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Abstract

Background: Pulmonary metastasis continues to be the most common cause of death in osteosarcoma.

Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over

20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive

pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to

model metastasis development and progression. Given the accelerated biology of canine osteosarcoma,

we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may

help identify novel metastasis-associated tumor targets that have been missed through the study of the

human cancer alone.

Results: Using parallel oligonucleotide array platforms, shared orthologues between species were

identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and

human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8

(IL-8) and solute carrier family 1 (glial high affinity glutamate transporter), member 3 (SLC1A3), which were

uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these

genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome

(p = 0.020 and p = 0.026, respectively). Validation of IL-8 and SLC1A3 protein expression in pediatric

osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will

validate the biological significance of these targets and their associated pathways.

Conclusions: Collectively, these data support the strong similarities between human and canine

osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means

to improve our understanding of cancer biology and therapies.

Published: 23 December 2009

BMC Genomics 2009, 10:625 doi:10.1186/1471-2164-10-625

Received: 12 May 2009
Accepted: 23 December 2009

This article is available from: http://www.biomedcentral.com/1471-2164/10/625

© 2009 Paoloni et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20028558
http://www.biomedcentral.com/1471-2164/10/625
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2009, 10:625 http://www.biomedcentral.com/1471-2164/10/625

Page 2 of 13

(page number not for citation purposes)

Background
Osteosarcoma is a highly metastatic cancer of bone seen
primarily in pediatric patients. Approximately 800-1,000
children develop osteosarcoma yearly, with peak inci-
dence during the adolescent growth spurt [1]. For patients
with localized disease, the use of chemotherapy following
surgery, introduced in the 1970s, improved long-term sur-
vival from approximately 20% to over 60%. These out-
comes have been largely unchanged despite
intensification of adjuvant therapy over the last 30 years
[2]. For patients who present with metastatic disease, the
prognosis is even more grave with survival rates of less
than 20% [3]. Advances are needed in our understanding
of metastasis biology and therapy to improve outcomes
for patients.

An increasingly considered modeling approach in cancer
biology and therapeutic development is the study of nat-
urally occurring cancers in pet dogs (referred to as com-
parative oncology). The features of cancers in pet dogs
that may uniquely contribute to our understanding of
cancer pathogenesis, progression and therapy have been
recently reviewed [4]. Companion (pet) dogs develop
osteosarcoma at similar sites as human patients, with
identical histology, response to traditional treatment reg-
imens such as surgery and chemotherapy, and proclivity
for metastasis [6,7]. Similarly, many of the candidate
genes implicated in the pathogenesis or progression of
osteosarcoma in children have also been characterized in
the canine disease, notably PTEN: phosphatase and tensin
homolog, Rb: retinoblastoma, ezrin; villin-2, c-met: mes-
enchymal-epithelial transition factor, erbB-2: v-erb-b2
erythroblastic leukemia viral oncogene homolog 2,
neuro/glioblastoma derived oncogene homolog (avian)
and p53: tumor protein 53 [7-12]. The incidence of oste-
osarcoma in dogs is higher than children, with >10,000
dogs diagnosed yearly [6]. The canine disease is consid-
ered to be more aggressive than the human disease. The
use of surgery alone is associated with long-term survival
in 5% of dogs [5,6,13]. In the era before adjuvant chemo-
therapy for pediatric patients long-term survival ranged
from 17-30% [14,15]. Differences in disease prevalence
and the more aggressive disease biology in the dog further
argues the opportunity for this approach to inform our
understanding of this highly aggressive pediatric cancer.
Although limited in scope, pet dogs with osteosarcoma
have been effectively integrated into the development of
novel treatment approaches for human patients, most
notably pioneering limb-sparing techniques [16,17]. In
2005 the first public draft of the canine genome sequence
was released [18,19]. This milestone provided the oppor-
tunity for dogs with cancer to lend additional insight into
the biology of human cancers, and to more rigorously
evaluate and translate novel therapies to human trials.

