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anxiety- and reward-related behaviors during
adulthood
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J. P. Fowler, Edison ChenID, Christie D. FowlerID*

Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States of
America

☯ These authors contributed equally to this work.
* cdfowler@uci.edu

Abstract

Nicotine and cannabis use during adolescence has the potential to induce long lasting

changes on affective and cognitive function. Here, we examined whether adolescent expo-

sure to nicotine, the cannabinoid agonist WIN55-212,2 (WIN), or co-exposure to both would

alter operant learning, locomotion, and anxiety- and reward-related behaviors in male and

female mice during adulthood. Males exposed to a moderate dose of WIN (2 mg/kg) or co-

exposed to nicotine and the moderate dose of WIN exhibited decreased anxiety-associated

behaviors and increased cognitive flexibility, but did not differ in operant learning or general-

ized locomotion. In contrast, differences were not found among the females in these mea-

sures at the moderate WIN dose or in both sexes with exposure to a lowWIN dose (0.2 mg/

kg). Furthermore, a sex-dependent dissociative effect was found in natural reward con-

sumption. Males exposed to the moderate dose of WIN or co-exposed to nicotine and the

moderate dose of WIN demonstrated increased sucrose consumption. In contrast, females

exposed to the moderate dose of WIN exhibited a decrease in sucrose consumption, which

was ameliorated with co-administration of nicotine. Together, these novel findings demon-

strate that adolescent exposure to cannabinoids in the presence or absence of nicotine

results in altered affective and reward-related behaviors during adulthood.

Introduction

Tobacco smoking results in millions of preventable deaths each year worldwide. Nicotine, the

main psychoactive component in tobacco, is considered to be responsible for the development

and maintenance of dependence in humans. Nicotine’s effects on adolescent development

have become of increasing concern given the emergence of e-cigarettes, which deliver vapor-

ized nicotine [1]. According to a nationwide CDC survey, ~30–45% of high school students

self-reported prior use of cigarettes, vaporized nicotine products, and/or cannabis [2]. Given
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that legalization of recreational cannabis across states since the time of this survey, the number

of adolescents exposed to this drug will likely continue to increase through both primary and

second-hand exposure. Importantly, studies in humans examining co-use of these drugs have

found that individuals who reported smoking both cannabis and tobacco cigarettes consumed

more cigarettes than those using tobacco alone [3]. Furthermore, the practice of mulling (com-

bining tobacco with cannabis to smoke as a joint) has been reported as frequently occurring in

adolescent users, with high incidence (up to 90%) among daily cigarette smokers in some pop-

ulations [4, 5]. Interestingly, chronic male cannabis users show decreased activation of the cau-

date nucleus in relation to reward anticipation as compared to nicotine users and non-

smokers [6], suggesting altered function of reward-related circuitries dependent on prior drug

exposure. Chronic use of cannabis during adolescence has also been linked to an elevated risk

of psychosis, anxiety disorders, and depression [7]. For instance, Crane and colleagues found

that symptoms of depression were positively correlated with both cannabis use and tobacco

smoking frequency in male, but not female, subjects [8–10]. In contrast, Wright and colleagues

report that cannabis use predicted increased depressive symptoms in both males and females,

but increased anxiety symptoms and behavioral disinhibition were only found in females [9].

Adolescent substance users have also been found to exhibit abnormalities in brain function,

structure, and volume [10]. However, given the nature of human studies, it is difficult to estab-

lish a causal link between early life exposure and the development of these conditions, espe-

cially as drug co-use is not often considered and may partially explain inconsistent findings

noted in prior studies.

Nicotine acts in the brain via the neuronal nicotinic acetylcholine receptors, which are

ligand-gated ion channels expressed on both presynaptic and postsynaptic membranes [11,

12]. Rodent models have shown that adolescent nicotine exposure alone may lead to behav-

ioral alterations during adulthood. For instance, in male and female rats, adolescent nicotine

enhances nicotine reward and intake during adulthood [13, 14]. Nicotine during adolescence

has also been shown to increase depression-associated behaviors, decrease exploratory activity,

and induce deficits in context conditioning to shock-associated cues in adult rats [15–17].

However, in these studies, differences were not found with anxiety-associated behaviors,

extinction of contextual conditioning, or cued fear responses [15–17]. In mice, sex dependent

effects have been noted, with adolescent nicotine consumption leading to decreased anxiety-

associated behaviors in adult females, but not males [18]. With regard to cannabinoids, Δ9-

tetrahydrocannabinol (THC) has been classified as the main psychoactive component in can-

nabis and exerts its actions on cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptors in the

brain and periphery. Differential patterns of expression for these receptors are found across

adolescent development and between males and females, and notably CB1 receptors exhibit

the highest level of expression during the developmental period of mid-adolescence [19, 20].

Following THC administration in adolescence, adult female, but not male, rats exhibit depres-

sion-associated behaviors, but no changes in anxiety-associated or general locomotor behav-

iors were observed [21]. Interestingly, the depression-associated behavioral effects found in

females were paralleled by significantly reduced CB1 receptor expression and activity in the

amygdala, ventral tegmental area and nucleus accumbens, whereas similar changes were not

found in the ventral tegmental area and nucleus accumbens of males [21]. Further, administra-

tion of WIN 55,212–2, a CB1 and CB2 specific agonist, during adolescence has similarly been

shown to increase depressive-like behaviors, as well as palatable food intake, during adulthood

in male rats [22, 23]. Together, these prior findings demonstrate that early life exposure to

either nicotine or cannabinoid agonists alone can alter later affective and cognitive function,

which introduces the possibility of potential synergistic or opposing effects under co-use

conditions.

