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Abstract 

The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological 

functions in the central nervous system (CNS) as a presynaptic modulator of 

neurotransmitter release. The recently identified cannabinoid receptor interacting 

protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region 

known to be important for receptor desensitization and internalization. Evidence that 

CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical 

distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal 

CRIP1a levels following limbic seizures indicate a role in controlling excessive 

neuronal activity, the physiological function of CRIP1a in vivo has not been 

investigated. In this study, we analyzed the spatial distribution of CRIP1a in the 

hippocampus and examined CRIP1a as a potential modulator of CB1R signaling and 

trafficking. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in 

pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein 

profiles were largely segregated from CB1R profiles in mossy cell terminals but not in 

hippocampal CA1 region. CB1R activation induced relocalization to close proximity 

with CRIP1a, which coincided with alleviated CB1R internalization. AAV-mediated 

overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a 

modulates CB1R activity by enhancing cannabinoid-induced G protein activation. 

CRIP1a overexpression extended the depression of excitatory currents by 

cannabinoids in pyramidal neurons of the hippocampus and diminished the severity 

of chemically induced acute epileptiform seizures. Collectively, our data indicate that 

CRIP1a enhances CB1R signaling in vivo.  
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Introduction 

The cannabinoid type 1 receptor (CB1R) is the most abundant G-protein-coupled 

receptor (GPCR) in the mammalian central nervous system (Mechoulam and Parker 

2013). CB1R signaling exerts important physiological functions, including retrograde 

inhibition of neurotransmitter release, control of neuronal excitability and regulation of 

various forms of long-term synaptic plasticity (Katona and Freund 2012). CB1R has 

been shown to be a promising target for the therapy of neurological conditions based 

on the efficacy of synthetic and endogenous CB1R ligands in animal models of 

epilepsy, neurodegeneration, addiction, pain, and mood disorders. However, 

psychotropic side effects limit the translational potential of CB1R modulation via 

direct pharmacological intervention (Lutz 2009). While CB1R signaling through G-

protein-mediated pathways has been an area of intense investigation, additional 

CB1R binding proteins that classify as scaffolding or regulatory proteins have been 

identified as potential modulators of CB1R activity (Smith et al. 2010).  

Cannabinoid receptor interacting protein 1a (CRIP1a) interacts with the C-terminal 

tail of CB1R, as revealed by a yeast two-hybrid screen and by co-

immunoprecipitation of CRIP1a with CB1R obtained from rat brain homogenates 

(Niehaus et al. 2007). CRIP1a is conserved throughout vertebrates and is robustly 

expressed in the brain. While anatomical data on co-localization in the adult brain is 

still missing, high-resolution immunohistochemical analysis of CB1R and CRIP1a 

expression in the developing rodent forebrain showed largely segregated profiles 

(Keimpema et al. 2010). Ectopic CRIP1a modulates constitutive CB1R activity in 

isolated cervical ganglion neurons, suggesting that CRIP1a may modulate CB1R 

signal transduction in an agonist-independent manner in this system (Niehaus et al. 

2007).  
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While the mechanisms by which CRIP1a exerts its effects on CB1R remain unknown, 

CRIP1a binds to the C-terminal tail of CB1R (Niehaus et al. 2007), which is essential 

for CB1R desensitization and internalization (Daigle et al. 2008; Jin et al. 1999; 

Straiker et al. 2012), indicating a role in modulating receptor activity. A role for CB1R 

trafficking is also supported by the presence of a PDZ ligand in CRIP1a that could 

allow indirect crosslinking of CB1R with other PDZ proteins (Howlett et al. 2010). 

Recent data showed that CRIP1a expression is altered following epileptiform activity. 

In the hippocampus of epileptic patients, CB1R and CRIP1a are downregulated 

(Ludanyi et al. 2008) whereas kainic acid-induced seizures elevate CB1R and 

CRIP1a levels in the rat hippocampus (Bojnik et al. 2012). Conditional mutagenesis 

has revealed that CB1R in glutamatergic forebrain neurons is essential for the 

protection against excitotoxic seizures (Marsicano et al. 2003; Monory et al. 2006). 

Altogether, these data suggest a potential role for CRIP1a as a regulator of CB1R-

mediated control of excess neuronal activity. However, the role of CRIP1a in vivo has 

not been addressed in detail yet. 

In this study, we investigated CRIP1a as modulator of CB1R signaling. Specifically, 

we elucidated CRIP1a localization in the mouse hippocampus and analyzed the 

effects of CRIP1a on CB1R signaling.  
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Materials and Methods 

Animals  

Adult (3-6 months old) male mice were used for all experiments. C57BL/6N mice 

were purchased from Charles River, Sulzfeld (Germany). Animals were housed in 

groups of 3-5 individuals in a temperature- and humidity-controlled room (22°C±1; 

50%±1), with a 12 h light/dark cycle and had access to food and water ad libitum. All 

experimental procedures were approved by the Committee on Animal Health and 

Care of local government (Az. 23-177-07/G08-1-021 and Az. 23 177-07/G 10-1-037). 

CB1floxed/floxed;Dlx5/6-Cre/+ mice (GABA-CB1R-KO) lack the CB1R specifically in 

GABAergic interneurons and were generated as described (Massa et al. 2010; 

Monory et al. 2006). 

 

AAV vector generation and administration 

The rat Cnrip1a open reading frame was EcoRI and HindIII-linkered and fused 

downstream of the hemagglutinin (HA) epitope tag coding region in an AAV 

expression cassette containing the 1.1 kb CMV immediate early enhancer/chicken β-

actin hybrid promoter (CAG), the woodchuck hepatitis virus post-transcriptional 

regulatory element (WPRE), and the bovine growth hormone polyadenylation 

sequence (bGHpA) flanked by AAV2 inverted terminal repeats (pAAV-CRIP1a). The 

same backbone carrying no cDNA was used as control (pAAV-empty). Production of 

neurotropic AAV1/2 vectors and determination of genomic titres using the ABI 7500 

real time PCR cycler (Applied Biosystems) were performed as described (During et 

al. 2003). Adult male C57BL/6N mice were anaesthetized by intraperitoneal injection 

of fentanyl (0.05 mg/kg), midazolam (5 mg/kg) and medetomidin (0.5 mg/kg), and 

fixed in a small animal stereotaxic frame (Kopf instruments, Tujunga, CA). One 

microliter of either AAV-CRIP1a or AAV-empty (9×1010 viral genomes/ml) was 
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injected bilaterally into the CA1 area of the dorsal hippocampus (+2.0 mm AP, ±1.6 

mm ML, -1.3 mm DV from bregma) at a rate of 150 nl/min using a microprocessor-

controlled mini-pump with 34G beveled needles (World Precision Instruments, 

Sarasota, FA).  

