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Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many

BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm

(TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of

the valve defect. Multiple lines of evidence currently suggest that genetic determinants

contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high

heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1,

SMAD6, andMAT2A. Moreover, they only explain a minority of patients. Other candidate

genes have been suggested based on the presence of BAV in knockout mouse models

(e.g.,GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g.,

ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may

be enriched in patients presenting with both BAV and TAA. We performed targeted

resequencing of 22 candidate genes using Haloplex target enrichment in a strictly

defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens
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diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of

healthy controls with normal echocardiographic evaluation (n = 183). After additional

burden analysis against the Exome Aggregation Consortium database, the strongest

candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA

patients harboring causal variants, including two nonsense, one in-frame deletion and

two frameshift mutations. All six missense mutations were located in the functionally

important MH1 and MH2 domains. In conclusion, we report a significant contribution of

SMAD6 mutations to the etiology of the BAV/TAA phenotype.

Keywords: bicuspid aortic valve, thoracic aortic aneurysm, SMAD6, targeted gene panel, variant burden test

INTRODUCTION

With a prevalence of 1–2% in the general population, bicuspid
aortic valve (BAV) is the most common congenital heart defect.
It has a 3:1 male preponderance and is characterized by an
aortic valve with two cusps instead of the normal three. BAV
often coincides with aortic manifestations such as coarctation
of the aorta and thoracic aortic aneurysm (TAA) (Verstraeten
et al., 2016). The latter can lead to lethal dissections if left
untreated. Although first described over 400 years ago and high
heritability (89%) (Cripe et al., 2004), the genetic etiology of BAV,
with or without TAA, remains largely elusive. It was initially
suggested that TAA results from altered blood flow dynamics
imposed by the abnormal bicuspid valve. Changes in shear stress
were presumed to weaken the aortic wall, resulting in dilatation
and rupture. At present, common genetic risk factors for BAV
and TAA are proposed (Hinton, 2012), based on the following
observations: (i) the aortic valve and the aorta share common
embryologic origins [i.e., the cardiac neural crest (CNC) and
the second heart field] (Martin et al., 2015), (ii) family members
of BAV/TAA probands show TAA without valve abnormalities
and/or BAV without aneurysmal disease (Loscalzo et al., 2007),
and (iii) TAA formation in BAV probands that previously
underwent valve replacement has been reported (Braverman
et al., 2005).

Transmission of BAV/TAA mostly complies with an
autosomal dominant inheritance pattern, displaying reduced
penetrance and variable expressivity (Clementi et al., 1996;
Huntington et al., 1997). Few genes have been robustly linked
to the BAV phenotype to date. NOTCH1 is often considered the
sole established BAV gene, either as an isolated finding or in
association with early onset valve calcification, TAA, or other
left-sided heart defects (Mohamed et al., 1797; Garg et al., 2005;
McKellar et al., 2007; Foffa et al., 2013; Kent et al., 2013; Bonachea
et al., 2014; Freylikhman et al., 2014; Kerstjens-Frederikse et al.,
2016). SMAD6 (Tan et al., 2012) and MAT2A (Guo et al., 2015)
have also been implicated in BAV, but only in a very limited
number of patients. A dozen candidate genes emanated from
knockout mouse models with increased BAV occurrence (Biben
et al., 2000; Lee et al., 2000; Laforest and Nemer, 2011; Laforest
et al., 2011; Thomas et al., 2012; Mommersteeg et al., 2015;
Quintero-Rivera et al., 2015). The prevalence of BAV in these
knockout models is often low (range: 2–42% in single knockouts)
(Table 1), probably due to reduced penetrance and/or activation

of compensatory mechanisms. Mutations in some syndromic
(Attias et al., 2009; Callewaert et al., 2011; Lindsay et al., 2012;
Nistri et al., 2012; van de Laar et al., 2012; Pepe et al., 2014) or
non-syndromic (Guo et al., 2007) TAA genes also associate with
increased BAV occurrence (Table 1).