Effects of adolescent cannabinoid and nicotine exposure during adulthood
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In the current studies, we sought to examine whether nicotine and cannabinoid co-exposure

during mid-adolescence would result in altered affective and reward-seeking behavior during

adulthood. While prior studies have examined each drug and/or behavioral measure indepen-

dently, the current investigations represent the first study of a co-exposure condition, which is

commonly found in human subjects, and the resulting effects on multiple cognitive and affec-

tive measures. To this end, adolescent mice were exposed to the cannabinoid receptor agonist,

WIN55,212–2, and/or nicotine and then assessed for cognitive, anxiety-related and depression-

related behaviors during adulthood. Drug exposure occurred during postnatal day 38–49,

which corresponds to mid-adolescence in rodents or ~13–17 years of age in humans [19, 24].

Based on prior evidence of differential responses for males and females with drug-related effects

and baseline receptor expression [7, 19, 25], male and female mice were examined in a within-

sex manner. Further, given that significant differences were found in behavioral measures at the

moderate dose of the cannabinoid agonist, a second study was then conducted to examine

whether these effects would be maintained with a lower dose of the cannabinoid agonist.

Together, these studies provide evidence that adolescent drug exposure alters affective and

reward-related behaviors during adulthood in a sex- and drug-dependent manner.

Materials andmethods

Animals

Male and female wildtype C57BL/6J mice were derived from breeders in our laboratory animal

facilities. Mice were maintained in an environmentally controlled vivarium on a 12 h reversed

light/dark cycle. Food and water were provided ad libitum until behavioral training com-

menced. During food training, subjects were mildly food restricted to 85–90% of their free-

feeding bodyweight, and water was provided ad libitum. Following food training and the lever

reversal task, food and water were again provided ad libitum for at least 5 days prior to subse-

quent behavioral assessments. All experiments were conducted in strict accordance with the

NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institu-

tional Animal Care and Use Committee at the University of California, Irvine.

Drugs

The cannabinoid receptor agonist WIN55,212–2 mesylate (Tocris/Bio-Techne Corp, Minne-

apolis, ME, USA) was dissolved in vehicle containing 1% DMSO, 1% Tween-80, and 98%

saline (sterile 0.9% NaCl). The doses of WIN55,212–2 administered were 2 or 0.2 mg/kg intra-

peritoneally (i.p.). The moderate dose of WIN (2 mg/kg) was selected based on prior studies

demonstrating altered neural function with adolescent exposure in mice and rats [26, 27], and

the low dose of WIN (0.2 mg/kg) was selected since this amount of drug has been shown to

sustain daily reinforcing self-administration behavior in adolescent rats (~16 infusions/day at

0.0125 mg/kg/infusion = ~0.2 mg/kg per day) [28]. (-)-Nicotine hydrogen tartrate salt (MP

Biomedicals, Santa Ana, CA, USA; 0215355491) was dissolved in 0.9% sterile saline and

adjusted to pH 7.4. Nicotine was administered at a dose of 0.36 mg/kg, subcutaneous (s.c.)

(free-base form); this dose is considered to be within the rewarding range of the dose response

function that also elicits a behavioral response in adolescent C57BL/6J mice [29, 30]. Periph-

eral injections were administered at a volume of 10 mL/kg.

Adolescent injection schedule

Beginning on postnatal day (PND) 38, the first groups of male and female mice were randomly

subdivided into four experimental groups: (1) Control (saline s.c., vehicle i.p.), (2) NIC (0.36

Effects of adolescent cannabinoid and nicotine exposure during adulthood
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mg/kg nicotine s.c., vehicle i.p.), (3) WIN (saline s.c., 2 mg/kg WIN i.p.), and (4) NIC/WIN

(0.36 mg/kg nicotine s.c., 2 mg/kg WIN i.p.). Saline and vehicle were the solutions used to dis-

solve nicotine andWIN, respectively. Mice received once daily injections for 12 consecutive

days from PND 38 to PND 49. The daily injection schedule was selected to model an experi-

mental pattern of adolescent exposure. Body weight was recorded prior to each injection. The

second study included mice treated as above, but they were subdivided into the following

experimental groups: 1) Control (saline s.c., vehicle i.p.), (2) LdWIN (saline s.c., low dose (0.2

mg/kg) WIN i.p.), and (3) NIC/LdWIN (0.36 mg/kg nicotine s.c., 0.2 mg/kg WIN i.p.). For

both studies, subjects were tested in multiple smaller cohorts to enhance rigor and reproduc-

ibility of the findings.

Operant food training

On PND 70, subjects were mildly food restricted and trained to press a lever in an operant

chamber (Med Associates, Fairfax, VT, USA) for food pellets (20 mg; TestDiet) under a fixed-

ratio 5, time out 20 s (FR5TO20s) schedule of reinforcement. Each session was performed

using 2 retractable levers (1 active, 1 inactive). Completion of the response criteria on the

active lever resulted in the delivery of a food pellet. Responses on the inactive lever were

recorded but had no scheduled consequences. Once stable responding was achieved (criteria

>30 pellets per session across consecutive 3 sessions), the lever assignment was switched to

examine cognitive flexibility. In the reversal task, the previous inactive lever became active, in

that food pellets were earned in accordance with the established FR5TO20s schedule. In con-

trast, the previously active lever became inactive, in which responses were recorded but with-

out scheduled consequence. All behavioral responses were automatically recorded by

MedAssociates software.

