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Abstract 
The Center for Disease Control estimates 128,000 people in the U.S. 
are hospitalized annually due to food borne illnesses. This has created 
a demand for food safety testing targeting the detection of 
pathogenic mold and bacteria on agricultural products. This risk 
extends to medical Cannabis and is of particular concern with inhaled, 
vaporized and even concentrated Cannabis products . As a result, third 
party microbial testing has become a regulatory requirement in the 
medical and recreational Cannabis markets, yet knowledge of the 
Cannabis microbiome is limited. Here we describe the first next 
generation sequencing survey of the fungal communities found in 
dispensary based Cannabis flowers by ITS2 sequencing, and 
demonstrate the sensitive detection of several toxigenic Penicillium 
and Aspergillus species, including P. citrinum and P. paxilli, that were 
not detected by one or more culture-based methods currently in use 
for safety testing.
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Introduction
Our knowledge of the natural microbiome of field-grown Cannabis 

in terms of rhizosphere bacteria, and endophytic fungi is lim-

ited to just a few focused studies1–3. Very little is known about 

the potential for bacterial and fungal contamination on medicinal 

Cannabis. Nevertheless, many states in the U.S. are now crafting 

regulations for detection of microbial contamination on Cannabis 

in the absence of any comprehensive survey of actual samples. 

A few of these regulations are inducing growers to “heat kill” or 

pasteurize Cannabis flowers to lower microbial content. While 

this seems a harmless suggestion, we must remain aware of how 

these drying techniques may create false negatives in culture-based 

safety tests used to monitor colony-forming units (CFU). Even 

though pasteurization may be effective at sterilizing some of the 

microbial content, it does not eliminate various pathogenic toxins 

or spores. Aspergillus spores and mycotoxins are known to resist 

pasteurization4,5. Similar thermal resistance has been reported for 

E. coli produced Shiga toxin6. While pasteurization may reduce 

CFU’s used in petri-dish or plating based safety tests, it does not 

reduce the microbial toxins, spores or DNA encoding these toxins.

Monitoring for mycotoxic fungi in cannabis preparations has been 

recommended as part of routine safety testing by the Cannabis 

Safety Institute. A major driver for this recommendation has been 

numerous reported cases of serious or fatal pulmonary Aspergil-

losis associated with marijuana smoking in immunocompromised 

patients7–9. The major cannabinoids have been shown to be potent 

inhibitors of several cytochrome P450 enzymes at therapeutic  

concentrations, including 1A1, 1A2, 1B1 2B6, 2C19, 2D6, 3A4 

and 3A510. Some of these enzymes have been implicated in the 

metabolism of the fungal toxins aflatoxin and ochratoxin11–13. This 

raises questions about potential interactions and appropriate safety 

tolerances for mycotoxins in patients being treated with cannabi-

noid therapeutics. In addition, some Fusarium species that produce 

toxins have proven to be difficult to selectively culture with tailored 

media14–16. This is a common problem associated with culture-based 

systems as carbon sources are not exclusive to certain microbes and 

only 1% of microbial species are believed to be culturable17.

While the risks of mycotoxic fungal contamination have been well 

studied in the food markets, the presence of the fungal popula-

tions present on Cannabis flowers has never been surveyed with 

next generation sequencing techniques18–23. With the publication 

of the Cannabis genome24,25 and many other pathogenic microbial 

genomes, quantitative PCR assays have been developed that can 

accurately quantify fungal DNA present in Cannabis samples26. 

Here, we analyze the yeast and mold species present in 10 real 

world, dispensary-derived Cannabis samples by quantitative PCR 

and sequencing, and demonstrate the presence of several myco-

toxin producing fungal strains that are not detected by widely used 

culture-based assays.

Methods
Culture-based methods
The culture-based methods selected for testing here represent those 

currently in use by established medicinal Cannabis safety test-

ing laboratories. 3.55ml of tryptic soy broth (TSB) was used to 

wet 250mg of homogenized flower in a whirlpack bag. TSB was 

aspirated from the reverse side of the 100µm mesh filter and 

placed into a BiolumixTM growth vial and spread onto a 3M Petri 

FilmTM and a SimPlateTM (3M PetrifilmTM 3M Microbiology, 

St. Paul, MN, USA; SimPlatesTM Biocontrol Systems, Bellevue, 

WA, USA; BioLumixTM Neogen, Lansing MI, USA) according to 

the respective manufacturers’ recommendations. BiolumixTM vials 

were grown and monitored for 48 hours while Petri-filmsTM and 

SimPlatesTM were grown for 5 days. Petri-filmsTM and SimPlatesTM 

were colony counted manually by three independent observers. 

Samples were tested on total coliform, total entero, total aerobic, 

and total yeast and mold. Only total yeast and mold discrepancies 

were graduated to sequencing.

DNA purification
Plant DNA was extracted with SenSATIVAx according to manufac-

turers’ instructions (Medicinal Genomics part #420001). DNA was 

eluted with 50µl ddH20.

Primers used for PCR and sequencing
PCR was performed using 5µl of DNA (3ng/µl) 12.5µl 2X Lon-

gAmp (NEB) with 1.25µl of each 10µM MGC-ITS3 and MGC-ITS3 

primer (MGC-ITS3; TACACGACGTTGTAAAACGACGCATC-

GATGAAGAACGCAGC) and (MGC-ITS3R; AGGATAACAATT-

TCACACAGGATTTGAGCTCTTGCCGCTTCA) with 10µl 

ddH20 for a 25µl total reaction. An initial 95°C 5 minute dena-

turization was performed followed by 40 cycles of 95°C for 15s 

and 65°C for 90s. Samples were purified with 75µl SenSATIVAx, 

washed twice with 100µl 70% EtOH and bench dried for 5 minutes 

at room temperature. Samples were eluted in 25µl ddH20.

      Amendments from Version 1

The statement in the abstract saying that the findings 

“demonstrate the limitations in the culture-based regulations” 

was removed. We added a brief mention of the limited 

literature relating to Cannabis microbiomes to the introduction. 

Clarification as to the scope of the study including only analysis 

of fungal microbiomes was added. We revised paragraph 2 of 

the introduction to focus on the numerous literature reports of 

pulmonary aspergillosis associated with cannabis use instead of 

potential dangers of mycotoxin toxicity. We provided additional 

background on the overlap of cannabinoid and mycotoxin 

metabolism via cytochrome P450 system. Figure 2 was revised 

and the figure legend expanded. We removed spurious hits to 

non-fungal species and reported only high-confidence species 

detected with 10 reads or more. This resulted in a higher number 

of species reported for some samples and fewer for others. 

The first paragraph of the discussion section was expanded to 

describe the additional findings. We added a sentence to the 

end of the second paragraph of the discussion mentioning the 

two existing publications on endophytic fungi in Cannabis. We 

removed the comment on potential growth inhibition relating to 

terpenoids. With respect to potential paxilline contamination, we 

de-emphasized the concern based solely on the detection of 

P. paxilli, and stated instead that if the results were verified by 

tests indicating high levels of paxilline then it may be a cause for 

concern. The comments relating to the sensitivity of ELISA assays 

were deleted. Some clarification was added to the concluding 

paragraph to emphasize the need to ensure that all species 

of potential concern can be detected, and also the need for 

additional studies to characterize a broader diversity samples, 

including measurements of toxin levels where relevant. 