To date, no major BAV/TAA gene has emerged. The
described genes have been associated with BAV, but their
contribution to the etiology of BAV/TAA has never been
examined systematically. Here, we evaluate this contribution in
22 BAV-associated genes (Table 1) using a targeted gene panel
and variant burden approach.

MATERIALS AND METHODS

Study Cohort
Genomic DNA (gDNA) of 441 BAV/TAA patients was collected
through a collaborative effort involving 8 different centers
(Supplementary Table 1). Patients were selected based on the
presence of BAV and either an aortic diameter at the sinus of
Valsalva or the ascending aorta of at least 4.0 cm in adults, or a Z-
score exceeding 3 in children. Aortic diameter dimensions were
determined using echocardiography, computed tomography or
magnetic resonance imaging. A positive family history was
defined as having at least one first- or second-degree relative
with BAV and/or TAA. Control gDNA was obtained from 183
cancer patients who presented at the SickKids Hospital, Toronto,
Canada. None of the controls showed structural heart disease
upon examination with echocardiography. All study participants
or their legal guardians gave informed consent at the respective
sample-contributing centers.

Targeted Enrichment
Genes (n = 22) were selected for targeted resequencing based on
the following criteria: (i) mutations occur in human BAV cases
(n = 3), (ii) knockout mouse models present with incomplete
penetrance of BAV (n = 9), and (iii) occasional or increased
BAV manifestation occurs in patients with mutations in known
TAA genes (n = 10) (Table 1). Enrichment of all exons of
these candidate genes, including ±10 nucleotides of adjacent
intronic sequence, was performed with a custom Haloplex target
enrichment kit per instructions of the manufacturer (Agilent
Technologies, USA). Probe design covered a theoretical 99.7%
of the complete target region (560 kb). Pooled samples were
sequenced either on a HiSeq 2500 (Illumina, USA) with 2 × 150
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TABLE 1 | Genes included in the targeted gene panel and the criteria on which their selection was based.

Context Gene Incidence References

BAV in humans NOTCH1 Mutations found in 27 BAV patients Mohamed et al., 1797; Garg et al., 2005; McKellar et al., 2007;

Foffa et al., 2013; Kent et al., 2013; Bonachea et al., 2014;

Freylikhman et al., 2014; Kerstjens-Frederikse et al., 2016

SMAD6 Mutations found in 2 BAV patients Tan et al., 2012

MAT2A Mutations found in 1 BAV patient Guo et al., 2015

BAV in mice ACVR1 BAV in 78–83% of Alk2FXKO/Gata5−Cre+ mice Thomas et al., 2012

GATA4 BAV in 43% of Gata4+/−;Gata5+/− mice Laforest and Nemer, 2011

GATA5 BAV in 25% of Gata5−/− mice Laforest et al., 2011

GATA6 BAV in 25% Gata5+/−;Gata6+/− mice Laforest and Nemer, 2011

MATR3 BAV in 12% in Matr3+/− mice Quintero-Rivera et al., 2015

NKX2-5 BAV in 2–20% of Nkx2-5+/− mice Biben et al., 2000

NOS3 BAV in 42% of Nos3−/− mice Lee et al., 2000

ROBO1 BAV in 100% of Robo1−/−;Robo2−/− mice Mommersteeg et al., 2015

ROBO2 BAV in 100% of Robo1−/−;Robo2−/− mice Mommersteeg et al., 2015

BAV in (non)syndromic TAA cases FBN1 Occasional BAV in Marfan syndrome Attias et al., 2009; Nistri et al., 2012; Pepe et al., 2014

ACTA2 7% BAV in non-syndromic TAA Guo et al., 2007

ELN Occasional BAV in cutis laxa Callewaert et al., 2011

FLNA Occasional BAV in X-linked valve disease Jefferies et al., 2010

MYH11 Occasional BAV in non-syndromic TAA Personal observation

SMAD3 3–11% BAV in Loeys-Dietz syndrome van de Laar et al., 2012

TGFB2 8–13% BAV in Loeys-Dietz syndrome Lindsay et al., 2012

TGFB3 4% BAV in Loeys-Dietz syndrome Personal observation

TGFBR1 8–12% BAV in Loeys-Dietz syndrome Personal observation

TGFBR2 8–12% BAV in Loeys-Dietz syndrome Personal observation

BAV, Bicuspid aortic valve; TAA, Thoracic aortic aneurysm.

bp reads or on a HiSeq 1500 (Illumina, USA) with 2 × 100 bp
reads.