Open field locomotor test

The open-field chamber was composed of Plexiglas (35 cm L × 35 cmW × 31 cm H). After a

5-minute habituation period, subjects were scored in the open-field apparatus for a 15-minute

test to assess locomotor activity. Activity was recorded with a video camera and scored by two

experimenters blinded to the group condition with ANY-Maze Software (Stoelting Co., Wood

Dale, IL, USA).

Elevated plus maze

The elevated plus maze (EPM) was composed of 4 opaque runways 5 cm wide and 35 cm in

length, which were elevated 40 cm from the floor. Two opposing closed runways had opaque

walls 15 cm in height, whereas the other two opposing sides did not contain walls (open arms).

Subjects were placed in the center portion of the elevated plus maze and behavior was recorded

for 5 min with a video camera. Behavior was scored by two blinded experimenters with ANY-

maze software.

Sucrose consumption

Subjects were habituated to sucrose pellet consumption for 2 days prior to sucrose testing, dur-

ing which time 60 mg of sucrose pellets (raspberry flavored; TestDiet, St. Louis, MO, USA)

was provided for each subject in the home cage. On the third day, subjects were individually

examined in home cage conditions, but were single housed and provided 200 mg of total

sucrose pellets in a dish. All subjects were maintained under ad libitum full food conditions,

and thus were not food restricted during testing. Sucrose eaten was recorded at specified

Effects of adolescent cannabinoid and nicotine exposure during adulthood
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intervals (5, 10, 15, 20, 30, 40, 50, 60 min) by experimenters blinded to the group condition. At

the end of each session, experimenters examined the cage for breakage or disintegration of

sucrose pellets; this occurred on only a few occasions and in these instances, the remnant

amount was calculated and included in the final mg amount of sucrose remaining. Mice were

required to consume at least one 20mg sucrose pellet within the first 30-min time period for

inclusion in the study.

Chow food consumption

Subjects were examined for their daily intake of mouse chow. Mice were restricted to daily

feeding sessions of 6 hr periods. During these sessions, subjects were individually housed and

provided full access to consume 6–8 grams of standard chow (LabDiet 5P76, TestDiet), and

water was provided in the feed cages ad libitum. Food was weighed prior to and after each ses-

sion. After 3 days of habituation to the feeding protocol, data were collected on the fourth day

and analyzed across groups.

Forced swim test

A cylindrical tank (22.5 cm diameter x 26 cm height) was filled with room temperature (23–

25˚C) water at a level of 15cm from the bottom of the tank. For testing, each subject was held by

the tail, and slowly placed in the water. Mice were videotaped for the 5 min swim test duration.

Data were quantified by experimenters blinded to the group assignment. Analysis of distance

traveled was assessed with AnyMaze software, and the number and quantity of immobility

bouts was hand scored by two separate experimenters to ensure accurate assessments.

Statistical analyses

Given that these studies sought to investigate the effects of drug exposure relative to the control

condition within each sex, statistical comparisons were performed separately for males and

females based on this a priori hypothesis. Data were analyzed by a t-test, one-way or two-way

ANOVA with Prism 7 software (GraphPad, La Jolla, CA, USA), as appropriate. Data obtain

across sessions was analyzed with a repeated measures two-way ANOVA. Significant main or

interaction effects were followed by Bonferroni post-hoc comparison with correction for mul-

tiple comparisons. The criterion for significance was set at α = 0.05.

Results

Experiment 1: Nicotine and Moderate Dose of WIN

Body weight during adolescent injections. In an initial cohort, we assessed whether drug

condition would affect change in body weight during the duration of the drug injections from

postnatal day (PND) 38 (day 1 injection) to PND 49 (day 12 injection) (Fig 1). Change in body

weight was also compared to adulthood at PND70, prior to the commencement of behavioral

assessments. Groups did not differ in body weight at PND 38 following random group assign-

ment. For males, group differences were not found when comparing the change in body

weight from PND 38 to PND 49 (Fig 1A) (One-way ANOVA, F(3,20) = 0.91, p = 0.455) or to

PND 70 (Fig 1C) (One-way ANOVA, F(3,20) = 1.536, p = 0.236). In contrast, female subjects

exhibited a statistically significant difference in body weight change at PND 49 (Fig 1B) (One-

way ANOVA, F(3,29) = 4.27, p = 0.013), with post-hoc tests revealing a decrease in body weight

for the WIN group compared to the control (p<0.001). However, these effects were amelio-

rated during the post-injection time period, as no significant differences among the groups

were found at PND 70 (Fig 1D) (One-way ANOVA, F(3,29) = 0.101, p = 0.959).