 

Immunohistochemistry  

Determination of CRIP1a expression domains 

Mice were perfused with a fixative containing 4% paraformaldehyde (PFA) and 0.1% 

glutaraldehyde in 0.1 M phosphate-buffer (PB, pH 7.4). Brains were removed from 

the skull and cut (50 µm) in the coronal plane on a cryostat after postfixation 

overnight and subsequent cryoprotection in 30% sucrose (in PB). Free-floating 

sections were rinsed in PB and pre-treated with 0.3% Triton-X 100 (in PB) for 1 h at 

22 - 24 °C to enhance the penetration of antibodies. Non-specific immunoreactivity 

was suppressed by incubating our specimens in a cocktail of 5% normal donkey 

serum (NDS; Jackson), 1% bovine serum albumin (BSA; Sigma) and 0.3% Triton X-

100 (Sigma) in PB for 1h at 22 - 24 °C. Sections were exposed (16 – 72 h at 4 °C) to 

anti CRIP1a; 1:500, (Keimpema et al., 2010); in select combinations with anti CB1R; 

1:1000, (Kawamura et al., 2006), or anti VGluT1 (Synaptic Systems; 1:2000), or anti 

VGluT3 (Synaptic Systems; 1:1000), or anti GAD65/67 (Sigma; 1:5000), or anti 

DAGLD (gift from M. Watanabe; 1:5000) diluted in PB, which supplemented to 0.5% 

NDS and 0.3% Triton X-100. After extensive rinsing in PB, immunoreactivities were 

revealed by carbocyanine (Cy) 2, 3 or 5-tagged secondary antibodies raised in 

donkey (1:200 [Jackson], 2 h at 22 - 24°C). Lipofuscin autofluorescence was 

routinely quenched by applying Sudan Black-B (1%, dissolved in 70% ethanol) as 

described (Schnell et al. 1999). Glass-mounted sections were coverslipped with 

Aquamount Fluorescent Mounting Medium (Dako). 
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Sections processed for multiple immunofluorescence histochemistry were inspected 

and images acquired on a 700LSM confocal laser-scanning microscope (Zeiss). 

Image surveys were generated using the tile scan function with optical zoom ranging 

from 0.6x to 1.5x at 10x primary magnification (objective: EC Plan-Neofluar 

10x/0.30). Co-localization was defined as immunosignals being present without 

physical signal separation in ≤ 0.5–0.7μm optical slices at 40x (Plan-Neofluar 

40x/1.30) or 63x (Plan-Apochromat 63x/1.40) primary magnification and at optical 

zoom ranging from 1x to 3x. Emission spectra for each dye were limited as follows: 

Cy2 (505-530 nm), Cy3 (560-610 nm), and Cy5 (650-720 nm). Colocalization or 

immediate neighborhood of the histochemical markers CB1R/CRIP1A were verified 

by capturing serial orthogonal z images (z stacks) at 63x primary magnification 

(pinhole: 20 µm; 2048x2048 pixel resolution; original XZ and YZ visualizations in the 

figure show a 1.7x pixel distortion in the Z-scale). Multi-panel figures were assembled 

in CorelDraw X5 (Corel Corp.). 

Spatial relation between CB1R-immunoreactive(+) and CRIP1a+ profiles were 

quantified in vehicle or HU-210 (Tocris Bioscience) treated GABA-CB1R-KO mice (N 

= 3 per group) dentate gyrus. Profiles were counted manually within 40 μm2 large 

frames (N = 15 per animal) and sorted as follows: (i) profiles with overlap, (ii) profiles 

with physical contact but without complete overlap, (iii) separate profiles without any 

contact to neighboring profiles. Spatial relation between CB1R+ and GAD+ or 

VGLUT1+ or DAGLα+ profiles were quantified in vehicle treated GABA-CB1R-KO 

mice dentate gyrus under identical conditions. 

 

AAV-mediated transgene expression  

At the end of the experiment, the expression pattern of AAV-CRIP1a animals was 

examined by HA-immunohistochemistry to confirm accurate targeting of the CA1 
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target area and robust transgene expression. Brain sections were immunostained for 

the HA-epitope tag as described (Guggenhuber et al. 2010). Briefly, mice were 

perfused in 4% buffered neutral formalin and post-fixed overnight in the same 

fixative. Free-floating brain sections (40 µm) were incubated overnight with a mouse 

anti-HA antibody (Covance, Richmond, CA; 1:1000). Sections were washed and then 

incubated for 1 h with the appropriate Alexa488 or Alexa546-conjugated goat IgG 

(1:1000, Invitrogen, Eugene, OR). Before the third wash in PBS, sections were 

counterstained with the nuclear dye 4′,6-diamidino-2-phenylindole (DAPI) for 5 min. 

Sections were then transferred onto glass slides and coverslipped with Mowiol 

mounting medium and fluorescence was visualized using a Leica DM5500 

microscope (Leica Microsystems, Wetzlar, Germany). 

 

In situ hybridization  

Cnr1 riboprobe generation and in situ hybridization was performed as described 

(Steindel et al. 2013). The mouse Cnrip1a sequence was obtained from a mouse 

brain cDNA library by PCR using the following primers: 5`-

CTCTCCAGCCTTCACTGTCC-3` and 5`-AGGCTTGTGCTGGTTTGTCT-3`. The 608 

bp Cnrip1a fragment was inserted in the pBlueskript vector allowing for in vitro 

transcription using T3 (antisense; BamH1) and T7 (sense; HindIII) RNA polymerases. 

Mouse brains were removed and immediately frozen on dry ice. Cryostat-cut 18 µm 

coronal sections were collected on poly-L-lysine coated slides before postfixing in 4% 

paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. After dehydration in 100% 

ethanol, slides were air-dried before application of 50 µl hybridization buffer 

containing DIG-labeled Cnrip1a riboprobe and FITC-labeled Cnr1 riboprobe. Slides 

were incubated overnight at 54 °C with the according riboprobes, then washed three 

times at 62 °C for 30 min in SSC containing 0.05% Tween20. Sections were blocked 
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for 1 h in 4% heat-inactivated sheep serum in TNT and incubated for 2 h with anti-

FITC(Fab)-POD (Roche, 1:500). Detection was initiated by a 10 min incubation step 

with tyramine-FITC (1:50). After subsequent washing and blocking steps, slides were 

exposed overnight to anti-DIG(Fab)-POD (Roche, 1:2000). Afterwards, sections were 

incubated with tyramine-CY3 (1:50) for 10 min. Cell nuclei were stained with DAPI 

and slides were embedded with Mowiol mounting medium. 

 

Generation of HEK cell line stably expressing HA-tagged CB1R 

The HA-tag was added N-terminally to the rat CB1R sequence by PCR using the 

following primers: forward 5’-GCGGA TCCAC CATGG CATAC CCATA TGATG 

TCCCC GACTA CGCGA AGTCG ATCCT AGATG GCCTTG-3’, reverse 5’-GGCGC 

GGCCG CTCAC AGAGC CTCGG CGGA-3’. The resulting sequence was cloned into 

the expression vector pcDNA3 using the restriction sites BamHI and NotI. HEK293 

cells were grown in DMEM containing 10 % fetal calf serum, Penicillin/Streptamycin, 

sodium butyrate and non-essential amino acids (life technologies). To generate cell 

lines stably expressing HA-CB1R, HEK293 cells were transfected with 24 µg of 

linearized DNA in a 10-cm dish using Lipofectamin2000 (Invitrogen) according to the 

manufacturer`s instructions. 48 h after transfection, selection medium containing 

G418 (Geneticin) was added to the cells. A limited dilution approach in 96 well plates 

was performed to select cell clones resistant to G418. Clones were picked only out of 

those wells, which originally contained just a single cell. Homogenous HA-CB1R 

expression was analyzed by immunocytochemistry against the HA epitope. 