Data Analysis and Filtering
The raw data were processed using an in-house-developed
Galaxy-based pipeline, followed by variant calling with the
Genome Analysis Toolkit Unified Genotyper (DePristo et al.,
2011). Variants were subsequently annotated and filtered with
the in-house developed database VariantDB (Vandeweyer et al.,
2014), which uses ANNOVAR.Heterozygous coding or splice site
(±2 bp from exon-intron boundaries for nucleotide substitution,
and ±5 bp for multi-bp deletions or insertions) variants with
an allelic balance between 0.25 and 0.85 (FLNA in males:
0.75–1) and a minimum coverage of 10 reads were selected.
Finally, we included variants that fitted within at least one of
the following three categories; unique variants [absent in the
Exome Aggregation Consortium (ExAC) database (Lek et al.,
2016)], variants with an ExAC Minor Allele Frequency (MAF)
lower than 0.01% or variants with an ExAC MAF between
0.01% and 0.1% that had a Combined Annotation Dependent
Depletion (CADD) (Kircher et al., 2014) score above 20. All
splice region variants underwent splice site effect prediction
using ALAMUT (Interactive Biosoftware, France). Synonymous
variants outside of splicing regions were not taken into
account.

The ExAC database was used as an independent control
dataset. The raw data of variants (∼all ExAC datasets) fulfilling
ExAC’s quality control parameters (“PASS”) were extracted from
the offline version of ExAC v0.3.1. Since the ExAC variants were
annotated using VEP, whereas our patient variant annotation
was ANNOVAR-based, we re-annotated the ExAC variants with
ANNOVAR. The same variant filtering strategy as described
for the patient cohort was subsequently applied. For each
selected ExAC variant, the allele frequency was determined by
computing the ratio of the Mutant Allele Count (mAC) and
Total Allele Count (tAC). Next, we re-scaled each variant’s mAC
by multiplying its computed allele frequency by its respective
tAC_Adj, i.e., the tAC average of all variants in that specific gene.
Finally, the variant counts for each panel gene were obtained by
summing up the re-scaled mACs.

Validation by Sanger Sequencing
Variants discussed in the results section were confirmed with
Sanger sequencing. Primers were designed using Primer3
software (Untergasser et al., 2012) v4.0.0 and polymerase chain
reaction (PCR) products were purified with Calf Intestinal
Alkaline Phosphatase (Sigma-Aldrich, USA). Sequencing
reactions were performed using the BigDye Terminator Cycle
Sequencing kit (Applied Biosystems, Life Technologies, USA),
followed by capillary electrophoresis on an ABI3130XL (Applied
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Biosystems, Life Technologies, USA). The obtained sequences
were analyzed with CLC DNA Workbench v5.0.2 (CLC bio,
Denmark).

Segregation Analysis
When family members were available, Sanger sequencing of the
SMAD6 variants identified in the proband was performed in
additional relatives to check if the phenotype segregated with the
variant.

Statistical Analysis
We performed burden analyses comparing frequencies of the
variants fulfilling the three criteria that were mentioned in
“Section Data Analysis and Filtering” between patients and
controls. Whereas the Fisher’s Exact Test was used to statistically
compare variant frequencies in the patient cohort to those in the
study control cohort, the Chi-Square Test with Yates’ correction
was used for the patient-ExAC comparison. No p-values were
calculated if the number of variants in patients and/or controls
was zero. Fisher’s Exact statistics were also used to determine if
significant variant type enrichment and/or domain clustering of
variants occurs in patients. Statistical significance was considered
when p < 0.05.