See referee reports

REVISED
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Total Yeast and Mold assay and ITS amplification
A commercially available total yeast and mold qPCR assay 

(TYM-PathogINDICAtor, Medicinal Genomics, Woburn MA) 

was used to screen for fungal DNA in a background of host  

Cannabis DNA. The TYM qPCR assay targets the ribosomal DNA 

Internal Transcribed Spacer region 2 (ITS2) using modified prim-

ers described previously27,28. Fungal DNA amplified using these 

primers may also be subjected to next generation sequencing to 

identify the contributing yeast and mold species. ITS sequencing 

has been widely used to identify and enumerate fungal species 

present in a given sample29.

Tailed PCR cloning and sequencing
DNA libraries were constructed with 250ng DNA using New 

England Biolabs (Ipswich, MA) NEBNext Quick ligation module 

(NEB # E6056S). End repair used 3µl of enzyme mix, 6.5µl of 

reagent mix, 55.5µl of DNA + ddH20. Reaction was incubated 

at 30°C for 20 minutes. After end repair, ligation was performed 

directly with 15µl of blunt end TA mix, 2.5µl of Illumina adap-

tor (10µM) and 1µl of ligation enhancer (assumed to be 20% PEG 

6000). After 15 minute ligation at 25°C, 3µl of USER enzyme was 

added to digest the hairpin adaptors and prepare for PCR. The USER 

enzyme was tip-mixed and incubated at 37°C for 20 minutes. After 

USER digestion, 86.5µl of SenSATIVAx was added and mixed. The 

samples were placed on a magnet for 15 minutes until the beads 

cleared and the supernatant could be removed. Beads were washed 

twice with 150µl of 70% EtOH. Beads were left for 10 minute to air 

dry and then eluted in 25µl of 10mM Tris-HCl.

Library PCR
25µl 2X Q5 polymerase was added to 23µl of DNA with 1µl of 

i7 index primer (25µM) and 1µl universal primer (25µm). After 

an initial 95°C for 10s, the library was amplified for 15 cycles 

of 95°C 10s, 65°C 90s. Samples were purified by mixing 75µl of 

SenSATIVAx into the PCR reaction. The samples were placed on a 

magnet for 15 minutes until the beads cleared and the supernatant 

could be removed. Beads were washed twice with 150µl of 70% 

EtOH. Beads were left for 10 minute to air dry and then eluted 

in 25µl of 10mM Tris-HCl. Samples were prepared for sequencing 

on the MiSeq version 2 chemistry according to the manufacturers’ 

instructions. 2×250bp reads were selected to obtain maximal ITS 

sequence information.

PaxP verification PCR
Primers described by Shirazi-zand et al. were utilized to amplify 

a segment of the 725bp PaxP gene from Penicillium paxilli. 25µl 

LongAmp (NEB) 4µl 10µM primer, 1µl DNA (14ng/µl), 20µl 

ddH20 to make a 50µl PCR reaction. Cycling conditions were 

slightly modified to accommodate a different polymerase. 95°C 

for 30s followed by 28 cycles of 95°C 15s, 55°C for 30s, 65°C 

2.5 minutes. Samples were purified with 50µl of SenSATIVAx as 

described above. 1µl of purified PCR product was sized on Agilent 

HS 2000 chip. Nextera libraries and sequencing were performed 

according to instructions from Illumina using 2×75bp sequencing 

on a version 2 MiSeq.

Penicillium Citrinum verification PCR
Citrinum forward GATTTTCCAAAATGCCGTCT and Citrinum 

reverse GCTCAAGCATTAATCTAGCTA primers were used with 

identical PCR conditions as above with the exception using 35 cycles  

of PCR. Samples were purified with 50µl of SenSATIVAx as 

described above. 1µl of purified PCR product was sized on Agilent 

HS 2000 chip. Nextera libraries and sequencing were performed 

according to instructions from Illumina using 2×75bp sequencing 

on a version 2 MiSeq. Reads were mapped to Genbank accession 

number LKUP01000000. Mappings were confirmed using BLAST to 

NCBI to ensure the strongest hits were to P. citrinum.

Analysis
Reads were demultiplexed and trimmed with Casava 1.8.2 and trim_

galore v0.4.1 (http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/). FLASH v1.2.1130 was used to merge the reads using 

max_overlap 150. The reads were aligned to microbial references 

using MG-RAST v3.231. Alignments and classifications were con-

firmed with a second software tool from One Codex (https://one-

codex.com/) and critical pathways identified for further evaluation 

with PCR of toxin producing genes. Reads are deposited in NCBI 

under SRA accession: SRP065410. Nextera 2×75bp sequencing 

of the PaxP gene was mapped to accession number HM171111.1 

with CLCbio Workstation V4 at 98% identity over 80% of the read. 

One Codex analysis was put into Public mode under the following 

public URLs:

Australian Bastard:

https://app.onecodex.com/analysis/public/201e7f1642e04a3c 

https://app.onecodex.com/analysis/public/58f1e03c10434bfa 

KD4:

https://app.onecodex.com/analysis/public/2e86e262817246c4 

https://app.onecodex.com/analysis/public/1abd5b60446140a0 

KD6:

https://app.onecodex.com/analysis/public/a92d3dff5485499d 

https://app.onecodex.com/analysis/public/8d72e2514e564ecd 

KD8:

https://app.onecodex.com/analysis/public/8d72e2514e564ecd 

https://app.onecodex.com/analysis/public/d6e2e0bcfba3469f 

Liberty Haze:

https://app.onecodex.com/analysis/public/7bcd650fa5544f2c 

https://app.onecodex.com/analysis/public/7f0feb6cb0a94d56 

Girls Scout Cookie:

https://app.onecodex.com/analysis/public/a71b1ce8331c461d 

https://app.onecodex.com/analysis/public/8d6f10c7ee684f93 

Jakes Grape:

https://app.onecodex.com/analysis/public/bc8af5ed19e5407a 

https://app.onecodex.com/analysis/public/99d7a4a2f7af486b 

RECON:

https://app.onecodex.com/analysis/public/8a22a16cc2e24731 

https://app.onecodex.com/analysis/public/0af6ae26a01f48d5 

GreenCrack:

https://app.onecodex.com/analysis/public/6114843d2eb3425e 

https://app.onecodex.com/analysis/public/3eee642786c54a88 

LA Confidential:

https://app.onecodex.com/analysis/public/01e8aefb0d4f4f62 

https://app.onecodex.com/analysis/public/b74c2988fcd84e38 

NYC Diesel:

https://app.onecodex.com/analysis/public/441cfad759f64dcc 

https://app.onecodex.com/analysis/public/d97b39cae96c4a44 
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Results
We purified DNA from Cannabis samples obtained from two 

different geographic regions (Amsterdam and Massachusetts)  

several years apart (2011 and 2015). The majority of samples puri-

fied and screened with ITS qPCR were negative for amplification 

signal implying reagents clean of fungal contamination. Six of 

the 17 dispensary-derived Cannabis samples tested positive for 

yeast and mold in the TYM qPCR assay. These results were com-

pared with the results derived from three commercially available 

culture-based detection systems for each of the 17 samples (3M 

PetrifilmTM 3M Microbiology, St. Paul, MN, USA; SimPlatesTM 

Biocontrol Systems, Bellevue, WA, USA; BioLumixTM Neogen, 

Lansing MI, USA; Figure 1). Of the 6 qPCR positive samples, 

two tested negative in all 3 culture-based assays and four tested 

negative in 1 or 2 of the culture-based assays (Table 1). None of 

the qPCR negative samples tested positive in any of the culture-

based assays. Each of the 6 discordant samples was subjected to 

ITS sequencing to precisely identify the collection of microbes 

present. Four additional samples from a different geographic ori-

gin (Amsterdam) were also subjected to ITS sequencing, for a 

total of 10 Cannabis samples.