Based on these opportunities we employed a cross-species
gene expression approach based on the hypothesis that
the identification of conserved and distinctive genes, gene
families and functions across cross-species would provide
a unique perspective to view the determinants of osteosa-
rcoma biology. Using identical oligonucleotide microar-
ray platforms we compared expression signatures for
osteosarcoma primary tumors and normal tissues from
both dogs and humans. The similarities between canine
and human osteosarcoma were strong. Cluster analysis of
265 orthologous transcripts could not distinguish the can-
cers based on species alone. These data strengthened the
scientific rationale for the inclusion of dogs with osteosa-
rcoma in the study of cancer biology and therapy. Based
on the similarities between the expression profiles of
human and canine osteosarcoma, we then asked whether
the more aggressive biology of osteosarcoma in the canine
disease could help identify subsets or candidate genes
important in the metastatic progression of osteosarcoma
that would have been overlooked if the human disease
was studied alone. Four genes were identified that were
consistently overexpressed in canine osteosarcoma ("dog-
like" genes) but had variable and/or low expression in
humans. Evaluation of the dog-like genes in a distinct
population of human osteosarcoma patients, which were
linked to clinical outcome, confirmed that two genes (IL-
8, interleukin-8, and SLC1A3, solute carrier family 1 (glial
high affinity glutamate transporter)) were potentially
associated with a more aggressive clinical course in
human patients. This is the first non-candidate compara-
tive genomic analysis of spontaneous disease between dog
and man. These data support the inclusion of canine oste-
osarcoma as a clinical intermediary in the study of novel
anti-cancer therapeutics destined for use in man. Further-
more, the strength of the similarity between species, cou-
pled with the more aggressive biology of the disease in
dogs allowed the identification of new genes that may be
relevant targets or predictors of metastatic outcome in
human osteosarcoma.

Results
Within Species Osteosarcoma Gene Expression Profiling

Comparison of osteosarcoma versus normal tissues gene
expression in each species was determined using limma
software (Linear Models for Microarray Data, adjusted p
value < 0.01) [20]. The cancer signatures consisted of
3471 and 2705 probesets in the canine and human anal-
yses, respectively. High level, unsupervised hierarchical
clustering conducted in each species separately resulted in
osteosarcoma samples clustering together and distinctly
from normal tissues. (Figure 1A and 1B) Not surprisingly
the normal tissues clustered with organ replicates. Cluster-
ing of cancers was not associated with histologic subtype
or primary tumor location. Quantitative RT-PCR was used
to validate the results of the microarray. The pattern and
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magnitude of expression for each validation gene
(LGALS3, galectin 3; MFAP5, microfibrillar associated
protein 5; PRKDC1: protein kinase, DNA-activated, cata-
lytic polypeptide 1) compared to house keeping controls
was identical using PCR and microarray techniques (data
not shown).

Within Species Functional Assessment of Osteosarcoma 

Gene Signature

Using Expression Analysis Systematic Explorer (EASE)
analysis [21] we linked each species-specific osteosarcoma
gene signature to descriptors of gene function/ontology.
The osteosarcoma signature was most significantly associ-
ated with extra cellular matrix, structural components, cal-

cium ion binding elements and skeletal development
processes (Table 1). Significant functional association
with morphogenesis and development (proto-oncogene
contribution) was also seen.

Comparison Of Gene Expression In Human And Canine 

Osteosarcoma

Comparative genomic analysis was performed with ortho-
logues between species osteosarcoma gene expression
profiles (i.e., osteosarcoma versus normal tissues
(adjusted p value < 0.01). After Entrez Gene ID alignment,
265 genes were used to cluster the human and canine
osteosarcomas, normal tissues and cell lines. Hierarchical
clustering resulted in complete branching of normal and

Single species cluster dendrograms define canine and human osteosarcoma as distinct from normal organs and osteosarcoma cell linesFigure 1
Single species cluster dendrograms define canine and human osteosarcoma as distinct from normal organs 
and osteosarcoma cell lines. Cancer defining gene signatures were generated by calculating the differential expression 
between canine and human osteosarcoma samples and their respective normal organs using limma (Linear Models for Microar-
ray Data, adjusted p value < 0.01). A. The canine cancer signature consists of 3471 genes and B. human cancer signature 2705. 
High level, unsupervised hierarchical clustering conducted in each species separately resulted in osteosarcoma samples cluster-
ing together and distinctly from normal tissues and their respective cancer cell lines.
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tumor samples, and normal organs could be further
defined based on species of origin. (Figure 2) Among the
30 primary tumor samples there was no distinct branch-
ing of human and canine osteosarcoma, suggesting that
similarities between cancers in both species was high.

