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Cannabinoids are lipid messengers that modulate a variety of physiological processes

and modify the generation of specific behaviors. In this regard, the cannabinoid

receptor type 1 (CB1) represents the most relevant target molecule of cannabinoids

so far. One main function of central CB1 signaling is to maintain whole body energy

homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in

neural networks that control energy metabolism and feeding behavior. The promotion

of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1

suppresses hunger and induces hypophagia. However, in order to treat overeating,

pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed

feeding but also resulted in psychiatric side effects. Therefore, research within the last

decade focused on deciphering the underlying cellular and molecular mechanisms of

central cannabinoid signaling that control feeding and other behaviors, with the overall

aim still being the identification of specific targets to develop safe pharmacological

interventions for the treatment of obesity. Today, many studies unraveled the subcellular

localization of CB1 and the function of cannabinoids in neurons and glial cells within

circumscribed brain regions that represent integral parts of neural circuitries controlling

feeding behavior. Here, these novel experimental findings will be summarized and recent

advances in understanding the mechanisms of CB1-dependent cannabinoid signaling

being relevant for central regulation of feeding behavior will be highlighted. Finally,

presumed alternative pathways of cannabinoids that are not driven by CB1 activation

but also contributing to control of feeding behavior will be introduced.

Keywords: cannabinoid receptor type 1, endocannabinoids, hypothalamus, feeding behavior, anorexia, cachexia,

overeating, obesity

INTRODUCTION

Central regulation of feeding behavior is indispensable to life, since animals and men have to
consume energy in terms of food to exert essential daily functions (Gao and Horvath, 2016). In this
regard, a network of neural circuitries evolved that ensures constant energy supply by providing
a “pro-feeding” behavioral outcome: in times when food is plentiful, energy intake dominates
energy expenditure, so that excessive energy could be stored and used when food was restricted
or temporarily not available (Koch and Horvath, 2014).

Cannabinoids, such as THC interfere with central regulation of feeding behavior by acting upon
G protein-coupled cannabinoid receptor type 1 (CB1) in the brain (Williams and Kirkham, 1999).
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However, the underlying molecular and cellular mechanisms of
central CB1 signaling in control of feeding and other behaviors
are still far from being fully understood (Mazier et al., 2015).
Moreover, better insight into the aforementioned network being
responsible for central control of feeding behavior is of significant
interest, since nowadays, the respective neural circuitries are of
substantial clinical relevance. Most importantly, availability of
food no longer represents an evolutionary pressure, since food
exists in abundance in many (albeit not all) countries around
the world. Moreover, energy-dense foods high in carbohydrates
and rich in fat can be obtained with little or no efforts. Thus,
many people are suffering from chronic overload with nutrients
in today’s world, which, when accompanied by overall decreased
physical activity is often leading to a morbid increase in body fat
mass and resulting in obesity. On the other hand, a significant
number of patients is affected from a complete loss of appetite
(anorexia), which may be caused by psychiatric disorders, or by
cancer and infectious diseases, and make these patients suffering
from chronic under-nutrition (Scarlett and Marks, 2005; Park
et al., 2014). Thus, decoding of the underlying cellular and
molecular mechanisms in the central nervous system (CNS) that
control feeding behavior may help to develop pharmacological
interventions not only for disorders related with anorexia, but
also for the treatment of the ever-increasing number of obese
patients worldwide (Dietrich and Horvath, 2012).

Since time immemorial, cannabis extracts are used for
recreational purposes. However, it is clear today that not only
the psychotropic properties but also the well-known appetite
stimulating effects of the plant-derived cannabinoid THC are
mediated by CB1 activation (Silvestri and Di Marzo, 2013).
CB1 belongs to the endocannabinoid system (ECS) that further
consists of endocannabinoids (eCBs) as intrinsic CB1 ligands, and
of eCB synthesizing and hydrolyzing enzymes (Piomelli, 2003).
These enzymes steadily control eCB levels in a temporal and
spatial fashion to guaranty functional CB1 signaling in a region
and cell type specific manner (Pertwee, 2014). Interestingly,
malfunction of the central ECS is associated with overeating and
obesity (Engeli, 2008;Mazier et al., 2015). Thus, themain purpose
here is to summarize recent experimental findings for central
control of feeding behavior in health and disease, with special
focus on central CB1 signaling. Finally, presumed alternative,
non-CB1 driven pathways by which eCBs might also contribute
to feeding regulation will be introduced.

