
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 1

CANMatch: A Fully Automated Tool for CAN Bus
Reverse Engineering based on Frame Matching

Alessio Buscemi, Student Member, IEEE, Ion Turcanu, Member, IEEE, German Castignani, Romain Crunelle,
and Thomas Engel, Member, IEEE

Abstract—Controller Area Network (CAN) is the most
frequently used in-vehicle communication system in the
automotive industry today. The communication inside the CAN
bus is typically encoded using proprietary formats in order
to prevent easy access to the information exchanged on the
bus. However, it is still possible to decode this information
through reverse engineering, performed either manually or
via automated tools. Existing automated CAN bus reverse
engineering methods are still time-consuming and require some
manual effort, i.e., to inject diagnostic messages in order to
trigger specific responses. In this paper, we propose CANMatch –
a fully automated CAN bus reverse engineering framework that
does not require any manual effort and significantly decreases
the execution time by exploiting the reuse of CAN frames across
different vehicle models. We evaluate the proposed solution on a
dataset of CAN logs, or traces, related to 479 vehicles from 29
different automotive manufacturers, demonstrating its improved
performance with respect to the state of the art.

Index Terms—CAN Bus, Automated Reverse Engineering, In-
Car Networking, Tokenization

I. INTRODUCTION

The Controller Area Network (CAN) is a message-based
protocol for in-vehicle communication, released in 1987 to let
Electronic Control Units (ECUs) inside vehicles communicate
with each other without the supervision of a central bus
master. The popularity of CAN has increased to the point
that, nowadays, it is considered the de facto standard for
in-vehicle communication. Its success mostly derives from
its versatility and physical properties, such as robustness to
electromagnetic noise. While physical access to the CAN bus
within a vehicle is usually possible, the interpretation of its data
is rather difficult. The communication is not encrypted and no
authentication is implemented for the ECUs. However, the data
is encoded according to different formats, which depend on
the specific design choices operated by the Original Equipment
Manufacturer (OEM) and are kept secret to the general public.

In recent years, the progressive digitalization of vehicles
and the release of new technologies in the automotive market
– spanning from safety to infotainment – led to a dramatic

Copyright (c) 2021 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received XXX, XX, 2021; revised XXX, XX, 2021.
A. Buscemi, G. Castignani, and T. Engel are with the Faculty of Science,

Technology and Medicine (FSTM), University of Luxembourg (e-mail:
alessio.buscemi@uni.lu; german.castignani@ext.uni.lu; thomas.engel@uni.lu).

I. Turcanu is with the Interdisciplinary Centre for Security, Reliability and
Trust (SnT), University of Luxembourg, and with the Luxembourg Institute of
Science and Technology (e-mail: ion.turcanu@list.lu).

R. Crunelle is with Xee/Eliocity SAS (e-mail: rcrunelle@xee.com).

increase of the number of ECUs connected to the CAN bus.
With autonomous driving on the rise and vehicles becoming
more and more interconnected to each other and to the
infrastructure, we can expect the number of ECUs to further
augment in the near future. This will also determine a growth
in the quantity of data transiting on the CAN bus. This data
already represents a valuable source of information regarding
the vehicle, which can be exploited for a multitude of purposes
by companies that offer aftermarket solutions: driver profiling,
fleet management, and cloud services [1]–[3]. Bertoncello et al.
[4] predict that the global market of automotive data, of which
CAN is a major source, may be valued between 450 and 750
billion $ by 2030. According to their report, consumers are
also interested in automotive data and see it as an enabler of
safety features and sustainable development.

A number of solutions have been proposed to address the
thirst for clear CAN data, such as SAE J1939 [5] – a set of
standards built on top of CAN physical layer that guarantees a
standardized communication between ECUs. The popularity of
SAE J1939 has increased to the point that, nowadays, a large
number of heavy duty diesel vehicles are equipped with it.
However, given the unwillingness of the OEMs to disclose the
formats of most of the CAN signals of commercial vehicles
(cars in particular) to the general public, the most common
way to obtain such information is through reverse engineering.

Heretofore, this process has been achieved mostly manu-
ally [6]. While having been proven to provide reliable results,
the manual approach requires from hours to days of intense
human work and constant physical access to the vehicle. In
addition, it can be intrusive, as one of the adopted techniques
is to actively request diagnostic messages to the bus. Recently,
researchers have started investigating the automation of this
process to make it faster, scalable and standardized [7]–[15].

Aside from the evident advantages that it would bring to
the industry, the automation of CAN bus reverse engineering
has also gained interest in the scientific community, where
automotive cybersecurity is a prominent topic [16]–[18]. A
number of wired and wireless attacks based on the injection
of malevolent messages in the CAN bus have raised concern
in recent years [19]–[21]. In this context, the automation of
the CAN bus reverse engineering process plays an essential
role. On the one hand, it raises questions about the ease with
which adversaries can conduct attacks [22]. On the other hand,
it offers a fast and standardized solution that allows researchers
who work on intrusion detection to get access to clear in-vehicle
data [23]–[26].

In this paper, we present CANMatch, a framework for

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 2

automated CAN bus reverse engineering that is able to decode
the format of an unknown vehicle by exploiting frame ID
re-utilization. Differently from other proposed solutions –
which require injection of diagnostic messages, use of ex-
ternal IMU/GPS data, expertise and partial manual effort –
CANMatch gets in input only the CAN raw trace of the
vehicle to reverse engineer and clear information on the formats
adopted in other vehicle models. CANMatch aims to further
speed up and scale the access to clear CAN data for all those
researchers and aftermarket companies that drive the innovation
in the automotive sector through data-enabled solutions. Our
contribution can be summarized as follows:
• We propose CANMatch, a framework that exploits the

reuse of frames across different vehicle models to achieve
a fully automated CAN bus reverse engineering;

• We present an improved version of the Reverse Engineer-
ing of Automotive Data frames (READ) [9] algorithm
for tokenization, which increases the tokenization perfor-
mance by considering the signal endianness;

• We present a clustering-based method that identifies
the redundant signals – i.e., carrying the same vehicle
functions (although, possibly encoded in a different
format) – by finding correlations between previously
decoded signals and undecoded tokens. The method also
speeds up sensitively the format decoding process.

The paper is organized as follows. Section II provides an
overview of the CAN bus reverse engineering process in general
and describes the relevant existing related work. Section III
presents CANMatch – our proposed solution. Section IV
provides a detailed performance evaluation of CANMatch, as
well as comparison with the state of the art. Section V discusses
the limitations and security implications of our proposed
solution. Finally, the conclusions are drawn in Section VI.

II. PRELIMINARY CONCEPTS

We first introduce the general principles of CAN bus com-
munication, describing the message structure and main features
that characterize a vehicle function. Then, we summarize the
main approaches of CAN bus reverse engineering and the
format used to store the decoded information. Finally, we
present a detailed analysis of the main related works.

A. CAN Bus

The communication on the CAN bus relies on messages
or frames. Each ECU periodically sends a CAN frame that,
in absence of collisions, is received by all other ECUs. The
frames do not contain any information regarding the sending
nor the receiving ECU.

The following fields constitute a standard CAN frame (see
Figure 1): start of frame (1 bit), identifier (ID) (11 bit in
the standard version and 29 bit in the extended one), remote
transmission request (1 bit), reserved (2 bit), Data Length Code
(DLC) (4 bit), data field (0–64 bit), Cyclic Redundancy Check
(CRC) (16 bit), acknowledge (2 bit), and end of frame (7 bit). To
be noted that the International Organization for Standardization
(ISO) defines an extended CAN frame format as well [27].

1
bit

11
bits

Frame
Start

2
bits

1
bit

CAN
ID

4
bits

DLC

16
bits

2
bits

7
bits

Frame
End

...

0

1

2

7

0 1 2 3 4 5 6 7

B
y
t
e

n.

Bit position

 8
Bytes

Payload

Figure 1. Example of CAN frame with 8-bytes payload. Each color in the
payload represents a different signal.

The two most relevant fields for this work are the identifier
(ID) and payload. The CAN ID uniquely identifies a frame
and carries its priority, which is needed in case of collisions.
A collision occurs when multiple messages are simultaneously
sent on the CAN bus. Collisions in CAN bus are solved with
the use of dominant bits (0) which overwrite the recessive
bits(1), always allowing the frame with the highest priority
(lowest value) to be received by the ECUs. An ECU can send
or receive CAN frames with different IDs, but frames with the
same ID are sent by the same ECU.

The payload contains the actual data content of the frame. In
CAN standard version, the payload of messages sent with the
same ID has always the same length. A payload can contain
one or more signals. A signal corresponds to a chunk of data
that encloses a vehicle function and is defined by the following
characteristics:

• Length – between one bit for status signals carrying
binary information (e.g. the seat belt is fasten or not) and
many bits for signals carrying more complex information.

• Start bit – at which position/bit within the frame the
signal starts.

• Semantic meaning - what is the actual vehicle function
encapsulated in the frame. A signal can express an event-
driven physical phenomenon (e.g. vehicle speed) or an
internal function of the vehicle (e.g. cyclic counters).

• Endianness – is the order of bytes in which the cross-
byte signals (signals that span across multiple consecutive
bytes) can be represented. In the Big Endian (BE) format,
the most significant byte appears first in the frame, while
in the Little Endian (LE) it appears last [28].

• Signedness – a signal is signed if the numerical values
it carries are both positive and negative, and unsigned if
only positive. Signed signals are typically represented in
two’s complement encoding.

• Scale factor and Offset – typically, to find the actual
human-interpretable physical value v carried by a signal
s, it is not sufficient to parse the signal encoding from
binary (or hexadecimal) to decimal format. Letting r be
the raw decimal value of the signal, to obtain v we need
to apply a scale factor f and add an offset o, as shown

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 3

in Equation (1)

vs = fs · rs + os (1)

To be noted that factor and offset of a signal can be
equal to, respectively, 1 and 0. In such case, the signal is
immediately interpretable.