RESULTS

The patient cohort consisted of 441 BAV/TAA patients (75%
males and 25% females) with an average age at inclusion of 63.5
± 14.4 years. For these patients, the most common associated
feature was coarctation of the aorta (2.9%, n = 13). About
3% (n = 14) had other additional findings such as mitral
valve prolaps, aortic stenosis, dilated cardiomyopathy, aortic
insufficiency, patent ductus arteriosus or intracranial aneurysm.
46.7% (n = 206) had a left-right leaflet BAV orientation, 15.9%
(n = 70) had a right-non-coronary leaflet BAV orientation and
for 37.4% (n = 165) of the patients the subtype of valve leaflet
morphology was not specified. A positive family history was
known for 9.3% of the patients, whereas for the remainder the
family history was negative or unknown. The study control
cohort (n = 183) consisted of 58% males and 42% females. The
average age at inclusion of this control cohort was 13.1 ± 5.1
years.

Targeted gene panel sequencing reached an overall coverage
at 10x of 99.13% of the targeted regions. In total, 169 variants
passed our selection criteria in our patient and control group
(Supplementary Table 2). Of these, 112 variants were identified in
441 patients. They included 101 missense, 2 nonsense, 2 splice-
site, 5 in-frame indel, and 2 frameshift variants. The 183 study
controls contained 57 variants including 53missense, 1 nonsense,
2 splice-site, and 1 frameshift variant. After applying the identical
filtering criteria to the ExAC control cohort, 15,660 variants were
retained in on average 54,940 individuals: i.e., 14,931 missense,
190 splice-site, 72 nonsense, 10 no-stop, 204 frameshift, and 253
in-frame indel variants.

To validate our control cohort, we compared its variant
frequencies for the 22 selected candidate genes to those of
the ExAC cohort. No significant differences were observed

(Figure 1). We then performed a variant burden analysis
equating the numbers of patient variants per gene to the
numbers found in the control cohort (Table 2). Results are
graphically presented in Figure 1, showing the proportion of
variants per gene in the three different cohorts. Although a
few genes (e.g., FLNA) showed trends toward significance when
comparing our study patient and control cohort, we decided
to focus on the patient-ExAC comparison because of the larger
number of controls in the ExAC cohort and hence, higher power.
Only SMAD6 reached significance (p = 0.002) in the patient-
ExAC comparison. Remarkably, a protective effect for NOS3
and NOTCH1 variants was suggested (p = 0.06 and p = 0.05,
respectively).

We identified 11 SMAD6 variants in 441 patients (2.5%).
These included two frameshift deletions, two nonsense
mutations, one in-frame deletion, and six missense variants
(Figure 2). Only a single individual (0.55%) in the study control
cohort harbored a SMAD6 missense variant. The ExAC database
harbored 450 SMAD6 variants in 47,389 individuals (0.9%).
Whereas 36.4% (n = 4/11) of the SMAD6 mutations in the
patient cohort were loss of function (LOF; frameshift, nonsense
or splice site) mutations, truncating SMAD6 mutations were
found in only 4.0% (n = 18/450) of the ExAC individuals,
demonstrating a clear enrichment in BAV/TAA patients
compared to controls (p= 0.001).

The SMAD6 c.726del variant leads to a frameshift
(p.Lys242Asnfs∗300) and a predicted protein with a C-
terminal extension due to loss of the intended stop codon. The
c.454_461del frameshift variant (p.Gly166Valfs∗23) causes the
introduction of a premature stop codon, most likely resulting
in haploinsufficiency due to nonsense-mediated mRNA decay
(NMD). Also the two nonsense variants (p.Tyr279∗ and
p.Tyr288∗) are predicted to lead to NMD. All of the missense
variants cluster in the functionally important MH1 and MH2
domains (Makkar et al., 2009) (amino acids 148–275 and
331–496, respectively), which is not the case for the sole missense
variant (p.Ser130Leu) found in a control individual (Figure 2).
All but one (p.Arg443His) of the identified variants were absent
in the ExAC control cohort (v0.3.1; Supplementary Table 2).
Moreover, the missense variants in the patient cohort (7/7) are
enriched in the MH1 and MH2 domains when compared to
ExAC controls (n= 228/430; p= 0.02).