Each discordant sample presented with an array of micro-

bial species, as shown in Figure 2. No sample presented with 

a single dominant species, and each sample displayed multiple  

species of interest. Of particular concern were the identified 

DNA sequences from toxin producing species: Aspergillus  

versicolor32–36, Aspergillus terreus37, Penicillium citrinum38–40, 

Penicillium paxilli41,42.

We further analyzed the ITS sequence alignments using the whole 

genome shotgun based microbiome classification software known as 

One Codex43. Nine of the ten samples sequenced showed the pres-

ence of P. paxilli (Figure 3). To verify the accuracy of this ITS phylo-

typing, a gene involved in the paxilline toxin biosynthesis pathway of 

P. paxilli was amplified with PaxPss1 and PaxPss2 primers described 

by Saikia et al.44. The resulting 725bp amplicon (expected size) was 

sequenced to confirm the presence of the P. paxilli biosynthesis gene in 

the Cannabis sample KD8 (Figure 4). This was successfully repeated 

with primers designed to target genes in the citrinin pathway of  

P. citrinum. There were some discrepancies between the results 

derived from the two software platforms (One Codex and MG-RAST). 

The MG-RAST analysis, using merged, paired reads correlated bet-

ter with the PCR results. While One Codex predicted and confirmed 

KD8 as having the highest P. paxilli content, the One Codex platform 

is optimized for whole genome shotgun data and may not be able to 

differentiate the 18S sequence differences (391/412 aligned bases) 

between these two species with a K-mer based approach.

With the confirmed presence of P. paxilli, we are curious to find out 

whether the toxin, paxilline, is present in the samples. Development 

of monoclonal antibodies to paxilline has recently been described45, 

but commercial ELISA assays with sensitivity under 50ppb do not 

appear to be available at this time. A >50ppb multiplexed ELISA 

assay is available from Randox Food Diagnostics (Crumlin, UK). 

Detection with LC-MS/MS has also been described46,47, however, 

and experiments are underway to determine whether paxilline 

can be identified in the background of cannabinoids and terpenes 

present in Cannabis samples.

A
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Figure 1. Comparison of 4 different microbial detection technologies. Figure 1A. qPCR signal from TYM (red line) test run concurrently 
(multiplexed) with a plant internal control marker (green line). This marker targets a conserved region in the Cannabis genome and should 
show up in every assay (upper left). SimPlates count the number of discolored wells (purple to pink) as a proxy for CFU/gram. Only total 
aerobic show growth (upper right). Petrifilm only demonstrate colonies on total aerobic platings (lower left). Biolumix demonstrate no signal 
across all 4 tests (lower right). Figure 1B. Sample KD8 fails to culture any total yeast and mold yet demonstrates significant TYM qPCR signal. 
Sample was graduated to ITS based next generation sequencing. Figure 1C. Sample Liberty Haze was tested with 3 culture based methods 
and compared to qPCR. Sample was graduated to ITS based next generation sequencing.

B

C
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Table 1. Samples were cultured with 3 different techniques and compared to 
quantitative PCR (qPCR). Biolumix had the lowest sensitivity failing to pick up 4/17 
samples detected with other culture-based platforms. qPCR identified 2 samples that were 
not picked up by any other method. Positive qPCR samples were sequenced to identify the 
contributing signal. Highlighted samples fail the 10,000 CFU/g cutoffs which equates to a 
Cq of 26 on the qPCR assay according to the manufacturers’ instructions. (f) is fail or over 
10,000 CFU/g. (p) is pass or under 10,000 CFU/g. The raw CFU numbers can be deduced 
by dividing the CFU number by the 1,000 fold dilution factor used in this study.

Samples Total Yeast and Mold (10,000 CFU/g = fail)

Simplate® (CFU/g) 3M® (CFU/g)
BioLumix® 
(CFU/g)

Cq

KD4 0 0 pass 21.71 (f)

KD8 0 0 pass 22.5 (f)

PC3 0 0 pass >40 (p)

White Widow 0 0 pass >40 (p)

KD1 0 0 pass 29.33 (p)

KD2 0 0 pass >40 (p)

KD3 0 0 pass 30.16 (p)

KD5 1000 (p) 6000 (p) pass 27.76 (p)

KD6 3000 (p) 19000 (f) pass 24.72 (f)

KD7 0 0 pass >40 (p)

Liberty Haze 172000 (f) 89000 (f) pass 24.02 (f)

Blueberry Kush 0 0 pass 37.99 (p)

Blueberry Kush -spiked >738,000 (f) TNTC (f) fail 15.71 (f)

Girl Scout Cookies >738,000 (f) TNTC (f) pass 19.66 (f)

Jake’s Grape >738,000 (f) TNTC (f) pass 24.56 (f)

Serious Happiness 0 0 pass >40 (p)

White Rhino 0 3000 (p) pass >40 (p)

TNTC = Too Numerous To Count
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Figure 3. One Codex classification of ITS reads. P. paxilli is the most frequently found contaminant in Cannabis flowers. P. citrinum is not 
in the One Codex database at this time. One Codex utilizes a fast k-mer based approach for whole genome shotgun classification and can 
be influenced by read trimming and database content. The reads provided to MG-RAST were trimmed and FLASH’d (paired end reads 
merged when overlapping) prior to classification. K-mer based approaches can significantly differ from longer word size methods and this 
underscores the importance of confirmatory PCR in microbiome analysis.
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Figure 4. PCR of genes encoding Paxilline and Citrinin demonstrates amplification of the expected size. Citrinum primers we designed 
from Genbank accession number LKUP01000753. Paxilline primers were used as described in Saikia et al. PCR products were made into 
shotgun libraries with Nextera and sequenced on an Illumina MiSeq with 2×75bp reads to over 10,000X coverage. Reads were mapped with 
CLCbio 4 to NCBI accession number HM171111.1 (A) and LKUP01000000 respectively (B). Paired reads are displayed as blue lines, green 
and red lines are unpaired reads. Read coverage over the amplicons are depicted in a blue histogram over the cluster while paired end read 
distance is measured in a red histogram over the region. Off target read mapping is limited. P. paxilli mappings are displayed on top (A) and 
P. citrinum mappings are displayed on bottom (B). Alignment of PCR primers to P. paxilli reference shows a 5 prime mismatch that is a result 
of the primers being designed to target spliced RNA according to Saikia et al.

