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Much of our knowledge of the endocannabinoid system in schizophrenia comes

from behavioral measures in rodents, like prepulse inhibition of the acoustic startle

and open-field locomotion, which are commonly used along with neurochemical

approaches or drug challenge designs. Such methods continue to map fundamental

mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying

monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will

require, however, a greater use of neurophysiological tools to better inform clinical

research. In this sense, electrophysiology and viral vector-based circuit dissection,

like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g.,

tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia

symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies

point to a complex endocannabinoid-endovanilloid interplay, including the influence

of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such

as aversive memory extinction. In fact, growing interest has been devoted to TRPV1
receptors as promising therapeutic targets. Here, these issues are reviewed with an

emphasis on the neurophysiological evidence. First, we contextualize imaging and

electrographic findings in humans. Then, we present a comprehensive review on rodent

electrophysiology. Finally, we discuss how basic research will benefit from further

combining psychopharmacological and neurophysiological tools.
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INTRODUCTION

Heavy cannabis use may precipitate or exacerbate schizophrenia symptoms. The substantial
psychiatric documentation on this matter has been reviewed multiple times in the past two decades
(Manseau andGoff, 2015). Concomitantly, a literature has emerged on the neurobiology underlying
cannabis psychosis, including genetics, pathology, physiology, and imaging approaches in humans
(Batalla et al., 2014; Bossong et al., 2014), as well as neurochemistry and behavioral pharmacology
approaches in other animals, primarily rodents (Zamberletti et al., 2012; Zuardi et al., 2012).
This literature has also been regularly reviewed by authors like Esteban and García-Sevilla (2012),
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El Khoury et al. (2012), and López-Moreno et al. (2008).
Their hypotheses continuously help us to make sense of
the relationship between cannabis effects and schizophrenia-
spectrum symptoms. As a result of this exploration, our
understanding of the endogenous cannabinoid andmost recently
the vanilloid system has rapidly evolved, creating therapeutic
development opportunities (Robson et al., 2014).

Several approaches are still underutilized in the study of
endocannabinoid/endovanilloid systems in schizophrenia, a field
in which animal experimentation is relatively new (Giuffrida
and Seillier, 2012). For instance, while drug challenge designs
allow investigating the cannabinoid receptor type 1 (CB1)
involvement in psychotic-like symptoms (Roser et al., 2010), not
much is known about behavior-related neural activity patterns
(Skosnik et al., 2016). Moreover, circuit dissection through
optogenetics and chemogenetics, which have been productive
in the study of, for example, spatial learning and reward
(Deisseroth, 2015; Whissell et al., 2016), has not yet impacted
the research on endocannabinoid/endovanilloid systems in
schizophrenia. Our review seeks to identify methodological
areas that might contribute to this research topic in the
future.

We initially give an overview of endogenous cannabinoid
and vanilloid systems in their overlap with the neurobiology of
schizophrenia. For that, selected reviews and research articles are
cited (for biochemically detailed reviews on the endocannabinoid
system, we suggest; Ligresti et al., 2016; Lu and Mackie,
2016). We then move on to the methodological landscape of
human studies, with an emphasis on functional imaging and
electroencephalography (EEG). A final emphasis is given to
electrophysiology in rodents, which has been increasingly used in
the study of cannabinoids/vanilloids in schizophrenia, especially
over the past 5 years. Some research directions in rodents are also
proposed.

ENDOCANNABINOID AND
ENDOVANILLOID SYSTEMS

The endocannabinoid (eCB) system comprises lipid
neuromodulatory pathways regulating multiple functions
of the mammalian brain, such as neural development and
synaptic plasticity (Chevaleyre et al., 2006; Elphick, 2012;
Maccarrone et al., 2014). In both humans and rodents, the
eCB system plays a fundamental role in sensory, cognitive and
emotional processes (Piomelli, 2003), a topic that has been
boosted by Cannabis sativa research (Di Marzo, 2006).

In the late 1960s, Mechoulam and colleagues were the
first to isolate and identify 19-tetrahydrocannabinol (THC),
the main psychoactive constituent of cannabis, as well as
compounds devoid of typical cannabis effects, like cannabidiol
(CBD), cannabinol, and cannabigerol. All of these compounds
are collectively referred to as phytocannabinoids (Mechoulam
and Gaoni, 1967; Mechoulam, 1970; Hanuš et al., 2016).
There are at least 113 phytocannabinoids, each with a
distinct pharmacological property (Izzo et al., 2009; Aizpurua-
Olaizola et al., 2016), and their discovery stimulated the

development of synthetic analogs: the exocannabinoids, e.g.,
WIN 55,212-2 (Pacher et al., 2006; Breuer et al., 2016). Today,
phytocannabinoids and exocannabinoids comprise the large
group of cannabinoids (Pertwee, 2010).

Although cannabinoids were previously thought to act
via nonspecific membrane-associated mechanisms, their
pharmacological actions have been demonstrated to be highly
stereospecific (Mechoulam et al., 1988; Mechoulam and Parker,
2013). The first substantial evidence of binding site specificity
was the finding that cannabinoids modulate the adenylyl
cyclase, which is important to transduce signals from G protein-
coupled receptors (Howlett and Fleming, 1984). Cannabinoid
receptor binding sites were finally identified in neurons by
the late 1980s (Devane et al., 1988; Matsuda et al., 1990).
Nowadays, cannabinoid receptors are known to integrate the
eCB system, along with eCB ligands, and enzymes for synthesis
and degradation of eCBs (Lu and Mackie, 2016).

Endocannabinoid actions are primarily mediated by
cannabinoid receptors of the subtypes 1 (CB1) and 2 (CB2)
(Pertwee, 2008). CB1 receptors are widely expressed in central
neurons, but are also found on peripheral terminals and non-
neural tissues such as the vascular endothelium (Herkenham
et al., 1990; Munro et al., 1993; Kendall and Yudowski, 2017).
In fact, CB1 receptors are the most abundant Gi/Go-coupled
receptors in the mammalian brain (Howlett et al., 2002;
Aizpurua-Olaizola et al., 2017). CB2 receptors, in turn, were
initially associated with microglia and the immune system, but
recent works indicate that they are also expressed on central
neurons, although at lower levels than CB1 (Xi et al., 2011;
Ramirez et al., 2012; Stempel et al., 2016; Zhang et al., 2016;
Chen et al., 2017). CB2 receptors are nowadays suggested to play
functional and protective roles in the brain, as their expression
has been demonstrated to increase upon brain injury and
inflammation (Miller and Devi, 2011; Pacher and Mechoulam,
2011; Callén et al., 2012).

CB1 receptors are found in excitatory and inhibitory synapses
across mesocorticolimbic circuits, including the prefrontal cortex
(PFC), hippocampus, basolateral nucleus of the amygdala (BLA),
ventral tegmental area (VTA), ventral pallidum (VP), and
nucleus accumbens (NAc) (Mackie, 2005; Hu and Mackie,
2015). CB1 receptors ultimately inhibit adenylyl cyclase activity,
thereby reducing the conversion of adenosine triphosphate
(ATP) into cyclic adenosine monophosphate (cAMP) (Demuth
and Molleman, 2006), and therefore lowering the concentration
of several intracellular messengers related to gene transcription
and synaptic function (Childers and Deadwyler, 1996; Waltereit
and Weller, 2003). CB1 receptors also exert rapid actions,
including the inhibition of voltage-dependent Ca2+ channels
(mainly N- and P/Q-type) and the activation of K+ channels
(mainly A-type) (Mackie and Hille, 1992; Deadwyler et al., 1995;
Twitchell et al., 1997). As a consequence, CB1 receptors promote
the reduction of presynaptic vesicle exocytosis, thus modulating
the release of neurotransmitters such as glutamate and GABA
(Katona et al., 1999, 2006; El Khoury et al., 2012). Important
outcomes of such modulation are two forms of eCB-mediated
synaptic plasticity: short- and long-term depression (respectively,
eCB-STD and eCB-LTD) (Kano, 2014), which have implications
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for the therapeutic use of cannabinoids (Kano et al., 2009; Castillo
et al., 2012).

The endogenous activation of presynaptic CB1 receptors
occurs via post-synaptically synthesized ligands that are
retrogradely released into the synaptic cleft, i.e., the eCBs. These
ligands are small molecules derived from arachidonic acid
(a plasma membrane fatty acid; Rodríguez de Fonseca et al.,
2005), and are primarily represented by 2-arachidonoyl-glycerol
(2-AG) and arachidonoyl ethanolamide (anandamide) (Fride
and Mechoulam, 1993; Hanuš et al., 2001; Pertwee et al., 2010).
The synthesis of 2-AG can be triggered by three mechanisms
(reviewed by Kano, 2014; Ohno-Shosaku and Kano, 2014).
(1) Postsynaptic depolarization mediated by Ca2+ influx. (2)
Postsynaptic depolarization or hyperpolarization mediated by
several metabotropic receptors, including M1/M3 muscarinic
acetylcholine, group 1 metabotropic glutamate receptors
(mGluRs), and D2 dopamine receptors (Melis et al., 2004a,b).
(3) Combination of weak postsynaptic elevation of Ca2+ with
also weak activation of Gq/11-coupled receptors (Hashimotodani
et al., 2005). Once in the synaptic cleft, 2-AG interacts with
presynaptic CB1 receptors, ultimately inhibiting the Ca2+ influx
and promoting eCB-STD (Wilson and Nicoll, 2001; Brown
et al., 2003). 2-AG can also promote eCB-LTD through several
mechanisms, including inhibition of adenylyl cyclase and the
cAMP/PKA pathway via activation of postsynaptic mGluR and
AMPA receptors (Chevaleyre et al., 2006; Heifets and Castillo,
2009). Anandamide, in turn, can be synthesized via postsynaptic
activation of group 5 mGluR (mGluR5) and consequent release
of Ca2+ from intracellular stores (Liu et al., 2008; Castillo et al.,
2012). Once in the synaptic cleft, anandamide preferentially
participates in eCB-LTD (Ohno-Shosaku and Kano, 2014), which
involves the activation of transient receptor potential vanilloid 1
(TRPV1) channels (Liu et al., 2008; Castillo et al., 2012).

The activation of TRPV1 receptors, as well as the orphan
G protein-coupled receptor 55 (GPR55), has been recently
brought into attention (Ligresti et al., 2016; Lu and Mackie,
2016). In particular, TRPV1 receptors—which are activated by
anandamide both pre- and postsynaptically (Zygmunt et al.,
1999; Smart et al., 2000)—are non-selective cation channels with
a preferential permeability for Ca2+. They can be activated by
physical stimuli, including high temperatures (>43◦C), voltage
changes, low pH, as well as cannabinoid and vanilloid ligands
(Naziroğlu and Demirdaş, 2015). TRPV1 receptors were initially
described as targets of capsaicin, the spicy active principle of
red pepper, and other vanilloids, but are also widely present in
the brain, including the already mentioned PFC, hippocampus,
BLA, VTA, VP, and NAc (Caterina et al., 1997; Mezey et al.,
2000; Roberts et al., 2004; Immke and Gavva, 2006; Szallasi et al.,
2007; Aguiar et al., 2014). A range of responses is attributed
to neuronal TRPV1 receptors. In presynaptic terminals, TRPV1

can facilitate glutamate release onto dopaminergic substantia
nigra neurons (Marinelli et al., 2003, 2007). In postsynaptic
terminals, the same receptors participate in eCB-LTD, and
the inhibition of 2-AG synthesis (Maccarrone et al., 2008;
Chávez et al., 2010; Grueter et al., 2010; Puente et al., 2011).
Interestingly, TRPV1 receptors are preferentially activated by
high concentrations of anandamide, while in low concentrations

anandamide predominantly acts on CB1 receptors (Moreira et al.,
2012). Since anandamide binds promiscuously to either TRPV1

or CB1 receptors, this particular eCB is also referred to as an
endovanilloid (Malek and Starowicz, 2016).