In CAN standard version, all these properties are fixed and
do not change over time. In other words, once they are known
for a certain signal, we can use them to correctly identify and
interpret the content of the signal at any time. According to
[9], [13], signals can be grouped into the following categories,
based on their function:
• Physical - signals that corresponds to telemetries or other

sort of physical measurements, such as vehicle speed or
engine coolant temperature.

• Status/multi-value - typically signals between 1–4 bit
long. They either express a binary property or a limited
set of options (e.g. the windscreen wiper speed).

• Counters - some signals behave as cyclic counters.
• Checkcodes - in addition to the CRC field, some frames

contain supplementary checkcodes within their payload.
• Constant/unused - some payloads present chunks of

consecutive bits that do not change over time. They might
correspond to signals triggered only under exceptional
conditions not observable during a standard data collection
session (e.g. the activation of the airbag), or simply be
unused bits.

B. CAN Bus Reverse Engineering

The aim of reverse engineering is to identify the location
of the signals within the frames, understand their semantic
meaning, i.e., what is the vehicle function that they rep-
resent, and decode their format. This can be achieved by
performing a certain number of manual operations, such as
activating/deactivating vehicle sensors to trigger events in
the CAN bus. The changes in the CAN traffic caused by
these events can be spotted by a human operator by using
a number of tools (e.g. Wireshark) in real time or through
an a posteriori analysis [29], [30]. Reverse engineering can
also be performed by injecting Parameters IDs (PIDs) via the
On-Board Diagnostics (OBD-II), which is a law-enforced port
present in all vehicles mostly used for retrieval of emission-
related parameters and diagnosis purposes. Note that in absence
of other access points to the bus, this interface can also be
employed to log other CAN data.

The automated reverse engineering approach is mostly based
on correlating in-vehicle data with some live clear data provided
by GPS/Inertial Measurement Unit (IMU) sensors and/or the
automated injection of PIDs. Some algorithms, in particular
the ones based on Machine Learning (ML), exploit CAN data
collected on vehicles previously reverse engineered.

Usually, automated reverse engineering tools perform three
main tasks: tokenization, translation and format decoding. The
goal of tokenization is to identify the boundaries of the signals
within the payload of each CAN frame. Most tokenization
algorithms also provide the type of signals, as described in
Section II-A. A token is a signal of which we know the

SG_ VehicleSpeed 32 | 12 @ (0.1,0) (0,300) "km/h":

Frame
Syntax

Frame
ID

Frame
Name

Length
(Byte)

Signal
Syntax

Signal
Name

Bit position
| Length

Endian
Sign

Scale,
Offset

Min,
Max

Unit

B0_ 200 SPEED : 8

1+

Figure 2. An example of format description in a DBC file.

boundaries and endianness, but whose format and vehicle
function have not been decoded yet. The goal of translation,
instead, is to identify the vehicle function carried by tokens –
which can also be referred to as signals. Finally, the format
decoding procedure discloses the scale factor, offset, and unit
(for physical signals), which ultimately allows identifying the
information carried by the signal. In this work, we focus on
all three phases.

To evaluate a CAN bus reverse engineering method on a
target vehicle, apart from its CAN trace, it is necessary to
have the ground truth to validate the results against. The most
widely employed standard to store such information is Database
CAN (DBC), released by Vector Informatik [31]. A DBC file
stores the characteristics described in Section II-A, but also
the maximum and minimum values that a signal can assume.
Figure 2 illustrates an example of format description in a DBC
file. The top part of the figure, highlighted in grey, shows the
syntax of a frame, while the part below represents an example
of a signal within the frame.

Typically, the original DBC files owned by OEMs are not
accessible to the general public. While validating a reverse
engineering tool on original DBC files would certainly help
validating the developed solutions, unfortunately, obtaining
such information for research purposes requires non-negligible
efforts and long negotiations with the OEMs. Moreover, to make
sure the proposed solutions are universal, one would have to
obtain multiple DBC files from different OEMs. An alternative
option for obtaining ground truth datasets for validation is to
employ DBC files obtained by third-party expert technicians
through manual reverse engineering. We define these DBC files
as generated. The disadvantage of generated DBC files is that,
generally, they do not cover all the information related to the
target vehicle, as some signals may have not been spotted or
fully decoded. In this work, we validate our solution using a
generated set of DBC files, described in Section IV-A.

C. Related Work

Jaynes et al. [7] are the first to tackle the automation of the
CAN bus reverse engineering process. The authors propose
training an ML classifier to identify the sender ECU based
on features extracted from the payloads of the frames. In
their work, the payloads are analyzed as a whole, instead of
identifying and interpreting the signals contained in them, thus
making this approach not universally applicable (as ECUs from
different manufacturers encapsulate different assortments of
signals in the frame payloads).

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 4

In concurrent works, Nolan et al. [10] and Marchetti and
Stabili [9] investigate tokenization through bit flip counts. A
bit flip corresponds to a change in the value of the bit (from 0
to 1 or vice versa). The assumption behind this approach is
that Least Significant Bits (LSBs) flip more often than Most
Significant Bits (MSBs) due to the own nature of the signals. In
particular, Marchetti and Stabili [9] calculate the magnitude of
a bit b as log10(BFRb), where Bit Flip Rate (BFR) corresponds
to the bit flip count divided by the frame time series length. The
list of the magnitude extracted for all bits in a frame is scanned
from start to end. When the magnitude of a bit is higher than
the magnitude of the following bit, a boundary is found. Nolan
et al. [10] consider only physical signals, while Marchetti and
Stabili [9] consider also constant, multi-values, counter and
checkcode signals. In particular, counters are signals whose
BFR keeps doubling from the most to the least significant bits,
while in checkcodes the BFR of all bits is normally distributed
around 0.5. Nolan et al. [10] make a first attempt to decode
the endianness of the signals. However, in the identification of
the little endianness, the authors wrongly consider a reverse
order of the bits instead of the bytes which, instead, truly
characterizes the endianness.

Huybrechts et al. [11] present two different approaches
to perform both identification of the signals boundaries and
translation of the signals. In the first approach, they are the first
to exploit OBD-II PIDs to identify signals. The second approach
makes use of GPS data to correlate with CAN data, employing a
Long Short-Term Memory (LSTM) network for the translation
task. However, in this work, the authors incorrectly assume that
signals can be only 1 or 2 Byte long and that their boundaries
coincide with, respectively, the LSB and MSB of the bytes in
which they are contained.

Verma et al. [12] introduce Automatic CAN Tokenization and
Translation (ACTT), which simultaneously tokenize, translate
and decode the format of the signals, by matching CAN data
with live diagnostic data obtained through the injection of
OBD-II PIDs. In the preliminary phase, ACTT adopts a brute-
force approach: it initially considers all possible combinations
of start and end bits of (non-constant) signals within a frame.
Subsequently, a linear regressor attributes a fitness score to each
of these signals. Finally, a dynamic programming algorithm
extracts the set of non-overlapping signals which maximizes
the total fitness score.

Pesé et al. [13] propose LibreCAN, a tool for complete
CAN bus reverse engineering, composed of three phases. The
first phase performs the tokenization task through a modified
version of the READ algorithm [9]. The second phases concerns
the translation of powertrain signals (e.g. engine RPM). The
translation task is performed through a cross-correlation with
data collected via OBD-II PIDs and IMU external sensors
installed in the vehicle. The scale factor and offset of signals
is found through linear regression. The third phase introduces
a semi-automated procedure for body-related signals (e.g. door
status, headlights status etc.). A human operator iteratively
activates sensors in the vehicle to trigger changes in the signals
related to them, with the purpose to spot differences against a
benchmark trace (i.e. in which no action was performed). At
the time of writing, LibreCAN is considered the most complete

tool for CAN bus reverse engineering. It has been tested on
real CAN data collected on four cars and validated against
the original DBC file from the manufacturer itself, obtaining
convincing results. Nonetheless, it is not clear whether this
method would perform as well on cars from other makers.
Unlike LibreCAN, which requires the same (significant) amount
of manual work to collect data for each new CAN trace
to interpret, CANMatch exploits the DBC files of reverse
engineered vehicles to iteratively speed up both data acquisition
and decoding phases.

In our previous work [14], we propose a first attempt towards
the translation of physical signals by using CAN data only,
i.e., without the injection of OBD-II PID nor the collection of
IMU/GPS data to match with the CAN trace. The underlying
assumption is that signals related to the same vehicle function
present characteristics that are intrinsic and caused by the
physical phenomenon they represent. These properties can
be used to recognize the semantic meaning of the signals,
despite their different format (i.e. scale factor and offset) and
environmental conditions (driving style, traffic etc.) in which
the data are collected. These environment-agnostic features
are used to train an ML classifier to recognize the semantic
meaning of critical signals. The main limitation of this work
is that it focuses solely on the translation task, thus already
assuming perfectly extracted tokens.

Ezeobi et al. [15] introduce clustering in the scope of
CAN bus reverse engineering. In this work, several clustering
techniques, among which DBSCAN [32] and Agglomerative
Hierarchical Clustering (AHC) [33], are adopted to identify
sets of frames related to the same vehicle function.

In 2021, Choi et al. [34] challenge some of the assumptions
on which READ [9] is based, such as the distribution of BFR in
the checksum signals and the monotonic increase of BFR from
the MSB to the LSB of physical signals. The authors evaluate
their approach on a set of four vehicles from the same OEM
and validate it against OpenDBC, an open-access repository
of generated DBC files [35]. On the considered dataset, this
method outputs equal results on counter signals and performs
better on physical and checksum signals. However, in this work
the authors do not address the endianness of the signals.