A

B
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Discussion
This study demonstrates detection of numerous fungal species 

by molecular screening of ITS2 in several dispensary-derived  

Cannabis samples. These included the toxigenic Penicillium 

species: P. paxilli, P. citrinum, P. commune, P. chrysogenum,  

P. corylophilum, Aspergillus species: A. terreus, A. niger, A. flavus,  

A. versicolor and Eurotium repens. In addition, a pathogenic species 

Cryptococcus liquefaciens was detected. The fungal microbiomes 

of the different samples differed significantly in the number and 

diversity of species present. Two samples contained a large diver-

sity of species, similar to previous studies that used field-grown 

samples and culture-based outgrowth methods2,3,48. Other samples 

contained only a few species at significant levels. This is perhaps 

not surprising given the prevalence of indoor culture methods using 

artificial growth media for medicinal Cannabis. However, we do 

not have any knowledge of the specific growth conditions that were 

used for the samples analyzed.

Three different culture-based assays failed to detect all of the 

positive samples and one, BioLumixTM, detected only one out of 7 

positive samples. A review of the literature suggests that  

Penicillium microbes can be cultured on CYA media, but some may 

require colder temperatures (21-24C) and 7 day growth times49. 

Of the Penicillium, only P. citrinum has been previously reported 

to culture with 3M Petri-Film50. It is possible the different water 

activity of the culture assay compared to the natural flower  

environment is contributing to the false negative test results.

Quantitative PCR is agnostic to water activity and can be performed 

in hours instead of days. The specificity and sensitivity provides 

important information on samples that present risks invisible to 

culture based systems. The drawback to qPCR is the method’s 

indifference to living or non-living DNA. While techniques exist to 

perform live-dead qPCR, the live status of the microbes is unrelated 

to toxin potentially produced while the microbes were alive. ELISA 

assays exist to screen for some toxins51. Current state-recommended 

ELISA’s do not detect citrinin or paxilline, the toxins produced by 

P. citrinum and P. paxilli, respectively. The predominance of these 

Penicillium species in a majority of the samples tested is interesting. 

Several Penicillium species are known to be endophytes on various 

plant species, including P. citrinum18, and this raises the question 

of whether they may be common Cannabis endophytes. Indeed, 

P. citrinum and a species identified as P. copticola (a member of 

the citrinun section51) have previously been identified as Cannabis 

endophytes, along with several Aspergillus species2,3.

Paxilline is a tremorgenic and ataxic potassium channel blocker 

and has been shown to attenuate the anti-seizure properties of 

cannabidiol in certain mouse models52–54. Paxilline is reported to 

have tremorgenic effects at nanomolar concentrations and is respon-

sible for Ryegrass-staggers disease55. Cannabidiol is often used at 

micromolar concentrations for seizure reduction and contamination 

with paxilline, if confirmed, would be a cause for concern. Citrinin 

is a mycotoxin that disrupts Ca2+ efflux in the mitochondrial 

permeability transition pore (mPTP)56–63. Ryan et al. demonstrated 

that cannabidiol affects this pathway suggesting a similar potential 

cause for concern regarding CBD-citrinin interaction64. Considering 

the hydrophobicity of these mycotoxins and the growing interest 

in the use of extracted oils from CBD-rich Cannabis strains for 

treatment of drug resistant epilepsy65–70, more precise molecular 

screening of fungal toxins in these products might be warranted.

ITS amplification and sequencing offers a hypothesis-free test-

ing approach that can be employed to identify a broad range of 

fungal species present in a given sample. Appropriate primer design 

can survey a broad spectrum of fungal genomes while affording 

rapid iteration of design. Quantitative PCR has also demonstrated 

single molecule sensitivity and linear dynamic range over 5 orders 

of magnitude offering a very sensitive approach for detection of 

microbial risks. Our survey of Cannabis flowers in this study was 

limited, however. Further studies are required to survey a broader 

range of samples, and to determine whether paxilline, citrinin, afla-

toxin or ochratoxin can be detected at concentrations that represent 

a clinical risk in Cannabis samples or extracts derived from plants 

that test positive for the fungi known to produce those toxins.

Conclusions
Several toxigenic fungi were detected in dispensary-derived 

Cannabis samples using molecular amplification and sequencing 

techniques. These microbes were not detected using traditional 

culture-based platforms. These results suggest that culture based 

techniques borrowed from the food industry should be re-evaluated 

for Cannabis testing to ensure that they are capable of detecting 

the prevalent species detected by molecular methods with adequate 

sensitivity. We recommend that additional sequencing studies be 

performed to characterize the fungal and bacterial microbiomes 

of a more diverse selection of Cannabis samples. Such sampling 

should include dispensary-derived samples from both indoor 

and outdoor crops, as well as samples from police seizures from 

well-provenanced foreign sources, such as Mexico. Finally, further 

studies should be performed to measure toxin levels in strains that 

test positive for toxigenic species.
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Donald Cooper  
Chief Science Officer, Mobile Assay Inc., Boulder, CO, USA 

The authors have adequately addressed most of my concerns with the exception of the issue of re-
evaluating the standard methods used for establishing food safety thresholds as applied to 
cannabis.   
 
The problem is with the use of the word "re-evaluate".  The authors are suggesting that the 
negative results they obtained using cell culture-based platforms in samples that were positive 
using their more sensitive molecular amplification indicate a possible limitation of standard 
methods as applied to cannabis. This may or may not be true. The concern I have is whether their 
technique is overly sensitive based on current limits used in the food industry. It may be that use 
of molecular DNA amplification methods indicate the presence of several toxigenic species of 
fungi and other pathogens in food but at such low levels that standard culture-based methods 
would not detect them. In this case there would be no need to re-evaluate the use of standard 
methods that establish safety thresholds. In short, without some type of calibration between the 
author's technique and traditional methods there is no way of knowing whether their sensitivity is 
too high or traditional methods used in the food industry are somehow not capable of detecting 
pathogens in cannabis preparations and therefore need to be "re-evaluated".
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© 2016 Cooper D. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Donald Cooper  
Chief Science Officer, Mobile Assay Inc., Boulder, CO, USA 

The manuscript is well written and appropriate as an article in F1000 Research. The abstract states 
that their findings, "demonstrate the limitations in the culture-based regulations", but this 
conclusion does not follow from their data. In fact, their results show that their DNA based 
method is overly sensitive at detecting potential pathogens. Whether culture-based regulations 
are appropriate or not would have to be validated and tested directly, not simply inferred from the 
presence of microbial DNA. The authors should remove this cautionary sentence in the abstract 
and throughout the manuscript until it has been validated. This would make the manuscript more 
balanced and justified. 
 