Expression levels of HA-CB1R were further determined by Western blot analysis 

using a monoclonal antibody against the HA tag.  
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Determination of CB1R internalization by trypsination 

HEK293 cells stably expressing N-terminally HA-tagged rat CB1R were been 

cultivated in 6-well plates for 48 h before they were transfected with either a CRIP1a 

or a GFP plasmid using lipofectamine. 24 h after transfection, cells were exposed to 

serum-free medium for minimum 3 h and then stimulated with HU-210 or vehicle 

(DMSO) for 45 min. To assay intracellular receptors, cells were afterwards incubated 

with 0.05% trypsin-EDTA 4Na (pH 7.4, Invitrogen) for 4 min at RT; control cells for 

comparison were incubated with 0.2 g/L EDTA 4Na alone (Versene, pH 7.4, 

Invitrogen) as described (Grimsey et al. 2010). Cell lysis was performed overnight at 

4°C in lysis buffer containing 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 20 mM Tris, 

pH 7.5, 1% CHAPS, proteinase and phosphatase inhibitor. 10 µg of protein was 

applied in the western blot against the HA tag. Densitometric assessment of HA 

signal on the immunoblot was performed using Bio1D software (Vilber Lourmat, 

Torcy, France) and data were normalized to tubulin. Due to agonist-independent 

CB1R internalization and possible variation between experiments and to exclude a 

possible effect of the different treatments on CB1R expression, the ratio of HU-210-

induced CB1R internalization was calculated according to the following formula: [(HA 

signal of cells treated with HU-210 and trypsin/HA signal of cells treated with HU-210 

and versene) - (HA signal of cells treated with DMSO and trypsin/HA signal of cells 

treated with DMSO and versene)] x 100. 100% internalization means that all CB1 

receptors got internalized after HU-210 stimulation. 

 

Western blot analysis  

Hippocampi of AAV-CRIP1a mice and AAV-empty mice were isolated and 

homogenized in 1ml of ice-cold membrane buffer (50 mM Tris-HCl, pH 7.4, 3 mM 

MgCl2, 0.2 mM EGTA, Complete protease inhibitor; Roche). Following determination 
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of protein content, aliquots were mixed with an equal volume of 2x Laemmli reducing 

sample buffer. 10 µg of total protein were resolved by 12% SDS-PAGE and electro-

blotted onto nitrocellulose membrane. After blocking in 5% non-fat dry milk, the 

membrane was incubated with primary antibodies against CRIP1a (17 C-terminal 

residues) (Niehaus et al. 2007), rabbit anti-HA (Santa Cruz Biotechnology; 1:1000) or 

rabbit anti-CB1R (Immunogenes; 1:1000) at 4°C overnight. Cell adhesion molecule 

F3 (kindly provided by Eva-Maria Krämer-Albers) or ß-actin (Sigma; 1:1000) was 

probed as loading control. Secondary antibodies were horseradish peroxidase-

conjugated anti-rabbit or anti-mouse IgG (Dianova). Proteins were detected using a 

chemiluminescence system (Luminol) and bands captured on film. Densitometric 

analysis was performed using Bio1D software (Vilber Lourmat) and data were 

normalized to the loading control. 

 

Agonist-stimulated [35S]GTPJS binding  

Hippocampal homogenates including cytosolic proteins (10 µg) of AAV-empty and 

AAV-CRIP1a mice previously analyzed by immunoblot were processed for the 

binding assay as described (Guggenhuber et al. 2010). The homogenates were 

incubated with the CB1R agonist, HU-210, for 60 min. Basal binding was measured 

in the absence of cannabinoid receptor agonists and defined as 0% in each 

experiment. All data are expressed as percentage stimulation above basal 

[35S]GTPγS binding. 

 

CB1R stimulation with HU-210  

HU-210 dissolved in DMSO was added to serum-free medium to obtain a final 

concentration of 100 nM. Cells were subjected to HU-210 treatment for 45 min. For in 

vivo treatment, HU-210 was dissolved in a mixture of DMSO, cremophor and saline 
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solution (1:1:18) and was injected intraperitoneally (50 µg/kg) in a volume of 10 ml/kg 

body weight to GABA-CB1R-KO mice.  

 

Induction of acute excitotoxic seizures  

Kainic acid (KA; Ascent scientific) dissolved in 0.9% saline was administered (30 

mg/kg; i.p.) in a volume of 10 ml/kg body weight to induce epileptiform seizures as 

described previously (Guggenhuber et al. 2010). Two trained observers blind to the 

genotype of the mice monitored the severity of seizures for 2 h and scored every 15 

min according to the following scale (Monory et al. 2006): 0 - no response; 1 - 

immobility and staring; 2 - forelimb and/or tail extension, rigid posture; 3 - repetitive 

movements, head bobbing; 4 - rearing and falling; 5 - continuous rearing and falling: 

6 - severe clonic-tonic seizures; 7 - death. One AAV-CRIP1a and one AAV-empty 

animal were excluded from the study as they they showed no response to kainic acid. 

The time to onset of seizures was defined by the time to reach seizure score 3. 

 

Electrophysiological recordings 

For the electrophysiological experiments, we used coronal hippocampal slices of 9-

13 week old mice injected with AAV-empty or AAV-CRIP1a. Mice were deeply 

anesthetized with enflurane (Ethrane, Abbot Laboratories). After decapitation, brains 

were quickly removed and immersed for 2-3 min in ice-cold slicing solution containing 

(in mM): 26 NaHCO3, 1.2 NaH2PO5, 7 MgCl2, 0.5 CaCl2, 2 KCl, 11 glucose, and 250 

mM sucrose). Subsequently 350 µm thick slices were cut on a vibratome (Microm 

HM650V, Thermo Fisher) and were stored in standard artificial cerebrospinal fluid 

(ACSF), containing 126 NaCl, 26 NaHCO3, 1.25 NaH2PO5, 1 MgCl2, 2 CaCl2, 2.5 

KCl, 15 glucose, at room temperature, where they were allowed to recover for at 

least 1 h. For patch recordings, slices were transferred to a recording chamber 
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attached to the fixed stage of a microscope (BX51 WI, Olympus), where they were 

continuously superfused with ACSF at a rate of 2 ml/min at 30 ± 1 °C. Pyramidal 

neurons in the stratum pyramidale of the CA1 region were identified by their location 

and morphological appearance in infrared differential interference contrast image. 

Patch-pipettes (3-5 M:) were pulled from borosilicate glass capillaries (2.0 mm 

outside, 1.16 mm inside diameter, Science Products, Hofheim, Germany) on a 

vertical puller (PP-830, Narishige) and filled with pipette solution containing (in mM): 

130 K-gluconate, 10.5 KCl, 0.2 EGTA, 10 HEPES, 2 Na2-ATP, 0.5 Na-GTP, 5 QX-

314 (N-(2,6-Dimethylphenylcarbamoylmethyl)triethylammonium chloride, Sigma), pH 

adjusted to 7.3 by KOH. Signals were recorded with a discontinuous voltage-

clamp/current-clamp amplifier (SEC05L, NPI), low-pass filtered at 3 kHz and stored 

and analyzed using an ITC-1600 AD/DA board (HEKA) and TIDA (Heka) software. 

Excitatory synaptic inputs were evoked using biopolar tungsten electrodes 

(impedance 4-5 M:, FHC) inserted in Schaffer collateral pathways. Stimulation 

intensity was set to 60-70% of supramaximal stimulus intensity. All experiments were 

performed in the continuous presence of 10 µM gabazine (6-Imino-3-(4-

methoxyphenyl)-1(6H)-pyridazinebutanoic acid hydrobromide; Biotrend). To prevent 

recurrent excitation in the presence of the GABAA antagonist gabazine, the 

connections between CA3 and CA1 were disrupted by a small incision between CA1 

and CA3. Membrane potential was held at -65 mV. Paired-pulse ratios were 

determined at 55 ms interpulse interval. Depolarization-induced suppression of 

excitation was investigated according to the protocol described (Ohno-Shosaku et al. 

2002) using 5 s interstimulus intervals and 2-10 s lasting depolarization to 0 

mV(Ohno-Shosaku et al. 2002). For the investigation of HU-210 effects on excitatory 

transmission, stimuli were delivered at 0.066 Hz. DSE magnitude was calculated as 

follows: Δ of ePSCs = [(x2 – x1)/x1] * 100, where x1 = mean of last five ePSC 
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amplitudes before depolarization, and x2 = mean of first three ePSCs amplitudes 

immediately after the depolarization. A significant deviation from zero was considered 

as DSE. The effect of HU-210 on EPSCs amplitude was quantified at the last 5 min 

of drug application and normalized to average baseline EPSCs amplitude. Miniature 

excitatory postsynaptic currents (mEPSCs) were recorded in the presence of 10 µM 

gabazine and 1 µM tetrodotoxin (TTX). 