Mechanisms by which 2-AG and anandamide are removed
from the synaptic cleft include transport facilitation through the
plasma membrane, concomitantly to diffusion across the lipid
bilayer (Hermann et al., 2006; Nicolussi and Gertsch, 2015).
Subsequently, 2-AG would be degraded by monoacylglycerol
lipase (MAGL) in the presynaptic terminal (Dinh et al., 2002),
and anandamide by fatty acid amide hydrolase (FAAH) mostly
in the postsynaptic terminal (Cravatt et al., 1996; Egertová et al.,
2003). These enzymes are widely distributed in the brain, and are
considered to be the ending point of eCB signaling (Piomelli,
2003). Over the past decades, the inhibition of these enzymes
emerged as therapeutic option for treating neuropsychiatric
disorders, including major depression and anxiety (Batista et al.,
2014; Ogawa and Kunugi, 2015). In fact, inhibiting MAGL or
FAAH can prolong the homeostatic actions of released eCBs,
thereby minimizing side effects from exogenous activation of
CB1/CB2 receptors (Petrosino and Di Marzo, 2010; Tuo et al.,
2017).

Cannabinoid and vanilloid drugs have been proven valuable
tools for the neuropharmacological exploration of the eCB
system. The phytocannabinoids THC (partial CB1/CB2 agonist),
and CBD are among these tools (Izzo et al., 2009; Ibeas Bih
et al., 2015). CBD can be described as a multi-target drug, whose
pharmacological interactions vary with concentration and site of
action (Ronan et al., 2016). Although CBD actions are not fully
understood (Ibeas Bih et al., 2015; Pisanti et al., 2017), CBD
has been demonstrated to combine: low-affinity CB1 and CB2
receptor binding (Pertwee, 2008), serotonergic 5-HT1A receptor
agonism (Russo et al., 2005), and mu- and delta-opioid receptor
allosteric modulation (Kathmann et al., 2006), as well as TRPV1

receptor agonism and FAAH inhibition (Bisogno et al., 2001).
Cannabinoid receptors can also be modulated with higher

specificity using exocannabinoids, including CP-55940 and
WIN 55,212-2 (CB1/CB2 agonists), AM-251 and SR-141716A
(Rimonabant, CB1 inverse agonists), and resiniferatoxin (TRPV1

antagonist). Lastly, eCB upregulation can be induced by
metabolic inhibitors, like URB-597 (FAAH inhibitor), URB-602
(2-AG degradation blocker), and AM404 (anandamide reuptake
inhibitor/TRPV1 agonist) (Melis et al., 2004b; Tzavara et al., 2006;
Lafourcade et al., 2007; Xing and Li, 2007; Dissanayake et al.,
2008; Hajós et al., 2008; Aguilar et al., 2014; Raver and Keller,
2014).

It is evident, therefore, that the eCB and endovanilloid
systems have intricate physiological roles. In general terms,
they homeostatically regulate synaptic function “on demand,”
meaning that postsynaptic activity triggers the release of eCBs,
which in turn exert complex pre- and post-synaptic actions
(Alger and Kim, 2011). As discussed below, these systems go
awry in psychiatric disorders, such as schizophrenia (Skosnik
et al., 2016). The fact is, however, that eCB and (especially)
endovanilloid involvements in schizophrenia are still far from
understood, which is increasingly motivating neurophysiological
experiments using the aforementioned pharmacological tools.
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THE eCB SYSTEM IN SCHIZOPHRENIA:
OVERVIEW FROM HUMAN STUDIES

Schizophrenia is a complex and heterogeneous psychiatric
disorder, with a lifetime prevalence of 1% of the population.
Symptoms usually appear during the late adolescence, i.e., 18–
25 years, and are classified as positive (hallucinations, delusions,
disorganized speech and behavior), negative (depression, blunted
affection, social withdrawal, anhedonia), and cognitive deficits,
such as in working and verbal memory, executive functions,
and attention (Morris et al., 2005; Mesholam-Gately et al.,
2009). The classical neurochemical concept of schizophrenia
is the dopamine hypothesis (Carlsson, 1988), which derives
from the fact that typical antipsychotics, such as haloperidol
and chlorpromazine, are dopaminergic antagonists (Kapur
and Remington, 2001). According to this hypothesis, positive
symptoms would arise from an excessive dopaminergic function,
especially across the striatum, along with dopaminergic deficits
in frontal cortices (Davis et al., 1991; Laruelle, 1998). However,
dopaminergic dysfunction is insufficient to explain the non-
psychotic symptoms of schizophrenia, which required alternative
conceptual models of schizophrenia. In this context, evidence has
accumulated about glutamatergic mechanisms in schizophrenia,
supporting the role of N-methyl-D-aspartate (NMDA) receptor
hypofunction (Coyle, 1996; Olney et al., 1999). Blocking NMDA
receptors in healthy subjects with psychotomimetic agents,
like phencyclidine (PCP) and ketamine, can induce positive
and negative symptoms, as well as cognitive alterations. These
drugs can also exacerbate psychotic symptoms in schizophrenic
individuals (Luby et al., 1962; Javitt and Zukin, 1991; Krystal et al.,
1994).

In addition to dopaminergic and glutamatergic roles,
compelling evidences point to abnormalities of the eCB system
in schizophrenia. Patients with schizophrenia manifest elevated
eCB levels in the blood and cerebrospinal fluid (Giuffrida
et al., 2004; Leweke et al., 2007; Koethe et al., 2009; Leweke,
2012), which are normalized with both antipsychotics and
clinical remission (Giuffrida et al., 2004; Koethe et al., 2009).
Moreover, schizophrenia patients with a history of cannabis use
show decreased gray matter density in the posterior cingulate
cortex, when compared with non-using individuals (Bangalore
et al., 2008). Also, schizophrenia patients who use cannabis
show cortical thinning in areas known for the high density of
CB1 receptors, such as the anterior cingulate cortex, and the
dorsolateral PFC (Rais et al., 2010). Postmortem studies, on
the other hand, have been conflicting. In vitro autoradiography
studies report increased CB1 receptor binding in schizophrenic
patients (Zavitsanou et al., 2004; Newell et al., 2006; Dalton
et al., 2011; Jenko et al., 2012), while immunodetection methods
resulted in diminished or unchanged CB1 expression (Koethe
et al., 2007; Eggan et al., 2010; Volk et al., 2014). Results
from positron emission tomography imaging have also been
contradictory. Ceccarini et al. (2013) have reported an increase
in CB1 receptor binding throughout mesocorticolimbic areas in
schizophrenia patients (NAc, insula, cingulate cortex, inferior
frontal cortex, and parietal and mediotemporal lobes). In
contrast, Ranganathan et al. (2016) have found lower availability

of CB1 receptors in male schizophrenic subjects compared
with controls. Gender differences may partially account for
these inconsistencies, as women have been shown to be more
susceptible to THC than men during memory tasks (Craft et al.,
2013; Rubino and Parolaro, 2015). Apart from these gender
inconsistencies, an important implication from CB1 binding is
its negative correlation with the depressive symptomatology in
schizophrenia patients. Wong et al. (2010) have found that lower
incidence of negative symptoms corresponds to elevated CB1
receptor binding in the frontal cortex and globus pallidus. This,
together with the study of Ceccarini et al. (2013), implies the
corticostriatal and mesocorticolimbic circuitry in the balance
between positive and negative symptoms.

In addition to the eCB involvement in schizophrenia, heavy
cannabis use is a risk factor for developing the disorder (Large
et al., 2011; Skosnik et al., 2014). Chronic cannabis use, especially
during adolescence, is associated with lasting impairments in
cognitive and perceptual functions (Skosnik et al., 2012, 2014).
THC itself can acutely elicit psychoses in healthy individuals, and
precipitate relapse in abstinent schizophrenia patients (D’Souza
et al., 2004, 2005). This effect is associated with reduced activation
in the temporal cortex and cerebellum, implying brain-wide
alterations in cannabis psychosis (Atakan et al., 2013). In
fact, THC-induced psychotic symptoms have been associated
with altered activity of the parahippocampal gyrus and ventral
striatum during a verbal learning task (Seal and Fletcher, 2009).
Furthermore, Bhattacharyya et al. (2015a) have found, in a visual
stimulation task, that response inhibition errors are correlated
with THC-induced psychotic symptoms, and diminished frontal
activation. In another study (Bossong et al., 2013), THC has
been linked with impaired performance in an executive task,
which in turn has been correlated with reduced deactivation in
brain regions related to the default mode network. Overall, these
studies suggest that phytocannabinoid-induced cognitive deficits,
which resemble those of schizophrenia, involve brain-wide
alterations (Bossong et al., 2013). Interestingly, THC and CBD
have opposite effects on the activity of the hippocampus, medial
PFC (mPFC), striatum, and superior temporal and occipital
cortices, depending on the cognitive task. Thus, different patterns
of brain activation could underlie the opposing actions of THC
and CBD on schizophrenia-related circuits (Bhattacharyya et al.,
2010, 2012).

Cannabis effects are hypothesized to interfere in the
relationship between the eCB and mesocorticolimbic systems
(Voruganti et al., 2001). Initial studies have reported increased
dopaminergic drive in the striatum after THC administration
(Voruganti et al., 2001; Bossong et al., 2009). Recent studies have
challenged this hypothesis, demonstrating modest, if existent,
changes in dopamine release under THC (Stokes et al., 2009;
Bossong et al., 2015), and absent alterations in striatal dopamine
availability in volunteers with a history of cannabis use (Stokes
et al., 2012). However, Kuepper et al. (2013) have shown that
while THC does not affect dopamine release in healthy subjects,
it promotes dopamine release in patients with psychosis and their
relatives, demonstrating higher THC sensitivity in individuals at
risk for psychosis. Therefore, phytocannabinoid sensitivity seems
correlated with the propensity for developing schizophrenia.
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There is evidence that genes related to the pathophysiology
of schizophrenia also participate in cannabinoid effects (Silveira
et al., 2016). For example, the CUB and Sushi multiple
domains-1 gene (CSMD1) has been associated with increased
risk for both schizophrenia and cannabis dependence (Sherva
et al., 2016). Polymorphisms in the catechol-O-methyltransferase
gene (COMT)—an enzyme involved in dopamine metabolism
and some forms of psychosis (Silveira et al., 2016)—are
linked with cannabis dependence, as well as THC-induced
impairments in working memory (Tunbridge et al., 2015)
and executive functions (Verdejo-Garcia et al., 2007). COMT
knockout mice also present with a behavioral sensitivity
to cannabinoid effects (O’Tuathaigh et al., 2014). Moreover,
cannabis use is linked to a variety of epigenetic alterations,
including methylation of the COMT gene (Szutorisz and
Hurd, 2016). Finally, CB1 receptor expression is increased in
blood lymphocytes of schizophrenia patients with a history
of cannabis abuse, in addition to being inversely correlated
to methylation of the promoter of the CB1 receptor gene
(Liu et al., 2014). Thus, genetic and epigenetic studies further
support the association between cannabinoid actions and
schizophrenia.

THE eCB SYSTEM IN SCHIZOPHRENIA:
SPECIFIC FUNCTIONAL ALTERATIONS IN
HUMANS

Although structural and functional abnormalities of
schizophrenia have been identified in patients, understanding
the pathophysiological substrates of this spectrum of disorders
remains a challenge in neuropsychiatry (Uhlhaas and Singer,
2015). There are still no reliable biomarkers for early diagnosis,
and pharmacological developments have been modest since
typical antipsychotics were discovered (Lieberman et al.,
2005; Uhlhaas and Singer, 2015). Furthermore, while positive
symptoms can be treated with traditional pharmacological
approaches, negative symptoms and cognitive deficits are harder
to treat (Harrison, 1999). In fact, schizophrenia is currently
proposed to emerge from dysfunctional dynamics of the brain as
a whole, instead of alterations in specific brain regions (Uhlhaas
and Singer, 2015).