A better understanding of the microbiome and mycobiome in cannabis is an important endeavor 
in part, because recent work on the human microbiome has revealed that microbial constituents 
of the microbiome and fungi interact cooperatively and non cooperatively to influence human 
health. Recently studies focused on the human gut mycobiome have been performed using deep 
sequencing of the ITS1 region for identification of fungi in fecal samples from healthy individuals 
and the researchers identified 184 fungal species in total. Human oral and lung tissues testing 
indicate the presence of Aspergillus, Cryptococcus, Fusarium, and Alternaria in healthy individuals. 
An emerging theme from this new field of study indicates complex microbial communities 
distributed across the body that fundamentally contribute to the development, physiology and 
metabolic homeostasis of the macro-organism. The same is likely true in plants, like cannabis. 
Because of this beneficial dynamic interplay between microbes and hosts a complete absence of 
amplified DNA or RNA microbial markers would be unexpected. The question is, “What levels are 
safe?” and the answer to this question has not been established. 
 
From a consumer safety perspective the rationale for microbial testing in food and 
pharmaceuticals is to prevent infection of highly toxigenic microbes that grow readily and are 
consumed in rather large quantities. For example, Aspergillus flavus infects grain in as much as 
30% of Sub-Saharan African maize and the Aflatoxin regulatory limit for maize is 10 ppb because in 
this region maize is consumed in kilogram quantities on a daily basis. The risk of health hazard to 
individuals arising from microbial toxins or mycotoxins is largely proportional to the consumption 
amounts and frequency. Compared to other regulated foods or tobacco it is expected that the 
level of cannabis consumption would be minimal and would therefore present minimal risk, 
nevertheless, there is burgeoning interest in putting in place regulatory requirements for medical 
and recreational Cannabis in some markets.   
 
In this present study the authors use state-of-the art technology to identify DNA-based markers 
associated with a variety of microbes and, as expected, some are pathogenic. The authors state 
that “Mycotoxin monitoring in Cannabis preparations is important since aflatoxin produced by 
Aspergillus species is a carcinogen.”, but there is no actual data showing that the strain of 
Aspergillus they identify is toxigenic. Aspergillus is a common fungus that is found in the human 
mycobiome in oral, lung, gastrointestinal tract. Detection of Aspergillus markers in minute 
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quantities alone is not necessarily a health concern unless it is also coincident with live cells that 
can grow readily and secrete toxin that are above some threshold or there is an imbalance in 
homeostatic growth limiting factors. The authors call into question culture-based testing, which is 
the standard in Food safety and USP regulatory guidelines based on comparison to their highly 
sensitive DNA based detection. Their results using standard regulatory methods, for the most 
part, would not indicate a food safety problem. The authors should add this emphasis. The 
authors correctly identify a limitation of their study in that the qPCR based testing has an 
“indifference to living or non-living DNA” and because of this their PCR based approach may be 
unnecessarily sensitive. To date there are little to no guidelines for thresholds on many 
mycotoxins or bacterial toxins that have been established in the cannabis industry, so their 
findings help inform regulators as to which type of toxins might be relevant for further analysis.  
 
The authors state, ”Health compromised patients exposed to aflatoxin and clearance-inhibiting 
cannabinoids raise new questions in regards to the current safety tolerances to aflatoxin.” but the 
authors present no data showing the presence of aflatoxin in any of their samples. So their 
caution is highly speculative and they should indicate that unless they provide data supporting 
their caution.   
 
As mentioned above, dynamic homeostatic processes limit the growth of microbes and fungi in 
living organisms and the authors point out that “several studies have demonstrated plant 
phytochemicals and terpenoids like eugenol can inhibit the growth of fungi. It is possible the 
different water activity of the culture assay compared to the natural terpene rich flower 
environment is contributing to the false negative test results.”  but these phytochemicals may also 
prevent the growth of fungi and bacteria in the plant despite the presence of microbial DNA.  
 
Furthermore they state that “While techniques exist to perform live-dead qPCR, the live status of 
the microbes is unrelated to toxin potentially produced while the microbes were alive. ELISA 
assays exist to screen for some toxins. Current state-recommended ELISA’s do not detect citrinin 
or paxilline, the toxins produced by P. citrinum and P. paxilli, respectively. The predominance of 
these Penicillium species in a majority of the samples tested is interesting.” Ideally the authors 
would test for these toxins in their most positive samples. 
 
The authors state that, “Cannabidiol is often used at micromolar concentrations for seizure 
reduction implying sub-percentage contamination of paxilline could still be a concern” but this is 
highly speculative and the authors should de-emphasize the “concern” and state instead that if 
their results were verified by tests indicating high levels of paxilline then it may be cause for 
concern. The same is true for their concern about Citrinin and aflatoxin and the authors should 
state this.  
 
The authors state, “While ELISA assays are easy point of use tests that can be used to detect fungal 
toxins, they can suffer from lack of sensitivity and cross reactivity. ITS amplification and 
sequencing offers hypothesis-free testing that can complement the lack of specificity in ELISA 
assays.” ELISA and rapid diagnostic lateral flow tests are standard in the food safety industry for 
measuring toxins. I see no need to call into question protein based ELISA methods without even 
testing them in the first place. All diagnostic tests have sensitivity and selectivity limitations which 
is why they need to be tested and verified using other analytical methods.  
 
The authors state that “Appropriate primer design can survey a broad spectrum of microbial 
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genomes while affording rapid iteration of design. Quantitative PCR has also demonstrated single 
molecule sensitivity and linear dynamic range over 5 orders of magnitude offering a very robust 
approach for detection of microbial risks. This may be important for the detection of nanomolar 
potency mycotoxins”. The ability to detect single copies of genes makes their system highly 
sensitive, but does not indicate level of mycotoxin. The authors should point out the limitations of 
their approach and discuss the possibility that it would likely generate a high degree of false 
positive results compared to culture-based standard methods.  
 
The authors state, “These results demonstrate that culture based techniques superimposed from 
the food industry should be re-evaluated based on the known microbiome of actual Cannabis 
flowers in circulation at dispensaries.”  This statement appears to be too strong in light of their 
data. Without validation for the presence of toxins above a safety threshold there is no need to re-
evaluate the standard methods in the food industry.
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Mar 2016
Kevin McKernan, Medicinal Genomics Corporation, USA 

The manuscript is well written and appropriate as an article in F1000 Research. The abstract 
states that their findings, "demonstrate the limitations in the culture-based regulations", but this 
conclusion does not follow from their data. In fact, their results show that their DNA based 
method is overly sensitive at detecting potential pathogens. Whether culture-based regulations 
are appropriate or not would have to be validated and tested directly, not simply inferred from 
the presence of microbial DNA. The authors should remove this cautionary sentence in the 
abstract and throughout the manuscript until it has been validated. This would make the 
manuscript more balanced and justified. 
  
Author response: The last sentence of the abstract was revised to read: Here we describe 
the first next generation sequencing survey of the fungal communities found in dispensary 
based Cannabis flowers by ITS2 sequencing, and demonstrate the sensitive detection of 
several toxigenic Penicillium and Aspergillus species, including P. citrinum and P. paxilli, that 
were not detected by one or more culture-based methods currently in use for safety testing. 
 