 

Statistics 

Data are presented as means ± SEM and were analyzed using unpaired, two-tailed t 

test or two-way ANOVA for normally distributed variables to evaluate statistical 

significance with p < 0.05 as level of statistical significance. Seizure scores were 

analyzed using repeated measures ANOVA including Greenhouse-Geisser correction 

or Mann-Whitney U test. For agonist-stimulated [35S]GTPγS binding, nonlinear 

regression and sigmoidal curve fitting were used to obtain potency (EC50) and 

efficacy (Emax) values. A successful induction of DSE was determined by analysis 

with one-sample t tests. The Kaplan-Meier method was used to evaluate survival, 

followed by the log rank test to identify significant differences. Graphs were 

generated with GraphPad Prism 4.0 (GraphPad Software). SPSS 20 software (IBM) 

and GraphPad were used for statistical analyses. 
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Results  

CRIP1a expression in the mouse hippocampus 

CRIP1a is widely distributed in rodent tissues, with the highest expression levels in 

the brain (Niehaus et al. 2007). However, the expression pattern of CRIP1a in the 

brain and its relationship with CB1R expression has not been investigated so far. 

Therefore, we performed fluorescent double in situ hybridization to reveal Cnrip1a 

and Cnr1 mRNA localization in the mouse brain.  

Cnr1 mRNA is found in the forebrain with highest levels in the hippocampus 

(Marsicano and Lutz 1999). Our results confirmed this finding and revealed a similar 

distribution of Cnrip1a mRNA, which was predominantly expressed in the cerebral 

cortex and the hippocampus (Fig. 1A-A``). Cnrip1a mRNA was detected in principal 

cells of cornu ammonis (CA) areas 1-3, neurons of stratum radiatum, hilus and in 

granule cells of the dentate gyrus (Fig. 1B). In situ hybridization using sense probes 

produced no mRNA signal, confirming the specificity of the antisense probes (not 

shown). Cnr1 is expressed at very high levels in CCK+ GABAergic interneurons and 

at moderate to low levels in glutamatergic neurons (Kawamura et al. 2006; Marsicano 

and Lutz 1999). Consistently, we found low levels of Cnr1 mRNA in pyramidal cells of 

CA1-CA3 and high Cnr1 mRNA levels in interneurons mainly located in the stratum 

radiatum and in the hilar region (Fig. 1B`). In hippocampal pyramidal cells and hilar 

cells, Cnrip1a was co-expressed with Cnr1 (Fig. 1B-B``, C-C``, D-D``, G-G``). In the 

stratum radiatum, virtually all cells expressing high levels of Cnr1 mRNA - a 

characteristic feature of GABAergic interneurons - were also positive for Cnrip1a 

mRNA (Fig. 1E-E``; 736 cells/34 hippocampal sections/2 mice). Cnrip1a signal was 

abundant in dentate gyrus granule cells (Fig. 1F, F``). In contrast, this cell population 

lacked Cnr1 mRNA (Fig. 1F`), confirming previous findings (Marsicano and Lutz 

1999). In summary, both glutamatergic and GABAergic cell types expressing either 
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low or high levels of Cnr1 mRNA show Cnrip1a mRNA co-expression. In contrast to 

Cnr1, Cnrip1a transcripts were equally abundant in pyramidal neurons and 

interneurons in the hippocampal formation. The intensity of Cnrip1a mRNA 

expression varied somewhat among the different subfields with no correlation with 

Cnr1 mRNA levels. 

To investigate CRIP1a protein localization within the hippocampus and its potential 

interaction with CB1R, we performed immunohistochemistry on coronal mouse brain 

sections. CRIP1a immunoreactivity was observed throughout the hippocampus, with 

higher densities in principal cell layers of CA fields and dentate gyrus (Fig. 1H). This 

pattern was similar to relative densities of CB1R in the corresponding areas (Fig. 

1H`). However, the subcellular distribution of CRIP1a and CB1R proteins only partly 

overlapped. Thus, whilst CB1R staining was restricted to terminal axon fibers and 

endings, CRIP1a immunoreactivity was found in somata or widely distributed in the 

surrounding neuropil (Fig. 1I), but also in intimate contact (CA1 stratum pyramidale; 

Fig. 1J) or direct overlap (CA1 stratum radiatum; Fig. 1K,L) with CB1R-expressing 

processes. These data suggest that CB1Rs are in close proximity to CRIP1a. 

CRIP1a immunostaining was abolished by pre-absorption of antisera with the 

CRIP1a antigen peptide, confirming antibody specificity (Keimpema et al. 2010).  

Next, we asked whether CRIP1a is associated with both excitatory and inhibitory 

synapses. Vesicular glutamate transporters are indispensable proteins in excitatory 

terminal axon segments to control neurotransmitter shuttling in nerve endings 

(Kaneko et al. 2002). Glutamic acid decarboxylase (GAD) is an enzyme present 

specifically at inhibitory GABAergic synapses. We identified a large number of 

CRIP1a+ loci in direct contact with GAD+, VGluT1+ or VGluT3+ compartments in 

stratum radiatum (Fig. 2) or the hilus (Supplementary Fig. 1A,B). The close relation of 

CRIP1a and synaptic proteins suggests that CRIP1a is present in both excitatory and 
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inhibitory terminals. The major CB1R ligand 2-arachidonoylglycerol is produced by 

the enzyme diacylglycerol lipase-α (DAGLα), which is typically located 

postsynaptically (Kano et al. 2009; Yoshida et al. 2006). DAGLα+ and CRIP1a+ 

profiles appeared to be juxtaposed in stratum radiatum (Fig. 2) and hilus, 

(Supplementary Fig. 1C), indicating that CRIP1a is confined to the presynaptic 

compartment. To further test this, we quantitatively analyzed the ratio of CRIP1a+ 

profiles contacting VGluT1+, GAD+ or DAGLα+ puncta (Fig. 2). 84.1 r 4.7% of all 

CRIP1a+ profiles directly contacted or overlapped with VGluT1+ and GAD+ terminals, 

but only 7.3 r 1.2% of them with DAGLα+ profiles which strongly suggests the 

presynaptic localization of CRIP1a within the synaptic domain. 

 

Convergence of CB1R with CRIP1a following CB1R stimulation in vivo  

We have shown that at the subcellular level CB1R protein is in intimate proximity to 

but does not fully overlap with CRIP1a under basal conditions. To reconcile this 

observation with the proposed physical interaction of CRIP1a with CB1R (Niehaus et 

al. 2007), we asked whether the subcellular localization of CB1R and CRIP1a in 

mossy cells, which are implicated in excessive activity during seizures, might change 

by stimulation of CB1R. To address this question, we mapped the spatial relation of 

CB1R+ and CRIP1a+ profiles in mossy cell termini, located in the inner molecular 

layer of the dentate gyrus, of mice lacking CB1R in GABAergic neurons (GABA-

CB1R-KO) treated with either vehicle or the CB1R agonist HU-210.  