Effects of adolescent cannabinoid and nicotine exposure during adulthood
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Operant learning. Groups were examined for their ability to learn an operant task to

respond for food reward. All exposure groups exhibited similar learning curves in earning

food pellets for both males (Fig 2A) (Repeated measures two-way ANOVA, Group: F(3,33) =

Fig 1. Adolescent drug exposure paradigm and change in body weight with nicotine and/or a moderate dose of the cannabinoid agonist, WIN. (a)Male
mice (n = 5-8/group) were examined for their change in body weight from the first injection on PND 38 to the final day of the injection series on PND 49.
Statistically significant group differences were not found. (b) Female mice (n = 6-12/group) were examined for their change in body weight from PND38 to
PND 49, and a significant difference was found with the female WIN-treated group exhibiting a decrease as compared to the control, and this effect was
reversed under the co-exposure condition. ��p<0.001 (c)During adulthood at PND 70, body weight differences were again not found based on adolescent
drug exposure in males. (d) Females from all groups exhibited a similar increase in body weight when assessed on PND 70. Control: saline and vehicle
injection group; NIC: nicotine and vehicle injection group; WIN: saline and 2 mg/kgWIN-55,212–2 injection group; NIC/WIN: nicotine and 2 mg/kgWIN-
55,212,2 injection group. Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g001

Effects of adolescent cannabinoid and nicotine exposure during adulthood
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Fig 2. Operant learning and cognitive flexibility following adolescent exposure to nicotine and/or a moderate dose of the cannabinoid agonist in adult
mice. (a)Male mice (n = 9-10/group) were examined for their ability to learn an operant task to obtain food reward. Groups did not differ in their number of
food pellets earned across sessions. (b) Female mice (n = 7-9/group) were examined with operant food training, and differences were not found among groups
in the number of food pellets earned across sessions. (c) The number of active and inactive lever presses was examined across sessions for all groups. Significant
main and interaction effects were found with all groups exhibiting statistically significant preference for the active lever versus the inactive lever for sessions 3–7.

Effects of adolescent cannabinoid and nicotine exposure during adulthood
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0.26, p = 0.853; Session: F(6,198) = 68.02, p<0.0001; Interaction: F(18,198) = 0.78, p = 0.721) and

females (Fig 2B) (Repeated measures two-way ANOVA, Group: F(3,30) = 0.29, p = 0.835; Ses-

sion: F(6,180) = 79.7, p<0.0001; Interaction: F(18,180) = 0.73, p = 0.783). When comparing active

and inactive lever pressing, all groups exhibited a clear dissociation between the active and

inactive lever consistent with learned behavior in the operant task. For males, significant main

and interaction effects were found (Fig 2C) (Repeated measures two-way ANOVA, Group:

F(7,66) = 71.86, p<0.0001; Session: F(6,396) = 93.39, p<0.0001; Interaction: F(42,396) = 13.62,

p<0.0001). For females, similar differences were also found (Fig 2D) (Repeated measures two-

way ANOVA, Group: F(7,60) = 105.2, p<0.0001; Session: F(6,360) = 128.1, p<0.0001; Interaction:

F(42,360) = 20.51, p<0.0001). For both males and females, post-hoc tests revealed significant dif-

ferences between the number of active and inactive lever presses for all groups from sessions

3–7, but the groups did not differ from one another when comparing responding among drug

conditions on each lever.

After establishing consistent responding on the active lever, cognitive flexibility was exam-

ined in the reversal task. Subjects were required to switch their lever pressing behavior, as the

active and inactive lever assignments were reversed. Interestingly, the groups did not differ

during the reversal session for their total number of rewards earned (males, one-way ANOVA,

F(3,33) = 1.86, p = 0.156; females, one-way ANOVA, F(3,30) = 0.32, p = 0.814) or for the within-

session active to inactive lever pressing ratio for both males (Fig 2E) (One-way ANOVA, F(3,33)
= 1.88, p = 0.153) and females (Fig 2F) (One-way ANOVA, F(3,30) = 0.92, p = 0.443). Groups

also did not differ in the latency to respond on the active lever for males (One-way ANOVA,

F(3,32) = 0.35, p = 0.787) and females (One-way ANOVA, F(3,30) = 0.25, p = 0.861). Next, we

obtained a reversal index, which was derived by the equation: ((number of active lever presses

during the reversal session)/(number of active lever presses during the baseline session prior

to reversal))�100. Surprisingly, the male WIN and NIC/WIN groups exhibited a higher rever-

sal index, indicating greater food reward seeking behavior under conditions of higher cogni-

tive demand (Fig 2G) (One-way ANOVA, F(3,33) = 5.19, p = 0.004). In contrast, differences in

the reversal index were not found among the female groups (Fig 2H) (One-way ANOVA,

F(3,30) = 0.41, p = 0.748).

Locomotion. The open field test was utilized to assess generalized locomotion and explor-

atory behavior. No statistically significant differences were observed among drug conditions in

distance travelled for males (Fig 3A) (One-way ANOVA, F(3,35) = 1.13, p = 0.351) and females

(Fig 3B) (One-way ANOVA, F(3,27) = 0.90, p = 0.456). Further, for the duration of time spent in

the center of the open field, no differences were found among groups for males (Fig 3C) (One-

way ANOVA, F(3,35) = 0.17, p = 0.918) and females (Fig 3D) (One-way ANOVA, F(3,27) = 0.71,

p = 0.553).