Canine osteosarcoma as a model of progression

The compelling likeness between canine and human oste-
osarcoma expression profiles prompted us to ask if new
insights could be gleaned using our cross-species
approach that would be overlooked if only the human
data set was examined. Based on the fact that canine oste-
osarcoma may be associated with a more aggressive clini-
cal course than human osteosarcoma, we hypothesized
that genes that were more "dog-like" but nonetheless
expressed in human osteosarcoma, would be more likely
to be linked to metastatic progression or poorest clinical
outcome in human patients. Using a fold expression
approach we identified 74 genes with greater expression
in the dog vs. human. From this list 15 strongly "dog-like"
osteosarcoma defining genes (Table 2) were highly linked
to dog osteosarcoma (highest fold expression difference
between canine tumors and canine normal tissues; > 8-
fold expression in tumors versus dog normals) but were
nonetheless expressed in human osteosarcoma (expressed
in human tumors compared to human normal tissues; <2-
fold expression in tumors vs. normal) (Figure 3). Next,
expression consistency in all Affymetrix probe sets,
defined as concordant direction of differential expression
for all probesets associated with a given gene, yielded four
"dog-like" genes of interest: IL-8, SLC1A3, TFPI2, (tissue
factor pathway inhibitor 2), and RBP4 (retinol binding
protein 4, plasma). Each of these "dog-like" genes were
examined in a distinct population of 34 human osteosar-
coma patient samples (see Additional File 1, Table S1)
that had previously undergone gene expression analysis
and were linked to clinical outcome. The median survival
time for this population of human patients was 10.3 years

(see Additional File 1, Table S1)). High expression of two
of the four "dog-like" genes (IL-8 and SLC1A3) linked to
poor outcome in human osteosarcoma using Kaplan
Meier analysis (IL-8, p = 0.0201; SLC1A3, p = 0.0264, Fig-
ure 4). This finding of two potentially informative genes
is noteworthy since the survival signature generated via
Cox Regression of the entire dataset suggested it was
unlikely that individual genes would be predictive of clin-
ical outcome (data not shown). Fisher exact analysis sup-
ported the strength of the association between these "dog-
like" genes and survival when compared to 24 previously
identified cancer candidate genes (p-value = 0.0189)
where no association with survival was found. After mul-
tiple test corrections, using random permutation testing,
increased IL-8 expression was continuously linked with
poor survival (p = 0.02). (Figure 4).

To validate the relevance of IL-8 and SLC1A3 in human
osteosarcoma, we evaluated their protein expression in a
third and distinct set of human osteosarcoma tissues by
tissue microarray (TMA) immunohistochemistry,
obtained from primary biopsy, definitive resection and
metastases. Results show low to moderate tumor cell
expression intensity for IL8 and SLC1A3 in most samples
(66/67 (98%) and 54/64 (84%) samples have intensity
scores <3 respectively) (see Additional File 1, Figure S1).
SLC1A3 exhibited cytoplasmic staining in tumor and stro-
mal cells; whereas IL8 staining was found in both osteo-
clasts and osteoblasts.

Discussion
Our cross-species genomic analysis of osteosarcoma is the
first to compare global gene signatures of any spontane-
ously occurring disease state with the same disease in
humans. Two important findings have emerged from this
work: (1) there are very strong similarities in gene expres-
sion patterns between canine and human osteosarcoma.
These similarities further support the inclusion of pet dogs

Table 1: Lowest EASE Scores in Canine Osteosarcoma and Associated Functions.

GO FUNCTION CATEGORY LH2 EASE SCORE1 FISHER EXACT

Cellular Component ECM 33 5.7E-11 1.09E-12

Molecular Function ECM structural 16 9.56E-10 8.07E-11

Molecular function Structural molecule activity 40 0.00000319 0.000013

Molecular function Ca ion binding 30 0.000132 0.0000565

Cellular component Extracellular 49 0.000192 0.000105

Biological process Development 60 0.000227 0.000135

Cellular component ER 32 0.000285 0.000131

Molecular function Protein binding 72 0.00403 0.000261

Biological process Morphogenesis 41 0.000431 0.000228

Biological process ER to Golgi transport 6 0.00476 0.0000344

Cellular component Actin cytoskelton 17 0.00354 0.00141

1 Categories with significant Expression Analysis Systematic Explorer (EASE) scores (<0.001) are presented here.
2 LH represents number of genes in gene list assigned to a category.
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as a translational model in studies of osteosarcoma ther-
apy; and (2) that these similarities, coupled with the more
aggressive biology of the canine disease provides a new
perspective from which genes and pathways integrally
related to the metastatic biology of this disease may be
assessed. Indeed, we identified four specific genes that
were defined as "dog-like" genes to be expressed in
humans. Expression levels of two of these "dog-like"
genes (IL-8 and SLC1A3) were associated with poor out-
come in human osteosarcoma patient samples. It is
unlikely that these potential progression associated genes
would have been considered without the perspective pro-
vided by the cross-species approach.