DOES CB1 STILL LEND ITSELF AS A
THERAPEUTIC TARGET IN CENTRAL
FEEDING REGULATION?

CB1 was discovered almost 30 years ago and later identified as
a promising target molecule in the CNS to pharmacologically
interfere with feeding behavior (Matsuda et al., 1990; Devane
et al., 1992; Williams and Kirkham, 1999). Besides feeding,
several other physiological functions, and behaviors being
modulated by central CB1 signaling were deciphered so far
(Lutz et al., 2015), and many pharmacological, biochemical,
and morphological aspects of central CB1 signaling were
characterized.

The vast majority of CB1 is located at presynaptic
terminals in order to suppress the further release of classical
neurotransmitters, such as GABA or glutamate (Castillo
et al., 2012). However, different localizations and functions of
CB1 were also discovered (Figure 1). In principle, the acute
pharmacological promotion of central CB1 signaling can evoke
food intake and thus still represents a promising approach
to treat anorexia (Williams and Kirkham, 1999; Aigner et al.,
2011; Reuter and Martin, 2016). However, it was discovered a
couple of years ago that only administration of low to moderate
doses of CB1 agonists were able to increase food intake in mice,
while moderate to high doses of CB1 agonists decreased feeding
(Bellocchio et al., 2010). In this, hypophagia was induced by
CB1-mediated reduction of GABAergic transmission, while
hyperphagia was stimulated by CB1-driven suppression of
glutamatergic conduction (Bellocchio et al., 2010; Busquets
Garcia et al., 2016). This fundamental finding in mice might
explain the contrary results of different clinical trials on the
use of CB1 agonists in order to treat anorexia in humans
(Aigner et al., 2011; Reuter and Martin, 2016). Thus, further
approaches are needed to carefully reconsider the beneficial
effects of CB1 agonists for the treatment of anorexia (Whiting
et al., 2015). In contrast to CB1 agonists, the overall blockade of
CB1 by rimonabant generally suppressed hunger and induced
hypophagia (Colombo et al., 1998; Simiand et al., 1998), but
unfortunately also resulted in psychiatric side effects in humans.
To develop more specific and safe pharmacological interventions
for the treatment of overeating, the recently presented molecular
ultrastructure of human CB1 may deliver new opportunities for
the design of next-generation CB1 directing pharmaceuticals
as novel anti-obesity drugs (Hua et al., 2016; Shao et al.,
2016). Moreover, allosteric agents directed against CB1 such
as hemopressin or pregnenolone (Heimann et al., 2007; Dodd
et al., 2010, 2013; Vallee et al., 2014) may supply medications
with a significantly improved side effect profile (Busquets
Garcia et al., 2016). Finally, another pharmacological approach
aimed at selective blockade of peripheral CB1, which basically
was shown to induce metabolic benefits independently from
modification of feeding behavior (Nogueiras et al., 2008; Tam
et al., 2012). Nevertheless, it is primarily the knowledge about
the cell type specific functions of CB1 signaling in different types
of neurons, and, as discussed later, also in glial cells, such as
astrocytes (Metna-Laurent and Marsicano, 2015), which will
determine if and in how far the full therapeutic potential of CB1
pharmacology in feeding regulation can be leveraged.