All the existing solutions that achieve complete CAN
bus reverse engineering (tokenization, translation and format
decoding) require manual effort, installation of external sensors
(GPS/IMU) and injection of diagnostic messages through the
OBD-II port at data collection time. These characteristics make
these solutions intrusive and only partially scalable, as the
amount of actions to be performed by a human operator and
the time necessary for the acquisition of data is constant for
every new vehicle to reverse engineer. In this paper, we propose
a non-intrusive tool, whose performance and time required for
data acquisition and execution improve with the number of
vehicles that are reverse engineered. Our approach is based
on the reuse of information obtained on these vehicles (in the
form of a DBC file), and guarantees high scalability compared
to other proposed solutions.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 5

III. CANMATCH

It is common knowledge that different car manufacturers
equip their vehicles with ECUs from a limited number of Tier-1
suppliers. It follows that an ECU can be part of the electronic
system of multiple vehicle models. Intuitively, this is mostly
true for models from the same brand or alliance, to enhance
economies of scale. But, it can also be valid for models of
different OEMs that get their supplies from the same Tier-1
supplier.

What does not seem to be public knowledge is that the CAN
frames associated with these ECUs are also shared by different
vehicle models. The direct implication of the reuse of CAN
frames is that, by correctly reverse engineering signals within
a frame with a certain ID in a vehicle model, we can assume
that frames with the same ID found in other vehicles carry the
same signals.

CANMatch exploits the high reuse of frame IDs across dif-
ferent vehicle brands to reverse engineer the signals contained
in their payloads. Provided that there is a ground truth dataset
containing already decoded CAN traces (i.e., by using any of
the methods described in Section II-B), CANMatch decodes an
unknown CAN trace by performing the following three main
phases (illustrated in Figure 3):
• Phase 1 (Frame Matching) – CAN IDs and payloads

are extracted, along with their timestamp. CANMatch
searches for a match between the IDs found in the trace
(to be decoded) and the same IDs present in the ground
truth (previously decoded signals). If a match occurs, the
frame is decoded according to the signals extracted from
the matched frame in the ground truth dataset.

• Phase 2 (Tokenization) – While part of the signals
present in the trace have been decoded through Phase 1,
portions of the trace are still not decoded (i.e. we do not
know which signals they contain). The tokenization task
is performed on such unknown areas of the trace. The
output is a set of tokens, represented by their boundaries
and their endianness. To be noted that the signal each
token is carrying is still unknown at the end of Phase 2.

• Phase 3 (Redundancy Resolution) – Redundant signals
are signals that carry the same vehicle function/telemetry.
CANMatch looks for correlations between the signals
decoded via Phase 1 and the unknown tokens. If a match
occurs, the vehicle function/telemetry of the known vehicle
is attributed to the token. The scale factor and offset of
the token are decoded too.

A. Phase 1

The goal of Phase 1 is to decode signals by matching the
frames of the vehicle to reverse engineer with frames having
the same ID, and extracting their content. The first step is
to parse the CAN raw data into a standardized format and
extract all the frame IDs. The second step is to query the
ground truth dataset to find the same CAN IDs on previously
reverse engineered vehicles. If all the frames associated with
the same ID found in the ground truth have the same content,
the matching is straightforward: the signals and all information
related to them are assigned to the frame. This information

includes the semantic meaning of the signals, their position
within the frame, and their format (i.e. endianness, offset, scale
factor and unit). In other words, the frame is decoded. An
analysis of our ground truth set has revealed that 53.9 % of
the frames associated to the same ID contain the same set of
signals.

Vice versa, when different content is associated with the same
frame ID for different vehicles in the ground truth, CANMatch
needs to deals with the ambiguity. It does so by taking into
account different properties of the frames. Specifically, all
frames with a different length (as indicated by the DLC field)
than the one currently analyzed are preliminarily discarded.
Intuitively, two frames with different lengths cannot contain
the same set of signals. Then, a likelihood score is calculated
taking into consideration the number of frame IDs in common
between the target vehicle and the vehicles containing that
same ID. The reasoning behind this approach is that vehicles
with many common IDs have higher probability to be equipped
with the same ECUs and, therefore, to share the same signals
(see Section IV-A). This is especially true for vehicle models
produced by the same OEM. Finally, the frame associated
with the highest likelihood score is considered as the reference
frame. Similarly to direct frame matching, all the signals and
their relative format found in the ground truth of the reference
frame are attributed to the CAN ID of the target vehicle.

B. Phase 2
The trace chunks that are not decoded by Phase 1 (i.e.,

no matching frames are found) are processed in Phase 2.
This phase performs the tokenization task, whose goal is to
identify the boundaries and endianness of tokens within an
unknown frame. The tokenization process is based on the same
assumption made in [9]: differences among two consecutive
values of a signal representing a physical phenomenon are
small, due to the own nature of the phenomenon. Following
this principle, the least significant bit, which impacts the least
on the value of the signal, usually flips (changes its value)
more often than a more significant bit of the same signal.

The pseudocode summarizing the implementation of Phase 2
is illustrated in Algorithm 1. The algorithm extracts all the

Algorithm 1 Phase 2
Input: Undecoded Trace Chunks U
Output: A set of tokens T

1: T ← []
2: for id in get_frame_IDs(U) do
3: ts ← get_frame_time_series(U, id)
4: bfr ← calculate_bit_flip_rate(ts, U)
5: be ← tokenize_big_endian(bfr)
6: le ← tokenize_little_endian(bfr)
7: be_types, le_types ← get_tokens_type(be, le)
8: if score(be) ≥ score(le) then
9: T .append(〈be, be_types, 0〉)

10: else
11: T .append(〈le, le_types,1〉)
12: end if
13: end for

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 6

 CAN Trace 1.1 Frame
 Matching

 Undecoded
 Trace Chunks

 Partial Set of
 Decoded
 Signals

2.1 Tokenization
 Big Endian

2.2 Tokenization
 Little Endian

2.4 Likelihood
 Score

 Tokens

3.1 Clustering

3.2 Translation

3.3 Format
 Decoding

 Decoded
 Signals

Phase 2Phase 1 Phase 3

2.3 Signal Type DBC Dataset

1.2 Resolve
 Ambiguities

1.3 Decoding

Figure 3. CANMatch pipeline: the framework takes in input a raw CAN trace and provides in output a list of decoded signals.

frame IDs from the trace and splits the trace into n sub-traces,
where n is the number of unique IDs in the trace (line 3). Each
of these sub-traces contains the payload of frames associated
to the same ID, in the same temporal order as they appear
in the trace. Then, the sub-traces are iteratively processed
independently of one another. For each sub-trace, the BFR of
each bit in the frame is extracted (line 4). The BFR corresponds
to the total number of bit flips in consecutive payloads divided
by the number of payloads in a considered time span.

Once all BFRs within a frame are computed and stored in
an array according to their position in the frame, the algorithm
proceeds to extracting the boundaries and endianness of the
tokens. Regarding the endianness, we make the following
assumptions, based on the results of the analysis presented in
Section IV-A:
• A CAN trace can contain signals encoded with both big

and little endian formats.
• Signals within a single frame are encoded using the same

format.
A set of tokens is extracted assuming one endianess format

at a time (lines 5–6). For the BE encoding, the BFR array is
scanned from the beginning to the end, seeking for a drop in
the BFR between consecutive elements. We consider a drop
in the BFR value if the difference between two consecutive
elements is higher than a tolerance threshold τ :

|ai − ai+1| > τ (2)

where ai is the ith element of the array. When such a decrease
is found, a boundary between two tokens is identified. The goal
of τ is to prevent the premature identification of boundaries
between two tokens caused by small statistical fluctuations in
the BFR.

For the LE format, the algorithm first reverses the bits in
each individual byte, without changing the order of the bytes.
Through this approach, we do not try to reconstruct a priori
the correct order of the bytes. Instead, we aim to exploit the
widely-adopted technique [9], [13] of identifying continuity
(or disruption) in the BFR along the whole frame also in the
case of a LE format. In fact, as for BE, the array is scanned
to find decreases in the BFR values. But, due to the different
order of the bytes of the LE format, the scan is performed
from the end to the beginning of the BFR array. For the sake

of comprehension, it should be noted that the reversing of bits
within the bytes is exclusively carried out with the purpose of
evaluating the likelihood of the two endianness formats.

Differently from related work [9], [10], which mistakenly
consider the endianness as a property related to the order of
the bits (instead of the bytes), here the bits are reversed at
Byte-level and not considering the frame as a whole. As a
matter-of-fact, after the tokenization is performed, the BFR
array is brought back to its original form and the boundaries are
updated accordingly. Figure 4 shows an example of tokenization
on a 2-Byte payload performed according to the two endianness
encodings.

Subsequently, the algorithm pursues to identify the token
types (see Section II-A) in the two sets (line 7). Multi-value,
checkcode and constant tokens are labelled in a similar fashion
to [9], [13] presented in Section II. By employing simple
techniques for time series analysis, the algorithm is able to
identify counter tokens according to the following properties:
(i) counters that exhibit a seasonal trend, and (ii) counter cycles
that are characterized by a monotonic growth followed by a
sudden drop (the counter is reset). Tokens that do not fall in
any of the previous categories are labelled as physical.

Once the token types are found, the algorithm decides which
endianness is the correct one and, subsequently, which is the
final set of tokens to extract from the frame. For this purpose,
a likelihood score, SL, is calculated on the tokens of both
outputs. SL depends on two main components (subscores): (i)
the number of cross-byte tokens, and (ii) a volatility component
that penalizes highly-volatile tokens.