We now review the functional abnormalities related to both
schizophrenia and the eCB system in further detail. Subsections
are organized according to the methods used for measuring the
human brain function.

fMRI
Coordination of brain dynamics and regional connectivity
are fundamental for perceptual and cognitive processes. In
humans, functional connectivity between brain regions can
be inferred from the blood-oxygen-level-dependent (BOLD)
signal using functional magnetic resonance imaging (fMRI). In
turn, electrophysiological oscillations measured non-invasively
by electroencephalography (EEG) or magnetoencephalography
(MEG) can inform about phase connectivity between brain
regions and relationships between frequency bands.

One of the main findings in schizophrenia is the disrupted
connectivity between the hippocampus and the dorsolateral
PFC (Weinberger et al., 1992; Heckers et al., 1998), which has
been shown to be affected during working memory demand
(Meyer-Lindenberg et al., 2005; Rasetti, 2011). Furthermore,
reduced resting state connectivity between the hippocampus,
posterior cingulate cortex, extrastriate cortex, mPFC, and
parahippocampal gyrus has been described in schizophrenia
patients (Zhou et al., 2008). Interestingly, decreased connectivity
between the hippocampus and PFC has also been observed in
healthy subjects at risk for developing schizophrenia (Benetti
et al., 2009; Rasetti, 2011).

Alterations of functional connectivity are also present during
cannabinoid activation. Lee et al. (2013) have demonstrated
that THC reduces the connectivity between the amygdala
and primary sensorimotor areas during experimentally induced
cutaneous pain. In a salience-processing task, fronto-striatal,
and mediotemporal-prefrontal connectivity have been shown to
be reduced and enhanced by THC, respectively (Bhattacharyya
et al., 2015b). In the same study, CBD has been reported
to exert opposite connectivity effects. Taken together, these
data demonstrate that connectivity patterns react in different
manners depending on the cannabinoid agent, brain regions, and
sensory/cognitive stimulation.

On the other hand, THC effects on emotional processing
are controversial. For example, THC has been shown to
increase amygdala-PFC functional coupling (Gorka et al., 2015a),
while attenuating amygdala activation during presentation of
emotionally negative images (Phan et al., 2005). Other studies
have demonstrated that THC increases amygdala activation
(Bhattacharyya et al., 2010) while having no impact on amygdala-
PFC connectivity in subjects exposed to fearful faces (Fusar-Poli,
2009). THC has also been shown to increase amygdala activation,
while reducing the functional coupling between the amygdala
and dorsolateral PFC during cognitive reappraisal of emotionally
negative pictures (Gorka et al., 2015b). Conversely, CBD has
been associated with decreased anxiety and attenuated BOLD
signal in the amygdala (Fusar-Poli, 2009). Although inconsistent,
these findings indicate that the eCB system somehow modulates
fronto-limbic substrates, and therefore the emotional processing
(Gorka et al., 2015b).

Field Oscillations
Field oscillations are essential for coordinating the brain activity.
Low-frequency oscillatory patterns are known to functionally
connect distant regions, while high-frequency oscillations enable
local network synchronization (Uhlhaas and Singer, 2010).
These activity patterns have been related with a variety of
cognitive processes such as working memory, attention and
perception (Uhlhaas and Singer, 2010). Field oscillations in
human studies are usually classified as induced, resting-state,
steady-state, or evoked (Bertrand and Tallon-Baudry, 2000;
Uhlhaas and Singer, 2010). Induced oscillations are observed
during cognitive tasks, and can occur at different phase and
latencies in relation to stimulus presentation (Skosnik et al.,
2014). They are self-sustained rather than directly evoked by
stimuli, and are associated with stimulus-triggered cognitive
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processes (Uhlhaas and Singer, 2006). Resting-state oscillations,
on the other hand, are spontaneous task-unrelated patterns (Lang
et al., 2014). They reflect the excitatory/inhibitory balance, as
well as the connectivity between brain regions without behavior-
related biases (Leuchter et al., 2012). Steady-state oscillations
are produced by entraining the EEG activity to a particular
frequency of sensory stimulation, allowing to test the ability of
neural networks to engage in that frequency (O’Donnell et al.,
2013). Finally, evoked oscillations are phase-locked to sensory
stimuli, typically a few hundred milliseconds after each stimulus,
thus allowing to probe sensory processes (Bertrand and Tallon-
Baudry, 2000).

Induced and Resting-State Field Oscillations
Studies on induced oscillations have reported that cognition-
related gamma-band oscillations (30–80 Hz) are reduced in
schizophrenia patients (Haenschel et al., 2009; Minzenberg
et al., 2010). These patients also present with reduced theta
(3–7 Hz) and gamma activity in frontal regions during
executive and working memory tasks (Schmiedt et al., 2005;
Cho et al., 2006; Haenschel et al., 2009). Deficits in gamma
oscillations (60–120 Hz) have also been observed during a
perceptual organization task (Grützner et al., 2013). These
results indicate that dysfunctions in local circuit-driven high-
frequency oscillations may be involved in the cognitive deficits of
schizophrenia. Concerning long-range synchronization, several
studies have shown a decrease in phase synchrony in the
beta and gamma frequency bands during visual perceptual
organization, and auditory processing (Spencer et al., 2003;
Symond et al., 2005; Uhlhaas et al., 2006). Ford et al. (2002)
have observed reduced fronto-temporal coherence in the delta
(1–3 Hz) and theta bands during speech. Resting-state recordings
from schizophrenia patients also indicate a reduction in high-
frequency activity (Rutter et al., 2009), an increase in low-
frequency activity (Boutros et al., 2008), and a decrease in theta
coherence (Koenig et al., 2001). Therefore, multiple oscillatory
patterns, either induced or spontaneous, seem involved in the
cognitive deficits of schizophrenia.

Exogenous cannabinoid effects on induced theta and gamma
synchrony have also been described in human studies. For
example, a reduction in induced gamma oscillations during a
coherent motion task has been observed in chronic cannabis
users (Skosnik et al., 2014). Another study has shown that
acute THC increases low-gamma band oscillations (27–45 Hz)
during resting state, while enhancing high-gamma power (85–
130 Hz) during a motor task (Nottage et al., 2014). The authors
suggest that this gamma over-activity may lead to neuronal
noise, producing erroneous processing of the environmental
information. Indeed, at psychosis-inducing doses, THC has been
shown to increase neural noise in the EEG (Cortes-Briones et al.,
2015a). This effect has also been correlated with psychosis-like
symptoms induced by THC (Cortes-Briones et al., 2015a).

In a study by Morrison et al. (2011), the effects of intravenous
THC on EEG power and coherence have been tested during
a working memory test. Results show that THC impairs
working memory performance, and precipitates positive and
negative symptoms. The authors have also shown a reduction in

theta power and coherence between bi-frontal EEG electrodes.
Coherence reduction has been associated with positive psychotic
symptoms, suggesting that the psychotic effects of THC can be
partially due to impaired dynamics between the frontal lobes.
Other studies have also found a decrease in both theta power
and working memory performance after smoking marijuana
(Ilan et al., 2004; Böcker et al., 2010). Furthermore, a specific
polymorphism within the CB1 receptor gene has been associated
with a reduction in theta power recorded from frontal, central,
and parietal electrodes during resting state in humans (Heitland
et al., 2014). Given the importance of theta and gamma
oscillations for cognition, CB1-mediated deficits have been
suggested to contribute to the pathophysiology of schizophrenia
(Heitland et al., 2014).

Steady State and Evoked Field Oscillations
Additional evidence from abnormalities in gamma frequency in
schizophrenia comes from studies using steady state or evoked
oscillations. Studies on auditory steady-state responses have
shown reduced 40 and 80 Hz power in both schizophrenia
patients (Kwon et al., 1999; Tsuchimoto et al., 2011) and their
relatives (Hong et al., 2004). In this same sense, Light et al.
(2006) have observed reduced power and phase synchronization
upon 30 and 40 Hz. Several studies on sensory stimulus-
evoked oscillations have also demonstrated abnormalities in
schizophrenic patients (Uhlhaas and Singer, 2010). In fact,
decreased amplitude and phase locking in these oscillations have
been observed during visual processing (Spencer et al., 2004,
2008). Auditory processing studies have in turn shown reduced
amplitude and phase locking of evoked beta (15–30 Hz) and
gamma frequencies (Hirano et al., 2008; Johannesen et al., 2008;
Roach and Mathalon, 2008). These results suggest an impaired
ability to coordinate oscillatory activity and sensory responsivity,
which may underlie the perceptual and cognitive deficits of
schizophrenia (Uhlhaas and Singer, 2010).

Reduction in evoked gamma synchrony is also evident under
cannabinoid manipulation. In fact, presynaptic CB1 receptors
throughout the hippocampus and neocortex inhibit GABA
release from cholecystokinin (CCK)-containing interneurons
(Bacci et al., 2004; Eggan and Lewis, 2007; Ali and Todorova,
2010). These interneurons are fundamental for generating
gamma oscillations (30–80 Hz) (Buzsaki and Draguhn, 2004;
Gonzalez-Burgos and Lewis, 2008; Uhlhaas and Singer, 2010).
Using an auditory sensory gating paradigm, Edwards et al. (2009)
have shown reduced evoked gamma power in heavy cannabis
users. Also in chronic cannabis users, Skosnik et al. (2006, 2012)
have observed a decrease in 40-Hz steady-state entrainment.
Interestingly, the earlier the subject started using cannabis during
adolescence, the weaker their 40-Hz steady-state entrainment
(Skosnik et al., 2012). Also, acute THC administration in humans
has been shown to reduce 40 Hz-peaked gamma oscillations after
auditory steady-state responses (Cortes-Briones et al., 2015b).
These studies indicate that exposure to cannabinoids modify the
neocortical ability to undergo evoked, steady-state, and induced
field oscillations, especially within the gamma range. Because
decreased gamma band activity is also present in schizophrenia
patients and their relatives, it is possible that these deficits

Frontiers in Pharmacology | www.frontiersin.org 6 June 2017 | Volume 8 | Article 399

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Ruggiero et al. Cannabinoids, Vanilloids, Schizophrenia, and Neurophysiology

are mediated by a disruption in eCB and GABA transmission
(Skosnik et al., 2012).

Event-Related Field Responses
Event-related responses (ERP) are time-locked voltage
deflections observed in the EEG upon sensory stimulation,
e.g., a sequence of sound pulses (Korostenskaja and Kähkönen,
2009). Infrequent deviant stimuli among this sequence provoke
changes in ERP, i.e., mismatch negativity (MMN) components,
which are thought to reflect change detection and sensory
memory (Onitsuka et al., 2013). Reduced MMN is a common
feature in schizophrenia patients (Salisbury et al., 2007;
Näätänen and Kähkönen, 2009), as well as their healthy
first-degree relatives (Michie et al., 2002), and is therefore
suggested as an endophenotype of schizophrenia vulnerability.
THC administration also reduces MMN amplitude, while
the use of a cannabis extract containing both THC and CBD
enhances the MMN amplitude (Juckel et al., 2007). Acute
subanesthetic ketamine, which is known to produce psychotic
symptoms, does not reduce MMN by itself but does so when
the CB1 inverse agonist rimonabant is co-administered. These
findings suggest that exogenous CB1 agonism is implied in the
cognitive impairments of schizophrenia, and that this disruption
seems to involve both the eCB system and the glutamatergic
neurotransmission (Roser et al., 2011).