For two SMAD6 mutation carriers (P89, p.Gly271Glu; P99,
p.Gly166Valfs∗23), gDNA of family members was available for
segregation analysis (Supplementary Figure 1). Although neither
of these probands had a documented family history of BAV/TAA,
a brother of P89 has been diagnosed with a sinus of Valsalva
aneurysm (45 mm) and carried the SMAD6 mutation. The
mutation was also observed in an unaffected daughter (age
28) of the proband (Supplementary Figure 1). Three unaffected
siblings at ages 54, 58, and 64 did not carry the mutation. No
gDNA was available from a sister of P99 with unspecified aortic
valve problems. The p.Gly166Valfs∗23 mutation was found in an
unaffected daughter (age 39) of P99 but was absent in his 39
year-old unaffected son (Supplementary Figure 1).

Intriguingly, two genes (NOTCH1 and NOS3) that previously
had been associated with increased BAV risk in humans
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FIGURE 1 | Proportion of variant alleles per gene in the patient group, control group and ExAC cohort. Variants were selected as follows: First, we selected

heterozygous coding or splice site variants with an allelic balance between 0.25 and 0.85 (FLNA in males: 0.75–1) and a minimum coverage of 10x. Next, we made

three variant groups based on their frequency in the ExAC database; that is, variants that are absent from the ExAC control dataset (blue), variants with an ExAC MAF

lower than 0.01% (orange) and variants with an ExAC MAF between 0.01% and 0.1% that had a CADD score above 20 (gray). Only statistics of the patient-ExAC

comparison are shown (**p ≤ 0.01). No statistically significant differences in allele frequencies were observed between our control cohort and the ExAC controls.

Abbreviations: ExAC, Exome Aggregation Consortium; MAF, Minor Allele frequency; CADD, Combined Annotation Dependent Depletion.

(Mohamed et al., 1797; Garg et al., 2005; McKellar et al., 2007;
Foffa et al., 2013) and/or mice (Lee et al., 2000; Bosse et al., 2013)
revealed borderline significance for protection from BAV/TAA
(p = 0.05 and p = 0.06, respectively). Analysis of NOTCH1
identified 10 variants in patients (2.3%), including two splice-site
variants, vs. seven variants (all missense) in controls (3.8%) and
2,181 (4.3%) variants in ExAC. One variant in the patient cohort
(c.5167+3_5167+6del) leads to complete loss of the 5’ donor
splice site of intron 27, predicted to result in skipping of exon 27
(149 bp) and hence a frameshift. For the second variant (p.S784S),
the predicted effect on splicing is more ambiguous. If loss of the
5’ donor splice site of intron 14 would occur, skipping of exon 14
(146 bp) would again lead to a frameshift event. Unfortunately,
cDNA to reliably determine the precise effect of these mutations
on splicing is not available. None of theNOTCH1 variants that we
identified in BAV/TAA patients has previously been reported in
the literature. We did not observe any variant-domain clustering
or significant differences in CADD scores when comparing the
patient and controlNOTCH1 variants. Similarly, forNOS3 a total
of five missense variants (1.1%) was found in patients, whereas
the control cohort harbored seven variants (3.8%), including
one out-of-frame mutation (p.Leu927Hisfs∗32). In the ExAC
control cohort, 1,390 NOS3 variants (2.7%) were found in 51,035
individuals.

Based on statistical analyses of BAV/TAA heritability and the
fact that BAV/TAA shows prominent gender bias, oligogenic
inheritance of BAV/TAA is an emerging concept (Andelfinger
et al., 2016; Verstraeten et al., 2016). To test for such oligogenic

patterns, we determined the number of patients and controls
in our study cohort with variants in at least two out of the
22 analyzed genes. In the patient cohort, 10 patients presented
with two variants (2.3%), while the control group harbored 7
individuals that carried two variants (3.8%). Based on these data,
there is no evidence for a digenic or multigenic model in the
analyzed genes (p= 0.29).