The public release of a high-quality sequence covering
99% of the canine genome (2.5 billion base pairs) has
confirmed remarkable similarities between the genomes
of dog and man and has provided the opportunity for the
cross-species studies conducted here [18,19]. The imple-
mentation of such approaches is feasible through com-
mercially available canine oligonucleotide and SNP
arrays, first by Affymetrix and now by others. It is now
possible for high throughput interrogation of canine tis-
sues and disease states, using platforms and processes pre-
viously limited to the mouse and human [4,18,19,22].
Work by several groups has begun to use the canine
genome as a means to understand basic biology and

Cross species analysis of canine and human osteosarcoma are not distinguishable by global gene expression signatureFigure 2
Cross species analysis of canine and human osteosarcoma are not distinguishable by global gene expression 
signature. Comparative genomic analysis was performed by defining the differentially expressed genes between osteosarcoma 
and normal tissues (adjusted p value < 0.01) and by establishing orthologues between species. After Entrez Gene ID alignment, 
265 genes were used to cluster the human and canine osteosarcomas, normal tissues and cell lines. Hierarchical clustering 
resulted in complete branching of normal and tumor samples, and normal organs could be further defined based on species of 
origin. Among the 30 primary tumor samples, branching of human and canine osteosarcoma is not divided by species. This sug-
gests that similarities in gene expression signatures in osteosarcoma are due to shared biology across species.
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genetics of health and disease, including cancer [23-25].
Past comparative genomic studies in cancer have included
work in rodents and humans [26,27]. There are many
challenges to cross-species comparative genomics that
include the dog, including incomplete gene annotation
and the lack of methodologies for orthologous gene
assessment. We used a comparative genomics methodol-
ogy, Entrez Gene ID alignment, similar to that described
by Sweet-Cordero et al. and Lee et al. to study gene signa-
tures in murine models of cancer, in our canine-human
analysis of osteosarcoma progression. Improved cross-
species genomic analyses will be possible with further
genome annotation and sequence similarity assessments
[28].

Past studies that have sought to define targets linked to
metastatic progression in osteosarcoma, a highly meta-
static pediatric malignancy, have been hampered by the
overwhelming bone signature of osteosarcoma, heteroge-
neous and karyotypic complexity of the disease, relative
paucity of tumor samples available before exposure to

chemotherapy, and the small number of patient samples
available given the rarity of this disease. Baird et al., used
expression profiling to define and distinguish osteosar-
coma from other similar pediatric cancers, but this signa-
ture was highly influenced by its association with bone
[29]. Since initial response to neoadjuvant chemotherapy
is a recognized prognostic factor in osteosarcoma. Mintz
et al. and Ochi et al. used expression analysis by microar-
ray to define classifiers of a poor response to chemother-
apy [30,31]. The starting material for these studies were
tumor samples obtained following chemotherapy at the
time of definitive resection of the tumor [30]. The greater
number of dogs who are diagnosed yearly with osteosar-
coma, along with the more accelerated progression to
metastasis compared to pediatric osteosarcoma, provides
a greatly needed resource for the study of this rare pediat-
ric cancer and may be necessary for optimal progress to be
made.

Using cluster analysis of human-dog orthologous genes
that were differentially expressed between canine cancers

Table 2: List of twenty-seven probe sets with increased expression in canine osteosarcoma.

Gene Symbol Gene Name 1Canine Tumor: Normal 2Human Tumor: Normal

COL1A1 collagen, type I, alpha 1 7.55 -1.00

PTN pleiotrophin 
(heparin binding growth factor 8, neurite growth-promoting factor 

1)

5.36 -1.01

FN1 fibronectin 1 4.74 0.45

FN1 fibronectin 1 4.74 0.33

DPT dermatopontin 4.59 0.59

TFPI2 Tissue factor pathway inhibitor 2 4.57 -0.35

TFPI2 tissue factor pathway inhibitor 2 4.57 -0.60

MAP1B microtubule-associated protein 1B 4.34 -0.14

LAMA4 laminin, alpha 4 3.77 0.49

LAMA4 Laminin, alpha 4 3.77 -0.82

LAMA4 laminin, alpha 4 3.77 -0.58

LAMA4 laminin, alpha 4 3.77 -0.89

SFRP4 secreted frizzled-related protein 4 3.75 0.85

FN1 fibronectin 1 3.59 0.45

FN1 fibronectin 1 3.59 0.33

C1orf21 chromosome 1 open reading frame 21 /// chromosome 1 open 
reading frame 21