Another ERP feature associated with change detection—for
example during the oddball stimulation paradigm—is P300: a
positive component peaking at ∼300 ms post-stimulus latency
(Onitsuka et al., 2013). P300 is thought to reflect working
memory and attention (Polich, 2007). Alterations in auditory
evoked P300 have been frequently reported in patients with
schizophrenia (Bramon et al., 2004). Auditory P300 amplitude
is negatively correlated with age in schizophrenia patients (Wang
et al., 2003), and is also seen as a trait marker for schizophrenia,
as P300 amplitude is reduced even when the patients are less
symptomatic (Mathalon et al., 2000). THC administration in
healthy subjects weakens the P300 response recorded from
midline frontal, central, and parietal electrodes during a choice
reaction task, indicating the involvement of the eCB system
in attention and working memory (Roser et al., 2008). Weak
P300 has also been shown in chronic cannabis users (Rentzsch
et al., 2016) which however manifest increased P300 amplitude
when exposed to unpleasant trait words, and decreased negative
symptoms such as affective blunting (Skosnik et al., 2008). These
findings suggest that the eCB systemmay be particularly relevant
for the positive symptoms of schizophrenia.

Therefore, similar EEG observations arise from schizophrenic
patients and cannabinoid effects, including a reduction in gamma
band reactivity, reduction of theta coherence, and disruption of
ERP components, suggesting common alterations in cognitive
and perceptual processing.

Endovanilloid System in Schizophrenia:
Indirect Electrophysiological Implications
from Humans
The neurophysiological study of the endovanilloid system in
mental disorders is still at an early stage. In one study

(Mori et al., 2012), motor-evoked potentials induced by
transcranial magnetic stimulation (TMS) were examined in
patients with two TRPV1 genetic polymorphisms. Depending on
the polymorphism, subjects presented with weaker or stronger
motor-evoked potentials upon paired-pulse TMS. In addition,
TRPV1 has been linked to pain perception and cognition deficits
in schizophrenia (Madasu et al., 2015). Given that abnormal
motor-evoked potentials and pain sensitivity are observed in
schizophrenia patients (Pascual-Leone et al., 2002; Bonnot
et al., 2009; Lakatos et al., 2013; Zhou et al., 2016), TRPV1

channels—and therefore the endovanilloid system—could be
altered in schizophrenia, which deserves neurophysiological
investigation.

ANIMAL MODELS OF SCHIZOPHRENIA

Animal models allow neuronal circuits to be examined in
more detail than in humans. In this sense, relatively modern
techniques, such as large-scale electrophysiological recordings
and optogenetics, have been increasingly used in animal models
of schizophrenia (Sigurdsson, 2016). These animal models will be
outlined below.

Behavioral Assessment
Reproducing the etiology of schizophrenia, or even its specific
symptoms in non-human animals remains a challenge. However,
it is still conceivable to use animal models that reproduce some
of the disease “endophenotypes,” i.e., abnormalities consistently
observed in schizophrenia patients, even though they do not
constitute the core symptoms for diagnosis (Sigurdsson, 2016).
For example, patients with schizophrenia show reduced prepulse
inhibition of the startle reflex (PPI) (Braff et al., 1978), which is
the ability to attenuate reflex responses (e.g., eye blinks evoked
by intense sound pulses) when they are preceded by weak
stimuli (Swerdlow and Geyer, 1998). PPI is associated with
schizophrenia symptoms (Weinberger et al., 1992), particularly
thought disorders and distractibility (Turetsky et al., 2007). In the
rodent PPI procedure, sound-evoked startle responses (sudden
movements detected by a load-cell platform) can be attenuated
by a weak stimulus (i.e., prepulse), allowing the assessment of
sensorimotor gating (Swerdlow and Geyer, 1998). This response
is disrupted in genetic models of schizophrenia (Powell et al.,
2009).

Assessing behavioral alterations that resemble positive and
negative symptoms has been important to evaluate the effects
of novel antipsychotics. Hyperlocomotion is frequently assessed
in animal models of schizophrenia as it resembles positive
symptoms such as psychotic agitation (Powell et al., 2009), and is
associated with hyperdopaminergic states (van den Buuse, 2010).
Hyperlocomotion can be measured by monitoring rodents while
they roam in a novel space, like an open field. In turn, social
interaction deficits represent negative symptoms, and can be
tested by monitoring subjects while they interact with unfamiliar
congeners (Sams-Dodd, 1995, 1996).

Schizophrenia patients also manifest a range of cognitive
deficits, especially working memory impairments (Park and
Holzman, 1992). Deficits in specific types of memory are
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identified as distinct schizophrenia symptoms, which in turn can
be assessed in rodents using different tasks (Saperstein et al.,
2006). Testing the novel object recognition (NOR) evaluates the
ability to distinguish a new object from a familiar one (non-
spatial learning), or the ability to remember when objects are
moved (spatial learning), thus indirectly measuring memory.
Associative learning, which is also deranged in schizophrenia
(Rushe et al., 1999), can be tested through contextual fear
conditioning, measuring the animal’s capacity to associate non-
aversive contexts with aversive stimuli (Fanselow, 1980). Other
paradigms that assess spatial learning, like the Morris water
maze, T-maze, and radial maze, are also commonly used in
schizophrenia-oriented studies (Jentsch et al., 1997; Beraki et al.,
2009; Enomoto and Floresco, 2009).

Induction Strategies
Experimental research has developed strategies to model
different aspects of human schizophrenia, each of them reflecting
genetic and environmental factors, as well as pathophysiological
mechanisms related with the disease (Sigurdsson, 2016).
A number of genetic risk factors have been identified in
schizophrenia (Moran et al., 2016), and many of them have
been reproduced in mouse models. Microdeletions in the region
q11.2 of chromosome 22 and mutations in the Disrupted
in Schizophrenia 1 (DISC1) gene, which are both related to
the human schizophrenia (Clair et al., 1990; Jonas et al.,
2014), are associated with schizophrenia-relevant abnormalities
in mice, like reduced PPI (Paylor et al., 2001; Long et al.,
2006; Stark et al., 2008), impaired fear conditioning (Paylor
et al., 2001; Stark et al., 2008; Fenelon et al., 2013), working
memory deficits (Koike et al., 2006; Kvajo et al., 2008; Stark
et al., 2008; Sigurdsson et al., 2010; Juan et al., 2014) and
depressive-like behaviors (Shen et al., 2008; Sauer et al.,
2015).

Environmental factors can also favor schizophrenia.
Epidemiological studies have demonstrated that viral infections
during human pregnancy (e.g., influenza) put children at
increased risk of developing the disorder (Canetta and Brown,
2012). Since these infections do not directly affect fetal
development, the activation of the mother’s immune system
is believed to be a causal factor. Thus, maternal immune
activation (MIA) through gestational viral-like infection has
been frequently used as an animal model of schizophrenia, in
which the offspring shows behavioral abnormalities, including
deficits in PPI and latent inhibition (Shi et al., 2003; Dickerson
and Bilkey, 2013).

A different approach is to directly model the
pathophysiological mechanisms of schizophrenia. Acute
pharmacological models are based on the dopaminergic and
glutamatergic hypotheses of schizophrenia, and they include
NMDA hypofunction (induced by NMDA receptor antagonists,
such as ketamine, MK-801, and PCP), and dopaminergic
activation (induced by psychostimulants, such as amphetamine
and methamphetamine). In rodents, NMDA antagonists induce
hyperlocomotion, PPI deficits, and decreased social interest,
which can be reversed by antipsychotics (Kitaichi et al., 1994;
Bakshi and Geyer, 1995; Sams-Dodd, 1995, 1996; Geyer et al.,
2001). PCP, MK-801, and methamphetamine are also known to

induce NOR deficits in mice (Karasawa et al., 2008; Mizoguchi
et al., 2008; Vigano et al., 2009). In addition, rodents chronically
treated with PCP display long-lasting impairments in associative
learning, which can be reversed by olanzapine (Enomoto et al.,
2005).

Evidences also indicate that schizophrenia is a
neurodevelopmental disorder that may culminate in
dysfunctional brain circuits in adulthood (Lewis and Levitt,
2002). Directly disturbing neural development during pregnancy
or early life can generate adults that display schizophrenia-like
abnormalities. This is what proposes the neonatal ventral
hippocampal lesion (NVHL) model (Lipska et al., 2002; Tseng
et al., 2009), in which the ventral hippocampus (vHipp) is
lesioned by ibotenic acid at postnatal day 7. NVHL-lesioned
animals present with a number of behavioral abnormalities,
like hypersensitivity to psychostimulants, reduced PPI, reduced
latent inhibition, and deficits in social interaction, spatial
learning, working memory, attention set-shifting, and reversal
learning (Tseng and O’Donnell, 2007; O’Donnell, 2012).
Abnormally behaving adults can also be generated by injecting
methylazoxymethanol acetate (MAM, a mitotoxin) in pregnant
rats during gestational day 17. Once in adulthood, the MAM-
exposed offspring shows reduced PPI and latent inhibition,
hypersensitivity to psychostimulants, and working memory
deficits (Lodge et al., 2009).

Electrophysiological Measurements
Based on the outline above, we can now mention representative
electrophysiological findings from animal models of
schizophrenia. This will contextualize the following section,
which reviews electrophysiological findings on the eCB and
endovanilloid systems in schizophrenia (see Sigurdsson, 2016 for
an extensive review).

Synaptic Plasticity
Synaptic plasticity is increasingly implicated in the pathological
alterations of schizophrenia (Crabtree and Gogos, 2014).
Synaptic plasticity data from genetic models of schizophrenia
are primarily from in vitro experiments. The 22q11.2 mouse
model present with impaired long-term potentiation (LTP) and
increased short-term depression in the mPFC (Fenelon et al.,
2013). These mice display schizophrenia-relevant alterations in
sensorimotor gating, fear conditioning, and working memory
(Sigurdsson, 2016). Also, hippocampal CA3-CA1 synaptic
plasticity, but not basal synaptic transmission, is altered in
22q11.2 mice (Earls et al., 2010; Drew et al., 2011). Alterations
on hippocampal synaptic plasticity have also been observed
in the DISC1 mouse model of genetic risk for schizophrenia,
including abnormal LTP in CA3-CA1 synapses (Kvajo et al.,
2008; Booth et al., 2014), and reduced short-term plasticity in
the DG-CA3 pathway (Kvajo et al., 2011). Thus, short and long-
term forms of synaptic plasticity are differentially impaired in
genetic models of schizophrenia. Of note, synaptic plasticity—
which is generally associated with sensory/cognitive processes
and memory consolidation—is hypothesized to participate in the
connectivity abnormalities of the disease (Sigurdsson, 2016), as
further outlined below.
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Local Synchrony
Abnormalities in beta and gamma oscillations are described
both in schizophrenia patients and animal models. Increased
gamma power during the awake state (Del Pino et al., 2013)
and reduced evoked gamma oscillations (Barz et al., 2016)
have been reported in genetic models. Also, a sub-anesthetic
dose of ketamine strengthens gamma power both in awake
and anesthetized rodents (Ma and Leung, 2000; Pinault, 2008;
Ehrlichman et al., 2009; Hakami et al., 2009; Lazarewicz et al.,
2009; Kulikova et al., 2012), while stimulus-evoked gamma
oscillations are reduced after ketamine injection (Lazarewicz
et al., 2009; Kulikova et al., 2012). Likewise, evoked (but not
spontaneous) beta/gamma oscillations in vHipp and mPFC
are reduced in the gestational MAM model (Lodge et al.,
2009). Evidences indicate that interneurons expressing the
calcium-binding protein parvalbumin (PV) are related to gamma
oscillation abnormalities in schizophrenia models. Particularly
in DISC1 mice, reduced theta and gamma power have been
observed during the awake state, concomitantly with a loss of PV
interneurons (Sauer et al., 2015). Mice lacking NMDA receptors
on interneurons (including PV-expressing ones) also show a
higher propensity for gamma potentiation in the hippocampus,
somatosensory cortex (SCx), and auditory cortex (Korotkova
et al., 2010; Carlén et al., 2011; Nakao and Nakazawa, 2014).