We used mice lacking CB1R in GABAergic neurons to diminish extensive CB1R 

staining derived from GABAergic cells and to quantitatively assess glutamatergic 

CB1R+ and CRIP1a+ profiles (15 sections/animal; 3 mice/group). Only a minority of 

CRIP1a+ profiles completely overlapped with CB1R, which did not change after HU-

210 treatment (Fig. 3). However, CB1R stimulation caused a significant increase in 
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the number of contacting CB1R+/CRIP1a+ profiles (vehicle, 6.8 ± 0.2%; HU-210, 16.1 

± 2.4%; p = 0.017). Concomitantly, we observed a trend towards decrease physically 

separated profiles that failed to reach statistical significance (vehicle, 89.3 ± 1.5%; 

HU-210, 81.9 ± 2.3%; p = 0.056). This finding indicates that CB1R activation causes 

rearrangement of CRIP1a and CB1 protein clusters in glutamatergic neurons. 

 

CRIP1a affects CB1R internalization 

CRIP1a binds to the C-terminal tail of CB1R (Niehaus et al. 2007), which plays an 

essential role in CB1R desensitization and internalization (Daigle et al. 2008; Jin et 

al. 1999; Straiker et al. 2012). We therefore hypothesized that co-expression of 

CRIP1a with activated CB1R may interfere with receptor internalization. To address 

this, we used HEK293 cells stably expressing N-terminally HA-tagged CB1R, for a 

transient transfection with a plasmid encoding either CRIP1a or GFP (control) and 

performed an internalization assay (see Methods). Transfected cells were stimulated 

with HU-210 (100 nM) or vehicle for 45 min and treated with trypsin or versene 

(control). Trypsin recognizes a cleavage site in the extracellular tail of CB1R and 

dissociates the HA tag from the recombinant receptor. Since trypsin is incapable of 

entering intact cells, the levels of HA-CB1R detected by immunoblotting can be 

directly attributed to the amount of internalized recombinant receptor (Fig. 4). CB1R 

stimulation resulted in 27.9 ± 1.8% (N = 6) of receptor being internalized. The 

presence of CRIP1a resulted in significantly less CB1R internalization (19.4 ± 2.9%; 

p < 0.05). This result is likely a conservative reflection of CRIP1a effects considering 

transfection efficiencies were only approximately 50-70%. In summary, these data 

suggest that co-expression of CRIP1a with activated CB1R slows internalization. 
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CRIP1a overexpression in the hippocampus 

To determine the effects of CRIP1a on CB1R function in vivo, we employed adeno-

associated virus (AAV)-mediated gene transfer to chronically increase CRIP1a levels 

in hippocampal neurons. Our AAV-expression cassette contained the 

cytomegalovirus enhancer/chicken beta actin (CAG) promoter known to drive high 

levels of transgene expression specifically in neurons (von Jonquieres et al. 2013). 

The HA-tagged CRIP1a cDNA was packaged, and the vector (AAV-CRIP1a) was 

stereotaxically delivered to the hippocampus of C57BL/6N mice (Fig. 5A). C57BL/6N 

mice receiving an AAV carrying no cDNA (Fig. 5B) served as control group (AAV-

empty). The injection site was selected to target transgene expression to CB1R+ 

neurons and therefore excluded dentate gyrus granule cells from AAV transduction, 

which are known to lack CB1R expression (Marsicano and Lutz 1999; Monory et al. 

2006). Four weeks after vector delivery, when AAV-mediated transgene expression 

peaks to remain at stable levels, mice were killed and brains subjected to HA-

immunohistochemistry. Recombinant CRIP1a was found in CA1-CA3 of AAV-CRIP1a 

animals (Fig. 5A) but not in controls (Fig. 5B), and was co-expressed with CB1R in 

principal neurons of CA1 (Fig. 5C). In AAV-CRIP1a mice, granule cells of the dentate 

gyrus did not show AAV transgene expression (Fig. 5D). Consistent with our previous 

studies (Guggenhuber et al. 2010) the rostro-caudal vector spread was >2.5mm and 

was restricted to the hippocampus (Fig. 5E). 

 

CRIP1a overexpression elevates cannabinoid-induced G protein activation 

We quantified CRIP1a protein expression in hippocampal homogenates of AAV-

empty and AAV-CRIP1a mice by western blot analysis using antibodies against 

CRIP1a and the HA tag (Fig. 5F). Size separation by PAGE followed by immunoblot 

analysis using a CRIP1a antibody allowed simultaneous detection of both 
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endogenous (18.6 kDa) and transgenic (20.3 kDa) CRIP1a (Fig. 5F). As expected, 

endogenous but not recombinant CRIP1a was detected in AAV-empty mice, while 

both CRIP1a populations were expressed in AAV-CRIP1a mice. Densitometric 

analysis revealed significantly elevated CRIP1a protein levels in AAV-CRIP1a mice 

as compared with AAV-empty controls (Fig. 5G; AAV-empty, 95.3 ± 1.2%; AAV-

CRIP1a, 151.9 ± 10.4%; p = 0.002). The levels of CB1R were similar in both groups 

(p = 0.314). 

Increased CRIP1a levels in hippocampal neurons might affect CB1R signaling, and 

therefore also CB1R-mediated G protein activation. To address this, we performed a 

HU-210-stimulated [35S]GTPJS binding assay using hippocampal homogenates of 

AAV-empty and AAV-CRIP1a mice previously analyzed by immunoblot. AAV-empty 

mice reached a maximum HU-210-induced G protein activation of 52.3 ± 2.1% (Fig. 

5H), while G protein stimulation in AAV-CRIP1a mice was significantly elevated to a 

maximum of 74.0 ± 2.2% (two-way ANOVA, interaction effect F (9, 130) = 2.65, p = 

0.007; genotype effect F (1, 130) = 50.49; p < 0.0001). These results suggest that 

CRIP1a increases CB1R activity by enhancing cannabinoid-induced G protein 

activation. 

 

Elevated CRIP1a levels do not affect basal CB1R-mediated short-term plasticity 

but prolong agonist-induced CB1R signaling 

As CRIP1a overexpression resulted in enhanced CB1R-mediated G protein 

activation, we investigated if depolarization-induced suppression of excitation (DSE) 

was altered in AAV-CRIP1a mice. Evoked excitatory postsynaptic currents (eEPSCs) 

were recorded in hippocampal CA1 pyramidal neurons upon Schaffer collateral 

stimulation, and a DSE protocol was applied. While a 2 s postsynaptic depolarization 

did not affect the eEPSC amplitudes (7 cells from AAV-empty and 10 cells from AAV-
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CRIP1a mice), a 5 s postsynaptic depolarization reduced eEPSCs significantly (p < 

0.05) in neurons from AAV-empty mice to 93.9 ± 0.5% (11 cells, 4 mice) and in AAV-

CRIP1a mice to 95.4 ± 0.5% (10 cells, 4 mice). A 10 s postsynaptic depolarization 

significantly (p < 0.001) reduced eEPSCs in neurons from AAV-empty mice (86.8 ± 

2.6%, 11 cells; 6 mice) and AAV-CRIP1a animals (84.8 ± 1.5%, 12 cells; 6 mice) 

(Fig. 6A). DSE magnitudes did not differ statistically between AAV-empty and AAV-

CRIP1a mice for both 5 s postsynaptic depolarization (-6.1 ± 0.5%, 11 cells vs. -5.5 ± 

0.5%, 10 cells; p = 0.79, respectively) and 10 s postsynaptic depolarization (-13.2 ± 

2.6%, 11 cells vs. -15.5 ± 1.4%, 12 cells; p = 0.44) (Fig. 6B). These results indicate 

that CRIP1a neither affects basal CB1R activity nor alters the stimulation strength 

required for DSE induction, suggesting that under these conditions CRIP1a does not 

interfere with excitatory transmission. To identify functional correlates for the reduced 

CB1R internalization by CRIP1a as well as for the enhanced HU-210 induced 

[35S]GTPγS binding, we next analyzed the depression of eEPSCs in AAV-empty and 

AAV-CRIP1a mice after bath application of HU-210 (1 µM). To evoke responses 

without causing desensitization over the course of the experiment, we applied a sub-

threshold dose of HU-210 (1 µM), which resulted in a lack of significant depression of 

eEPSCs in AAV-empty controls (Fig. 6C). In contrast, in AAV-CRIP1a mice a 

substantial eEPSC depression was observed in the presence of 1 µM HU-210, which 

was larger than in AAV-empty controls when analyzed after 55 min HU-210 

incubation (Fig. 6D; AAV-empty, 18.0 ± 5.9%; AAV-CRIP1a, 53.3 ± 9.5%; n = 4 cells, 

N = 4 mice; p = 0.020). Altogether, these findings provide functional evidence that 

CRIP1a overexpression does not affect short-term CB1R signaling, but enhanced 

agonist-induced CB1R signaling.  