A better understanding of the microbiome and mycobiome in cannabis is an important endeavor 
in part, because recent work on the human microbiome has revealed that microbial constituents 
of the microbiome and fungi interact cooperatively and non cooperatively to influence human 
health. Recently studies focused on the human gut mycobiome have been performed using deep 
sequencing of the ITS1 region for identification of fungi in fecal samples from healthy individuals 
and the researchers identified 184 fungal species in total. Human oral and lung tissues testing 
indicate the presence of Aspergillus, Cryptococcus, Fusarium, and Alternaria in healthy 
individuals. An emerging theme from this new field of study indicates complex microbial 
communities distributed across the body that fundamentally contribute to the development, 
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physiology and metabolic homeostasis of the macro-organism. The same is likely true in plants, 
like cannabis. Because of this beneficial dynamic interplay between microbes and hosts a 
complete absence of amplified DNA or RNA microbial markers would be unexpected. The question 
is, “What levels are safe?” and the answer to this question has not been established. 
 
From a consumer safety perspective the rationale for microbial testing in food and 
pharmaceuticals is to prevent infection of highly toxigenic microbes that grow readily and are 
consumed in rather large quantities. For example, Aspergillus flavusinfects grain in as much as 
30% of Sub-Saharan African maize and the Aflatoxin regulatory limit for maize is 10 ppb because 
in this region maize is consumed in kilogram quantities on a daily basis. The risk of health hazard 
to individuals arising from microbial toxins or mycotoxins is largely proportional to the 
consumption amounts and frequency. Compared to other regulated foods or tobacco it is 
expected that the level of cannabis consumption would be minimal and would therefore present 
minimal risk, nevertheless, there is burgeoning interest in putting in place regulatory 
requirements for medical and recreational Cannabis in some markets.   
 
In this present study the authors use state-of-the art technology to identify DNA-based markers 
associated with a variety of microbes and, as expected, some are pathogenic. The authors state 
that “Mycotoxin monitoring in Cannabis preparations is important since aflatoxin produced 
by Aspergillus species is a carcinogen.”, but there is no actual data showing that the strain 
of Aspergillus they identify is toxigenic. Aspergillus is a common fungus that is found in the 
human mycobiome in oral, lung, gastrointestinal tract. Detection of Aspergillus markers in 
minute quantities alone is not necessarily a health concern unless it is also coincident with live 
cells that can grow readily and secrete toxin that are above some threshold or there is an 
imbalance in homeostatic growth limiting factors. The authors call into question culture-based 
testing, which is the standard in Food safety and USP regulatory guidelines based on comparison 
to their highly sensitive DNA based detection. Their results using standard regulatory methods, 
for the most part, would not indicate a food safety problem. The authors should add this 
emphasis. The authors correctly identify a limitation of their study in that the qPCR based testing 
has an “indifference to living or non-living DNA” and because of this their PCR based approach 
may be unnecessarily sensitive. To date there are little to no guidelines for thresholds on many 
mycotoxins or bacterial toxins that have been established in the cannabis industry, so their 
findings help inform regulators as to which type of toxins might be relevant for further analysis.  
 
The authors state, ”Health compromised patients exposed to aflatoxin and clearance-inhibiting 
cannabinoids raise new questions in regards to the current safety tolerances to aflatoxin.” but the 
authors present no data showing the presence of aflatoxin in any of their samples. So their 
caution is highly speculative and they should indicate that unless they provide data supporting 
their caution.   
  
Author response: We thank the reviewer for the background and context provided to his 
concern. The questions about what levels of toxins are safe or acceptable fall well beyond 
the scope of the present study.  We concede, however, that some statements made in the 
introduction may have been too speculative.  We have revised paragraph 2 of the 
introduction to focus on the numerous literature reports of pulmonary aspergillosis 
associated with cannabis use instead of potential mycotoxin toxicity. We have also provided 
more background on the overlap of cannabinoid and mycotoxin metabolism via cytochrome 
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P450 system as follows.  Monitoring for mycotoxic fungi in cannabis preparations has been 
recommended as part of routine safety testing by the Cannabis Safety Institute. A major 
driver for this recommendation has been numerous reported cases of serious or fatal 
pulmonary Aspergillosis associated with marijuana smoking in immunocompromised 
patients4-6. The major cannabinoids have been shown to be potent inhibitors of several 
cytochrome P450 enzymes at therapeutic concentrations, including 1A1, 1A2, 1B1 2B6, 
2C19, 2D6, 3A4 and 3A57. Some of these enzymes have been implicated in the metabolism 
of the fungal toxins aflatoxin and ochratoxin8-10. This raises questions about potential 
interactions and appropriate safety tolerances for mycotoxins in patients being treated with 
cannabinoid therapeutics. In addition, some Fusarium species that produce toxins have 
proven to be difficult to selectively culture with tailored media 6– 8 . This is a common 
problem associated with culture-based systems as carbon sources are not exclusive to 
certain microbes and only 1% of microbial species are believed to be culturable 9 . 
  
The first sentence of the next paragraph was edited slightly to follow more logically:  While 
the risks of mycotoxic fungal contamination have been well studied in the food markets, the 
presence of the fungal populations present on Cannabis flowers has never been surveyed 
with next generation sequencing techniques 10– 15 . 
 
As mentioned above, dynamic homeostatic processes limit the growth of microbes and fungi in 
living organisms and the authors point out that “several studies have demonstrated plant 
phytochemicals and terpenoids like eugenol can inhibit the growth of fungi. It is possible the 
different water activity of the culture assay compared to the natural terpene rich flower 
environment is contributing to the false negative test results.”  but these phytochemicals may also 
prevent the growth of fungi and bacteria in the plant despite the presence of microbial DNA.  
  
Author response: Upon reconsideration, we concluded that there is no way to predict how 
growth of the specific fungi detected might be affected by the terpenoids in Cannabis 
flowers. Those compounds may inhibit the growth of some fungi, while permitting the 
growth of others. In any case, the effect of terpenes would not relevant to the ability of the 
fungi to grow on culture media lacking those compounds. That sentence was deleted and 
the last sentence of paragraph 1 in the discussion was edited as follows:  It is possible the 
different water activity of the culture assay compared to the natural flower environment is 
contributing to the false negative test results. 
 
Furthermore they state that “While techniques exist to perform live-dead qPCR, the live status of 
the microbes is unrelated to toxin potentially produced while the microbes were alive. ELISA 
assays exist to screen for some toxins. Current state-recommended ELISA’s do not detect citrinin 
or paxilline, the toxins produced by P. citrinum and P. paxilli, respectively. The predominance of 
these Penicillium species in a majority of the samples tested is interesting.” Ideally the authors 
would test for these toxins in their most positive samples. 
  
Author response: We stated transparently that this needed to be done as a future direction. 
We don’t see it as an essential part of the current publication, which had the goal of simply 
cataloging the fungal content of dispensary-derived samples. 
 