Anxiety-related assessment. As a measure for anxiety-related behavior, subjects were

assessed in the elevated plus maze, in which increased time in the open arms is thought to rep-

resent an anxiolytic effect. In the males, we found a significant increase in the time spent in the

open arm of the elevated plus maze for both the WIN and NIC/WIN groups as compared to

���p<0.0001 (d) Female mice also exhibited significant main and interaction effects for all groups when comparing number of active to number of inactive lever
presses for sessions 2–7. ���p<0.0001 (e-h) In the cognitive flexibility assessment, mice were required to reverse their lever pressing behavior for the active and
inactive lever. During the reversal session, the ratio of the number of active to inactive lever presses was derived (number active/number inactive). The reversal
index was also calculated as a comparison to the baseline day of responding prior to the lever switch ((number active reversal session/number active baseline
session)�100). (e)Male mice did not exhibit any group differences in the active:inactive ratio. (f) Female mice also did not exhibit any group differences in the
active:inactive ratio. (g) For the reversal index, the male WIN and NIC/WIN groups exhibited increased lever pressing behavior on the reversal session, as
evidenced by the higher reversal index for these groups compared to the control. ��p<0.01 (h) Female mice did not exhibit any group differences in the reversal
index. Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g002
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the control condition (Fig 4A) (One-way ANOVA, F(3,26) = 5.00, p = 0.007). Interestingly, the

WIN only group also exhibited an increase in the number of crosses between the arms (Fig

4C) (One-way ANOVA, F(3,26) = 3.72, p = 0.024), and this was likely indicative of decreased

anxiety related effects and/or increased exploratory behavior, rather than an overall increase in

general locomotion given the absence of effects in the above noted open field test. Moreover,

the presence of nicotine with WIN resulted in no significant difference from the control condi-

tion, and thus, the co-exposure condition counteracted the WIN-induced increase in explor-

atory behavior. In contrast, differences among groups were not found for females in the open

arm time (Fig 4B) (One-way ANOVA, F(3,18) = 0.70, p = 0.565) or number of arm crosses (Fig

4D) (One-way ANOVA, F(3,18) = 0.43, p = 0.737).

Sucrose and food consumption. Mice were examined for their consummatory behavior

of natural reward with 1hr access to sucrose pellets. Statistically significant main and interac-

tion effects were found for the amount of sucrose consumed across groups in males (Fig 5A)

(Two-way ANOVA, Group: F(3,22) = 3.71, p = 0.027; Time: F(7,154) = 67.54, p<0.0001; Interac-

tion: F(21,154) = 1.85, p = 0.018). Post-hoc analysis revealed a significant increase in the NIC/

WIN group compared to the control group at the 40, 50 and 60 min time points (p<0.01,

p<0.001, p<0.001, respectively), and a significant increase for the WIN group compared to

the control group at the 60 min time point (p<0.05). Female subjects also exhibited significant

group differences (Fig 5B) (Two-way ANOVA, Group: F(3,29) = 2.16, p = 0.115; Time: F(7,203) =

Fig 3. Adolescent nicotine and/or cannabinoid agonist exposure does not alter locomotor behavior during adulthood. (a)Male mice (n = 8-12/group)
did not differ in the distance travelled in the open field. (b) Female mice (n = 6-10/group) did not differ in the distance travelled in the open field. (c) Analysis
of the time spent in the center of the field did not reveal any differences in male subjects. (d) Females also did not differ in the time spent in the center of the
field. Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g003
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111.5, p<0.0001; Interaction: F(21,203) = 3.35, p<0.001), with the post-hoc analysis revealing a

decrease in consumption for the WIN group relative to the control group at time points 40, 50

and 60 min (p<0.01, p<0.01, p<0.0001, respectively). Differences were not found among

groups for the initial latency to consume a sucrose pellet (males, one-way ANOVA, F(3,23) =

0.11, p = 0.99; females, one-way ANOVA, F(3,29) = 0.43, p = 0.733). To ensure that the sucrose

consumption was not secondary to general food intake among the groups, subjects were also

assessed for their daily consumption of mouse chow. Male groups did not differ in the amount

of food consumed (one-way ANOVA, F(3,30) = 0.31, p = 0.82) (Fig 5C), nor did the females

groups (one-way ANOVA, F(3,28) = 2.41, p = 0.09) (Fig 5D).

Depression-associated behavior. To further determine whether the differences in sucrose

consumption were due to reward related effects, as predicted, or secondary to an anhedonia/

depression-associated state, we next examined swim behavior in the forced swim test. In this

assessment, we found no significant differences among groups in the time immobile or num-

ber of immobile bouts for both males (Fig 5E and 5G, respectively) (Time immobile: One-way

ANOVA, F(3,22) = 1.01, p = 0.409; Immobile bouts: One-way ANOVA, F(3,22) = 0.472, p =

0.705) and females (Fig 5F and 5H, respectively) (Time immobile: One-way ANOVA, F(3,29) =

0.91, p = 0.450; Immobile bouts: One-way ANOVA, F(3,29) = 0.66, p = 0.57).