DISCUSSION

So far, no gene with a contribution of more than 1% to BAV or
BAV/TAA has been identified in humans. Gene identification has
been hampered by low penetrance, variable clinical expressivity,
the likelihood of BAV-phenocopies within individual families
and, most likely, substantial locus heterogeneity (Verstraeten
et al., 2016). NOTCH1 has been suggested as a BAV(/TAA) gene,
but does not contribute greatly to disease etiology. About 20
other genes have been associated with BAV in humans and mice
(Table 1), but few of them also showed association with TAA.
This suggests that whereas some disease genes might be linked
to both BAV and TAA, others increase risk for only one of the
component phenotypes. In this study, we used a targeted gene
panel approach to study the prevalence of mutations in genes
that previously have been associated with BAV and/or TAA in
people or mice in a cohort of BAV/TAA patients. In total, 22
genes were sequenced in 441 BAV/TAApatients and 183 controls.
SMAD6 was identified as the most important known gene in the
etiology of BAVwith associated TAA.With 11 mutation-carrying
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TABLE 2 | Variant burden comparisons per gene between patients and either study controls or ExAC controls.

Gene Number of variants

in 882 patient alleles

Number of variants

in 366 control alleles

Number of variants

in ExAC alleles

p-value

patients-controls

p-value

patients-ExAC

ACTA2 2 1 109 in 120,631 1.00 0.44

ACVR1 2 1 202 in 120,994 1.00 0.98

ELN 4 2 728 in 113,954 1.00 0.63

FBN1 16 5 1,740 in 120,988 0.81 0.43

FLNA 3* 6* 1,133 in 84,359* 0.03 0.15

GATA4 5 1 260 in 105,980 0.68 0.11

GATA5 2 3 259 in 86,819 0.15 0.94

GATA6 5 3 240 in 95,775 0.70 0.13

MAT2A 0 0 74 in 116,667 / /

MATR3 1 0 382 in 119,089 / 0.43

MYH11 17 8 2,513 in 119,001 0.82 0.79

NKX2-5 5 0 360 in 98,978 / 0.47

NOS3 5 7 1,390 in 102,070 0.05 0.06

NOTCH1 10 7 2,181 in 101,245 0.29 0.05

ROBO1 12 5 1,354 in 113,390 1.00 0.77

ROBO2 9 5 1,245 in 119,282 0.57 0.95

SMAD3 0 1 95 in 111,500 / /

SMAD6 11 1 450 in 94,779 0.20 0.002

TGFB2 1 0 192 in 117,070 / 0.71

TGFB3 0 0 205 in 121,315 / /

TGFBR1 2 0 181 in 118,320 / 0.90

TGFBR2 0 1 366 in 115,147 / /

Variant burden analyses were performed comparing frequencies of the variants fulfilling the three criteria that were mentioned in “Section Data Analysis and Filtering” between patients

and controls. Whereas, the Fisher’s Exact Test was used to statistically compare variant frequencies in the patient cohort to those in the study control cohort, the Chi-Square Test with

Yates’ correction was used for the patient-ExAC comparison. No p-values were calculated if the number of variants in patients and/or controls was zero. Statistical significance was

considered when p < 0.05. The asterisks denote that in these cases the number of alleles is consistent with the number of X-chromosomes, i.e., 553 patient alleles and 260 control

alleles were checked for variants. Statistically significant p-values are represented in bold.

probands, SMAD6 offers a molecular explanation for 2.5% of our
study population. For two of the variants segregation analysis
in relatives could be performed, revealing the presence of one
of the respective SMAD6 mutations in a TAA patient and two
rather young individuals (age 28 & 39) that might still develop
TAA later in life. Four unaffected individuals (age 37, 54, 58,
64) did not carry a SMAD6 mutation. As two nonsense and two
frameshift SMAD6 variants in our cohort are predicted to lead
to haploinsufficiency, LOF is the most likely mechanism. All the
patient-specific missense variants (n = 7) are in the functionally
important MH1 and MH2 domains of SMAD6 (Makkar et al.,
2009). LOF missense mutations in SMAD2 and SMAD3 causing
Loeys-Dietz syndrome, another syndromic TAA form, are also
located in the MH1 and MH2 domains (van de Laar et al.,
2011; Micha et al., 2015). The MH1 domain of SMAD6 binds
DNA (Bai and Cao, 2002), while the MH2 domain interacts with
key components of the transforming growth factor (TGF)-β and
bone morphogenetic protein (BMP) signaling cascades (Hanyu
et al., 2001; Lin et al., 2003; Jung et al., 2013). In 2012, two
missense variants in the MH2 domain of SMAD6 were identified
in two patients with BAV in association with mild to moderate
aortic stenosis (Tan et al., 2012). Interestingly, in our cohort,
one SMAD6 patient (p.Tyr288∗) presented with coarctation in
addition to BAV and TAA. Moreover, mice lacking expression