In this regard, complexity of central CB1 signaling was
further broaden by the observation that CB1, as a G protein-
coupled receptor, is not exclusively expressed at the plasma
membrane but also located at the outer mitochondrial membrane
(Benard et al., 2012; Hebert-Chatelain et al., 2014). By interfering
with respiratory chain complex I, mitochondrial CB1 was
recently shown to promote the amnesia-inducing effects of
CB1 agonists in the hippocampus (Hebert-Chatelain et al.,
2016; Harkany and Horvath, 2017). Accordingly, effects of
cannabinoids on food intake are also transmitted via CB1-
induced mitochondrial adaptations, since induction of feeding
by CB1 agonists depended on the expression of mitochondrial
uncoupling protein 2 and the formation of reactive oxygen
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FIGURE 1 | Principles of central CB1 signaling in control of feeding behavior. (A) Retrograde signaling of eCBs at presynaptic CB1 impacts feeding (Bellocchio

et al., 2010). (B) Postsynaptic CB1 at POMC neurons affects feeding in DIO (Morello et al., 2016). (C) Cannabinoids interfere with mitochondrial CB1 in hypothalamic

feeding regulation (Koch et al., 2015). (D) Whether activity-dependent subcellular distribution of CB1(Thibault et al., 2013) accounts for control of food intake is still

open. (E) Astroglial CB1 regulates the metabolic effects of leptin in cultured astrocytes (Bosier et al., 2013), and thus might contribute to astrocyte-dependent control

of feeding behavior in the hypothalamus (Kim et al., 2014). (F) Enzymes of eCB synthesis or degradation control eCB levels in a spatial and temporal manner

(Pertwee, 2014). Moreover, eCBs not only function as CB1 ligands, but also as substrates of specific enzymes, such as lipoxygenases (LOX), cyclooxygenases (COX),

or cytochrome P450, supporting the idea that the ECS might also transmit metabolic effects independently from CB1 signaling (non-CB1).

species (ROS) in the hypothalamus (Koch et al., 2015;
Kruger, 2016), finally pointing toward region-specific functions
of mitochondrial CB1 signaling in the brain (Harkany and
Horvath, 2017). However, CB1 driven control of ROS seems
to be multifaceted, since cannabinoids reduced leptin-mediated
ROS formation in cultured hypothalamic neurons by CB1
dependent peroxisome proliferator-activated receptors (PPAR)-
gamma and subsequent catalase activation (Palomba et al.,
2015). Overall, about 15% of total brain CB1 is associated
with mitochondria (Benard et al., 2012; Hebert-Chatelain et al.,
2014), and it appeared that CB1 is present in mitochondria
of both pre- and postsynaptic terminals (Busquets Garcia
et al., 2016). However, CB1 is most abundantly expressed
at the plasma membrane of axonal shafts and presynaptic
terminals (Pertwee, 2010), and significant amounts of CB1
in the forebrain are constantly activated, internalized, and
recycled at steady state (Thibault et al., 2013). Whether
internalization and redistribution of CB1 between axonal
plasma membrane and somato-dendritic endosomes account
for control of feeding behavior still needs to be investigated.
Moreover, functional expression of CB1 is also observed at
the postsynaptic plasma membrane (Castillo et al., 2012). In
the course of diet-induced obesity (DIO), orexin-A represses

satiety-promoting pro-opiomelanocortin (POMC) neurons in
the hypothalamic arcuate nucleus (ARC) by eCB-mediated
activation of postsynaptic CB1 on POMC neurons (Morello et al.,
2016).

In addition to neurons, CB1 is also expressed in astrocytes
(Metna-Laurent and Marsicano, 2015; Oliveira Da Cruz et al.,
2016), and plays an important role in neuroinflammation
(Walter and Stella, 2004), and in physiological neurotransmission
(Navarrete and Araque, 2010; Han et al., 2012). Interestingly,
astrocyte-dependent energetic support of neurons also involves
CB1, since leptin-induced astroglial glycogen accumulation
depends on CB1 signaling in cultured astrocytes (Bosier
et al., 2013). However, the relevance of astroglial CB1 in
distinct hypothalamic feeding centers has to be considered in
vivo. Accordingly, structural analyses determined CB1 in the
immediate vicinity to astrocytes at tripartite synapses in the ARC
(Morozov et al., 2017). Moreover, hypothalamic astrocytes and
microglia showmorphological adaptations in DIO (Baufeld et al.,
2016; Argente-Arizon et al., 2017), and astrocytes, via leptin
signaling, actively control hypothalamic neuronal circuits, and
feeding (Kim et al., 2014). Thus, it is of significant interest to
study the function of CB1 signaling in glial cells under normal
and high fat diet (HFD).
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Together, studies focusing on the cell type specific expression
and subcellular distribution of CB1 delivered unique mechanistic
insights into central CB1 signaling, which provides an
important prerequisite to uncover the physiological role of
CB1 in distinct homeostatic and hedonic feeding centers of
the CNS.