3.58 -1.02

LOXL2 lysyl oxidase-like 2 3.42 -0.56

LOXL2 lysyl oxidase-like 2 3.42 -1.19

FLJ23191 Hypothetical protein FLJ23191 3.36 0.34

RBP4 retinol binding protein 4, plasma 3.28 -1.45

RBP4 Retinol binding protein 4, plasma 3.28 -0.91

IL8 interleukin 8 3.17 0.20

IL8 interleukin 8 3.17 -0.24

SLC1A3 solute carrier family 1 (glial high affinity glutamate transporter), 
member 3

3.15 0.83

CASK calcium/calmodulin-dependent serine protein kinase 
(MAGUK family)

3.07 0.78

FN1 fibronectin 1 3.05 0.45

1 Expression values represent log2 ratios of canine OS samples:canine normal tissues
2 Expression values represent log2 ratios of human OS samples:human normal tissue
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and canine normal tissues we were unable to segregate the
gene expression signatures of canine from human osteosa-
rcoma. Previous candidate studies of the genetics and
biology of osteosarcoma in both species have been lim-
ited but supported the similarities between the diseases.
We were nonetheless surprised that the expression of
orthologous genes could not distinguish the cancers by
species. It is important to note that the normal canine and

normal human tissue expression signatures were clearly
distinguished using this same approach. These data sug-
gest that the osteosarcoma gene expression pattern was
dominant over the gene expression patterns of species.
Since normal bone was not included as a comparator in
normal tissue panel for both, it is reasonable that the
dominant expression pattern, common to both species is
their association to bone. However, the abundantly

Algorithm depicting the selection process for dog specific osteosarcoma genes using a fold-expression methodologyFigure 3
Algorithm depicting the selection process for dog specific osteosarcoma genes using a fold-expression meth-
odology. In order to define a list of dog specific osteosarcoma genes that are variably expressed in human osteosarcoma, 
probe sets with matching gene names or symbols across both species were evaluated (14,391 probe sets). An initial list of dog 
osteosarcoma defining genes was generated by identifying those probe sets with the highest fold expression differentials 
between the canine tumors and their normal tissues and present expression in the human tumors and their normal tissues 
(dog: > 8-fold up-regulation in tumors versus normal; human: <2-fold upregulation in tumors versus normal). This yielded 27 
probe sets, representing 15 unique genes. Those genes that also had representative probe sets upregulated in both dog and 
man (> 8 fold expression) were then excluded, leaving 10 genes. This was further filtered by retaining only those genes with 
consistent expression across all their Affymetrix probe sets; using these stringent criteria 4 dog-like specific osteosarcoma 
genes were defined.
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expressed biological themes found in canine osteosar-
coma are similar to the previously published work
describing human osteosarcoma [30-33].

Additionally, it is important to note that the canine nor-
mal tissue samples used for this cross-species analysis are
true biological replicates and not pooled samples or single
samples assayed multiple times. This contrasts the normal
human gene expression data derived from the online
GNF-GEA database that has batch effects that may intro-
duce bias that differs from expression data obtained from
canine osteosarcoma, canine normal, and human oste-

osarcoma tissues. Limitations exist when harvesting nor-
mal human tissue for gene expression analysis due to the
fact that most, if not all samples, are attained at various
times post mortem. The canine normal tissue samples
used in this current study were harvested promptly mini-
mizing sample degradation and bias that may negatively
influence gene expression quantification. It is possible
that previous genomics studies of human osteosarcoma
failed to capture the true biological variability between
individuals due to normal sample pooling. Therefore, the
ability to collect individual, high-quality canine normal
and tumor samples may unmask superior and distinct

Canine osteosarcoma can predict genes linked to an aggressive phenotype in human osteosarcomaFigure 4
Canine osteosarcoma can predict genes linked to an aggressive phenotype in human osteosarcoma. High 
expression of two of four "dog-like" genes A. IL-8 (p = 0.0201) and B. SLC1A3 (p = 0.0264) were linked to poor outcome in a 
distinct population of 34 human osteosarcoma patient samples using Kaplan Meier analysis. IL-8's impact on outcome was eval-
uated according its median expression (Low (0-50) equivalent to < median expression; High (51-100) equivalent to > median 
expression); whereas SLC1A3 was assessed according to quartile expression (Lower (0-74) equivalent to < highest quartile 
expression; Highest (75-100) equivalent to highest quartile expression).
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relationships and improve upon the opportunity to detect
biological differences between normal and diseased tis-
sues.