To find the first subscore, the algorithm computes a prelimi-
nary score Sc, defined as:

Sc = |T ′|+ α
∑
t∈T ′

(St + Et) (3)

Here, T ′ corresponds to the set of cross-byte tokens (i.e.,
tokens contained in different consecutive bytes). We expect
the tokenization algorithm to find a higher number of these
signals when the endianness is the correct one. St and Et are
binary variables defined as follows:

St =

{
1, if start_bitt (mod 8) = 0

0, otherwise
(4)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 7

0.12 0.21 0.42 0.60 0.75 0.88 0.94 0.93 0.11 0.18 0.3 0.45 0.01 0.02 0.03 0.05
Token X Token Y

Big Endian

Byte 1 Byte 2
0.12 0.21 0.42 0.60 0.75 0.88 0.94 0.93 0.11 0.18 0.3 0.45 0.01 0.02 0.03 0.05

Little Endian

Byte 1 Byte 2

Token X, LSBs

0.120.210.420.600.750.880.940.93 0.110.180.30.450.010.020.030.05
Byte 1 Byte 2

Scanning for Boundaries Identification Scanning for Boundaries Identification

00000.010.020.030.05
Byte 1 Byte 2

Bit Flip Rate Array

Token Y

0.12 0.21 0.42 0.60 0.75 0.88 0.94 0.93 0.11 0.18 0.3 0.45 0.01 0.02 0.03 0.05
Byte 1 Byte 2

Token Z

0.11 0.18 0.3 0.45 0.01 0.02 0.03 0.05

Token X, MSBs

Reverse bits in Bytes

Reverse Bytes

0.94

0.12 0.21 0.42 0.60 0.75 0.88 0.94 0.93

Figure 4. Tokenization according to different types of endianness: (i) assuming big endian (left figure), two distinct one-byte-long tokens are found; (ii)
assuming little endian (right figure), one two-byte-long token is found.

Et =

{
1, if (end_bitt − 1) (mod 8) = 0

0, otherwise
(5)

To be noted that the second component of Equation (3) is
weighted by α in order to incentivize tokens that start and/or
finish exactly at the least and/or most significant bit inside the
frame. While the CAN protocol allows signals to start and end
at any position within a byte, the start and end bits of long
signals often coincide with, respectively, the least and most
significant bit of a byte. Sc is then normalized between 0 and
1. We call this normalized score S′c.

The volatility component, Sv, can be computed as follows:

Sv =
1

|T ′|
∑
t∈T ′

Vt, (6)

where Vt corresponds to the volatility of a single token in T ′. It
is in the range [0,1], where values that tend to 1 indicate a static
behaviour, while values that tend to 0 express a highly volatile
behaviour. The reason we consider the volatility component
is because signals encapsulate information that has a physical
meaning. If a token is correctly extracted, i.e., its boundaries
and endianness are correct, its time series perfectly describes the
behaviour of the vehicle function/telemetry it carries over time.
By contrast, cross-byte tokens that are not correctly extracted
usually contain bits belonging to different signals. The time
series of such tokens do not represent any physical information
and, as a consequence, are characterized by a highly volatile
and unpredictable behaviour. Our assumption is that, among
different sets of tokens computed for the same frame ID, the
set that produces tokens whose time series are less volatile on
average has a higher chance to be the correct one.

Finally, the likelihood score is computed as follows:

SL = S′c + β × Sv, (7)

where β assigns a weight to the volatility component.

C. Phase 3

Some signals sent within the CAN bus encapsulate the same
vehicle function. This is especially true for critical signals such

as vehicle speed and throttle pedal position. These signals,
carrying the same vehicle function, hereafter referred to as
redundant, are typically represented with a different format
and/or refer to another measurement unit (e.g. mi/h and km/h
for the speed). The goal of Phase 3 is to identify and decode
signals among the tokens extracted by Phase 2 that bring the
same vehicle functions as the signals decoded by Phase 1.

To assess whether two or more CAN signals are redundant, it
is necessary to calculate a score based on the similarity of their
time series, as extracted from the trace, and evaluate it against
an acceptance threshold. In our case, the most straightforward
approach would be a brute force one, i.e. calculate the score
between each token and each signal decoded in Phase 1.
Nonetheless, by definition, this approach is computationally
inefficient. Phase 3 reduces the time needed to find these
correlations by preliminarily clustering the time series of
tokens and signals together. Then, the similarity score is only
calculated between each token and the reference signal within
the same cluster. In principle, just applying the clustering would
be enough to identify the tokens that are redundant. However,
as explained with more detail in Section IV-D, the clustering
involves the risk of missing out the identification of some
signals if not perfectly tuned. Once the vehicle function is
identified, the token is fully decoded by calculating its format
– scale factor and offset – through linear regression.

The pseudocode of Phase 3 is shown in Algorithm 2. Prior to
the computation of the similarity scores, all the time series are
interpolated in n points (line 3). The interpolation reduces the
number of points in the time series and, therefore, contributes
to a faster computation of the similarity scores. While the
majority of CAN frames are sent with a periodicity between
10–50 ms, the information they carry is related to physical
phenomena generated within the vehicle and, therefore, exhibit
trends that can be encapsulated with one point per second
granularity, which we consider is a good trade off between
computational cost and information loss.

Redundant signals usually differ from one another in format.
To minimize the impact of the scale in the computation of the
similarity score, all time series are also scaled between 0 and 1

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 8

(line 4). Once the tokens and decoded signals are interpolated
and scaled, the similarity score can be calculated between each
of the tokens and each of the decoded signals within the same
cluster (lines 5–13).

It may happen that a token is found to be similar to more
than one decoded signal. This typically happens if the decoded
signals are semantically related or if the threshold value θ is
set too high. In the case of such an ambiguity, the token is
attributed to the vehicle function of the decoded signal with
the best (lowest) score (line 9).

Finally, Phase 3 calculates the scale factor and offset of
the translated token (line 10). This is achieved by feeding a
linear regression with the time series of the token and the
time series of the redundant signal of reference. The slope of
the function outputted by the linear regressor corresponds to
the scale factor, while the intercept corresponds to the offset.
Decoding the format of CAN dynamic signals by using linear
regression was firstly introduced in [13]. In their work, the
reference signals are the IMU and OBD-II data collected along
with the CAN traffic and can be passed to the linear regressor
as their values are directly interpretable by humans. In our case,
instead, prior to the regression, the raw values of the reference
signal have to be parsed to the human-readable format using
the factor and offset extracted in Phase 1. As mentioned in
Section II-A, signals can have null factor (i.e. equal to 1) and
null offset (i.e. equal to 0). According to the analysis on our
ground truth set on 477 generated DBC files (see Section IV),
9.7% of the dynamic signals have such a format. For these
signals there is no need to conduct the preliminary parsing.

To be noted that signals representing the wheels speed are
often mislabelled as vehicle speed and vice versa. This is due

Algorithm 2 Phase 3
Input: Input Trace I , Partial set of Decoded Signals PDS,

Tokens T
Output: DS (Decoded Signals)

1: DS ← PDS
2: T_ts, PDS_ts ← extract_time_series(I, T, PDS)
3: T_its, PDS_its ← interpolate(I, T_ts, PDS_ts)
4: T_ists, PDS_ists ← scale(I, T_its, PDS_its)
5: C ← clustering(T_ists, PDS_ists)
6: for c in C do
7: CS ← c.get_signals()
8: for t in c.get_tokens() do
9: vf, mss ← translation(T_ists.get(t), T_ists.get(CS))

10: f← format_decoding(T_its.get(t), T_its.get(mss))
11: DS.append(<t, vf, f >)
12: end for
13: end for
14: S ← get_speed_signals(DS)
15: for any si, sj in S do
16: if si.get_frame_id()==sj .get_frame_id() then
17: DS.update_vehicle_function(si,’WheelSpeed’)
18: else
19: DS.update_vehicle_function(si,’VehicleSpeed’)
20: end if
21: end for

to the intrinsic semantic correlation between these telemetries.
To address this issue, the algorithm exploits a characteristic that
helps distinguishing them apart. In particular, signals related
to the wheels speed are often twinned, meaning that they
are carried by the same frame, while those representing the
vehicle speed are not. Phase 3 post-processes the results of the
translation to exploit this peculiarity and, therefore, increase
the overall accuracy (line 14–21). Vice versa, in the scope
of the format decoding, each signal with a strong correlation
to the vehicle speed can be used to decode the others. For
instance, the front right wheel speed can be used as reference
signal to decode the format of other wheels and vehicle speed.

IV. PERFORMANCE EVALUATION

We first provide a preliminary data analysis of the considered
dataset and describe the data collection process. Then, we
present the performance of each of the three phases, evaluated
independently (i.e., the evaluation of each phase does not
depend on the evaluation results of the previous phase).
Finally, we evaluate the performance of the entire CANMatch
framework where all the phases are linked together. All
the running times reported in the following sections refer
to executions performed with a Dell Latitude 5490 laptop,
equipped with Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz,
1800 MHz, 4 Core(s) with 8 Logical Processor(s).

A. Data Collection

We evaluate the performance of CANMatch based on two
ground truth datasets, as follows:
• Set of Derived DBC (SDDBC) – a set of 477 generated

DBC files related to vehicle models from 28 different
makers from EU, USA, Japan and South Korea.

• OpenDBC, a set of generated DBC files publicly available
online [35].

As raw CAN traces to be decoded, we use three sets as follows:
• Parked Vehicles Traces (PVT) – a set of 477 CAN raw

traces. These traces are 10 s long and are collected on
vehicles being in idle mode, i.e., parked vehicles with no
human action being performed. The ground truth of each
of these vehicles is contained in SDDBC.

• Driven Vehicles Traces (DVT) – a set of 13 CAN raw
traces. These traces are 1-2 min long and are collected
on moving vehicles. The ground truth of each of these
vehicles is contained in SDDBC.

• OpenDBC DVT (ODVT), a set of 2 CAN raw traces.
These traces are 1 min long and are collected on moving
vehicles. The ground truth of each of these vehicles is
contained in OpenDBC.