of the murine orthologue of SMAD6, i.e., Madh6−/− mice,
also present with cardiovascular pathologies, including abnormal
vascular smooth muscle cell relaxation, thickening of the cardiac
valves and misplaced septation and ossification of the outflow
tract (OFT) (Galvin et al., 2000). As such, our findings confirm a
role for SMAD6mutations in the etiology of BAV and expand the
spectrum of SMAD6-related cardiovascular manifestations with
BAV-related TAA.

SMAD6 is highly expressed in the cardiac valves and OFT of
the embryonic heart, in the late-embryonic, and adult vascular
endothelium as well as in the vascular smooth muscle cells
of the adult aortic root (Galvin et al., 2000; Dickel et al.,
2016). Upregulation in response to laminar shear stress has been
reported (Topper et al., 1997). SMAD6 encodes an inhibitory
SMAD protein which negatively regulates BMP signaling by
binding to BMP type I receptors or by establishing competitive
interactions for SMAD4 (Imamura et al., 1997; Hata et al.,
1998). In doing so, SMAD1/5/8 phosphorylation and/or nuclear
translocation are prevented. Additionally, SMAD6 cooperates
with SMURF E3 ubiquitin ligases to prime ubiquitin-mediated
proteasomal degradation of BMP receptors and SMAD effector
proteins (Murakami et al., 2003), including SMAD1 and 5.
BMP signaling has previously been independently implicated
in BAV- and TAA-related processes (Cai et al., 2012; Garside
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FIGURE 2 | Graphical representation of the identified SMAD6 variants.

SMAD6 has two major protein domains, a DNA-binding MH1 domain and a

MH2 domain that interacts with components of the TGF-β and BMP signaling

pathways. Variants above the protein have been found in patients, while those

below the protein occurred in control individuals. Variants in blue are absent

from the ExAC database, variants in orange have an ExAC MAF below 0.01%.

Abbreviations: TGF-β, Transforming growth factor-β; BMP, Bone

morphogenetic protein; ExAC, Exome Aggregation Consortium; MAF, Minor

Allele frequency.

et al., 2013). In addition to mediating CNC cell migration into
the cardiac cushions and differentiation to smooth muscle cells,
BMP signaling promotes endothelial-to-mesenchymal transition
and instigates mesenchymal cell invasion (Kaartinen et al., 2004;
Garside et al., 2013). While SMAD6 and SMAD7 are thought
to have a predominant negative regulatory effect on BMP and
TGF-β signaling, respectively, there is strong evidence that this
specificity is not absolute and that SMAD6 can directly suppress
the TGF-β signaling cascade. Important crosstalk between BMP,
TGF-β and NOTCH signaling has been reported (Garside et al.,
2013). Many syndromic forms of TAA are caused by mutations
in genes encoding effectors or regulators of the TGF-β signaling
pathway (including TGFB2/3, TGFBR1/2, SMAD2/3, SKI) (Loeys
et al., 2005; van de Laar et al., 2011; Boileau et al., 2012;
Carmignac et al., 2012; Doyle et al., 2012; Lindsay et al., 2012;
Bertoli-Avella et al., 2015; Micha et al., 2015), with increased
activity observed in aortic specimens from people and mice
with these conditions. An increased prevalence of BAV has been
observed in patients carrying mutations in these genes (Table 1).
Overall, these results imply that mutations in SMAD6 likely cause
BAV/TAA through impaired negative regulation of BMP and/or
TGF-β signaling.