The strength of the similarities between the dog and
human gene signatures allowed us to extend the use of the
comparative data to identify progression-associated
genes. Since dogs have a more aggressive course of disease
than humans we hypothesized that "dog-like" genes may
define a more aggressive phenotype of human osteosar-
coma that could not be previously identified in human
genomic evaluations. By identifying genes with the high-
est expression in a population of canine osteosarcoma
and marginal expression in a population of human oste-
osarcoma patients, two of four "dog-like" genes, IL8 and
SLC1A3 (IL-8, p = 0.0201; SLC1A3, p = 0.0264), were
defined that were negatively associated with survival in a
distinct human osteosarcoma data set. IL-8 is a major
mediator of the inflammatory response. It functions as
both a chemo-attractant for a variety of cell types as well
as an angiogenic factor. Both functions have been mecha-
nistically linked to cancer progression in a number of his-
tologies including human melanoma, breast, prostate,
pancreatic, head and neck, bladder, ovarian and colorectal
carcinomas [34-42]. In a study by Rutkowski et al., ele-
vated serum levels of a variety of cytokines including IL-8,
IL-6 (interleukin-6), IL-1 (interleukin-1) and TNFR1 (Tis-
sue Necrosis Factor Receptor 1) were linked to tumor
extent and poor prognosis in adult patients with bone sar-
comas [37]. IL-8 up-regulation has also been implicated
as a possible pathway for Doxorubicin resistance in a drug
resistant human osteosarcoma cell line (143B-DR-DOX),
although its impact in paclitaxel resistance in less clear in
other in vitro assessments [43,44]. If indeed an indicator
of future progression in human osteosarcoma patients,
this gene is of particular interest, as it is a druggable target
for inhibition because monoclonal IL-8 antibodies are
already in clinical development [45]. SLC1A3 (also
known as EAAT1) is a high affinity glutamate transporter
that normally regulates neurotransmitter concentrations,
although it has also been found outside of the CNS. It has
been linked to motility and is highly expressed in aggres-
sive glioma cell lines versus less aggressive variants [46].
Interestingly, it has been recently described by Kalaiti et al.
to be present in MG-63, an osteoblastic osteosarcoma cell
line, and functionally can be up regulated by glucocorti-
coids [47,48]. Therefore it may also have implications in
bone pathophysiology and as a target for further evalua-
tion in osteosarcoma. The value of the comparative
approach (i.e. search for "dog-like" genes) in the studying
human osteosarcoma progression associated genes was
supported when the predictive value of the dog-genes was
compared to candidate non-dog genes previously linked
to cancer biology or progression. Furthermore, the dem-
onstration of IL-8 and SLC1A3 expression at the protein

level in human osteosarcoma patient (TMA) samples val-
idated the potential relevance of this comparative
approach across platforms. Future studies will include
functional analysis of these poor outcome genes within in
vitro and in vivo models and evaluation of their expression
in larger outcome-linked patient datasets. Such data sets
are not currently available but are a focus of work by sev-
eral collaborating groups.

Conclusions
In summary, the genetic signatures of canine and pediatric
osteosarcoma cluster together and are not divided by spe-
cies. These data, along with the increased incidence of
osteosarcoma in dogs provides additional support for the
consideration of dogs as a valuable translational model
for the study of this cancer. Close evaluation of specific
genes more defining of canine osteosarcoma helped iden-
tify new genes potentially associated with poor survival in
human osteosarcoma patients. The validation of these
potential targets in preclinical models and larger human
data sets should be prioritized. Collectively the cross-spe-
cies comparative approach supports the use of the dog as
a model for the study of cancer biology, progression and
therapy with the long-term goal of improving clinical out-
come for human cancer patients.

Methods
Samples: Canine

Fifteen tumors were collected from dogs with primary
osteosarcoma undergoing definitive surgery at Colorado
State University College of Veterinary Medicine and Bio-
medical Sciences (CSU). All samples were collected prior
to chemotherapy. Clinical data was available for canine
tumor samples, including patient demographics, ana-
tomic location, further adjuvant therapies employed, and
outcome. Normal tissue samples (liver, lymph node, kid-
ney, spleen) were obtained from research colony dogs at
Colorado State University. Two normal organs were used
for each tissue type. Tissues were sectioned and flash fro-
zen. The Institutional Animal Care and Use Committee
reviewed collection protocols.

Human

Fifteen tumors were collected from children with primary
osteosarcoma undergoing initial biopsy of their primary
tumor, prior to neoadjuvant chemotherapy. All samples
were obtained with informed consent and institutional
review board approval. Clinical data was not available for
these human tumor samples. Tissues were sectioned and
flash frozen. Normal tissue gene expression (liver, lymph
node, kidney) was derived from GNF-GEA data previously
published [49]. Two normal organs signatures were used
for each tissue type.
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Cell lines

Expression analysis of human (U2, HOS and MG63) and
canine (MC-KOSA and BW-KOSA) osteosarcoma cell
lines included in gene expression studies.