SDDBC has been generated and labeled through manual
reverse engineering – using the methodology presented in
Section II-B – by a partner company operating in the sector of
automotive telematics services. To the best of our knowledge,
with an aggregated number of 21 526 decoded signals related
to 477 vehicles, this is the most extensive and diverse set of
generated DBC files commercially available. Differently to
SDDBC, not all signals present in OpenDBC files have been

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 9

Table I
DVT AND ODVT SET

Set Vehicle Model # Signals DBC Length (s)

DVT Audi A3 2012- 59 60
BMW X1 2015- 53 60
Citroen C3 Picasso 2009- 46 120
Fiat Qubo 2008-2019 26 120
Kia Sportage 2016- 31 60
Mercedes A-Class 2018- 59 60
Nissan Micra 2005-2011 41 120
Peugeot 208 2011- 47 120
Peugeot 307 2005-2008 37 60
Renault Captur 2013- 46 120
Renault Megane 4 2016- 48 60
Smart Fortwo 2014- 57 120
VW Golf 5 2003-2009 63 60

ODVT Acura ILX 2013- 177 60
Volvo V40 2017- 54 60

fully decoded. For some signals, only the location is identified,
with no information concerning semantic meaning nor the
format. For the sake of the validation, we have preliminarily
discarded these signals from the ground truth.

PVT is employed for the evaluation of Phase 1 (see
Section IV-B). Unfortunately, PVT cannot be used to also
evaluate Phase 2, because all event-driven signals related to
a moving vehicle do not display any change over time when
the vehicle is parked and, therefore cannot be detected by
the tokenization algorithm. Similarly, the time series of these
signals do not present distinctive features that can be used in
the clustering and translation tasks performed by Phase 3. As
a consequence, we use DVT and ODVT for the validation of
Phase 2 and Phase 3, as well as the entire pipeline. Information
on DVT and ODVT is presented in Table I.

All traces in PVT and DVT are extracted with a PCAN-USB
FD dongle [36], while traces in ODVT are collected with
different dongles. Nowadays, many vehicles are equipped with
a gateway between the OBD-II port and the CAN bus, whose
purpose is to prevent the logging of non-diagnostic data. To
sniff data from vehicles equipped with such a gateway, we
have identified and attached the dongle directly to the CAN bus
wires. In the rest of the vehicles, we have simply connected
the dongle to the OBD-II port.

Finally, all tests presented in the following sections are
performed under real-world conditions, but the results refer
only to the decoded signals present in the ground truth.

B. Phase 1 Evaluation

We evaluate the performance of Phase 1 by testing each trace
in PVT through a leave-one-out-cross-validation approach. In
other words, each trace is iteratively considered as belonging
to an unknown vehicle to reverse engineer, whose ground truth
is removed from the DBC dataset.

We analyse two performance metrics, recall and precision.
The recall is defined as the number of correctly-decoded signals
divided by the total number of signals present in the ground
truth for the considered vehicle. The precision is defined as
the number of correctly-decoded signals divided by the total
number of decoded signals. These metrics highlight two key

OEM A, model 1
OEM A, model 2

OEM A, model 3

OEM B, model 1

OEM C, model 1

OEM D, model 1
OEM E, model 1

OEM F, model 1

OEM D, model 2

Figure 5. Example of reuse of CAN frames among vehicles from different
constructors. The thicker the line, the more CAN IDs are shared between the
two models.

aspects to take into consideration while evaluating CAN reverse
engineering: how extensive is the set of outputted decoded
signals (recall), and how reliable is this output (precision).
Other metrics widely employed in literature, such as F-Score,
can be derived from recall and precision.

From a preliminary analysis of SDDBC, it seems that a
majority of the CAN IDs are reused in different vehicles, and
so are the signals carried in their payloads. Specifically, we
discovered that, out of 588 total frame IDs in the dataset, only
151 are uniquely found in only one vehicle, while all the others
can be found in two or more vehicles.

To visualize effectively the relations between the different
vehicles in terms of common frame IDs, we represent our
dataset via a relation graph. A reduced version of this graph
generated with nine (anonymized) vehicles only is illustrated
in Figure 5. The nodes of this graph represent the vehicle
models. There is an edge between any two nodes in the graph
if the corresponding vehicles share at least one CAN frame
ID. The edge thickness represents a weight corresponding to
the number of common CAN frame IDs between two vehicle
models. The full graph contains a total of 477 nodes and 8683
edges (not shown for readability reasons).

To understand how the size of the ground truth dataset
influences the performance of Phase 1, we tested the algorithm
on ground truth of different dimensions, starting from a
ground truth composed of only one vehicle. The vehicles that
constitute each subset are extracted randomly. To obtain results
independent from the choice of the particular subset of vehicles,
we perform this random selection 10 times for each ground
truth size. It follows, that each vehicle in the PVT set is tested
once when assuming the total ground truth, and 10 times when
considering each of the inferior ground truth sizes.

Figure 6 illustrates the average values and 95 % confidence
intervals obtained for all 477 vehicles and all iterations on
ground truth size. With a ground truth set of only one vehicle,
less than 20 % of the signals are correctly matched on average.
The much higher precision (80 % circa) suggests that when
a match occurs between a CAN ID in the vehicle to reverse
engineer and a vehicle in the ground truth set, we can be
fairly confident that the match is correct. As expected, both
precision and recall increase with the dataset size. With a
ground truth size comprising more than 25 vehicles, we can

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 10

1 10 25 50 100 200 300 400 476
Ground truth size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

mean recall
mean precision

Figure 6. Mean recall and precision scored by CANMatch on datasets of
different size.

expect more than half of the signals to be decoded on average,
with a precision superior to 90 %. Almost optimal recall and
precision are achieved with a ground truth size of 200. After
this threshold, the improvement in performance according to
both metrics is marginal.

When considering all DBC files in our dataset (minus the
one related to the current tested vehicle) as ground truth set, we
obtain a mean recall of 83.3 % and a mean precision of 97.7 %.
The very high precision shows that almost all ambiguities are
correctly solved. The lower recall is mostly due to the presence
of unique frame IDs in the dataset. If a tested vehicle has one
or more frames with an ID not present in the ground truth
set, the signals within that frame cannot be decoded. Finally,
it is to be noted that the frame matching provides the exact
scale factor and offset for the given signals. It follows that
the format decoding results can be directly inferred from the
aforementioned results.

C. Phase 2 Evaluation

To evaluate Phase 2 independently from the results obtained
with Phase 1, we test it on each trace of DVT and ODVT,
without prior processing (as if Phase 1 did not decode any
signals). In [13], the authors define three metrics: correctly
extracted tokens (CE), total number of signals in the DBC file
(TDBC) and total extracted signals (TE). Then, they evaluate
their tokenization algorithm according to the ratios CE/TE and
TE/TDBC. In the case of LibreCAN, TDBC corresponds to
the actual total number of signals that can be found in each
of the four tested vehicles used for its evaluation, as the DBC
files used for as ground truth were obtained from the actual
OEM. In our case, we do not have a complete ground truth
for each of our testing traces and, due to this limitation, we
evaluate Phase 2 using the ratio CE/TDBC.

No status/multi-value signals were intentionally triggered by
the driver at data collection time and, therefore, their bit flip
cannot be possibly observed. Since such signals are typically
1–4 bit long, in the evaluation we consider only signals whose
length is equal or greater than 5 bit.

Let S be the set of known signals in the ground truth. In
general, a token t is considered to be correctly identified if
exists a signal s ∈ S such that the boundaries of t and s
coincide, i.e., their start/end bits are the same. In our case,
we allow a 4 bit tolerance error for the most significant bit in

0

2

4

6

8

10

0
2

4
6

8
10

C
E

 /
 T

D
B

C

40%

45%

50%

55%

60%

65%

70%

75%

τ = 0.3, α = 0.2, β =0.2
 CE / TDBC = 77.6 %

45%

50%

55%

60%

65%

70%

75%

Figure 7. Phase 2 performance evaluation: tuning of weight parameters α, β,
and τ .

response to a widely known problem that affects tokenization
[9], [12], [13]. For many signals – especially those representing
physical information – it is very difficult to record flips in
their most significant bits, as they can be activated only under
exceptional (and often extreme) circumstances. For instance,
the maximum theoretical speed of a car is hardly recorded,
unless the car is driven on purpose to reach that speed. While
no error can be tolerated in the identification of the start bit of
a token, as it would inevitably affect the decoding of the scale
factor and offset, we argue that a certain tolerance error is
acceptable for the end bit. As a matter of fact, cutting off the
most significant bits of a signal might not allow us to correctly
interpret the maximum value that can be reached by the signal,
as intended by the manufacturer. Nonetheless, it does not affect
the interpretation of the signal when it carries physical values
under “normal” driving conditions. We choose 4 bit as tolerance
error, because it seems a good trade off between addressing
the described issue and a fair evaluation of our algorithm.

We first perform an extensive tuning on 8800 combinations
of the parameters α, β, and τ , in order to find the one that
guarantees the best CE/TDBC ratio. Figure 7 presents the
average results obtained on all tested vehicles with every
combination of α and β, and τ = 0.3. To be noted that we
evaluated other values of τ as well, but present here only the
best value. The results show that a maximum mean CE/TDBC
score of 77.6 % is achieved with τ = 0.3, α = 0.2, and β = 0.2.
This suggests that the number of long tokens constitutes the
most valuable contribution for the likelihood score.