Fig 4. Altered anxiety-related behavior in male, but not female, adult mice following adolescent cannabinoid agonist exposure at a moderate dose. (a)
Male mice (n = 7-8/group) exhibited differential responding in the elevated plus maze dependent on adolescent drug exposure. Specifically, mice treated with
the cannabinoid agonist WIN or co-treated withWIN and nicotine exhibited increased time on the open arm, indicating a decrease in anxiety-related
behavior. �p<0.05 (b) Female mice (n = 5-7/group) did not exhibit any statistically significant differences in the elevated plus maze open arm time. (c) For the
male mice, the WIN group also displayed a significant increase in the number of crosses between arms compared to the control group, potentially indicative
of increased exploratory behavior, an effect which was decreased with NIC/WIN co-exposure. �p<0.05 (d) The number of arm crosses did not differ
significantly between the groups for the female mice. Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g004
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Fig 5. Within sex-specific effects in natural reward consumption, but not other depression-associated behaviors, in adult mice following adolescent
exposure to nicotine and/or a moderate dose of WIN. (a)Male subjects (n = 5-8/group) were examined for cumulative sucrose consumption during a 1 hr
test. The NIC/WINmice exhibited a significant increase in sucrose consumption at the 40, 50 and 60 min time points, as compared to the control group.
��p<0.01, ���p<0.001 Further, the WIN group consumed greater sucrose than the control group at the 60 min time point. #p<0.05 (b) In contrast, female
mice (n = 7-9/group) exhibited a differential effect, with theWIN treated group consuming less sucrose pellets than the control group at the 40, 50 and 60 min

Effects of adolescent cannabinoid and nicotine exposure during adulthood

PLOSONE | https://doi.org/10.1371/journal.pone.0211346 January 31, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0211346


Experiment 2: Nicotine and Low Dose of WIN

Body weight during adolescent injections. Similar to above, we first assessed whether

drug administration would alter body weight during the duration of the drug injections from

postnatal day (PND) 38 (day 1 injection) to PND 49 (day 12 injection) or during adulthood at

PND70 (Fig 6). For males, group differences were not found when comparing the change in

body weight from PND 38 to PND 49 (Fig 6A) (One-way ANOVA, F(2,37) = 0.60, p = 0.555) or

to PND 70 (Fig 6C) (One-way ANOVA, F(2, 37) = 0.89, p = 0.419). Female subjects also did not

exhibit differences in body weight change at PND 49 (Fig 6B) (One-way ANOVA, F(2,42) =

0.83, p = 0.444) or at PND 70 (Fig 6D) (One-way ANOVA, F(2,42) = 1.37, p = 0.265).

Operant learning. Groups were next examined for their ability to learn an operant task to

respond for food reward. All exposure groups exhibited similar learning curves in earning

food pellets for both males (Fig 6E) (Repeated measures two-way ANOVA, Group: F(2,41) =

1.27, p = 0.30; Session: F(6,246) = 84.69, p<0.0001; Interaction: F(12,246) = 0.68, p = 0.77) and

females (Fig 6F) (Repeated measures two-way ANOVA, Group: F(2,43) = 0.79, p = 0.460; Session:

F(6,258) = 86.37, p<0.0001; Interaction: F(12,258) = 0.84, p = 0.607). After establishing consistent

responding on the active lever, cognitive flexibility was examined in the reversal task. Subjects

were required to switch their lever pressing behavior, as the active and inactive lever assign-

ments were reversed. Interestingly, the groups did not differ during the reversal session for

the within-session active to inactive lever pressing ratio for both males (Fig 6G) (One-way

ANOVA, F(2,33) = 0.56, p = 0.576) and females (Fig 6H) (One-way ANOVA, F(2,38) = 1.29,

p = 0.288). Next, we obtained the reversal index as described above, and no significant differ-

ences were found for males (Fig 6I) (One-way ANOVA, F(2,33) = 1.56, p = 0.225) and females

(Fig 6J) (One-way ANOVA, F(2,38) = 1.97, p = 0.154).

Locomotion and anxiety-related behaviors. The open field test was utilized to assess gen-

eralized locomotion and exploratory behavior in the low dose WIN groups. No statistically sig-

nificant differences were observed among drug conditions for distance travelled in males (Fig

7A) (One-way ANOVA, F(2,29) = 2.50, p = 0.099) and females (Fig 7B) (One-way ANOVA,

F(2,33) = 0.82, p = 0.451). Further, for the duration of time spent in the center of the open field,

no differences were found among groups in males (One-way ANOVA, F(2,29) = 0.05, p = 0.946)

and females (One-way ANOVA, F(2,33) = 0.24, p = 0.789). Subjects were then assessed in the

elevated plus maze to examine anxiety-related and exploratory behaviors. In the males, signifi-

cant differences among the groups were not found in the time spent in the open arm of the ele-

vated plus maze (Fig 7C) (One-way ANOVA, F(2,28) = 0.96, p = 0.395). Similarly, differences

among groups were not found for females in the open arm time (Fig 7D) (One-way ANOVA,

F(2, 32) = 1.36, p = 0.271). With regard to the number of crosses in the elevated plus maze, dif-

ferences were not present among the groups for males (Fig 7E) (One-way ANOVA, F(2,28) =

0.09, p = 0.914) and females (Fig 7F) (One-way ANOVA, F(2, 32) = 0.52, p = 0.598).