RNA Extraction: Tissues and Cell lines

Tumor samples were placed in Trizol reagent at 1 ml/100
mg tissue and then homogenized with a Polytron auto-
mated homogenizer after crushing with mortar and pes-
tle. All machinery was cleaned before and after each
sample with RNase Away (Invitrogen). RNA was extracted
via the manufacturers instructions for Trizol extraction.
Tumor RNA was then purified via the Qiagen Mini kit
using the Qiagen RNA column. RNA was extracted from 5
× 106 cell lines plated overnight in 100 × 20 mm tissue cul-
ture plates using the RNAeasy Mini Protocol (Qiagen)
according the manufacturer's directions. RNA quality was
assessed via electrophoresis on an Agilent 2100 Bioana-
lyzer and only high yielding RNA was used for subsequent
gene expression analysis.

Microarrays Canine

All canine tumor and normal tissue samples and cell lines
were prepared for cRNA hybridization via the Affymetrix
One-cycle Eukaryotic Target Labeling Assay according to
manufacturer's instructions http://www.affymetrix.com. 1
μg of total RNA was used for each sample reaction. cRNA
was cleaned and fragmented and hybridized to Affymetrix
Canine Genome version 1.0 arrays. All samples were
hybridized at the National Human Genome Research
Institute (NHGRI) array core facility and batched as a
group.

Human

All human tumor samples and cell lines were prepared in
the same manner as above. Once cRNA was cleaned and
fragmented it was individually hybridized to Affymetrix
Human Genome U133A arrays. All samples were pre-
pared and hybridized at the NHGRI array core facility and
batched as a group. Human normal tissue Affymetrix .cel
files were obtained from the GNF dataset [49].

Data analysis

Normalization was conducted within each species inde-
pendently via Robust Multichip Average (RMA) [50].
Identification of differentially expressed genes was per-
formed via limma (Statistical significance (False Discov-
ery Rate <0.05)). Hierarchical clustering of each species'
tumor samples, cell lines and normal tissues was per-
formed individually using Euclidian distance and simple
linkage [50].

GEO Accession Numbers

Gene expression data was submitted to the NCBI Gene
Expression Omnibus and are available under the follow-

ing accession number: Super Series GSE16102
(GSE16087: Gene expression profiles of canine osteosar-
coma; GSE16088: Gene expression profiles of human
osteosarcoma; GSE16091: Gene expression profiles of
human osteosarcoma, set2) http://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE16102.

Ontology

EASE was used for assignment of functional ontology
[21].

Comparative Genomics

Comparative genomic analysis was performed by defining
the most statistically significant differentially expressed
probe sets between osteosarcoma and normal tissues
within each species (p < 0.01). To make the data compa-
rable, expression values for each gene were scaled to have
a mean = 0 and SD = 1. Orthologues between these species
were defined by the finding the mean of probe sets map-
ping to each human Entrez gene ID represented. This
analysis resulted in 265 Human Entrez Gene IDs then
used for hierarchical clustering analysis of all samples.

Quantitative RT-PCR

We generated first strand cDNA for canine (MC KOSA, BW
KOSA) and human (U2, HOS) osteosarcoma cell lines
using Promega reagents and carried out quantitative PCR
using the iQ(tm)5 Multi-color real time PCR Detection
System with iQ(tm) SYBR Green Super Mix (Bio-Rad).
Forward and reverse primers were designed for canine and
human galectin 3, MFAP5, PRKDC1 genes. These genes
were chosen as representative of those up-regulated in
both species or up-regulated in the dog. All primers were
designed from mRNA sequences for each species individ-
ually and oligos generated by Integrated DNA Technolo-
gies, Inc. We used GAPDH (house keeping gene) as an
endogenous control in each species. Primer sequences are
available upon request. All PCR reactions were carried in
triplicate with primers at a concentration of 1:10 and a
melting point (Tm) of 60°C. We expressed the relative
mRNA levels in cell lines as -ΔΔCt, in which ΔCt is the dif-
ference in the threshold PCR cycle (Ct) value of mRNA of
the gene of interest and the corresponding control
(GAPDH) in each reaction.