Figure 8 compares Phase 2 of CANMatch with READ [9]
and the tokenization algorithm of LibreCAN [13], which,
at the time of writing, are the start-of-the-art algorithms
for tokenization. The results show that Phase 2 outperforms
READ and LibreCAN on all considered vehicles of DVT. The
difference in the performance, especially remarkable for some
of the vehicles, is driven by the presence of LE cross-byte
signals – signals whose information is encapsulated in multiple

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 11

Aud
i A

3
20

12
-

BM
W

 X
1

20
15

-

Citr
oe

n
C3

Pi
ca

ss
o

20
09

-

Fia
t Q

ub
o

20
08

-2
01

9

Kia
 S

po
rt
ag

e
20

16
-

M
er

ce
de

s
A-C

la
ss

 2
01

8-

N
is
sa

n
M

ic
ra

 2
00

5-
20

11

Pe
ug

eo
t 2

08
 2

01
1-

Acu
ra

 IL
X 2

01
3-

Pe
ug

eo
t 3

07
 2

00
5-

20
08

Ren
au

lt
Cap

tu
r 20

13
-

Ren
au

lt
M

eg
an

e
4

20
16

-

Sm
ar

t F
or

tw
o

20
14

-

Vol
ks

w
ag

en
 G

ol
f 5

 2
00

3-
20

09

Vo
lv
o

V40
20

17
-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
C

E
/T

D
B

C

CANMatch LibreCAN READ

Figure 8. Phase 2 performance evaluation: comparison with state of the art.

Table II
ENDIANNESS IMPACT ON TOKENIZATION.

Recall Precision

Big Endian 85.2 % 99.2 %
Little Endian 60 % 100 %

(consecutive) bytes. The cross-byte signals are typically signals
which carry physical information and, therefore, require a large
number of bits to be represented, e.g. signals related to throttle
pedal, steering wheel, engine etc. Failing to take into account
the endianness during tokenization can result into splitting a
cross-byte signal into two (or more) signals, as in the example
illustrated in Figure 4.

Our analysis on SDDBC shows that, out of 4667 cross-byte
frames, 65.3 % of the signals are represented according to
the BE format and 34.7 % are represented according to the
LE format. We also observed that all signals within a frame
are represented with the same endianness. Our tokenization
algorithm exploits this information to correctly identify the
endianness of all cross-byte signals and, subsequently, their
correct boundaries.

Table II shows how endianness impacts the performance of
the tokenization process on DVT. On the one hand, Phase 2 is
able to identify tokens represented in BE format better than
tokens represented in LE format. On the other hand, all tokens
labelled as LE are actually in LE format, while a small rate
(0.8 %) of tokens labelled as BE are, instead, in LE format.

Phase 2 achieves a performance similar to LibreCAN and
READ on ODVT. The reason is the absence of LE signals in
this set, as reported in the generated ground truth available in
[35]. It is still worth noting that, in this case, the search for LE
signals does not impact negatively the capability of Phase 2
of correctly identifying BE signals. This further corroborates
the findings presented in Table II.

D. Phase 3 Evaluation

We evaluate Phase 3 independently of Phase 1 and Phase 2.
We extract the time series related to each signal present in
every trace of DVT and ODVT according to the information
contained in their DBC files.

The tuning of the different parameters of Phase 3 (presented
in the following) is based on DVT. Then, for each vehicle,
we partition the time series into two distinct subsets: Decoded
Signals (DS) and Tokens (T). The former set contains signals
emulating the results of the decoding process of Phase 1, while
the latter corresponds to the time series of the tokens that
emulate the results of the tokenization process of Phase 2.
To analyze the performance for different number of signals
decoded through Phase 1, we test Phase 3 assuming three
different sizes of the DS set: 20, 50 and 80 %. As a consequence,
we assume 80, 50 and 20 % for the size of T. We also partition
the time series of DS and T randomly. To minimize the impact
of this random choice on the evaluation, we repeat this selection
10 times.

The chosen metric for validating Phase 3 is the mean
accuracy. In multi-label classification, accuracy is the ratio of
the number of correctly classified samples to the total number
of samples. In this case, a sample corresponds to a token in
T to be translated. Let t be a token and R the set of all its
redundant signals in T. We consider t correctly classified if:

• it is matched to any s ∈ R, if R is not empty;
• it is not matched to any signal in DS, if R is empty.

For this task, we consider three metrics that calculate the
similarity between curves (time series): Area method, Root
Mean Squared Error (RMSE) [37] and Dynamic Time Warping
(DTW) [38]. The Area method measures the area of two curves
in a 2-D space. RMSE corresponds to the mean of the squared
differences between each couple of points of two vectors for
every x-coordinate. DTW finds an optimal correspondence
between two time series, through a non-linear distortion with
respect to the independent variable (here, the time).

The value of the threshold θ used to determine whether
a token is similar enough to a signal is chosen through an
extensive tuning taking into account the specific similarity
metric used to calculate the score. Figure 9 illustrates how the
accuracy of Phase 3 varies according to θ. All the results show
that starting from the lowest value of θ, the accuracy increases
until it reaches the optimal value, then it starts decreasing. In
fact, if θ is set too low, some tokens are not matched with
their redundant signal. If it is set too high, tokens with no
corresponding redundant signal in DS are wrongly matched to
another signal in DS.

The results also show that the properties of DTW, i.e., being
resilient to temporal shifts and distortions, do not constitute
an advantage in this case. In fact, the temporal skew between
different redundant signal within the CAN bus is minimal, i.e.,
in the order of ms. On the contrary, DTW is sensitively more
time-costly compared to the other two metrics. According to
this tuning, a maximum accuracy of 94.8, 93.6 and 92.9 % is
achieved with RMSE with θ = 0.01 on a DS set of, respectively,
20, 50 and 80 % of the ground truth.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 12

5 10 15
65%

70%

75%

80%

85%

90%

95%

a
cc

u
ra

cy
Area Method

DS = 20%

DS = 50%

DS = 80%

0.01 0.02 0.03
65%

70%

75%

80%

85%

90%

95%

a
cc

u
ra

cy

Root Mean Squared Error

DS = 20%

DS = 50%

DS = 80%

5 10 15
65%

70%

75%

80%

85%

90%

95%

a
cc

u
ra

cy

Dynamic Time Warping

DS = 20%

DS = 50%

DS = 80%

Figure 9. Tuning on the similarity threshold for Area method, RMSE and Discrete Frechet Distance (DFD) at the varying of the size of DS size.

1) Clustering evaluation: The next step is to understand if
performing clustering first and then computing the similarity
scores within each cluster can help decreasing the computation
time without decreasing the accuracy. For the selection of the
clustering algorithm, we consider the following properties: i)
it should not require to specify in input the number of clusters.
In fact, the number of vehicle functions that can be found in a
specific vehicle is not known a priori, ii) it should not require to
specify in input the spatial distribution of the data, as it is not
known a priori, iii) it should handle noise, i.e. outliers, because
not all tokens are redundant of known signals (this property
also helps to further reduce the computational cost, as outliers
are excluded from the computation of the similarity scores),
and iv) the time complexity should be as low as possible. After
taking into account a variety of clustering algorithms (e.g.
centroid-based, hierarchical, distribution-based), we found out
that density-based ones fit the aforementioned requirements.
In particular, we focus on two most known density-based
algorithms: Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [32] and Ordering Points To Identify
the Clustering Structure (OPTICS) [39].

The hyperparameters of DBSCAN are ε, which corresponds
to the maximum distance between two points to consider them
neighbours, and minPoints, which corresponds to the number
of neighbour samples to form a cluster. DBSCAN can find
arbitrarily-shaped clusters of dense points, i.e., the cluster size
is at least minPoints. Samples which lie in scarcely-dense areas
are labelled as outliers. OPTICS is based on DBSCAN and
uses the same parameters ε and minPoints. However, in case
of OPTICS, ε can be ignored (or set to ∞), since it does not
have any effect on the clustering accuracy [39].

In the following, we evaluate the impact of clustering
on the vehicle function performance, by assuming RMSE
as metric, with θ = 0.01 and DS = 50%. We set the
parameter minPoints = 2. This is the minimum number of
neighbour samples to form a cluster composed of at least one
known signal and a token. We then tune ε for DBSCAN. The
parameter ε should be set in a way that the outputted clusters
i) should fit well to the vehicle functions in order to reduce the
computational time, i.e. ideally there should be a ground truth
signal representing only one vehicle function in each cluster,
and ii) should be large enough so that all tokens representing
the same vehicle functions are located in the same cluster.

Figure 10 illustrates three main metrics when varying ε: (i)

0 1 2 3 4 5
0

10

20

30

40

50 mean n. of redundant signals in different clusters
mean n. of outliers
mean n. of clusters

Figure 10. Tuning of parameter ε for DBSCAN.

0 1 2 3 4 570%

75%

80%

85%

90%

95%

100%

m
ea

n
ac

cu
ra

cy

w/o clustering
OPTICS
DBSCAN

Figure 11. Comparison of the accuracy obtained for the translation of redundant
signals between preliminary clustering through DBSCAN (tuned on ε), OPTICS
and without clustering.

mean number of clusters, (ii) mean number of outliers, and
(iii) mean number of redundant signals in different clusters.
It can be observed that the smaller the ε, the more samples
are considered as noise (outliers). Also, the number of clusters
initially increases with ε, as fewer samples are considered
outliers, thus allowing the forming of new clusters. This growth
is then followed by a decline, as the clusters become larger and
incorporate samples previously belonging to multiple clusters.
The figure also reports the number of redundant signals that are
assigned to different clusters. As expected, when clusters are
smaller on average, it happens more frequently that redundant
signals are split into different clusters. The results reported
in Figure 11 reflect the remarks made for Figure 10. For low
values of ε, the mean accuracy of DBSCAN is inferior to the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 13

0 1 2 3 4 50

5

10

15

20

m
ea

n
to

ta
l e

xe
cu

tio
n

tim
e

(s
) w/o clustering

OPTICS
DBSCAN

Figure 12. Comparison of the total execution time (ET) for the translation of
redundant signals between preliminary clustering through DBSCAN (tuned on
ε), OPTICS and without clustering.

maximum value achieved without clustering. Vice versa, when
the clusters are large enough, all the similarity scores relevant
to identify all the redundant tokens are calculated.