 



 22 

CRIP1a overexpression increases protection against KA-induced seizures 

The endocannabinoid system exerts an important function in protection against 

chemically-induced excitotoxic seizures (Marsicano et al. 2003), and acute treatment 

of kainic acid elevates CB1R and CRIP1a levels in the rat hippocampus (Bojnik et al. 

2012). This provided the rationale to investigate the therapeutic potential of CRIP1a 

overexpression in the context of the pathological consequences of experimentally 

induced seizures. AAV-empty and AAV-CRIP1a mice received systemic kainic acid 

(KA, 30 mg/kg) injections to induce robust activation of excitatory pathways resulting 

in acute epileptiform seizures. AAV-CRIP1a mice exhibited a reduced seizure 

severity as compared to AAV-empty control animals during the course of the 

experiment (Fig. 7A; genotype effect F (1, 44) = 4.18; p = 0.047). The time to reach 

seizure severity score 3 was not different between the two groups (Fig. 7B). The 

most advanced seizure stage of every individual mouse during the course of the 

experiment is described as the maximum behavioral score. This value was 

significantly lower in AAV-CRIP1a mice than in AAV-empty controls (Fig. 7C; AAV-

empty, 4.8 ± 0.3; AAV-CRIP1a, 4.0 ± 0.2; p = 0.044). The progression of severe KA-

induced seizures can be lethal. Kaplan-Meier survival analysis illustrated a trend 

towards increased survival rate of AAV-CRIP1a animals in the course of the KA 

treatment without reaching statistical significance (Fig. 7D; p = 0.089). 120 min after 

KA-injection, 95.6% of AAV-CRIP1a mice versus 78.3% of control animals had 

survived the experiment. This reduced seizure severity could not be attributed to a 

reduction of excitatory synaptic transmission, since miniature EPSCs (mEPSCs) did 

not significantly (p = 0.13) differ in their amplitudes between AAV-empty (10.1 ± 0.6 

pA, 13 cells, 5 mice) and AAV-CRIP1a (8.9 ± 0.4 pA, 18 cells, 5 mice) mice 

(Supplementary Fig. 2A). Furthermore, mEPSCs frequency (0.18 ± 0.02 Hz vs. 0.12 

± 0.02; p = 0.11) and paired-pulse ratio of evoked EPSCs (1.49 ± 0.09, n= 13 vs. 
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1.44 ± 0.07; p = 0.67) were also not significantly different between AAV-empty and 

AAV-CRIP1a mice (Supplementary Fig. 2B-D). Prior to the KA model of epilepsy, 

AAV-CRIP1a mice, and the respective controls, were subjected to behavioral tests, 

suggesting that CRIP1a overexpression in hippocampal neurons had no effect on 

locomotion and inherent anxiety (Supplementary Fig. 3). These findings indicate that 

increased CRIP1a levels in hippocampal neurons diminish the severity of acute 

epileptiform seizures, broadly without affecting aspects of emotional and motor 

behavior.   



 24 

Discussion 

The hippocampus is involved in the development of epilepsy, and hippocampal 

CB1R is essential to provide protection against epileptiform seizures (Marsicano et 

al. 2003; Monory et al. 2006). In this report, we demonstrate that the CB1R 

interacting protein CRIP1a is expressed at high levels in the hippocampus. CRIP1a 

and CB1R are co-expressed in the major fields of the hippocampal formation, 

including GABAergic interneurons and glutamatergic pyramidal neurons. Of note, 

dentate gyrus granule cells are known to lack CB1R expression (Marsicano and Lutz 

1999; Monory et al. 2006), but show high levels of CRIP1a. At the subcellular level, 

CRIP1a and CB1R protein showed different degrees of co-localization, which was 

minimal in mossy fibre terminals under basal conditions. However, acute CB1R 

stimulation increased the proportion of CRIP1a/CB1R contacting profiles in mossy 

fibre terminals, indicating the movement of CRIP1a and CB1R following receptor 

activation. This finding suggests that CRIP1a interaction with CB1R is regulated by 

agonist stimulation, which is a common mechanism of modulating GPCR signaling by 

interacting proteins (Ritter and Hall 2009). Our experiments suggest that CB1R and 

CRIP1a are presynaptic proteins, yet they did not resolve single CB1R molecules. 

Therefore, we believe that clusters of molecules move (= traffic) on HU-210 

stimulation. The dynamics of lateral movements of molecules in membranes would 

be in line with our observed relocalization of these clusters within minutes. In fact, 

CB1R movements upon pharmacological stimuli, as revealed by quantum dot 

tracking, have been described (Mikasova et al. 2008), suggesting rapid changes in 

cell surface distribution. 

Niehaus and colleagues reported that CRIP1a associates with the CB1R C-terminus, 

and that the last 14 amino acids of the C-terminal tail of CB1R (aa 460-473) are 

sufficient to interact with CRIP1b, a shorter CRIP1 splice isoform, exclusively found in 
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primates (Niehaus et al. 2007). The C-terminal tail of CB1R is essential for CRIP1a 

binding because CRIP1a and CRIP1b share the first two exons of the Cnrip1a gene, 

which encode the minimal domain required for CB1R interaction (Niehaus et al. 

2007).  

In the present study, we showed that HU-210-induced CB1R internalization in 

HEK293 cells was reduced when CRIP1a was co-expressed. Interestingly, the distal 

C-terminal region of CB1R is also involved in β-arrestin binding, which is known to 

modulate GPCR signaling (Daigle et al. 2008). In general, agonist-induced activation 

of a GPCR induces the phosphorylation of the receptor’s cytoplasmic tail by G 

protein-coupled receptor kinase (GRK), which causes the recruitment of β-arrestin. β-

arrestin binding to the C-terminal tail of a GPCR results in functional uncoupling from 

its G protein, which is referred to as receptor desensitization, and eventually leads to 

receptor internalization (Reiter and Lefkowitz 2006). Hence, CRIP1a and β-arrestin 

may compete to interact with the CB1R C-terminal tail after CB1R stimulation. 

However, slowed internalization could be due to other interactions such as a general 

impaired trafficking of membrane proteins, speeding of proteolytic degradation of 

internalized receptor. 

In their pioneering study, Niehaus and colleagues suggested that CRIP1a blocks 

basal activity of CB1R (Niehaus et al. 2007). The suggested mechanism entailed 

CRIP1a-dependent suppression of the tonic inhibition of voltage-gated Ca2+ channels 

by CB1R in cultured superior cervical ganglion neurons. However, Ca2+ channel 

inhibition by agonist stimulation of CB1R is not changed in the presence of CRIP1a 

(Niehaus et al. 2007). In line with that, our data showed that CRIP1a did not interfere 

with short-term activity or protein levels of CB1R in CA1 pyramidal neurons because 

DSE magnitudes were not affected by CRIP1a overexpression. DSE protocols utilize 

the short-term depression of excitatory currents via activation of CB1R by 
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endocannabinoids, which were produced and released on demand in response to 

depolarization (Ohno-Shosaku et al. 2002). However, we observed that long-term 

CB1R stimulation causes CRIP1a to modulate CB1R signaling in an activity-

dependent fashion. This finding implies that CRIP1a regulates CB1R activity in an 

agonist-dependent manner contrary to the conclusion of Niehaus and colleagues. 