RECENT ADVANCES IN UNDERSTANDING
HOMEOSTATIC AND HEDONIC FEEDING
CONTROL: WHAT IS THE RELEVANCE OF
CB1?

Homeostatic feeding centers supervise the body’s energy
resources and are located in the hypothalamus and caudal
brainstem (Koch and Horvath, 2014), while hedonic feeding
centers relevant for palatability and rewarding aspects of food are
pinpointed to themesolimbic system (Alonso-Alonso et al., 2015;
Pandurangan and Hwang, 2015). Although both control systems
are anatomically located in different brain areas, it becomes more
likely that they are functionally closely interconnected to each
other (Munzberg et al., 2016).

CB1 obtains a conserved distribution in the CNS among
different mammalian species (Herkenham et al., 1990). High
CB1 expression levels in the hippocampus or basal ganglia are
attributed to cannabinoid-induced effects on memory formation
and movement (Castillo et al., 2012). Low CB1 expression
levels in hypothalamic or caudal brainstem nuclei display
significant functions in regulation of feeding behavior (Cardinal
et al., 2012; Mazier et al., 2015). In this, distinct groups of
hypothalamic neurons measure the body’s energy resources by
sensing circulating nutrients and detecting metabolic hormones,
such as leptin, insulin, or ghrelin (Varela and Horvath, 2012;
Vogt and Bruning, 2013; Muller et al., 2015). Moreover,
hypothalamic neurons are directly affected by cannabinoids,
since infusion of CB1 agonists into distinct hypothalamic
nuclei acutely induced feeding (Jamshidi and Taylor, 2001;
Koch et al., 2015). Interestingly, hypothalamic CB1 signaling
interferes with signal transmission of metabolic hormones.While
leptin suppressed feeding correlates with decreased hypothalamic
eCB levels (Di Marzo et al., 2001), ghrelin triggered acute
feeding accompanies with increased hypothalamic eCB levels,
and depends on paraventricular nucleus (PVN) CB1 signaling
(Kola et al., 2008). However, CB1 mediated control of feeding
in the PVN is more complex than thought before, since
under an experimental fasting/re-feeding paradigm, blockade
of local CB1 in the PVN increased hyperphagy in hungry
mice, and enhanced the hyperphagic effect of ghrelin in fed
animals (Soria-Gomez et al., 2014b). Thus, hypothalamic eCBs
represent local neuromodulators that are actively involved in
rapid rewiring of hypothalamic feeding circuits in accordance to
the current prandial state (Pinto et al., 2004). In DIO, imbalanced
hypothalamic eCB levels and defective CB1 signaling seem to
be the consequence of central leptin resistance (Silvestri and Di
Marzo, 2013). In the lateral hypothalamus (LH), CB1 is involved
in physiological control of melanin-concentrating hormone and
orexin-A neurons (Silvestri and Di Marzo, 2013). In DIO, eCBs

in the LH promote hyperphagia by remodeling the synaptic input
organization of orexin-A neurons (Alpar and Harkany, 2013;
Cristino et al., 2013).