Figure 12 compares the total execution time (ET), defined
as the sum of time required for clustering (if performed)
and time for the computation of all similarity scores, of
DBSCAN, OPTICS and without preliminary clustering. The
figure highlights that ET increases with ε in case of DBSCAN.
In fact, the bigger the clusters are on average, the more
similarity scores have to be calculated. For low values of
ε (≤ 2), the ET using DBSCAN and OPTICS is one order of
magnitude inferior compared to the baseline approach without
clustering, while for high ε (≥ 4), ET is equal or higher.

Taking into consideration the results shown in Figures 11
and 12, we conclude that the optimal trade off between
performance and total execution time for Phase 3 is obtained
by performing clustering with DBSCAN and 1 < ε < 2.

2) Format decoding: After identifying the vehicle function
of each redundant token, the scale factor and offset are decoded
through linear regression, in the way described in Section III-C.
Let Sc be the time series of the target signal S parsed according
to the calculated format, and So the time series of S parsed
according to the original format, as defined in its ground truth.
Let Normalized Root Mean Squared Error (NRMSE) be the
RMSE between Sc and So, normalized by the range of values
in So:

NRMSE =
RMSE(Sc, So)

max(So)−min(So)
(8)

We evaluate the accuracy format extracted for S through Format
Decoding Accuracy (FDA), defined as:

FDA = 1− NRMSE (9)

We evaluate the FDA of the redundant signals of each vehicle
in DVT and ODVT through a leave-one-out-cross-validation
approach. Each signal is iteratively considered as the signal
of reference, and all its redundant signals as the tokens whose
vehicle function has been decoded through the similarity score
and whose format is still unknown. Figure 13 shows the mean
FDA obtained for each vehicle in DVT and ODVT. The figure
shows that the performance of Phase 3 is consistent among
different vehicles and different OEMs.

Figure 13. Phase 3 performance evaluation: mean FDA for each vehicle in
DVT and ODVT.

Figure 14. Phase 3 performance evaluation: mean FDA for each vehicle
function represented by redundant signals in DVT and ODVT.

We also evaluate the accuracy of the format decoding by
vehicle function, as reported in Figure 14. The presented vehicle
functions are those for which redundant signals are present
in the ground truth of SDDBC and OpenDBC. As mentioned
in Section III-C, the speed group is composed of the vehicle
speed and the wheel speed signals. Figure 14 highlights that
there is a moderate variability in the performance of Phase 3
on different vehicle functions.

E. CANMatch Framework Evaluation

We validate CANMatch using the DVT and ODVT sets and
test the whole pipeline assuming different sizes of SDDBC.

Similarly to Phase 1, the vehicles composing each subset
are chosen randomly. This selection is performed 10 times,
to minimize the impact of this random choice on the overall
evaluation. Each vehicle in the DVT and ODVT sets is tested
once when assuming all DBC in our possession (minus the
one currently under examination) in the ground truth set, and
10 times when considering a ground truth of smaller size.

Figure 15 illustrates the aggregated performance obtained
for each ground truth size. We choose two metrics that show
the completeness and the reliability of the translation of CAN

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 14

1 10 25 50 100 200 300 400 476
Ground truth size

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Recall Phase 1

Recall Phase 3

Error Rate Phase 1

Error Rate Phase 3

Figure 15. Recall and error rate for different sizes of the ground truth dataset.

signals achieved by CANMatch. In particular, since we want to
highlight the cumulative contribution of each translation phase
(i.e., 1 and 3) to the reverse engineering process, we employ
the error rate metric (i.e., rate of incorrectly translated signals)
instead of precision. The figure highlights that the majority of
signals are decoded through Phase 1. As only 13.1 % of the
signals in the DVT are redundant, and given that most of them
are also decoded through Phase 1, only few of them are left to
be decoded by Phase 3. The figure also shows that the overall
rate of signals which are wrongly decoded is almost irrelevant
(especially those obtained through Phase 3), confirming the
high precision of CANMatch.

It is also worth noting that the confidence interval is
maximum when the ground truth includes only one vehicle
and shrinks with the increase of the ground truth size, with the
exception of the whole ground truth, for which the confidence
interval is affected by the lower number of tests conducted.
This confirms that the more comprehensive data we have in
our ground truth set, in terms of quantity and diversity, the
more reliable CANMatch becomes.

Table III reports the mean total execution time required by
each step of the pipeline for each vehicle trace. The table
shows high variance in the execution time among the different
vehicles. The factors that seem to affect the computational load
seem to be the year of release of the vehicle and the market
segment. Indeed, latest and/or high-end vehicle models are
usually equipped with more ECUs compared to older and/or
cheaper ones. More ECUs means more frames to decode, hence
longer time needed for the reverse engineering.

With a total computational time well below one minute for
most of the tested vehicles (obtained with modest hardware
resources), we conclude that CANMatch is the fastest tool for
CAN bus reverse engineering.

V. DISCUSSION

CANMatch offers a plug-and-play solution that, with min-
imum hardware equipment (a CAN dongle) and minimum
amount of data (1-2 minutes of CAN raw trace) related to an
unknown vehicle, is able to reverse engineer it in few seconds.
However, our tool makes intensive use of DBC files which, if
not acquired from third parties, implies that a (manual) reverse

engineering process has to be previously put in place for a
number of vehicles. While the data collection for the ground
truth is certainly time consuming, the more vehicles are reverse
engineered, the faster and more accurate the process becomes.

On the contrary, other solutions require the same steps to be
performed for any number of vehicles to reverse engineer. This
includes the installation of external sensors for the gathering of
GPS/IMU data, injection of diagnostic messages through the
OBD-II port and manual actions within the vehicle. For these
reasons, CANMatch is consistently more scalable than other
tools for automated CAN bus reverse engineering. A combined
use of our tool with other automated solutions would guarantee
the fastest reverse engineering overall. A number of vehicles
can be initially reverse engineered with semi-automated tools,
such as LibreCAN [13], in shorter time compared to the manual
approach, until the ground truth is large enough to ensure the
desired performance with CANMatch, which can then be used
to significantly decrease time and effort of the overall reverse
engineering process.

However, speeding up the automated reverse engineering
process raises non-negligible security concerns. Vehicles are
becoming more and more interconnected to each other and to
the infrastructure. We can also expect an increase of ECUs that
will be equipped with a wireless interface [40], thus expanding
the access surface to be exploited by potential adversaries for
remote attacks. With CANMatch, an adversary with the ability
to compromise one or few popular wireless-enabled ECUs
could reverse engineer plenty of vehicles within minutes (e.g.
at a busy road intersection). The relative ease of access to a high
number of vehicle CAN formats would encourage attackers
to design large-scale attacks. Furthermore, an adversary could
directly reverse engineer and inject a pre-designed vehicle
model-agnostic attack in the same time frame, thus cutting off
the necessity of extracting information on the target vehicle
model prior to the attack event.

Since CANMatch needs a clear reading of the CAN IDs
to function, if car manufacturers intend to provide better
security and safety for their vehicles, they should obscure such
information. For instance, they could abandon the practice of
CAN frame ID reuse, i.e. each newly release vehicle model is
equipped with a new set of CAN IDs. This solution does not
imply any modification of the CAN protocol nor disruptions
in the supply chain, as the same ECUs could be reused, but
set to send frames with different IDs. However, related work
suggests that frames might still be recognizable despite their ID
by exploiting features such as the dynamicity of the payload
or the mean sending frequency1. In this case, it would be
sufficient to apply a preliminary step to associate the frames
of the target vehicle with those known and, subsequently, use
CANMatch. A more sound approach to secure the CAN data is
the adoption of encryption. A number of encryption solutions
proposed in literature have achieved convincing results in terms
of security while being compliant with the physical limits
of the bus [41]. In particular, AUTOSAR’s module Secure
Onboard Communication (SecOC), built to prevent replay

1The results of this study have been submitted to an IEEE conference and
are currently under review. They are available upon request.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 15

Table III
MEAN EXECUTION TIME FOR THE DIFFERENT STEPS OF THE PIPELINE ACCORDING FOR EACH VEHICLE IN THE DVT SET.

Vehicle Time (s)
Phase 1 Phase 2 Phase 3 Total

Trace Parsing Matching Tokenization Clustering Translation Format Decoding

Audi A3 2012- 5.1 12.5 24.8 1.2 4.0 0.1 47.6
BMW X1 2015- 3.3 14.4 24.7 0.9 9.8 0.1 53.2
Citroen C3 Picasso 2009- 5.3 5.8 4.5 0.2 1.1 0.1 17.1
Fiat Qubo 2008-2019 5.1 3.1 5.1 0.2 0.7 0.1 14.3
Kia Sportage 2016- 4.3 9.6 14.7 0.9 3.7 0.1 33.3
Mercedes A-Class 2018- 3.7 15.0 20.6 0.9 8.9 0.1 49.1
Nissan Micra 2005-2011 4.6 4.7 4.8 0.2 0.9 0.1 15.3
Peugeot 208 2011- 9.2 9.4 11.7 0.4 1.8 0.1 32.6
Peugeot 307 2005-2008 2.2 6.0 4.9 0.3 1.1 0.1 14.5
Renault Captur 2013- 12.3 7.5 13.0 0.4 1.8 0.1 35.1
Renault Megane 4 2016- 5.1 7.9 13.7 0.5 1.5 0.1 28.7
Smart Fortwo 2014- 11.3 8.9 17.7 0.4 1.3 0.1 39.7
Volkswagen Golf 5 2003-2009 3.0 8.1 12.3 0.7 2.8 0.1 27.0

Acura ILX 2013- 5.2 6.0 10.7 0.6 1.4 0.1 24.0
Volvo V40 2017- 4.5 9.2 12.0 0.8 1.6 0.1 28.2

Mean 5.6 8.6 13.0 0.5 2.8 0.1 30.6

attacks, tampering and spoofing through ECU authentication
and frame encryption, would make a reverse engineering
approach based on frame matching much more difficult to
execute [42].

