that
are indexed by the pairs of momenta kA, kB and mA,mB and
defined by

MkA ,kB;mA ,mB
=

















∑

jA, jB

ψ jA , jB,kA,kB
(t)φ jA

eikA·xA ⊗ φ jB
eikB·xB

















×
















∑

lA ,lB

ψ∗lA ,lB,mA,mB
φ
†
lA

e−imA ·xA ⊗ φ†
lB

e−imB·xB

















.

(G3)

If we then take the partial trace over the pairs of momenta the
result is a 16 × 16 matrix

∑

kA ,kB

MkA ,kB;kA,kB

=
∑

kA ,kB

















∑

jA , jB

ψ jA, jB,kA,kB
φ jA

eikA ·xA ⊗ φ jB
eikB·xB

















×
















∑

lA,lB

ψ∗lA ,lB ,kA,kB
φ
†
lA

e−ikA·xA ⊗ φ†
lB

e−ikB·xB

















=
∑

kA ,kB

















∑

jA , jB

ψ jA, jB,kA,kB
φ jA
⊗ φ jB

































∑

lA ,lB

ψ∗lA ,lB,kA,kB
φ
†
lA
⊗ φ†

lB

















≡
∑

kA ,kB

ξkA ,kB
ξ
†
kA,kB

, (G4)

which is a conical sum of positive rank 1 Hermitian matrices
ξkA ,kB

ξ
†
kA,kB

corresponding to the different pairs of momenta.
It is the analogue of a reduced density matrix for the spinorial
degrees of freedom.

The convex roof extensions of |I1|, |I2|, |I2A|, |I2B| or |I3| are
thus invariants of the spinor representations of the local proper

orthochronous Lorentz groups on the set of reduced density
matrices constructed as partial traces over the momentum de-
grees of freedom. Note however, that as described in Ap-
pendix B the evolution generated by local Dirac Hamiltoni-
ans is conditioned on the momentum. Thus the density ma-
trices constructed as partial traces over momentum degrees
of freedom do in general not have any well defined transfor-
mation properties under such local evolution. Consequently,
the convex roof extensions of |I1|, |I2|, |I2A|, |I2B| or |I3| are in
general not invariant under local unitary evolution generated
by Dirac Hamiltonians on the set of reduced density matrices
constructed as partial traces over the momentum degrees of
freedom.

Appendix H: A comment on the infinite dimensional

representations of the Lorentz group

In this work the spinor representation of the Lorentz group
has been considered in the context of relativistic quantum me-
chanics. Several previous works [20–23, 25–29, 31–35, 38]
however have considered an infinite dimensional unitary rep-
resentations of the Lorentz group acting on a Hilbert space,
often in the context of a relativistic Quantum Field Theory
formalism. Therefore we comment on one of the crucial dif-
ferences between these descriptions.

In a relativistic Quantum Field Theory formalism the solu-
tions to the Dirac equation are re-imagined as operator valued
fields acting on an infinite dimensional Hilbert space. The
Hilbert space basis vectors |s, k〉 are labelled by rest frame

spin s and three-momentum k (See e.g. Ref. [102]) and trans-
form under an infinite dimensional unitary representation of
the Lorentz group. Let F(Λ) be the representation of a Lorentz
transformationΛ acting on this Hilbert space. If the represen-
tation F(Lk) of a pure Lorentz boost Lk to momentum k acts
on a rest frame basis vector |s, 0〉 the resulting vector is de-
fined as |s, k〉 ≡ F(Lk)|s, 0〉. Here the label for the spin does
not change, i.e., the spin degree of freedom is still described
by its rest frame value, and is thus independent of any boost.
Together, the momentum and the rest frame spin completely
specify the spin of the particle, but on its own the rest frame
spin is insufficient.

If a general Lorentz transformation Λ is considered we can
use the boost independence of the rest frame spin to re-express
the action of the representation F(Λ) on a basis vector as

F(Λ)|s, k〉 = F(Λ)F(Lk)|s, 0〉 = F(LΛk)F(L−1
ΛkΛLk)|s, 0〉,

(H1)

where LΛk is the pure Lorentz boost from the rest frame to the
momentumΛk of F(Λ)|s, k〉 and L−1

Λk
is the pure Lorentz boost

that brings the vector back to the rest frame, i.e., the inverse
Lorentz boost to LΛk. The sequence of Lorentz transforma-
tions L−1

Λk
ΛLk changes the momentum away from 0 and then

back to 0 again. It is therefore a pure rotation called a Wigner
rotation [103]. The representation F(L−1

Λk
ΛLk) of this rotation

acts on the rest frame spin so that
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F(Λ)|s, k〉= F(LΛk)
∑

s′

Cs,s′(Λ, k)|s′, 0〉

=
∑

s′

Cs,s′(Λ, k)|s′,Λk〉, (H2)

where Cs,s′(Λ, k) are the matrix elements of the representation
of the Wigner rotation. The Wigner rotation is a function of
both the Lorentz transformation Λ and the initial momentum
k. In other words this infinite dimensional representation of
the Lorentz group acts on the rest frame spin conditioned on
the momentum.

Since the specification of the spin requires both the rest
frame spin and the momentum, it is not in general meaningful
to construct a reduced density matrix for the rest frame spin
by partially tracing over the momentum. By discarding the
momentum degrees of freedom we loose information needed
for a physical interpretation. In particular, the resulting object
does not contain the information necessary to specify how it
transforms under Lorentz transformations. It does not have
any well defined transformation properties under any repre-
sentation of the Lorentz group. The notion of a reduced rest
frame spin state of a particle that is independent of the mo-
mentum degrees of freedom is thus not physically meaningful
except for the case where all basis vectors in the state expan-
sion have the same momentum. Then the same Wigner ro-
tation acts on all rest frame spin labels and the reduced den-
sity matrix can be given a physical interpretation. Moreover,
the rank of the rest frame spin reduced density matrix can
change under Lorentz transformations. Consider for exam-

ple a state 1/
√

2(|s, k1〉 + |s, k2〉). If we naively write the state
as 1/

√
2(|k1〉 + |k2〉) ⊗ |s〉 and then construct the reduced den-

sity matrix for the rest frame spin by taking the partial trace
over the momentum we obtain the rank one matrix |s〉〈s|. A
Lorentz transformation of the state in general result in a new
state for which the rest frame spin reduced density matrix is
no longer rank one because of the momentum dependence of
the Wigner rotations. These issues with the physical interpre-
tation of reduced spin density matrices were pointed out in
Ref. [22].

For the same reason the notion of entanglement between
the rest frame spin degrees of freedom of two particles does
not have a physically meaningful description independently of
the momentum degrees of freedom unless the particles have
definite momenta. If one traces out the momentum degrees
of freedom in a system of two particles without definite mo-
menta the resulting reduced density matrix for the two rest
frame spins has no physical interpretation and no transforma-
tion law under the local Lorentz groups. As described in Ref.
[23] the rank of such a reduced density matrix can change
under Lorentz transformations. Moreover the mathematical
counterpart of entanglement of the rest frame spins as quan-
tified by the Wootters concurrence in general changes under
Lorentz transformations [23].

In contrast this work considers the finite dimensional spinor
representation of the Lorentz group that does not act condi-
tioned on momentum. Therefore the analogue of reduced den-
sity matrices for spinors are well defined and transform under
the spinor representation of the local Lorentz groups as ex-
plained in Appendix G.