Long-Range Synchrony
Long-range synchrony deficits are observed in a variety of
animal models of schizophrenia. In DISC1 mice, an impaired
hippocampal-mPFC coordination has been observed after MIA
(Hartung et al., 2016). Other genetic risk models also manifest
impaired synchrony in the hippocampus-mPFC (Del Pino et al.,
2013) and hippocampus-NAc pathways (Nason et al., 2011).
Hippocampal-mPFC synchrony is also impaired in the MIA
model, including lower LFP coherence between these regions,
and reduced phase locking of prefrontal neurons to hippocampal
theta oscillations (Dickerson et al., 2010). Interestingly, the
antipsychotic clozapine has been shown to enhance theta
coherence between the two regions (Dickerson et al., 2012).
Moreover, hippocampal-mPFC synchrony is impaired in NVHL
animals (Lee et al., 2014), and both hippocampal-mPFC high-
frequency synchrony and spike cross-correlation are diminished
in MAM-exposed rats (Phillips et al., 2012).

In addition, through recording from the hippocampus and
mPFC of 22q11.2 mice, Sigurdsson et al. (2010) have found
reduced phase locking between mPFC neural activity and
hippocampal theta oscillations during a spatial working memory
task. However, hippocampal and mPFC local field potentials
(LFP) were intact. This suggests that, in 22q11.2 mice, the ability
to synchronize between remote regions is affected, whereas the
capacity to generate local synchrony is not. The authors suggest
that long-range synchrony impairments could reflect long-term
plasticity dysfunctions in mPFC afferents (Sigurdsson, 2016),
which is in agreement with the prefrontal LTP deficits observed
in the 22q11.2 model (Fenelon et al., 2013).

Single Unit Activity
Excitatory/inhibitory balance is critical for neuronal ensemble
function. Convergent lines of evidence indicate a reduction of

inhibitory function in schizophrenia patients and animal models
(Lodge et al., 2009; Lewis et al., 2012; Sauer et al., 2015), which
could reflect increased firing and therefore impaired neuronal
processing. Indeed, lower signal-to-noise ratio in the SCx is
observed in genetic mouse models of schizophrenia, in addition
to increased baseline firing, and disrupted firing responses to
sensory stimulation (Barz et al., 2016). An increase in PFC
firing rate is observed in the MIA model (Dickerson et al.,
2010), and under subanesthetic ketamine (Jackson et al., 2004;
Wood et al., 2012). It has also been demonstrated that pyramidal
cells increase, while interneurons decrease their firing rates,
suggesting that NMDA hypofunction in interneurons can be
responsible for the behavioral and neural activity observations
in these models (Homayoun and Moghaddam, 2007). A similar
effect has been observed in the SCx of mice lacking NMDA
receptors (Carlén et al., 2011), although reduced pyramidal firing
has been reported in the hippocampus (Korotkova et al., 2010).

Finally, disruptions in the excitatory/inhibitory balance can
derive from alterations in neuromodulatory systems (Sigurdsson,
2016). NVHL alters the response of mPFC pyramidal neurons
to VTA stimulation: in control animals, VTA stimulation
transiently inhibits themPFC through feedforward interneuronal
processing (Tseng et al., 2006), while the opposite is observed in
vHipp-lesioned animals (O’Donnell et al., 2002). A similar effect
is observed in the MAMmodel (Goto and Grace, 2006), in which
mPFC responses to reward-predictive stimuli are enhanced
(Gruber et al., 2010). A higher number of spontaneously active
VTA dopamine neurons is also observed in the MAM model
(Lodge and Grace, 2007; Gomes et al., 2015), which seems to
be associated with stronger vHipp influence (Lodge and Grace,
2007), and altered interneuronal activity (Perez and Logde, 2013).
It is possible, therefore, that increased firing in these animal
models could disturb sensory encoding, ultimately affecting
cognitive performance.

THE eCB SYSTEM IN SCHIZOPHRENIA:
ELECTROPHYSIOLOGICAL FINDINGS
FROM RODENTS

In this section (see Figure 1 for a graphical summary), we
first review in vivo single-neuron recordings in anesthetized
or chronically implanted rodents, either accompanied or not
by behavioral testing. Secondly, we move on to in vivo field
potential recordings, either after repeated drug administration,
or during acute drug effects. Then, we review in vitro studies,
which primarily include synaptic transmission and plasticity
experiments. Finally, we map the available electrophysiological
evidence to speculate on research trends in the following section.

Unit Activity In vivo
Melis et al. (2004a) and Laviolette and Grace (2006) are among
the initial electrophysiological studies assessing the cannabinoid
transmission in schizophrenia-relevant substrates: mPFC, VTA,
and BLA. Using urethane-anesthetized rats, Melis et al. (2004a)
have shown that intravenous SR-141716A (SRA, CB1 inverse
agonist) dose-dependently potentiates monosynaptic spiking
responses of VTA dopamine cells to mPFC electrical stimulation.
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FIGURE 1 | Rodent electrophysiology literature on cannabinoids and vanilloids in schizophrenia-relevant circuits: emphasis on methods. (A) Top: Frequently studied

brain sites and axonal pathways. To our knowledge, projections like VTA-mPFC, mPFC-NAc, and mPFC-BLA have not yet been directly examined, and are therefore

omitted for simplicity. Dashed lines represent GABAergic pathways. Only the left hemisphere is represented (brain sites adapted from the Brain Explorer, Allen

Institute). Bottom: Main electrophysiological findings, mostly from in vivo experiments (see also Figures 2, 3). (B) Top: representative brain sites and manipulations of

in vitro studies (coronal sections adapted from Paxinos and Watson, 2007; see also Figure 3). Bottom: illustrative recording probe, e.g., glass or steel microelectrode,

from which LFP (beige area) and single-unit firing (green area) can be recorded upon adequate filtering, amplification, and digitization. The middle voltage trace

represents a field potential response to afferent electrical or auditory stimulation, both of which present in the reviewed literature. The gray area roughly indicates the

timescale between types of signal. (C) Prevalent behavioral tests in the reviewed literature, most of them performed separately from electrophysiological experiments.

Adolesc, adolescent; BLA, basolateral amygdala; condit, conditioning; eCB-LTD, endocannabinoid long-term depression; Ket, ketamine; L5/6, layers 5/6; LFP, local

field potentials; MAM, methylazoxymethanol acetate; Meth, methamphetamine; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; NOR, novel object

recognition; PCP, phencyclidine; PPI, prepulse inhibition of the acoustic startle; THC, delta-9-tetrahydrocannabinol; TTX, tetrodotoxin; vHipp, ventral hippocampus;

VP, ventral pallidum; VTA, ventral tegmental area; WIN, WIN 55,212-2.

The opposite was observed under WIN 55,212-2 (or simply
WIN: CB1/CB2 receptor agonist), implying the eCB participation
in the top-down control of dopamine signaling. Using chloral
hydrate-anesthetized rats, Laviolette and Grace (2006) have
identified mPFC neurons responsive to both BLA orthodromic
electrical stimulation and footshock-paired odors. Specifically, in
these neurons, the authors have found that intravenous WIN
before conditioning increases the frequency of odor-elicited
spikes, which is suppressed by AM-251 (CB1 inverse agonist).
Therefore, each axonal pathway, BLA-mPFC or mPFC-VTA,
react differently to CB1 agonism, which seems associated with
Pavlovian fear conditioning (Figure 2A).

More recently, Draycott et al. (2014) have brought about
the mPFC-VTA projections in further detail. In urethane-
anesthetized rats, they have shown that intra-mPFC injection
of WIN modulates the spontaneous activity of VTA dopamine
cells, but in a biphasic dose-dependent manner: a lower dose of
WIN increased the firing rate and the incidence of bursts, while
a ten-fold higher dose inhibited both patterns. Using a separate
cohort of chronically cannulated rats, Draycott et al. (2014) have

observed a similar dose-dependent effect on fear conditioning:
lower, but not higher, intra-mPFC dose of WIN, during odor-
footshock pairing, promoted freezing responses during the test
session. In addition, co-administration of WIN and a dopamine
receptor antagonist (cis-α-flupenthixol, or simply α-flu) into the
mPFC blocked this behavioral effect, which could be restored by
GABA receptor antagonists into the VTA. These findings suggest
that the degree of CB1 receptor activation—and possibly the
endogenous fluctuation in eCB transmission—can exert different
effects on the mPFC-VTA loop, feedforward interneuronal
processing within the VTA, and related behaviors (Figure 2A).

Using the sub-chronic PCP model, Aguilar et al. (2014) have
provided a more direct link between VTA dopamine neuron
activity and schizophrenia. Using chloral hydrate-anesthetized
rats, Aguilar et al. (2014) have shown that PCP-induced VTA
hyperactivity could be normalized by up-regulating anandamide
through URB-597 (FAAH inhibitor) into the VP. Moreover,
the authors have demonstrated that vHipp electrical stimulation
evokes an inhibitory spiking response in VP (<60 ms latency),
which is converted to post-stimulus excitation upon systemic
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FIGURE 2 | Summary of in vivo unit activity studies in rodents. (A) Afferent stimulation experiments on BLA-responsive mPFC cells (Laviolette and Grace, 2006), and

the top-down control of dopamine signaling (Draycott et al., 2014; Melis et al., 2004a). Electrical pulses (lightning icons) and their timestamps (yellow arrowheads) are

illustrated along with recording sweeps, and overall effects of cannabinoid manipulations on unit activity responses (vertical arrows). Green and blue neurons are

glutamatergic and dopaminergic, respectively. (B) Studies on: (1) CB1 receptor activation in vHipp (Loureiro et al., 2015, 2016); (2) downstream consequences of

vHipp hyperactivity (i.e., abnormal NAc-VP-VTA disinhibition) induced by the chronic PCP model of schizophrenia, and ameliorating effects of anandamide

upregulation through FAAH inhibition (URB-597) (Aguilar et al., 2014); and (3) URB-597 effects on mPFC firing in PCP-treated rats (Aguilar et al., 2016). Red neurons

are GABAergic. (C) Studies on behavioral phenotypes and VTA spontaneous activity, either after pubertal cannabinoid exposure, or in the gestational MAM model

(Gomes et al., 2015; Renard et al., 2016). Activ, activation; Adolesc, adolescent; amph, amphetamine; condit, conditioning; BLA, basolateral amygdala; gestat,

gestational; hyperlocom, hyperlocomotion; MAM, methylazoxymethanol acetate; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; normaliz, normalization;

PCP, phencyclidine; PPI, prepulse inhibition of the acoustic startle; THC, delta-9-tetrahydrocannabinol; vHipp, ventral hippocampus; VP, ventral pallidum; VTA, ventral

tegmental area; WIN, WIN 55,212-2.

URB-597. Also, reduction of PCP-induced aberrant activity in
the VTA could be achieved through tetrodotoxin inactivation
of the vHipp. Because increased VTA activity in the PCP
model might partially derive from downstream effects of higher
vHipp influence (i.e., abnormal disinhibition from the NAc-VP
system), augmenting the cannabinoid drive onto VP GABAergic
neurons could be a therapeutic strategy against vHipp-related
hyperdopaminergia, and therefore schizophrenia (Lodge and
Grace, 2007; Aguilar et al., 2014). These results are consistent
with Loureiro et al. (2015, 2016), according to which vHipp
CB1 agonism during urethane anesthesia increases the average
neural activity in VTA and NAc shell. Thus, both the PCP model
and intra-hippocampal CB1 receptor activation have been shown
to disarrange the NAc-VP-VTA processing, which seems to be
treatable with anandamide up-regulation in the VP (Figure 2B).