Reward and depression-associated behaviors. Groups exposed to the low dose of WIN

were examined for their consummatory behavior of natural reward with 1hr access to sucrose

pellets. Treatment groups did not differ for sucrose consumption in both males (Fig 7G) (Two-

way ANOVA, Group: F(2,20) = 1.89, p = 0.182; Time: F(7,140) = 39.67, p<0.0001; Interaction:

F(14,140) = 0.49, p = 0.933) and females (Fig 7H) (Two-way ANOVA, Group: F(2,29) = 0.24,

time points. ��p<0.01, ���p<0.001 (c-d) Since sucrose consumption could be secondary to generalized food intake among groups, subjects were examined for
standard chow intake during a restricted 6hr daily feeding period. Male groups did not differ in chow food intake (c), nor did the female groups (d). (e-h) To
examine whether the sucrose consumption findings were consistent with other measures of depression-associated behaviors, the forced swim test was
employed. Groups did not differ in the time immobile for both males (e) and females (f). Similarly, groups did not differ in the number of immobile bouts for
both males (g) and females (h). Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g005
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p = 0.79; Time: F(7,203) = 67.32, p<0.0001; Interaction: F(14,203) = 0.79, p = 0.677). Finally, we

examined for depression-associated behavior in the forced swim test, but no statistically signif-

icant differences were found in the time immobile for both males (Fig 7I) (One-way ANOVA,

F(2,25) = 0.33, p = 0.721) and females (Fig 7J) (One-way ANOVA, F(2,30) = 0.11, p = 0.893).

Discussion

Given the growing incidence of nicotine and cannabis experimentation during adolescence,

we sought to examine whether such exposure would lead to altered behavioral effects during

adulthood. In these studies, we found that male adolescent exposure to a moderate dose of the

cannabinoid receptor agonist, WIN55,212–2 (WIN), led to increased cognitive flexibility in a

learning reversal task, decreased anxiety-associated behaviors, and increased natural reward

consumption, but no differences in general locomotor or depression-related behavior. Inter-

estingly, the co-exposure condition of both nicotine and the moderate dose of WIN led to sim-

ilar behavioral profiles as WIN alone in these measures, suggesting that a potentiative or

additive effect was not present for these behaviors. However, with regard to the number of

lane crosses in the elevated plus maze, the nicotine andWIN co-exposure condition appeared

to exert a counteractive effect on the WIN-induced increase in exploratory behavior at the

moderate dose, suggesting an opposing effect with adolescent exposure to both drugs. With

regard to females, the moderate dose of WIN induced a lower body weight during the adoles-

cent period, but co-exposure with nicotine appeared to exert an opposing effect that resulted

in no difference from the control condition. However, these effects of WIN on body weight

were transitory, as the difference in females did not persist into adulthood. For the behavioral

assessments, female subjects were overall more resistant to the long-term effects of adolescent

drug exposure. Group differences were only found in the sucrose consumption test, in which

the moderate dose WIN females exhibited decreased natural reward consumption compared

to the control females. However, differences from the control were not found with the female

nicotine andWIN co-exposure condition for sucrose consumption, suggesting that the pres-

ence of nicotine ameliorated the actions of WIN on reward circuitry during the adolescent

period. In contrast, adolescent exposure to a low dose of WIN had no effect on physiological

or behavioral measures, either alone or in the presence of nicotine, for both males and females.

Taken together, these findings demonstrate that while adolescent cannabinoid agonist expo-

sure at a moderate dose exerts variable effects on both physiological and behavioral measures

in males and females, co-administration of nicotine surprisingly counteracted some of these

effects by normalizing to control levels.

Fig 6. Body weight change, operant learning and cognitive flexibility following low dose exposure to the
cannabinoid agonist, with or without nicotine. (a)Male mice (n = 9-16/group) were examined for their change in
body weight from the first injection on PND 38 to the final day of the injection series on PND 49. Statistically
significant group differences were not found. (b) Female mice (n = 13-17/group) were examined for their change in
body weight from PND38 to PND 49, and no significant differences were found. (c-d)During adulthood at PND 70,
differences in body weight were again not found across adolescent drug exposure conditions for either males (c) or
females (d). (e)Male mice (n = 14-16/group) across groups did not differ in their ability to learn an operant task to
obtain food reward. (f) Female mice (n = 14-16/group) also did not differ in their operant responding for food reward.
(g-j) In the cognitive flexibility assessment, mice were next required to reverse their lever pressing behavior for the
active and inactive lever. During the reversal session, the ratio of the number of active to inactive lever presses was
derived; differences among groups were not found for both males (g) and females (h). The reversal index was also
calculated as a comparison to the baseline day of responding prior to the lever switch. (i)Male mice did not exhibit any
group differences and equally switched their lever pressing behavior to the active lever. (j) Female mice also exhibited
similar indices of cognitive flexibility in switching their behavior to respond on the reassigned active lever. Control:
saline and vehicle injection group; LdWIN: saline and 0.2 mg/kgWIN-55,212–2 injection group; NIC/LdWIN:
nicotine and 0.2 mg/kgWIN-55,212,2 injection group. Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g006
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While prior studies have examined the effects of adolescent exposure of either nicotine or

WIN alone on later behaviors, the current findings represent the first examination of the effects of

co-exposure during mid-adolescence and subsequent long-term effects on adult behavior. This

age range was selected based on the correlation to human adolescence with higher levels of experi-

mentation and more recurrent patterns of drug consumption than that found in younger individ-

uals. With regard to nicotine alone, opposing effects have been found in male Sprague-Dawley

rats with increased depression-associated behaviors, but no difference in anxiety-associated

behaviors, during adulthood [15]. However, these behavioral differences were only found at

higher nicotine doses approximately twice that administered in the current study. Chronic expo-

sure approaches with a minipump or nicotine patch at higher doses (�5 mg/kg/day) have also

demonstrated decreased exploratory activity, decreased food consumption under anxiety-related

conditions, and deficits in contextual condition to shock-associated cues in Sprague-Dawley rats

[16, 17]. In mice, adolescent exposure to high dose minipump (12 mg/kg/day) has also been

shown to disrupt contextual fear condition, but not cued fear conditioning [31]. However, since

studies have shown that of those adolescents age 12–17 who smoke, the majority smoke one or

less than one cigarette per day (50.1%)[32], the current studies focused on a rewarding dose with

once daily exposure as an investigative goal. Thus, the lack of difference in the behavioral mea-

sures with nicotine exposure in the current studies may be attributed to this relatively lower dose

administered. Along these lines, it should be noted that this dose was selected based on the

rewarding effects of doses in this range, as assessed with the brain reward threshold measure [29],

and behavioral effects elicited in adolescent mice [30], and thus, the current results have particular

relevance to experimental patterns of drug consumption found in youth.