The authors state that, “Cannabidiol is often used at micromolar concentrations for seizure 
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reduction implying sub-percentage contamination of paxilline could still be a concern” but this is 
highly speculative and the authors should de-emphasize the “concern” and state instead that if 
their results were verified by tests indicating high levels of paxilline then it may be cause for 
concern. The same is true for their concern about Citrinin and aflatoxin and the authors should 
state this.  
We agree. Paragraph 3 of the discussion was edited to address this criticism as follows:  Paxilline 
is a tremorgenic and ataxic potassium channel blocker and has been shown to attenuate the 
anti-seizure properties of cannabidiol in certain mouse models 44– 46 . Paxilline is reported to 
have tremorgenic effects at nanomolar concentrations and is responsible for Ryegrass-staggers 
disease 47 . Cannabidiol is often used at micromolar concentrations for seizure reduction and 
contamination with paxilline, if confirmed, would be a cause for concern. Citrinin is a mycotoxin 
that disrupts Ca2+ efflux in the mitochondrial permeability transition pore (mPTP) 48– 55 . Ryan et 
al. demonstrated that cannabidiol affects this pathway suggesting a similar potential cause for 
concern regarding CBD-citrinin interaction 56 . Considering the hydrophobicity of these 
mycotoxins and the growing interest in the use of extracted oils from CBD-rich Cannabis strains 
for treatment of drug resistant epilepsy57– 62, more precise molecular screening of fungal toxins 
in these products might be warranted. 
 
The authors state, “While ELISA assays are easy point of use tests that can be used to detect 
fungal toxins, they can suffer from lack of sensitivity and cross reactivity. ITS amplification and 
sequencing offers hypothesis-free testing that can complement the lack of specificity in ELISA 
assays.” ELISA and rapid diagnostic lateral flow tests are standard in the food safety industry for 
measuring toxins. I see no need to call into question protein based ELISA methods without even 
testing them in the first place. All diagnostic tests have sensitivity and selectivity limitations which 
is why they need to be tested and verified using other analytical methods.  
 
The authors state that “Appropriate primer design can survey a broad spectrum of microbial 
genomes while affording rapid iteration of design. Quantitative PCR has also demonstrated 
single molecule sensitivity and linear dynamic range over 5 orders of magnitude offering a very 
robust approach for detection of microbial risks. This may be important for the detection of 
nanomolar potency mycotoxins”. The ability to detect single copies of genes makes their system 
highly sensitive, but does not indicate level of mycotoxin. The authors should point out the 
limitations of their approach and discuss the possibility that it would likely generate a high 
degree of false positive results compared to culture-based standard methods.  
 
Author response: The comments about ELISA assays was deleted and the paragraph was 
edited to focus on detection of fungal species, not toxins, as follows.  ITS amplification and 
sequencing offers a hypothesis-free testing approach that can be employed to identify a 
broad range of fungal species present in a given sample. Appropriate primer design can 
survey a broad spectrum of fungal genomes while affording rapid iteration of design. 
Quantitative PCR has also demonstrated single molecule sensitivity and linear dynamic 
range over 5 orders of magnitude offering a very sensitive approach for detection of 
microbial risks. Our survey of Cannabis flowers in this study was limited, however. Further 
studies are required to survey a broader range of samples, and to determine whether 
paxilline, citrinin, aflatoxin or ochratoxin can be detected at concentrations that represent a 
clinical risk in Cannabis samples or extracts derived from plants that test positive for the 
fungi known to produce those toxins. 
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The authors state, “These results demonstrate that culture based techniques superimposed from 
the food industry should be re-evaluated based on the known microbiome of actual Cannabis 
flowers in circulation at dispensaries.”  This statement appears to be too strong in light of their 
data. Without validation for the presence of toxins above a safety threshold there is no need to re-
evaluate the standard methods in the food industry. 
 
Author response: We respectfully disagree with this comment of the reviewer. The sentence 
was taken out of context.  We were not trying to suggest that the standard methods in use 
in the food industry should be re-evaluated for all applications, only the use of those 
methods for medicinal Cannabis testing. The Conclusions paragraph was modified to clarify 
as follows. Several toxigenic fungi were detected in dispensary-derived Cannabis samples 
using molecular amplification and sequencing techniques. These microbes were not 
detected using traditional culture-based platforms. These results suggest that culture based 
techniques borrowed from the food industry should be re-evaluated for Cannabis testing to 
ensure that they are capable of detecting the prevalent species detected by molecular 
methods with adequate sensitivity. We recommend that additional sequencing studies be 
performed to characterize the fungal and bacterial microbiomes of a more diverse selection 
of Cannabis samples. Such sampling should include dispensary-derived samples from both 
indoor and outdoor crops, as well as samples from police seizures from well-provenanced 
foreign sources, such as Mexico. Finally, further studies should be performed to measure 
toxin levels in strains that test positive for toxigenic species.  

Competing Interests: No competing interests were disclosed.No competing interests were 
disclosed.

Reviewer Report 17 December 2015

https://doi.org/10.5256/f1000research.8086.r11516

© 2015 McPartland J. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

John McPartland  
Division of Molecular Biology,, GW Pharmaceutical, Salisbury, UK 

This succinct, well-written study has two major aims: 1. Utilize NextGen and qPCR to identify 
microorganisms inhabiting dispensary-sourced Cannabis flowers. 2. Compare results from these 
sequencing techniques to results from traditional culture-based methods. Results from the qPCR 
survey led to a third aim: confirm the presence of two heretofore unreported mycotoxin-
producing fungi on Cannabis: Penicillium citrinum and Penicillium paxilli. 
  
Five critiques: 
1. “Microbiome” appears in the manuscript’s title, so you should cite some literature regarding 
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plant microbiomes in general, as well as Cannabis-specific research. Vorholt (2012) and Turner et 
al. (2013) provide general overviews. Cannabis-specific microbiome studies (Kusari et al. 2013, 
Gautam et al. 2013) generated very different results than yours, and should be discussed. The 
rhizosphere study by Winston et al. (2014) ought to be mentioned, and highlight the 
complimentary nature of rhizosphere and phyllosphere studies. 
      The foliar microbiome (aka, phyllosphere, as opposed to rhizosphere) can be partitioned into 
two groups: epiphytes live upon the leaf epidermis, and endophytes occupy intercellular spaces 
within the leaf. Culture-based detection systems normally surface-sterilize plant samples, so they 
assume that cultured organisms are endophytes. NextGen and qPCR should identify both 
epiphytes and endophytes. Classic epiphytes identified in your study include Kabatiella 
(Aureobasidium) microsticta and Sarocladium (Acremonium) strictum. 
      Phyllosphere organisms may be plant pathogens, and cause disease symptoms; diseased 
plants should never reach a dispensary. However, phyllosphere organisms may act as symbionts 
(good for the plant) or commensals (indifferent), and their asymptomatic presence is not easily 
detected. Nevertheless these cryptic organisms may cause disease in humans. The spores from 
phyllosphere fungi readily pass through waterpipes (Moody et al. 1982), and survive in smoke 
drawn from cannabis cigarettes (Kurup et al. 1983), as do aflatoxins (Llewellyn and O'Rear 1977). 
Worth mentioning. 
  
2. Explain the methodology used to select three culture-based detection systems in this study. Are 
they the most widely-used systems? Are they the systems recommended by cannabis regulatory 
agencies? If the method was simply “convenience sampling,” say so. 
  