In the ARC, at least two neuronal populations with opposing
effects on feeding behavior can be distinguished: the hunger
promoting Agouti-related protein/neuropeptide Y (AgRP/NPY)
neurons that acutely promote food intake, and POMC neurons
that drive gradual onset of satiety (Varela and Horvath,
2012). Systemic blockade of CB1 by rimonabant reduced NPY
levels, indicating that AgRP/NPY neurons are controlled by
local eCBs (Verty et al., 2009). AgRP/NPY neurons do not
contain CB1 (Cota et al., 2003; Horvath, 2003), but CB1
was predominately found at GABAergic terminals innervating
AgRP/NPY neurons (Morozov et al., 2017). Thus, local eCBs in
the ARC might promote feeding by retrograde dis-inhibition of
AgRP/NPY neurons. However, POMC neurons are also affected
by cannabinoids via pre- and postsynaptic CB1 (Hentges et al.,
2005; Koch et al., 2015; Morello et al., 2016). In fed mice,
CB1 agonists rapidly converted POMC neurons from promoters
of long-term satiety into acute drivers of hunger (Koch et al.,
2015; Patel and Cone, 2015). In DIO, orexin-A repressed POMC
neurons by constitutive eCB signaling at postsynaptic CB1 in
POMC neurons (Morello et al., 2016). Mapping of hypothalamic
neuronal subtypes by single-cell RNA sequencing (Romanov
et al., 2017) and molecular indexing of local ARC cell types by
gene expression profiling identified novel cell types of putative
relevance for regulation of distinct vegetative body functions,
including feeding (Campbell et al., 2017). Thus, it would be
interesting to dissect the functional relevance of CB1 signaling in
these cell types. Accordingly, glutamate-releasing neurons in the
ARC that express oxytocin receptors were identified as an integral
part of a rapid ARC to PVN satiety pathway (Fenselau et al.,
2017). However, whether acute effects of cannabinoids on feeding
might be further transmitted by this novel pathway remains
elusive. Alongside, local ARC dopaminergic cells were identified
that reciprocally control activity of AgRP/NPY and POMC
neurons (Zhang and Van Den Pol, 2016). This finding is of
substantial interest in order to study CB1 controlled homeostatic
feeding, since dopamine modulates rewarding aspects of food
mainly through dopaminergic ventral tegmental area (VTA) to
nucleus accumbens (NAc) projections (Volkow et al., 2011), and
CB1 signaling was shown to modulate dopaminergic signaling in
the NAc and VTA to regulate hedonic aspects of feeding (Melis
et al., 2007; Di Marzo et al., 2009).

Beside the VTA located in the rostral brainstem, CB1
signaling is also interfering with the functional activity of caudal
brainstem nuclei, such as parabrachial nucleus, dorsal motor
nucleus of the vagus, and nucleus of the solitary tract. In this,
CB1 basically controls food preferences, such as digestion of
palatable foods being rich in fat (Busquets Garcia et al., 2016).
Finally, hypothalamic AgRP/NPY and POMC neurons are not
only directly affected by food intake itself, but also rapidly
respond to sensory detection of available food (Chen et al.,
2015). It is thus likely that hypothalamic neurons not only
transmit internal signals causing hunger or satiety in response
to eating and internal sensing of energy resources, but also
receive external information on the incentive value of food,
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such as sight, smell, and taste in order to rapidly react to
food stimuli and transmit motivational aspects on feeding being
generated via the mesolimbic system (Seeley and Berridge, 2015).
Processing of food sensations such as olfactory or gustatory
signals indeed involve CB1 signaling, since fasted mice displayed
CB1-dependent increased odor detection in the main olfactory
bulb (Soria-Gomez et al., 2014a).

BESIDES CB1: DOES THE ECS PROVIDE
OTHER RELEVANT TARGET MOLECULES
IN FEEDING REGULATION?

Within the ECS, it is the availability of eCBs that provides
the routes and directions of CB1 signaling in the brain. While
research was long-time focusing on pharmacological modulation
of CB1 signaling by direct interaction at CB1 in order to interfere
with feeding and other behaviors, numerous evidence arose
that targeting of classical enzymes involved in biosynthesis or
degradation of eCBs will also allow to induce adaptations in
feeding behaviors (Pertwee, 2014). For example, degradation of
the eCB 2-arachidonoylglycerol (2-AG) into arachidonic acid
and glycerol is basically controlled by three different serine
hydrolases: while monoacylglycerol lipase (MAGL) accounts
for 85% of 2-AG degradation, alpha/beta-hydrolase domain
containing (ABHD) 6, and 12 are responsible for hydrolysis
of 5 and 10%, respectively (Savinainen et al., 2012). Indeed,
it was shown that knockdown of ABHD6 in the ventromedial
hypothalamus resulted in locally elevated 2-AG levels, finally
resulting in a blunted fasting-induced feeding response and in a
general diminished efficacy of the mice in order to adapt to other
metabolic shifts (Fisette et al., 2016).