With adolescent cannabinoid agonist exposure, findings derived from prior rat studies have

been somewhat variable. In one study, adolescent male and female rats treated with the canna-

binoid agonist, CP 55,940, exhibited overall increased time on the open-arm of the elevated

plus maze, but these effects were not maintained when examining males and females indepen-

dently [33], suggesting these differences may have been confounded by baseline differences

between the sexes. Since CP 55,940 has high affinity for both the CB1 and CB2 receptors, as

well as GPR55, the lack of differences within each sex for drug condition may also have been

due to actions on alternate signaling pathways or differences in agonist actions. Interestingly,

male Sprague-Dawley rats treated with WIN, the CB1 and CB2 specific agonist, during adoles-

cence exhibited increased depressive-like behaviors in the forced swim and sucrose consump-

tion tests [22, 23]. In our mouse studies, we did not find any differences in these measures

with the low dose of WIN and opposing effects at the moderate dose of WIN, indicating that

species differences in metabolism and/or genetic heritability factors likely mediate the effects

of cannabinoids on adolescent neurodevelopment. Finally, adolescent WIN exposure has also

been found to increase palatable food intake and alter attribution of incentive salience for food

reward in adult male Long Evans rats [23]. The increase in natural reward-related effects with

adolescent exposure is consistent with our findings at the moderate WIN dose in mice, sug-

gesting cannabinoid exposure during adolescence similarly alters brain reward pathways to

enhance subsequent responsiveness to natural reward. Interestingly, Schoch and colleagues

Fig 7. Adolescent low dose cannabinoid agonist exposure with or without nicotine does not alter locomotor or affective-
associated behaviors during adulthood. (a)Male mice (n = 10-12/group) did not differ in the distance travelled in the open
field. (b) Female mice (n = 11-13/group) did not differ in the distance travelled in the open field. (c-f) To assess anxiety-
associated behaviors, mice were then tested in the elevated plus maze. Statistically significant differences were not found among
the groups in the time spent on the open arms for males (c) and females (d). Differences were also not found in the number of
arm crosses for males (e) and females (f). (g-j) Reward related and depression-associated behaviors were then assessed across
groups; differences were not found for sucrose consumption in males (g) and females (h), nor were differences found in the
forced swim test for males (i) and females (j). Data represent mean values ± SEM.

https://doi.org/10.1371/journal.pone.0211346.g007
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also demonstrated increased expression of the endocannabinoids anandamide and oleoyletha-

nolamine in the nucleus accumbens only during a food restricted state with adolescent WIN

exposure in rats [23]. Thus, dependent on the availability of food and level of satiety, changes

in neural systems regulating reward-related behaviors may be differentially affected in the

presence of cannabinoids. Along these lines, it is interesting to note that in the current study,

mice were at a satiated level (not food restricted) during sucrose consumption, during which

time the opposing differences were found in males and females exposed to adolescent WIN.

However, during conditions of food restriction, such as during operant food training in the

current study, group differences only emerged for males in the reversal task. Thus, altered

endocannabinoid signaling may account for this effect during the food restricted state, whereas

other mechanisms likely underlie the behavioral differences observed in the anxiety and natu-

ral reward-related measures.

Cannabinoid and nicotinic acetylcholine receptors exhibit overlapping expression within

brain regions implicated in reward-related and affective behaviors, including the prefrontal

cortex, ventral tegmental area, nucleus accumbens, medial habenula, interpeduncular nucleus

and hippocampus [7, 34]. On the cellular level, both receptors types are expressed on presyn-

aptic terminals and function to modulate release of various neurotransmitters. For instance,

with acute administration, both drugs increase extracellular dopamine in the nucleus accum-

bens and prefrontal cortex [35, 36], and adolescent cannabinoid or nicotine exposure have

also been shown to affect cholinergic, serotonergic and noradrenergic signaling mechanisms

[22, 31, 37]. Thus, in consideration of the effects of nicotine and cannabinoids on several neu-

rotransmitter systems and the behavioral findings from the current studies, future studies will

need to dissect the differential impact of single or co-drug exposure during adolescence on

neural signaling mechanisms.

In conclusion, activation of cannabinoid receptors with or without nicotine led to differen-

tial sex-specific effects on anxiety- and reward-related behaviors during adulthood. Together,

these studies provide evidence that adolescent exposure to drugs of abuse may lead to alter-

ations in affective and cognitive behaviors during adulthood. These data support the conclu-

sion that consumption of cannabis by youth may alter later cognitive function, and thus,

policy approaches should be considered to discourage and/or restrict substance use by this vul-

nerable population.
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