This discrepancy might be due to the usage of different model systems (cultured 

sympathetic neurons vs. hippocampal slices) and the experimental design (acute vs. 

long-term CRIP1a-dependent modulation of CB1R downstream signaling).  

A recent study investigated the effect of AAV-mediated overexpression of CRIP1a in 

the rat striatum on CB1R expression (Blume et al. 2013). CRIP1a overexpression 

had no effect on Cnr1 mRNA and CB1R protein levels, but affected the levels of 

phosphorylated extracellular signal-regulated kinase (ERK), indicating that CRIP1a 

may modulate CB1R signaling. In line with our data, Blume and colleagues showed 

substantial CRIP1a overexpression at the mRNA level but only 1.5-fold at the protein 

level (Fig. 5). 

The endocannabinoid system constitutes a promising target to attenuate excitotoxic 

events and to treat neurodegenerative diseases. However, direct pharmacological 

activation of CB1R causes psychotropic side effects limiting the benefit-to-risk ratio of 

this treatment (Lutz 2009; Pertwee 2012). Therefore, fine-tuning of CB1R activity in 

specific brain regions or in specific cell types by modulating CB1R interactions with 

other proteins would be a promising approach as the distinct effects of CB1R 

signaling might be caused by molecular differences in the constituents within the pool 

of CB1R interacting proteins. It is known that CB1R and CRIP1a are downregulated 

in sclerotic tissue of the hippocampus of epileptic patients (Ludanyi et al. 2008), but 

acute KA-treatment elevates CB1R and CRIP1a levels in the rat hippocampus 

(Bojnik et al. 2012). Both these studies suggest that chronic and acute seizure 
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activity have different consequences on CRIP1a and CB1R, they also indicate that 

the expression of both CB1R and CRIP1a are tightly co-regulated and respond to 

pathological incidents in tandem.  

Hippocampal CRIP1a overexpression did not affect locomotion and anxiety-related 

behavior suggesting that facilitating CB1R/CRIP1a interaction might not result in 

psychotropic side effects under basal conditions. However, an impairment of CB1R 

desensitization by CRIP1a overexpression may hypothetically lead to enhanced 

CB1R signaling in response to excessive excitatory transmission, which would be 

beneficial for the treatment of neurological disorders such as epilepsy. In fact, we 

found that elevated CRIP1a levels were sufficient to improve protection against KA-

induced seizures. Acute KA application causes long-term activation of glutamatergic 

transmission, which leads to the development of paroxysmal seizures (Ben-Ari and 

Cossart 2000). In addition, KA triggers endocannabinoid production (Lourenco et al. 

2011; Marsicano et al. 2003). It is well-established that CB1R signaling in 

glutamatergic, but not in GABAergic, neurons is essential to provide protection 

against epileptiform seizures (Marsicano et al. 2003; Monory et al. 2006). The 

protective effect of CRIP1a overexpression against KA-induced seizures cannot be 

explained by a down-regulation of presynaptic glutamate release or postsynaptic 

glutamate receptors, since our electrophysiological experiments revealed no effects 

of CRIP1a over-expression on mEPSCs frequency, mEPSCs amplitude, and paired-

pulse ratio of evoked EPSCs. Long-term CB1R activation causes CB1R 

desensitization, and therefore, reduces CB1R signaling (Jin et al. 1999; Kouznetsova 

et al. 2002; Straiker et al. 2012). While the AAV system used in this study was not 

designed to limit CRIP1a transgene expression to glutamatergic neurons, our DSE 

data (examining solely glutamatergic CB1R activation) and desensitization data 

(measuring glutamatergic transmission expressed as changes of EPSCs), suggests a 
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novel functional role for CRIP1a/CB1R interactions at excitatory synapses in the 

hippocampus. In conclusion, we hypothesize that by reducing CB1R desensitization 

in glutamatergic hippocampal neurons, CRIP1a prolongs CB1R signaling which 

results in an extended suppression of glutamate release. 
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Figure legends 

Figure 1. CRIP1a expression in the mouse hippocampus. A-A``, Cnrip1a and Cnr1 

mRNA in a coronal mouse brain section, as detected by in situ hybridization. Note the 

high levels of both Cnrip1a and Cnr1 mRNA in the hippocampus and cortex. B-B``, In 

situ hybridization revealed Cnrip1a and Cnr1 mRNA in the hippocampus. Cnrip1a 

mRNA was detected in pyramidal neurons of the cornu ammonis (CA) areas, in 

dentate gyrus granule cells and in cells of the stratum radiatum. C-C``, D-D``, High 

power magnification of CA3 (C-C``) and the hilar region (D-D``) shows glutamatergic 

neurons co-expressing Cnrip1a and Cnr1 mRNA. Note the high levels of Cnrip1a 

mRNA as compared to the relatively low levels of Cnr1 mRNA. E-E``, Interneurons in 

the stratum radiatum express high levels of Cnr1 mRNA. 100% of these cells co-

express Cnrip1a mRNA (736 cells/34 hippocampal sections/2 mice). F-F``, Granule 

cells of the dentate gyrus exhibit Cnrip1a mRNA staining but lack Cnr1 mRNA. G-G``, 

CA1 pyramidal cells express moderate Cnrip1a mRNA levels together with low levels 

of Cnr1 mRNA. H-H``, Distribution of CRIP1a and CB1R immunoreactive profiles in 

the hippocampal formation. CRIP1a immunoreactivity occurred both in a large 

number of cell bodies and the surrounding neuropil in a large number of neurons (H). 

CB1R+ terminals amply surround the somata of principal cells of both CA regions and 

dentate gyrus (H`). I,J, CRIP1a+ profiles (arrowheads) are in intimate contact with 

CB1R+ terminals at the somatic surface of a neuron in CA1. K,L-L``, In the stratum 

radiatum, CB1R+ terminals repeatedly showed co-localization with CRIP1a+ profiles 

(arrowheads; open arrowhead points to a CB1R+/CRIP1a- terminal. Bars: 1 mm (A``), 

500 µm (B``), 200 µm (H``), 20 µm (D), 5 µm (I), 1 µm (J), 10 µm (K), 3 µm (L). 

 

Figure 2. CRIP1a in CA1 stratum radiatum is allocated to both excitatory and 

inhibitory presynaptic but not to postsynaptic domains. Images show immediate 
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neighborhood with no demonstrable physical separation, i.e. direct contact, between 

CRIP1a+ and GAD+ or VGLUT1+ profiles. In contrast, DAGLα+ profiles remain clearly 

separated from CRIP1a+ puncta. Bar: 3 µm. **p < 0.01. 

 

Figure 3. CRIP1a relocalization after CB1R activation. Image analysis and 

quantitative assessment of CB1R+ and CRIP1a+ profiles in mossy cell termini of the 

inner molecular layer of GABA-CB1R-KO mice after HU-210 application and 

compared to vehicle treatment. HU-210 treatment did not change the proportion of 

overlapping CB1R+/CRIP1a+ profiles. However, the proportion of contacting profiles 

significantly increased after CB1R activation, which was accompanied by a decrease 

of physically separated profiles without reaching statistical significance. For XZ and 

YZ scale analysis, see orthogonal images. Arrowheads indicate overlaps. *p < 0.05. 

Bar: 2 µm. 