Generally, eCBs do not resemble to classical neurotransmitters
that are stored in synaptic vesicles (Piomelli, 2003). Instead, eCBs,
as being arachidonic acid derivatives, are produced on demand
from lipid precursors. Most eCBs display a relative short half-
life, since they are attracted by both classical eCB degrading
enzymes in order to terminate CB1 signaling, and by different
classes of enzymes aiming transformation of eCBs into other
classes of lipidergic signaling molecules, such as prostamides
(Urquhart et al., 2015). The fact that eCBs belong to the family
of polyunsaturated fatty acids makes them indeed attractive
substrates for enzymatic oxidation, as induced by lipoxygenases
(LOX), cyclooxygenases (COX), or cytochrome P450 (Rouzer
and Marnett, 2011). Numerous eCBs have been described so far
and in addition to 2-AG it is arachidonoylethanolamine (AEA)
representing by far the best-studied intrinsic ligand of CB1 today.
However, beside CB1 and CB2 as the most relevant G protein-
coupled receptors of cannabinoids, it is likely that eCBs also act
upon several other G protein-coupled receptors, such as GPR18,
GPR55, andGPR119. These former orphan receptors are putative

candidates for nomination of CB3, however their relevance in
feeding regulation has to be further investigated. Nevertheless,
it appeared that GPR18 and GPR55 signaling is involved in
processes of metabolic dysfunction (Liu et al., 2015; Rajaraman
et al., 2016). Besides G protein-coupled receptors, eCBs such as
AEA were also shown to act upon other types of receptors, such
as transient receptor potential (TRP) vanilloid 1 (Pertwee, 2010).
Moreover, several enzymes involved in eCB biosynthesis, such as
the AEA synthesizing N-acyl phosphatidylethanolamine-specific
phospholipase D (NAPE-PLD) not only give rise to the CB1
ligand AEA, but also to structural very similar lipid messengers
that do not bind and activate CB1. In this, it was shown that
oleoylethanolamine (OEA) and palmitoylethanolamine (PEA), as
close related lipids of AEA, bind to PPARs (Fu et al., 2003; Lo
Verme et al., 2005; Gaetani et al., 2010), which are well-known
to contribute in control of glucose, lipid, and energy metabolism
(Grygiel-Gorniak, 2014). Thus, the overall metabolic role of the
enzymes in the ECS, beside CB1, may deliver future targets
for therapeutic interventions in control of feeding behavior.
Indeed, targeted lipidomics of different brain regions derived
from mice either deficient for CB1, the AEA degrading enzyme
FAAH or the aforementioned 2-AG degrading MAGL revealed
that AEA and 2-AG hydrolyzing enzymes, when compared to
CB1, link the ECS to a broader lipid signaling network in
contrasting ways, which again may open an avenue in altering
neurotransmission and behaviors independently of CB1 signaling
(Leishman et al., 2016a). This assumption is further supported by
another lipidomic analysis. In this, mice deficient for NAPE-PLD
not only displayed a shift in the concentration of AEA, but also
shifted several other lipids, not binding to CB1, such as OEA and
PEA, that as mentioned before signal upon different metabolic
relevant targets, such as PPARs (Leishman et al., 2016b).

OUTLOOK

Actually, there has been significant increase of knowledge about
central CB1 signaling in control of feeding behavior. Despite the
significant setback that occurred in the past on clinical use of CB1
inverse agonists in order to treat overeating, there still is strong
confidence in the field that the recent discoveries on central CB1
signaling soon will leverage the therapeutic potential of CB1.
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