These brain site-specific evidences are consistent with
systemic observations. In fact, a relationship is known between
cerebrospinal fluid levels of anandamide and the severity
of schizophrenia symptoms (Giuffrida et al., 2004; Leweke
et al., 2007; Koethe et al., 2009; Morgan et al., 2013; Aguilar
et al., 2016). This relationship reinforces how elusive are the
actions of anandamide and exogenous cannabinoids in either
protecting against schizophrenia symptoms, or exacerbating
them. Disparate effects of anandamide up-regulation and THC
have indeed been demonstrated in themPFC of non-anesthetized
animals using the PCP model (Aguilar et al., 2016). According
to the authors, systemic URB-597 potentiates the mPFC firing
rate in PCP-treated rats, but not their controls, whereas systemic
THC reduces the mPFC firing rate in control rats, but not
PCP-treated ones. A possible interpretation resides in the fact

that URB-597 interacts with an enzyme (FAAH), while THC
binds to receptors (CB1). Differently from the direct THC
actions on CB1, the indirect influence of URB-597 on these
receptors would be contingent upon the FAAH dynamics. This
would balance the anandamide up-regulation, making it more
similar to endogenous increases in anandamide transmission.
Such possibility would explain the symptom-relieving outcomes
of anandamide up-regulation, manifested as prefrontal net
excitation, and VTA activity normalization in the PCP model
(Aguilar et al., 2014, 2016; Figure 2B).

Besides anandamide up-regulation, exogenous cannabinoid
agonism per se can affect schizophrenia-like symptoms in
complex manners, depending on the experimental design.
Repeated administration of WIN throughout rat puberty has
been reported to potentiate attentional set-shifting deficits,
amphetamine-elicited hyperlocomotion, and the number of
spontaneously active dopaminergic neurons in VTA, as recorded
during chloral hydrate anesthesia in adults (Gomes et al., 2015).
The authors have observed the same in the MAM developmental
disruption model, implying that both gestational MAM and
pubertal WIN end up promoting schizophrenia-like signs in
adulthood. However, pubertal WIN treatment was not able
to exacerbate MAM-induced alterations in attentional set
shifting or VTA neural activity; actually, WIN attenuated the
amphetamine-elicited hyperlocomotion in MAM-exposed
rats (Gomes et al., 2015; Figure 2C). As discussed by the
authors, chronic administration of exogenous cannabinoid
agonists during puberty could trigger plastic mechanisms in
hyperlocomotion-related structures, especially NAc, which could
compensate for schizophrenia-relevant upstream abnormalities
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in the ventral hippocampal formation and VTA. These findings
provide a neurophysiological-behavioral link between chronic
cannabinoid exposure during adolescence and cannabinoid-
unrelated propensity for developing schizophrenia, with
implications for the hypothesis of cannabis self-medication
(Sherif et al., 2016). Most importantly, however, these findings
underscore that the intermingled relationship between the eCB
system and schizophrenia requires multidisciplinary exploration.
In this sense, chronic treatment with WIN during adolescence
has been shown to cause gene transcription alterations that
are potentially related with memory impairments in adulthood
(Tomas-Roig et al., 2016). Furthermore, histone acetylation—
related to neural development—is known to be altered in the
hippocampus in the MAM model, and such alteration can be
reverted by AM-251 (Večeřa et al., 2017). Therefore, epigenetic
processes may contribute to the developmental disruptions from
chronic cannabinoid exposure.

Laviolette and colleagues have recently linked a variety of
schizophrenia-like behavioral phenotypes with THC-induced
dopaminergic hyperactivity, and mPFC molecular alterations
(Renard et al., 2016). Specifically, chronic injections of THC
in adolescent, but not in adult, rats were associated with
lower social motivation, lower basal locomotion (i.e., without
hyperlocomotion-inducing drugs, like amphetamine), higher
light/dark box anxiety, and lower PPI of the acoustic startle.
After behavioral tests, single-unit recordings under urethane
anesthesia replicated the VTA hyperactivity of the PCP and
MAM models, but only in rats treated with THC during
adolescence (Figure 2C). In addition, western blotting from
mPFC micro-punches revealed diminished levels of mTOR-
related synaptic proteins (e.g., GSK-3, β-catenin, AKT) in
rats treated with THC during adolescence, but not adulthood.
Actually, many of these synaptic markers were increased by
adult THC exposure (Renard et al., 2016). The authors discuss
the opposing molecular results between adolescent and adult
THC treatments in terms of synaptic plasticity, neuropsychiatric
disorders, and dopamine transmission. They speculate that adult,
but not adolescent, prefrontal cells would be more able to
adapt their molecular machinery in response to THC-induced
alterations in the dopaminergic drive (Renard et al., 2016).

Field Potentials In vivo
Before Renard et al. (2016) the mPFC participation in adolescent
exposure to exocannabinoids had been investigated in two field
electrophysiology reports (Raver et al., 2013; Cass et al., 2014).
In the Cass et al. (2014) study, adult rats repeatedly treated
with systemic WIN (or vehicle) during early adolescence (P35-
40) were chloral hydrate-anesthetized for implantation of a
stimulating electrode into vHipp and a recording electrode
into mPFC. Different trains of pulses (10, 20, or 40 Hz) were
then delivered into vHipp while recording voltage deflections
from prefrontal LFP. Through analyzing stimulation-disrupted
LFP epochs, the authors claim that adolescent WIN treatment
facilitates LFP responses to 20-Hz trains, while attenuating LFP
inhibition triggered by 40-Hz trains (Cass et al., 2014; Figure 3A).
In the same work, three subsequent experiments were performed:
early adolescent co-treatment with WIN and AM-251, WIN

treatment during late adolescence (postnatal days 50–55), and
intra-mPFC microinfusion of indiplon (a GABA-A positive
allosteric modulator) before recording from early adolescence-
treated rats. All manipulations reproduced the results from
vehicle-treated rats of the first experiment. These converging
results point to early adolescence as the actual window of
vulnerability to exocannabinoids, during which the maturation
of mPFC local GABAergic transmission would be sensitive to
exogenous disturbances.

Prefrontal GABAergic interneurons are considered to be
critical for entraining pyramidal neuron activity into cognition-
relevant gamma oscillations (Bartos et al., 2007), which
can be transiently potentiated by a sub-anesthetic dose of
ketamine (Kocsis et al., 2013). This brings us to the in vivo
electrocorticogram experiment of Raver et al. (2013). Using
adult mice treated with WIN (or vehicle) during adolescence,
the authors have found that psychotic-like effects of ketamine
on frontal gamma oscillations are much weaker in WIN-
exposed mice. Indeed, gamma synchrony is known to be
impaired in regular cannabis users, and exogenous cannabinoid
agonists are known to reduce the firing precision of fast-spiking
interneurons (Skosnik et al., 2016). A combined scenario from
Raver et al. (2013) and Cass et al. (2014) is that chronic
exogenous CB1 agonism during early adolescence alters both
the vHipp-mPFC communication, and the mPFC capacity to
engage in interneuron-dependent fast oscillations (Figure 3A).
Intriguingly, Morra et al. (2012) had previously shown, in adult
rats, that a single intravenous dose of rimonabant (CB1 inverse
agonist) reduces both methamphetamine-induced stereotypy,
and potentiation of NAc gamma activity, particularly its fast 60-
100 Hz band. Since Morra et al. (2012) have also been able to
associate accumbal fast-spiking interneurons, but not medium
spiny neurons, with methamphetamine effects on LFP, they
provide evidence for exogenous CB1 antagonism as a suppressor
of NAc gamma oscillations (Figure 3A).

Methodological distinctions between Morra et al. (2012)
and Raver et al. (2013) including the recording site (NAc
or mPFC) and the cannabinoid treatment (chronic adolescent
regime, or single adult dose), probably account for the apparent
contradictions on CB1 agonism and antagonism. Apart from
discussing this issue based on the non-electrophysiological
literature, one important conclusion is that mesocorticolimbic
activity patterns in schizophrenia and cannabinoid modulation
are just emerging, especially over the past five years. Worthy of
mention are three other reports with a less explicit relationship
with the mesocorticolimbic system (Dissanayake et al., 2008;
Hajós et al., 2008; Smucny et al., 2014). Hajós et al. (2008)
have shown that CB1/CB2 agonism (CP-55940) during chloral
hydrate anesthesia reduces LFP theta power from entorhinal
cortex and hippocampal CA1, weakens theta activity of medial
septal neurons without altering their average firing rate, and
reduces the amplitude of auditory evoked potentials from
entorhinal cortex and CA3 (Figure 3B). The authors have also
demonstrated that CP-55940 attenuates gamma band oscillations
in the entorhinal cortex while enhancing them in CA3, and
all these effects could be reverted by AM-251 (Hajós et al.,
2008). These results indicate that sensory gating disruption by
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FIGURE 3 | Summary of in vivo field potential and in vitro synaptic plasticity studies in rodents. (A) Left: evaluation of mPFC responses (see voltage deflection) to

vHipp train stimulation (see lightning icons), and the mPFC capacity to engage in ketamine-potentiated gamma oscillations (see spontaneous field potentials) after

adolescent WIN treatment (Raver et al., 2013; Cass et al., 2014). Right: attenuating effects of rimonabant on methamphetamine-potentiated stereotypy and accumbal

gamma oscillations (Morra et al., 2012). Green and red neurons are glutamatergic and GABAergic, respectively. (B) Overall effects of cannabinoid agonists on

spontaneous theta oscillations and auditory evoked potentials across entorhinal cortical and hippocampal circuits (Dissanayake et al., 2008; Hajós et al., 2008), and

relationships with schizophrenia-relevant mouse models and manipulations (Smucny et al., 2014). (C) In vitro assessment of mPFC synaptic plasticity and

glutamatergic neurotransmission after adolescent WIN or early-life PCP exposure: association with schizophrenia-like symptoms (Lafourcade et al., 2007; Jew et al.,

2013; Lovelace et al., 2014, 2015). (D) In vitro assessment of CA1 synaptic plasticity and eCB neurotransmission: relationships with schizophrenia risk factors and

cannabinoid receptor activation (Du et al., 2013; Kim and Li, 2015; Li and Kim, 2016). 2-AG, 2-arachidonoyl-glycerol; adolesc, adolescent; antag, antagonism; dent,

dentate; eCB-LTD, endocannabinoid long-term depression; ent, entorhinal; γ, gamma oscillations; hyperlocom, hyperlocomotion; KO, knockout; L, layer; LTP,

long-term potentiation; meth, methamphetamine; mGluR, metabotropic glutamate receptors; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; PCP,

phencyclidine; relev, relevant; SCZ, schizophrenia; θ, theta oscillations; vHipp, ventral hippocampus; WIN, WIN 55,212-2.

exogenous cannabinoid activation is partially due to a functional
disorganization of the septo-hippocampal system.

In turn, Dissanayake et al. (2008) have examined systemic
WIN effects on paired auditory responses from the dentate gyrus,
CA3, and mPFC during isoflurane anesthesia. Results show
that WIN potentiates the amplitude ratio between responses to
test and conditioning stimuli in all three sites. Paired auditory
responses from CA3 under anesthesia (chloral hydrate) have also
been investigated by Smucny et al. (2014). Using DBA/2 mice,
which are known to display schizophrenia-like symptoms (Singer
et al., 2009), Smucny et al. (2014) have found that auditory gating
improvement by systemic clozapine (atypical antipsychotic)
is indifferent to THC co-administration. As different species,
anesthetics, and drugs have been used in these three studies
(Dissanayake et al., 2008; Hajós et al., 2008; Smucny et al.,
2014), it is difficult to compare them. For instance, according to
Smucny et al. (2014) THC alone is innocuous for CA3 response
amplitudes, whereas according to Dissanayake et al. (2008) WIN
is able to change these amplitudes, at least in a proportion of
subjects. It seems anyway clear that cannabinoid and psychosis-
relevant manipulations can effectively modulate auditory gating
within the temporal lobe and connected areas (Figure 3B).