Multiple studies have previously reported a link between
NOTCH1 mutations and BAV (Mohamed et al., 1797; Garg
et al., 2005; McKellar et al., 2007; Foffa et al., 2013). In
2005, a nonsense and a frameshift NOTCH1 mutation were
found to segregate with BAV associated with early onset valve
calcification in the respective families (Garg et al., 2005). Since
the initial report, multiple NOTCH1, mostly missense, variants
have been associated with BAV, BAV/TAA, aortic valve stenosis,
coarctation, and hypoplastic left heart (Mohamed et al., 1797;
McKellar et al., 2007; Iascone et al., 2012; Foffa et al., 2013;
Freylikhman et al., 2014; Preuss et al., 2016; Irtyuga et al.,
2017). In addition to these mutations in association with left-
sided heart defects, frameshift and nonsense mutations were also
identified in patients with right-sided heart defects affecting the
pulmonary valve and conotruncal disease including pulmonary

atresia with intact ventricular septum, tetralogy of Fallot, and
truncus arteriosus, and other congenital heart diseases, such
as anomalous pulmonary venous return, atrial septal defect,
and ventricular septal defect (Kerstjens-Frederikse et al., 2016).
Mouse models have confirmed a role for Notch1 in the
development of the aortic valve and the cardiac OFT (Koenig
et al., 2016). Unexpectedly, in our datasetNOTCH1 did not stand
out as a prominent BAV/TAA gene, with the suggestion that
NOTCH1 variants might even be protective. Sample selection
bias might contribute to this observation as NOTCH1 variants
appear to associate with early and severe valve calcification and
seem to be enriched in families with highly penetrant BAV but far
lower penetrance of TAA (Kent et al., 2013). Given that our study
did not select for valve calcification and prioritized the BAV/TAA
phenotype, it is understandable that NOTCH1 variants would
be underrepresented. It also seems notable that only missense
variants were seen in controls, while multiple variants in the
patient cohort are predicted to have a more overt impact on
protein expression and function.

Similarly, our variant burden test suggested that NOS3
variants might be protective for BAV/TAA development. NOS3,
the endothelial specific nitric oxide (NO) synthase, is important
in balancing NO production and in the reduction of oxidative
stress (Forstermann and Munzel, 2006). Its role in cardiac
development is demonstrated by the formation of BAV in Nos3-
targeted mice (Table 1). Furthermore, it has already been shown
that specific NOS3 polymorphisms can affect NO production
(Oliveira-Paula et al., 2016), and increased NO levels have been
found in a MFS mouse model and in Adamts1-deficient mice
that develop TAA (Oller et al., 2017). Pharmacological inhibition
of NOS2 in mice led to a protective effect in aortic aneurysm
development (Oller et al., 2017). This supports the importance
of NO levels and nitric oxide synthases in aneurysm pathology.
The variants in NOS3 identified in the current study may lead to
less active NOS3 and as such may protect against development of
aortic aneurysm.

Our study has several methodological limitations: (i) The
small number of genes included in our study, as well as the
patient cohort size, precludes the ability to detect oligogenic
inheritance or gene-gene interactions involved in BAV/TAA. An
extended experiment in a larger BAV/TAA cohort, including
BAV-related pathways instead of selected genes, could give us
more insight regarding how genes work together in BAV and/or
TAA development; (ii) The size of the patient and study/ExAC
control cohort only allows us to detect BAV/TAA genes with
a fairly large contribution (variant burden in patients: ≥3% &
≥2%, respectively); (iii) The control cohort consists of younger,
adolescent patients that did not show cardiac complications at the
time of investigation but may still develop complications such as
TAA later-on in life. Therefore, the ExAC database was used as an
additional dataset for allele frequencies in a cohort without gross
developmental defects.

Our study specifically assesses the presence of pathogenic
variants in BAV-associated genes in a large BAV/TAA cohort.
We conclude that SMAD6 is currently the most important
contributor to the genetic architecture of BAV/TAA. More
research and larger cohorts will be needed to fully elucidate the
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genetic architecture of this common but complex cardiovascular
pathology.
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