Immunohistochemistry

A human osteosarcoma tissue array was used to assess tar-
get protein expression [51]. Sections were deparaffinized
with xylene and graded alcohol, and then subject to anti-
gen retrieval with Dako Target Retrieval Solution, pH 9
(Dako, Carpinteria CA) for 20 minutes in a vegetable
steamer. Blocking was perfomed with 3% H2O2. Primary
antibody was applied for two hours at room temperature
(EAAT1, SC-7757 and IL-8, SC-73221, Santa Cruz Bio-

http://www.affymetrix.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16102
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16102
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16102
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tech) and the reaction detected with LSAB+ or Envision
Flex + respectively, according to manufacturer's recom-
mendations (Dako). Slides were dehydrated, and cover-
slipped. Tissue microarrays were scored by manual
inspection at 20 × objective magnification (SH). The
intensity of antibody immunoreactivity within tumor
cells was scored 0,1,2,3 corresponding to negative, weak,
moderate and strong staining for both IL-8 and SLC1A3.

Defining Dog Like Osteosarcoma Genes

Cox Regression

Dog specific osteosarcoma genes were defined by two
methods. In the first (Cox regression), the top 250 dog
osteosarcoma genes were generated via a t-test comparing
differential expression between canine tumor and normal
tissues (adjusted p < 0.005). From this group, the top 5%
most differentially expressed genes between canine and
pediatric osteosarcoma were defined within the scaled
data. These genes were ranked by their correlation with
survival based on Cox regression p-values.

Fold Expression (Figure 3)

Via a second method (fold expression), a list of dog oste-
osarcoma defining genes was generated by identifying
those genes with the highest fold differential expression
between the canine tumors and their normal tissues and
marginal expression in the human tumors and their nor-
mal tissues (dog: > 8-fold up-regulation in tumors versus
normal; human: <2-fold up-regulation in tumors versus
normal). Expression change was then examined for all
probe sets across all genes and only those genes with con-
sistent expression across all probe sets were kept.

Evaluation against outcome

Dog specific osteosarcoma genes defined via both meth-
ods were evaluated against survival in a distinct set of 34
pre-treatment human osteosarcoma primary tumors
(courtesy of TT, treatments and institutions varied) with
known outcome (overall survival times), evaluated on HG
133A oligonucleotides arrays (Affymetrix, Santa Clara,
CA). The survival signature of this distinct data set was
evaluated via Cox Regression survival analysis by defining
the top 100 genes via adjusted p-values and querying the
data set for their impact on survival. The impact on sur-
vival of individual dog-like genes was analyzed in three
ways: median centered (high low), quartile analysis and
highest expression vs. three lower groups. P values < 0.05
after multiple test correction were considered significant.

Fisher Exact Test

The predictive value of the four "dog-like" genes, identi-
fied above was compared to 24 candidate genes previ-
ously linked to osteosarcoma biology or progression (ex.
Src: v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene
homolog (avian), PKC: Paroxysmal kinesigenic chore-

oathetosis, CHEK2: CHK2 checkpoint homolog, personal
communication C. Khanna). Each of the 28 genes were
analyzed individually for their statistical impact on sur-
vival using the methods described above (resulting in a
total of 28 × 3 = 84 comparisons). A Fisher exact t test was
then used to determine if the use of the dog comparison
was more likely to result in genes associated with clinical
outcome in a human osteosarcoma vs. a random sam-
pling of candidate genes previously linked to cancer pro-
gression. Two tailed p values < 0.05 were considered
significant.

Abbrevations
IL-8: interleukin-8; SLC1A3: solute carrier family 1 (glial
high affinity glutamate transporter), member 3; PTEN:
phosphatase and tensin homolog; Rb: retinoblastoma;
ezrin: villin-2; c-met: mesenchymal-epithelial transition
factor; erbB-2: v-erb-b2 erythroblastic leukemia viral onco-
gene homolog 2, neuro/glioblastoma derived oncogene
homolog (avian); p53: tumor protein 53; MFAP5: micro-
fibrillar associated protein 5; PRKDC: protein kinase,
DNA-activated, catalytic polypeptide; EASE: Expression
Analysis Systematic Explorer; TFPI2: tissue factor pathway
inhibitor 2; RBP4: retinol binding protein 4, plasma;
TMA: tissue microarray; IL-6: interleukin-6; IL-1: inter-
leukin-1; TNFR1: Tissue Necrosis Factor Receptor 1; CSU:
Colorado State University; NHGRI: National Human
Genome Research Institute; RMA: Robust Multichip Anal-
ysis; Src: v-src sarcoma (Schmidt-Ruppin A-2) viral onco-
gene homolog (avian); PKC: Paroxysmal kinesigenic
choreoathetosis; CHEK2: CHK2 checkpoint homolog
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