 

Figure 4. CRIP1a attenuated CB1R internalization. HEK cells stably expressing HA-

tagged CB1R were transfected with GFP or CRIP1a and stimulated with HU-210 

(100 nM) or vehicle. Top, CB1R internalization was assessed by immunoblot. HA 

immunoblot of HEK cell lysates following HU-210 or vehicle application and trypsin or 

versene treatment, as indicated by the table below. Bottom, CRIP1a expression 

decreased the amount of CB1R proteins being internalized after HU-210 stimulation 

(control, 27.94 ± 1.75%; CRIP1a, 19.38 ± 2.92%; p = 0.031; N = 6). Data are 

expressed as means ± SEM. *p < 0.05. 

 

Figure 5. AAV-mediated CRIP1a overexpression in the hippocampus. AAV-CRIP1a 

(A) or AAV-empty (B) was injected bilaterally into the hippocampus of wild-type 

C57BL/6N mice (AP: -2.0, ML: ± 1.3, DV: -1.6). A, Immunohistochemical detection of 
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the HA tag revealed robust transgene expression within the hippocampal formation in 

AAV-CRIP1a mice. B, HA-immunostaining showed the lack of transgene expression 

in AAV-empty controls. Bar in B: 250 µm. CAG, CMV immediate early 

enhancer/chicken β-actin hybrid promoter; WPRE, woodchuck hepatitis virus post-

transcriptional regulatory element; pA, bovine growth hormone polyadenylation 

sequence. C, Pyramidal neurons of CA1 expressed ectopic CRIP1a protein together 

with endogenous CB1R. Bar in C`: 50 µm. D, In AAV-CRIP1a animals, dentate gyrus 

granule cells were spared from AAV-mediated CRIP1a expression. E, Schematic 

diagrams of the mouse brain depict the approximate rostro-caudal extent of AAV-

mediated CRIP1a transgene expression (gray shading). Numbers indicate distance 

from bregma. F, Western blot analysis of hippocampal homogenates of AAV-empty 

(N = 4) and AAV-CRIP1a (N = 4) mice. Detection of ectopic CRIP1a protein using an 

antibody against the HA-tag showed CRIP1a bands exclusively in AAV-CRIP1a mice. 

Immunoblot using a CRIP1a antibody revealed both endogenous and ectopic 

CRIP1a protein in AAV-CRIP1a mice. Only endogenous CRIP1a protein was 

detected in AAV-empty animals. Cell adhesion molecule F3 or actin was used as 

loading control. G, CRIP1a levels were significantly elevated in AAV-CRIP1a mice as 

compared to AAV-empty controls. CB1R levels were unaltered. Data were 

normalized to the loading control F3. H, Stimulation of [35S]GTPγS binding in 

hippocampal homogenates of AAV-empty (N = 7) and AAV-CRIP1a mice (N = 8) was 

determined with various concentrations of the CB1R agonist HU-210. Basal binding 

was measured in absence of HU-210 and defined as 0% in each experiment. Data 

are presented as percentage stimulation above basal [35S]GTPγS binding. The 

nonlinear regression curve illustrates that CRIP1a overexpression resulted in 

significantly enhanced cannabinoid-induced G protein activation. Data are expressed 

as means ± SEM. **p < 0.01, ***p < 0.001. 
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Figure 6. Functional consequences of CRIP1a overexpression on hippocampal CA1 

pyramidal neurons. A, Amplitude of eEPSCs from recordings in AAV-empty (open 

circles) and AAV-CRIP1a mice (black circles). The 10 s depolarization step is 

indicated by an arrow. B, Top, averaged eEPSCs immediately before (1; n = 5 

traces) and after (2; n = 3 traces) the 10 s depolarization step, recorded in AAV-

empty (left) and AAV-CRIP1a (right) mice. Bottom, summary bar graph showing the 

magnitude of DSE after 5 s (hatched bars) and 10 s (solid bars) depolarization. Note 

that DSE did not differ between the two groups. C, Averaged eEPSCs after bath 

application of the CB1R agonist HU-210 (1 µM). D, Summary bar graph showing the 

magnitude of eEPSC depression by HU-210. CRIP1a overexpression enhanced the 

depression of eEPSCs 60 min after HU-210 application. Data are expressed as 

means ± SEM. *p < 0.05. 

 

Figure 7. CRIP1a and kainic acid-induced seizures. Seizures were induced in AAV-

CRIP1a mice (N = 23) and AAV-empty controls (N = 23) by injection of kainic acid 

(30 mg/kg, i.p.). A, Seizure severity was reduced in AAV-CRIP1a mice as compared 

to AAV-empty controls. B, There was no difference in the latency to reach seizure 

score 3. C, The maximum seizure severity was significantly lower in AAV-CRIP1a 

mice than in AAV-empty animals. D, Kaplan-Meier survival curves depict a higher 

survival rate of AAV-CRIP1a mice compared to AAV-empty controls during KA 

treatment, which was close to but did not reach statistical significance. Data are 

expressed as means ± SEM. *p < 0.05. 
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Materials and Methods 

Behavioral testing  

Behavioral testing commenced at four weeks after vector injections, when 

AAV-mediated transgene expression has reached maximum and stable 

levels. AAV-CRIP1a and AAV-empty animals (n=21-25) were subjected to the 

tests in the order listed below. Animals were left undisturbed for at least 5 

days between the different test sessions. The experimenter was blind to the 

treatment of the animals. Locomotor activity and anxiety-related behavior was 

tested using an open field box and the light/dark emergence test, respectively, 

as described (Schneider et al. 2007). Inherent anxiety was investigated using 

the elevated plus maze, consisting of two open arms (35 cm length, 6 cm 

width) and two enclosed black arms (35 cm length, 6 cm width, 20 cm height) 

at 1 m above the floor. The light on the floor of the open arms and the center 

had about 30 lux. At the beginning of the test, the mouse was placed in a 

close arm, and the behavior was video-monitored for 5 min. Recordings were 

used to determine the time spent in the different arms, the entire entries to the 

arms as well as head dips and risk assessment. 
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Legends to Supplementary figures 

Figure 1. Immunodetection of CRIP1a in the hilus of mouse hippocampus. A-

A``, B-B``, CRIP1a expression sites are in direct contact with GAD+, 

VGLUT1+ or VGLUT3+ terminals (arrowheads). C-C``, CRIP1a and DAGLα 

expression sites did not overlap but were generally in close contact. Bars: 100 

µm (A, B, C), 2 µm (A``, B``, C``). 

 

Figure 2. CRIP1a does not affect excitatory synaptic transmission. A, B, 

Amplitude and frequency of miniature EPSCs were not significantly different in 

CA1 pyramidal cells from AAV-empty and AAV-CRIP1a transfected animals. 

C, Typical current traces illustrating paired-pulse facilitation of the 2nd eEPSC. 

Note comparable paired-pulse facilitation between AAV-empty and AAV-

CRIP1a mice. D, Bar graph illustrating paired-pulse ratio of evoked EPSCs in 

AAV-empty and AAV-CRIP1a mice. n.s., non significant. 

 

Figure 3. CRIP1a overexpression did not affect locomotion and anxiety 

behavior. A, B, Animals were subjected to an open field test. The time spent 

in the center (p = 0.83) and the distance travelled (p = 0.42) did not differ 

between AAV-empty and AAV-CRIP1a mice. C, D, In the elevated plus maze, 

there was no significant difference in the time spent in the open arm (p = 0.59) 

or in the entries into the open arm (p = 0.36) between the two groups. E, F, 

The light/dark test revealed that AAV-empty and AAV-CRIP1a animals did not 

differ in the time spent in the lit compartment (p = 0.22) and in the entries into 

the lit compartment (p = 0.73). N = 21 to 25 mice per group. Data are 

expressed as means ± SEM. 