In vitro Studies
Two of the references above (Raver et al., 2013; Cass et al.,
2014) have included in vivo and in vitro experiments after
adolescent exocannabinoid exposure. Raver et al. (2013),
who have reported that adolescent WIN treatment precludes
frontal gamma-potentiating effects of ketamine, have made

converging observations from LFP in vitro. This time, they
have analyzed prefrontal and somatosensory cortical gamma
oscillations potentiated by perfusion of kainic acid + carbachol,
a method known to shift the LFP spectrum toward fast
frequencies, thanks to higher excitatory drive and cholinergic
activation of interneurons (Raver et al., 2013). Slices from adults
treated with WIN during adolescence presented weaker gamma
power reactivity in both brain sites. Intriguingly, an equivalent
adolescent treatment with THC replicated these results in mPFC,
but not SCx. This finding might represent an electrophysiological
correlate of the WIN vs. THC pharmacological distinction,
which has been further examined by the same group using AM-
251 co-treatment (Raver and Keller, 2014). Complementarily,
Raver et al. (2013) have also described NOR deficits in a
separate cohort of adolescent WIN-treated adults, suggesting
that the exocannabinoid-exposed neocortex has lower sensitivity
to any gamma-potentiating event: either psychotomimetic drug
administration or cognitive effort.

In turn, Cass et al. (2014), who have found a GABAergic
involvement in WIN-induced alterations of the vHipp-mPFC
communication in vivo, have reinforced their conclusions
through an in vitro experiment. Whole-cell patch-clamp
recordings from the adult mPFC—specifically its deep-
layer pyramidal neurons—provided a link between repeated
adolescent WIN exposure and lower incidence of spontaneous
inhibitory postsynaptic currents. WIN treatment during
adulthood failed to reproduce this effect. We again interpret the
Raver et al. (2013) and Cass et al. (2014) studies together: chronic
exposure to exocannabinoids during adolescence seems to impair
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interneuronal activity within the mPFC, as well as its responsivity
to hippocampal afferent inputs, which can both account for adult
susceptibility to schizophrenia symptoms, including cognitive
deficits. Adolescent exposure toWIN has also been demonstrated
to affect mPFC intracortical synaptic plasticity in vitro. Lovelace
et al. (2015) have shown that eCB-LTD at layer 2/3 → layer 5
synapses of the mPFC is suppressed in brain slices from adult
female mice exposed to WIN during adolescence (Figure 3C).
Neither input-output curves nor short-term forms of synaptic
plasticity were affected by the WIN treatment. These findings
indicate that the underpinnings of cannabinoid tolerance, i.e.,
CB1 receptor down-regulation or desensitization, can affect the
prefrontal capacity to undergo long-term presynaptic plasticity
without altering its basal intra-cortical transmission. Lovelace
et al. (2015) have also shown that JZL-184 (inhibitor of 2-AG
hydrolysis) can rescue the eCB-LTD deficit caused by adolescent
WIN exposure. As discussed by the authors, these results are in
line with the post-mortem evidence of abnormal CB1 expression
in schizophrenia (Curran et al., 2016).

A previous work from the same group (Lovelace et al., 2014)
had indeed reported abnormal CB1 expression in a rodent
model of schizophrenia. Using confocal microscopy, they report
reduced CB1 fluorescent signal inmPFC and dorsal hippocampus
(dentate gyrus and CA1) from adult mice treated with PCP
during early development (postnatal days 7-11). As Lovelace
et al. (2014) had also shown impaired eCB-LTD and deficient
contextual fear memory in PCP-treated mice (Figure 3C), it
can be concluded that NMDA receptor hypofunction, during
mPFC maturation, might result in both eCB and cognitive
dysfunctions later in life. Using naïve adult mice, Lafourcade
et al. (2007) and Jew et al. (2013) have also explored the
interplay between glutamatergic and eCB transmission in the
mPFC. Lafourcade et al. (2007) have found, in mPFC deep
layers, a co-localization of presynaptic CB1 receptors, mGluR5,
and diacylglycerol lipase α, which is key in the synthesis of
2-AG. eCB-LTD in layers 5/6 of the mPFC was suppressed
by the mGluR antagonist MPEP, and a sub-threshold tetanic
stimulation required URB-602 (2-AG degradation blocker),
but not URB-597, to induce LTD (Lafourcade et al., 2007).
Consistently, Jew et al. (2013) have observed impaired eCB-
LTD in knockout mice lacking mGluR5 in principal cortical
neurons. Behaviorally, the same mice manifested higher novelty-
induced locomotion, higher open-field locomotion after injection
of methylphenidate (a psychostimulant), but unaffected anxiety,
fear conditioning, and PPI (Jew et al., 2013). These findings
suggest that specific schizophrenia-like symptoms may depend
on specific dysfunctions of the mGluR/eCB-LTD cooperation
(Figure 3C).

Lastly, we mention three studies on the intra-hippocampal
synaptic transmission (Du et al., 2013; Kim and Li, 2015; Li and
Kim, 2016). According to Du et al. (2013), chronic exposure
to hippocampal organotypic cultures to neuregulin-1—whose
over-expression is a risk factor for schizophrenia—increases the
enzymatic degradation of 2-AG, resulting in weaker mGluR
agonist-induced LTD in CA1. Using a similar preparation, the
same research group (Kim and Li, 2015) has demonstrated that
chronic CB2 receptor agonism elevates the frequency of quantal

glutamate release in CA1, which does not occur in slices from
schizophrenia-like CB2 knockout mice. Slices from the same
transgenic mice have also been reported to undergo weaker
LTP in CA1 (Li and Kim, 2016; Figure 3D). Therefore, the
hippocampus itself is prone to alterations in the mGluR/eCB
interplay, which could contribute to downstream dysfunctions in
mPFC, VTA, and other schizophrenia-relevant brain sites.

Methodological Overview
For delimitating the literature of this section via PubMed,
we searched for all possible combinations between keywords
related to schizophrenia, cannabinoids, vanilloids, and the
endocannabinoid and endovanilloid systems, provided that
they belonged to electrophysiological recording studies from
non-human animals. No articles were found using non-
human primates, or more recent neurophysiological techniques,
like optogenetics or chemogenetics. Hence, whether directly
involving models of schizophrenia, or at least discussing
schizophrenia, the main citations above (total of 23) reflect an
exhaustive review.

We can draw the following methodological outline from such
review (see also Table 1). (1) Most of the electrophysiological
recordings (13 of 23) have been performed in anesthetized
rodents, either accompanied (Laviolette and Grace, 2006;
Draycott et al., 2014; Gomes et al., 2015; Loureiro et al., 2015,
2016; Renard et al., 2016) or not (Melis et al., 2004a; Dissanayake
et al., 2008; Hajós et al., 2008; Raver et al., 2013; Aguilar et al.,
2014; Cass et al., 2014; Smucny et al., 2014) by behavioral
testing. (2) Some in vitro studies have also included separate
behavioral experiments (Jew et al., 2013; Raver et al., 2013;
Lovelace et al., 2014, 2015), but most of them have been purely
electrophysiological, either accompanied or not by anesthetized
recordings (Melis et al., 2004a; Lafourcade et al., 2007; Du et al.,
2013; Cass et al., 2014; Raver and Keller, 2014; Kim and Li, 2015;
Li and Kim, 2016). (3) Only two studies have performed chronic
recordings (Morra et al., 2012; Aguilar et al., 2016) one of them
with simultaneous behavioral monitoring (Morra et al., 2012).

In general, cannabinoid interactions with three other
neurotransmitter systems (dopamine, glutamate, and GABA)
across mesocorticolimbic circuits (vHipp, NAc, VP, VTA,
mPFC, and BLA) have been prioritized. Relationships
between cannabinoid transmission and schizophrenia have
been investigated using animal models (sub-chronic PCP,
gestational MAM, subanesthetic ketamine, amphetamine,
and methamphetamine), and behavioral measures (open-field
locomotion/stereotypy, sociability, PPI of the acoustic startle,
fear conditioning, attentional set shifting, light/dark box
anxiety, and NOR). Chronic cannabinoid exposure during
adolescence and its impacts on mPFC interneurons, oscillatory
activity, and protein expression during adulthood have also
received attention. A minor proportion of articles reports
cannabinoid effects on auditory evoked potentials from the
hippocampus. Finally, in vitro studies have provided all available
information on eCB-mediated synaptic plasticity in the mPFC or
hippocampus in schizophrenia-relevant assays (e.g., adolescent
cannabinoid exposure, mGluR and CB2 knockouts, and acute
psychostimulant effects).
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TABLE 1 | Rodent electrophysiology studies involving the eCB system and schizophrenia-relevant treatments/models.

References (23 total) Methods Behavioral paradigms

Treatments/models Preparations Measures Brain sites

Melis et al., 2004a WIN, CB1 knockout, others Anesth, In vitro Firing, Evoked curr mPFC, VTA

Laviolette and Grace, 2006 WIN, AM-251 Anesth Firing BLA, mPFC Fear cond

Lafourcade et al., 2007 URB-602, LY-341495, others In vitro Evoked curr/FP mPFC

Dissanayake et al., 2008 WIN, SRA Anesth Audit gating CA3, DG, mPFC

Hajós et al., 2008 CP-55940, amphet, others Anesth Firing, Audit gating, LFP EC, CA3-1, septum

Morra et al., 2012 methamphet, RIM Chronic LFP NAc Locom, stereot

Du et al., 2013 neuregulin-1, JZL-184, others In vitro Evoked curr CA1

Jew et al., 2013 mGluR5 knockout, others In vitro Evoked FP mPFC Locom, PPI, others

Raver et al., 2013 WIN, ket, others Anesth, In vitro LFP mPFC, SCx NOR

Aguilar et al., 2014 chronic PCP, URB-597, others Anesth Firing vHipp, VP, VTA

Cass et al., 2014 chronic WIN, indiplon, others Anesth, In vitro Spont curr, LFP vHipp, mPFC

Draycott et al., 2014 WIN, AM-251, others Anesth Firing mPFC, VTA Fear cond

Lovelace et al., 2014 chronic PCP, JZL-184, others In vitro Evoked FP mPFC Fear cond

Raver and Keller, 2014 KA+CCh, WIN, THC, others In vitro LFP mPFC, SCx

Smucny et al., 2014 clozapine, THC, DBA/2 mice Anesth Audit gating CA3

Gomes et al., 2015 chronic WIN, gestat MAM Anesth Firing VTA Attention, Locom

Kim and Li, 2015 CB2 knockout, others In vitro Evoked curr/FP CA1

Loureiro et al., 2015 WIN, SRA, α-flu Anesth Firing vHipp, NAc, VTA CPP, sociab

Lovelace et al., 2015 chronic WIN, AM-251, others In vitro Evoked FP mPFC NOR, Locom

Aguilar et al., 2016 chronic PCP, URB-597, THC Chronic Firing, LFP vHipp, mPFC

Li and Kim, 2016 CB2 knockout, others In vitro Evoked FP CA1

Loureiro et al., 2016 WIN, RIM Anesth Firing vHipp, NAc Fear cond, CPP, sociab

Renard et al., 2016 chronic THC Anesth Firing VTA Sociab, PPI, others

amphet, amphetamine; anesth, anesthetized; audit, auditory; CCh, carbachol; cond, conditioning; CPP, conditioned place preference; curr, current; FP, field potentials; gestat, gestational;

KA, kainic acid; ket, ketamine; locom, locomotion; methamphet, methamphetamine; sociab, sociability; spont, spontaneous; stereot, stereotypy.