VI. CONCLUSION

In this paper, we present CANMatch – an automated CAN
bus reverse engineering framework that exploits the reuse
of CAN frame IDs among vehicle models. To the best of
our knowledge, CANMatch is the least-invasive and minimal
approach in terms of employed hardware, manual effort, and
execution time on the vehicle to reverse engineer. It requires
in input the raw CAN trace to be decoded and a ground
truth dataset of DBC files, necessary for the identification and
decoding of signals in the initial phase.

CANMatch includes also a tokenization algorithm, which,
differently from other state-of-the-art solutions, considers the
endianness of the extracted tokens. This algorithm is validated
against other state-of-the-art solutions, showing equal or
higher accuracy on all tested vehicles. In addition, CANMatch
proposes a method to identify redundant signals by exploiting
a combination of density-based clustering and computation of
similarities between tokens and previously-decoded signals.

We validated our solution on a diverse dataset of real CAN
traces collected from 479 parked vehicles and 15 moving
vehicles, obtaining comparable results on all of them. This
advocates for its universal usage.

Future work includes additional optimization for each step
of the CANMatch pipeline to further reduce the overall
computation time and increase accuracy. In addition, we intend
to conduct a more comprehensive investigation upon the CAN
format design choices for individual OEMs (e.g. priority and
sending frequency of the frames). The goal is to discover
hidden patterns that can be exploited to identify the sending
ECUs and to use this information to decode the content of the
frames, thus reducing the need for DBC files.

ACKNOWLEDGEMENT

We acknowledge support from the National Research Fund
(FNR) under grant number PRIDE15/10621687. We thank
Xee/Eliocity SAS for the provided datasets and support we
used to design and validate our solution.

REFERENCES

[1] S. Jafarnejad, “Machine Learning-based Methods for Driver Identification
and Behavior Assessment: Applications for CAN and Floating Car
Data,” Ph.D. dissertation, University of Luxembourg, Esch-sur-Alzette,
Luxembourg, 2020.

[2] U. Fugiglando, E. Massaro, P. Santi, S. Milardo, K. Abida, R. Stahlmann,
F. Netter, and C. Ratti, “Driving behavior analysis through CAN bus
data in an uncontrolled environment,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 2, pp. 737–748, 2018.

[3] L. Nkenyereye and J.-W. Jang, “Integration of big data for querying
CAN bus data from connected car,” in 9th International Conference on
Ubiquitous and Future Networks (ICUFN), 2017, pp. 946–950.

[4] M. Bertoncello, G. Camplone, P. Gao, H.-W. Kaas, D. Mohr, T. Möller,
and D. Wee, “Monetizing car data—new service business opportunities
to create new customer benefits,” McKinsey & Company, 2016.

[5] SAE, “Recommended practice for a serial control and communications
vehicle network,” SAE J1939 Standards Collection, 2010.

[6] C. Quigley, D. Charles, and R. McLaughlin, “CAN Bus Message
Electrical Signatures for Automotive Reverse Engineering, Bench
Marking and Rogue ECU Detection,” in SAE Technical Paper, SAE
International, Apr. 2019.

[7] M. Jaynes, R. Dantu, R. Varriale, and N. Evans, “Automating ECU
identification for vehicle security,” in 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), IEEE, 2016, pp. 632–
635.

[8] M. Markovitz and A. Wool, “Field classification, modeling and anomaly
detection in unknown CAN bus networks,” Vehicular Communications,
vol. 9, pp. 43–52, 2017.

[9] M. Marchetti and D. Stabili, “READ: Reverse engineering of automotive
data frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083–1097, 2018.

[10] B. C. Nolan, S. Graham, B. Mullins, and C. S. Kabban, “Unsupervised
time series extraction from controller area network payloads,” in IEEE
88th Vehicular Technology Conference (VTC-Fall), IEEE, 2018, pp. 1–5.

[11] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel,
and P. Hellinckx, “Automatic reverse engineering of CAN bus data
using machine learning techniques,” in International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, Springer, 2017,
pp. 751–761.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 16

[12] M. Verma, R. Bridges, and S. Hollifield, “ACTT: Automotive CAN
tokenization and translation,” in International Conference on Compu-
tational Science and Computational Intelligence (CSCI), IEEE, 2018,
pp. 278–283.

[13] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. G.
Shin, “LibreCAN: Automated CAN Message Translator,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), ACM, 2019, pp. 2283–2300.

[14] A. Buscemi, G. Castignani, T. Engel, and I. Turcanu, “A Data-Driven
Minimal Approach for CAN Bus Reverse Engineering,” in 3rd IEEE
Connected and Automated Vehicles Symposium (CAVS), Victoria, Canada:
IEEE, Oct. 2020.

[15] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom,
“Reverse Engineering Controller Area Network Messages using Un-
supervised Machine Learning,” IEEE Consumer Electronics Magazine,
2020.

[16] V. H. Le, J. den Hartog, and N. Zannone, “Security and privacy for in-
novative automotive applications: A survey,” Computer Communications,
vol. 132, pp. 17–41, 2018.

[17] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review on safety
failures, security attacks, and available countermeasures for autonomous
vehicles,” Ad Hoc Networks, vol. 90, p. 101 823, 2019.

[18] K. B. Kelarestaghi, M. Foruhandeh, K. Heaslip, and R. Gerdes, “Intelli-
gent transportation system security: impact-oriented risk assessment of
in-vehicle networks,” IEEE Intelligent Transportation Systems Magazine,
2019.

[19] G. Brindescu. (2015). “DARPA Hacked a Chevy Impala Through Its
OnStar System,” [Online]. Available: https://www.autoevolution.com/
news/darpa-hacked-a-chevy-impala-through-its-onstar-system-video-
92194.html (visited on 04/02/2021).

[20] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, and T. Engel, “A car
hacking experiment: When connectivity meets vulnerability,” in 2015
IEEE Globecom Workshops (GC Wkshps), IEEE, 2015, pp. 1–6.

[21] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.

[22] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks—Practical examples and selected short-term countermeasures,”
Reliability Engineering & System Safety, vol. 96, no. 1, pp. 11–25, 2011.

[23] W. Wu, R. Li, G. Xie, J. An, Y. Bai, J. Zhou, and K. Li, “A survey
of intrusion detection for in-vehicle networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 919–933, 2019.

[24] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), Austin, TX, 2016, pp. 911–927.

[25] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PloS one, vol. 11, no. 6,
2016.

[26] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS:
Low-Level Communication Characteristics for Automotive Intrusion
Detection System,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 8, pp. 2114–2129, 2018.

[27] International Organization for Standardization, “Road vehicles — Con-
troller area network (CAN) — Part 1: Data link layer and physical
signalling,” ISO 11898-1, Dec. 2015.

[28] Intel IXP4XX Product Line of Network Processors and IXC110 Control
Plane Processor: Understanding Big Endian and Little Endian Modes,
254237-001, Intel, Dec. 2003.

[29] A. Blin. (). “CAN bus reverse-engineering with Arduino and iOS,”
[Online]. Available: https : / /medium.com/@alexandreblin / can - bus -
reverse-engineering-with-arduino-and- ios-5627f2b1709a (visited on
08/10/2021).

[30] C. Smith. (). “The Car Hacker’s Handbook: A Guide for the Penetration
Tester,” [Online]. Available: https : / / publicism . info / engineering /
penetration/6.html (visited on 08/10/2021).

[31] Vector. (). “Managing Network and Communication Data with
CANdb++,” [Online]. Available: https : / / www. vector . com / int / en /
products/products-a-z/software/candb/ (visited on 05/27/2020).

[32] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” in Kdd,
vol. 96, 1996, pp. 226–231.

[33] W. H. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative
hierarchical clustering methods,” Journal of classification, vol. 1, no. 1,
pp. 7–24, 1984.

[34] W. Choi, S. Lee, K. Joo, H. J. Jo, and D. H. Lee, “An Enhanced Method
for Reverse Engineering CAN Data Payload,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 4, pp. 3371–3381, 2021.

[35] C. AI. (). “OpenDBC,” [Online]. Available: https://github.com/commaai/
opendbc (visited on 08/05/2021).

[36] PEAK Systems. (), [Online]. Available: https://www.peak-system.com/
PCAN-USB-FD.365.0.html?&L=1/ (visited on 01/13/2021).

[37] D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Mathematical statistics
with applications. Cengage Learning, 2014.

[38] T. Eiter and H. Mannila, “Computing discrete Fréchet distance,” Citeseer,
Tech. Rep., 1994.

[39] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” ACM Sigmod record,
vol. 28, no. 2, pp. 49–60, 1999.

[40] J. Kleylein-Feuerstein, F. Joas, and R. Steinhilper, “Remanufacturing of
Electronic Control Units: An RFID Based (Service) Interface,” Procedia
CIRP, vol. 29, pp. 168–172, Dec. 2015.

[41] O. Avatefipour and H. Malik, “State-of-the-Art Survey on In-Vehicle Net-
work Communication (CAN-Bus) Security and Vulnerabilities,” CoRR,
vol. abs/1802.01725, 2018. eprint: 1802 . 01725. [Online]. Available:
http://arxiv.org/abs/1802.01725.

[42] Autosar. (). “Specification of Secure Onboard Communication,” [Online].
Available: https://www.autosar.org/fileadmin/user_upload/standards/
classic/20- 11/AUTOSAR_SWS_SecureOnboardCommunication.pdf
(visited on 11/30/2020).