Endovanilloid System in Schizophrenia:
Indirect Electrophysiological Implications
from Rodents
We found six electrophysiological studies on the non-
human endovanilloid system with potential implications
for schizophrenia (see also Table 2). They report findings on
schizophrenia-relevant neurochemical and behavioral alterations
without explicitly focusing on this disorder. Marinelli et al.
(2005) performed in vitro and in vivo experiments on the
TRPV1 participation in dopamine release. In VTA slices, the
TRPV1 agonist capsaicin has been shown to increase the firing
rate of dopamine neurons. This response could be blocked by
antagonists of ionotropic glutamate receptors (CNQX and AP5),
providing a link between the endovanilloid, dopaminergic, and
glutamatergic systems. Using in vivo experiments, the same
studies have found that both capsaicin microinjection into the
VTA and noxious tail stimulation increases dopamine release
in the NAc. Therefore, this finding is an indirect evidence of
the endovanilloid involvement in schizophrenia, since pain
sensitivity is disarranged in this disorder (Stubbs et al., 2015).
Grueter et al. (2010) have also studied the endovanilloid
modulation of the NAc. According to the authors, mGluR-
mediated release of eCB from medium spiny neurons activated
both postsynaptic TRPV1 and presynaptic CB1 receptors.
Noteworthy, whereas this CB1 recruitment induced eCB-LTD,

TRPV1 activation triggered the endocytosis of AMPA receptors,
thus inducing a postsynaptic form of LTD (Grueter et al.,
2010). Therefore, these two electrophysiological studies point
to an interplay between the eCB and endovanilloid systems in
schizophrenia, at least regarding plasticity mechanisms within
the NAc.

TRPV1 receptors have also been shown to play a role
in the inhibitory neurotransmission within the hippocampus,
which is usually associated with disrupted field oscillations
in schizophrenia. Using hippocampal slices from TRPV1-
knockout mice, Marsch et al. (2007) have found a lower
ability of CA1 pyramidal neurons to undergo LTP, an effect
that has been later demonstrated to be reverted by GABAA

antagonism (Brown et al., 2013). Also using TRPV1-knockout
mice, Gibson et al., (2008) have reported a lower ability of CA1
interneurons to undergo LTD. Therefore, TRPV1 receptors seem
to modulate hippocampal synaptic plasticity and interneuronal
activity in complex manners. Also in the hippocampus, Eguchi
et al. (2016) have found that TPRV1 antagonism suppresses
mGluR-dependent excitatory postsynaptic currents in voltage-
clamped CA3 interneurons. These findings, together with
those from Marinelli et al. (2005) and Grueter et al. (2010),
suggest that complex interactions exist between the eCB and
endovanilloid systems across hippocampal and mesolimbic
circuits.
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TABLE 2 | Rodent electrophysiology studies involving the endovanilloid system and schizophrenia-relevant treatments/models.

References (six total) Methods Behavioral paradigms

Treatments/models Preparations Measures Brain sites

Marinelli et al., 2005 capsaicin, CNQX, others In vitro* Firing VTA

Marsch et al., 2007 TRPV1 knockout In vitro Evoked FP CA1 Fear cond, others

Gibson et al., 2008 TRPV1 knockout, others In vitro Evoked curr/FP CA3-1

Grueter et al., 2010 TRPV1 knockout, others In vitro Evoked curr/FP NAc Locom, stereot

Brown et al., 2013 TRPV1 knockout, others In vitro Evoked FP CA1

Eguchi et al., 2016 capsazepin, AP3, others In vitro Evoked curr CA3

*Separate in vivo microdialysis from NAc; cond, conditioning; curr, current; FP, field potentials; locom, locomotion; stereot, stereotypy.

Psychopharmacology studies had already observed that
TRPV1 receptors modulate behavioral changes in schizophrenia
models (Tzavara et al., 2006; Almeida et al., 2014). In addition,
systemic capsaicin in hyperdopaminergic animals has been
reported to suppress the hyperlocomotion associated with
decreased nigrostriatal activity (De Lago et al., 2004; Lee
et al., 2006; Tzavara et al., 2006). It seems clear, therefore,
that exploring these same psychopharmacological issues using
neurophysiological tools tends to detail the relationship between
the endovanilloid system and schizophrenia.

IMPLICATIONS FROM RODENT
ELECTROPHYSIOLOGY AND RESEARCH
DIRECTIONS

What emerges from the animal model literature is that
cannabinoid and vanilloid drugs affect the mesocorticolimbic
system depending on their dose and pharmacological action. As
a result, cannabinoid and vanilloid treatments can exacerbate or
reverse schizophrenia-like symptoms. In fact, there is a myriad
of hippocampal and prefrontal cortical changes in receptor
expression, synaptic plasticity, and oscillatory activity that might
result from aberrant eCB and endovanilloid drive. Of note,
altered VTA single-unit activity appears to be the consistent
outcome of both cannabinoid and TRPV1 manipulations,
implicating the vHipp-NAc-VP disinhibition system and related
symptoms.

Such a scenario is expectedly elusive, given the low number
of studies within this review’s scope. The majority of rodent
electrophysiological reports were published in the past 5 years,
indicating this is a rapidly expanding subfield. In almost all
of in vivo works, behavioral and electrophysiological data
come from separate experiments, or even separate groups of
subjects, thus offering disconnected results and less analytical
opportunities. Moreover, combined analyses of LFP and unit
activity are still neglected in the subfield. The remaining text
reflects the authors’ opinion on how these limitations may be
overcome by recent (but already established) neurophysiological
approaches. Directions take into account functional data from
humans (reviewed above), and the paucity of electrophysiological
studies explicitly interested in the endovanilloid-schizophrenia
relationship.

The endovanilloid role in schizophrenia is clearly
underexplored, making its neurophysiological study a promising
research avenue. Rodent studies so far have only provided
indirect relationships between TRPV1 and schizophrenia
symptoms (Chahl, 2007). Therefore, in vivo approaches tend to
provide meaningful information, even from simple behavioral
pharmacology experiments. Chronic electrophysiological
recordings during such experiments will additionally reveal how
behavioral abnormalities relate to functional markers, e.g., local
synchrony within theta and gamma bands, as well as long-range
synchrony between hippocampus and PFC during cognitive
tasks.

CBD, in turn, has been shown to be a promising antipsychotic
(Crippa et al., 2010; Zuardi et al., 2012). Despite controversies,
CBD is known to ameliorate hyperlocomotion and PPI deficits
in acute models of schizophrenia (Zuardi et al., 2012). From the
mechanistic perspective, however, CBD’s actions on psychosis-
relevant brain regions is still unclear (Gururajan and Malone,
2016), thus making electrophysiological experiments on this
matter highly desirable. For example, interrogating whether CBD
attenuates the effects of PCP, ketamine, or amphetamine on
gamma oscillations and single-unit activity will begin to clarify
CBD’s antipsychotic properties.

In this same sense, electrophysiological measures may
shed light on the still elusive interactions among CBD,
psychosis, and serotonin receptors (Russo et al., 2005).
Similarly to the antipsychotic aripiprazole, CBD is known
to facilitate 5-HT1A receptor-mediated neurotransmission
in schizophrenia-related areas, including the rodent mPFC
(Campos et al., 2012). Comparing the systemic effects of these
two drugs while assessing behavior (e.g., locomotion), and
selectively manipulating 5-HT1A receptors (e.g., intra-mPFC
WAY100635) is an opportunity for chemotrode LFP recordings,
either separately or simultaneously to behavioral monitoring.
Employing these approaches in animal models of schizophrenia
is a feasible way to further explore the serotonergic character of
CBD, and its neuropsychiatric relevance.

In addition to psychopharmacology-oriented designs,
circuit-level studies are necessary. Assessing synaptic plasticity
and brain connectivity disruptions under both schizophrenia
symptoms and eCB/endovanilloid manipulations is likely to
yield relevant mechanistic information. For example, CB1
and TRPV1 receptors contribute to LTD induction across the
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mPFC, hippocampus, and NAc (Gibson et al., 2008; Grueter
et al., 2010; Lovelace et al., 2014). Thus, monitoring these
plasticity processes in schizophrenia-like phenotypes (e.g.,
adult rats previously exposed to MAM, or chronic THC) is
a promising approach, both in anesthetized and behaving
subjects.

Plasticity dysfunctions can also be reflected in long-
range connectivity impairments (Sigurdsson, 2016). The
hippocampal-PFC synchrony is disrupted in schizophrenia
patients, animal models, and under CB1 agonism (Cass et al.,
2014; Sigurdsson, 2016). In fact, this is an ideal substrate for
studying how eCB interacts with glutamatergic, cholinergic,
and monoaminergic systems in modulating inter-areal
communication (Schlicker and Kathmann, 2001; Nagode
et al., 2014). Chronic multi-site recording experiments might,
therefore, unveil these interactions, thus pushing the research
topic into a systems-level perspective. Addressing cognitive and
perceptual alterations in this context would also be relevant for
providing neuropsychiatric implications.

Oscillatory activity abnormalities are well documented in
schizophrenia, especially in the gamma range (McNally and
McCarley, 2016). Complex interactions between interneuron
subtypes are supposedly responsible for generating gamma
oscillations (Sohal et al., 2009; Sohal, 2012). Interestingly,
hippocampal and neocortical CB1 receptors are preferentially
found on certain interneurons, i.e., CCK-containing non-fast-
spiking cells (Bacci et al., 2004; Eggan and Lewis, 2007; Ali and
Todorova, 2010), which in turn provide inputs to both pyramidal
cells, and PV-containing fast-spiking interneurons (Karson et al.,
2009; Keimpema et al., 2012). Skosnik et al. (2016) proposed that
fine tuning within this CCK-PV-pyramidal arrangement depends
on the eCB modulation, which would be disrupted by exogenous
cannabinoid agents. Considering that gamma oscillations rely on
this fine tuning, the hypotheses of Skosnik et al. (2016) could
be explored using electrophysiology and optogenetics. More
specifically, each cell type involved in gamma entrainment could
be optically tagged (Kim et al., 2016; Nomoto et al., 2016), and
subsequently monitored before and after CB1 activation (e.g.,
a psychotomimetic dose of THC). Such an experiment would
gain additional relevance if performed in chronically treated
animals (e.g., adolescent THC treatment), and/or animal models
of schizophrenia.

Oscillatory patterns outside the gamma range can be linked
with other schizophrenia-related neurotransmitter systems,

especially dopamine (Lisman, 2012). The VTA-hippocampus-
mPFC activity is known to coordinate 4 Hz, theta, and low-
gamma oscillations in intricate manners (Fujisawa and Buzsáki,
2011). Furthermore, dopamine into the mPFC is known to
promote hippocampal-mPFC theta coherence (Benchenane et al.,
2010). Given that both power (Ducharme et al., 2012) and
coherence (Sigurdsson et al., 2010) in the theta band have been
found to be diminished in schizophrenia models, this reduction
could be potentially attributed to abnormal dopaminergic
signaling. In this sense, the firing rate of VTA dopaminergic cells
has been shown to increase upon local TRPV1 agonism (Marinelli
et al., 2005; Ali and Todorova, 2010). Thus, an interesting
approach would be to electrophysiologically probe the VTA-
mPFC communication under TRPV1 agonists (e.g., capsaicin) in
schizophrenia models.

In general, the proposed directions suggest potential lines of
research. While the above scenario does not cover experimental
possibilities in an exhaustive fashion, it may be helpful for
experiment designing in the near future.

CONCLUDING REMARKS

Dysfunctions of eCB and endovanilloid signaling across
mesocorticolimbic circuits may contribute to schizophrenia-like
symptoms. Identifying neural activity patterns under these
dysfunctions tends to motivate further electrophysiological
experimentation, which (according to this review) is in
need of denser analyses, as well as brain stimulation and
chronic recording approaches. Potential therapeutic targets or
procedures will likely arise from such exploration.
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