3. Methods used in the qPCR ITS assay should be described in the Methods section, not the Results 
section. 
  
4. Figure 2, “DNA sequencing of ITS2 amplicons from culture negative samples that are qPCR 
positive for total yeast and mold tests,” deserves some comment. Some of the taxa are not yeasts 
or molds. They include angiosperms (Zea mays, Pachysandra procumbens), a protozoan (Sterkiella 
histriomuscorum), and an “uncultured bacterium.” Comment please. 
  
5. This study revealed a surprisingly depauperate Cannabis foliar microbiome, compared to a 
recent study of Genlisea species, using similar methods, that identified 92 genera of organisms 
(Cao et al. 2015). See Delmotte et al. (2009) for rich microbiomes in other plant species. Gzebenyuk 
(1984) isolated 79 species of fungi from hemp stems in Russia. Comment please. 
      Where are the bacteria? Much of the concern over microbiology and food safety focuses on 
human enteric pathogens (e.g., Escherichia coli, Salmonella spp.) and opportunistic bacteria (e.g., 
Pseudomonas aeruginosa, Berkholderia cepacia). Previous culture-based studies have isolated these 
organisms from Cannabis (e.g., Taylor et al. 1982, Ungerleider et al. 1982). The only bacterium you 
identify (in Figure 2, erroneously identified as a yeast or mold) is Pantoea agglomerans, formerly 
known as Enterobacter agglomerans, a gram-negative bacterium and an opportunistic human 
pathogen. 
  
Minor critiques:

The detection and confirmation of Penicillium citrinum and Penicillium paxilli deserves 
mention in the abstract of the paper! An exhaustive review of the Cannabis literature 
(McPartland et al. 2000) found no references to these organisms.

1. 

Species names should never be capitalized. For example, P. Citrinum should read P. citrinum. 2. 
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The full name should be spelled out the first time it appears in the Methods section, 
Penicillium citrinum.

3. 

The Methods section should explain that the PaxP gene comes from Penicillium paxilli. The 
Methods section should identify NEP as New England BioLabs.

4. 

Recommend some future directions: a comparison of indoor crops and outdoor crops 
(outdoor crops may show a seasonal community succession), and survey the microbiome of 
police seizures from well-provenanced foreign sources, such as Mexico.

5. 
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 17 Mar 2016
Kevin McKernan, Medicinal Genomics Corporation, USA 

This succinct, well-written study has two major aims: 1. Utilize NextGen and qPCR to identify 
microorganisms inhabiting dispensary-sourced Cannabis flowers. 2. Compare results from 
these sequencing techniques to results from traditional culture-based methods. Results 
from the qPCR survey led to a third aim: confirm the presence of two heretofore unreported 
mycotoxin-producing fungi on Cannabis: Penicillium citrinum andPenicillium paxilli. 
  
Five critiques: 
1. “Microbiome” appears in the manuscript’s title, so you should cite some literature 
regarding plant microbiomes in general, as well as Cannabis-specific research. Vorholt 
(2012) and Turner et al. (2013) provide general overviews.Cannabis-specific microbiome 
studies (Kusari et al. 2013, Gautam et al. 2013) generated very different results than yours, 
and should be discussed. The rhizosphere study by Winston et al. (2014) ought to be 
mentioned, and highlight the complimentary nature of rhizosphere and phyllosphere 
studies. 
      The foliar microbiome (aka, phyllosphere, as opposed to rhizosphere) can be partitioned 
into two groups: epiphyteslive upon the leaf epidermis, and endophytes occupy intercellular 
spaces within the leaf. Culture-based detection systems normally surface-sterilize plant 
samples, so they assume that cultured organisms are endophytes. NextGen and qPCR 
should identify both epiphytes and endophytes. Classic epiphytes identified in your study 
include Kabatiella (Aureobasidium) microsticta and Sarocladium (Acremonium) strictum. 
      Phyllosphere organisms may be plant pathogens, and cause disease symptoms; 
diseased plants should never reach a dispensary. However, phyllosphere organisms may act 
as symbionts (good for the plant) or commensals (indifferent), and their asymptomatic 
presence is not easily detected. Nevertheless these cryptic organisms may cause disease in 
humans. The spores from phyllosphere fungi readily pass through waterpipes (Moody et al.
 1982), and survive in smoke drawn from cannabis cigarettes (Kurup et al. 1983), as do 
aflatoxins (Llewellyn and O'Rear 1977). Worth mentioning. 
  
Author response: Several of the references cited relate to analysis of the bacterial 
microbiome on diverse plant species, which falls well beyond the scope of this study 
(focusing on the fungal microbiome of Cannabis).  However, we added a brief mention 
of the very limited literature relating to Cannabis microbiomes to the introduction as 
follows: 
 
"Our knowledge of the natural microbiome of field-grown Cannabis in terms of rhizosphere 
bacteria, and endophytic fungi is limited to just a few focused studies1-3. Very little is known 
about the potential for bacterial and fungal contamination on medicinal Cannabis. 
Nevertheless, many states in the U.S. are now crafting regulations for detection of microbial 
contamination on Cannabis in the absence of any comprehensive survey of actual samples. 
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A few of these regulations are inducing growers to “heat kill” or pasteurize Cannabis flowers 
to lower microbial content. While this seems a harmless suggestion, we must remain aware 
of how these drying techniques may create false negatives in culture-based safety tests 
used to monitor colony-forming units (CFU). Even though pasteurization may be effective at 
sterilizing some of the microbial content, it does not eliminate various pathogenic toxins or 
spores. Aspergillus spores and mycotoxins are known to resist pasteurization 1, 2 . Similar 
thermal resistance has been reported for E. coli produced Shiga toxin 3 . While 
pasteurization may reduce CFU’s used in petri-dish or plating based safety tests, it does not 
reduce the microbial toxins, spores or DNA encoding these toxins." 
 
Author response: We also added a sentence to the end of the second paragraph of the 
discussion in reference to the two existing publications on Cannabis endophytic 
fungi.  
 
"Several Penicillium species are known to be endophytes on various plant species, including 
P. citrinum 10 , and this raises the question of whether they are also Cannabis endophytes. 
Indeed, P. citrinum and a species identified as P. copticola (a member of the citrinun clade12) 
have previously been identified as Cannabis endophytes, along with several Aspergillus 
species2, 3." 
  
2. Explain the methodology used to select three culture-based detection systems in this 
study. Are they the most widely-used systems? Are they the systems recommended by 
cannabis regulatory agencies? If the method was simply “convenience sampling,” say so. 
  
Author response: A sentence was added to the culture based methods section.  The 
culture-based methods selected for testing here represent those currently in use by 
established medicinal Cannabis safety testing laboratories. 
 
3. Methods used in the qPCR ITS assay should be described in the Methods section, not the 
Results section. 
  
Author response: Paragraph 1 of the results section was moved to the methods 
section. 
 
4. Figure 2, “DNA sequencing of ITS2 amplicons from culture negative samples that are 
qPCR positive for total yeast and mold tests,” deserves some comment. Some of the taxa 
are not yeasts or molds. They include angiosperms (Zea mays, Pachysandra procumbens), a 
protozoan (Sterkiella histriomuscorum), and an “uncultured bacterium.” Comment please. 
  
Author response: The MG-RAST database contains multiple taxa. The hits to non-
fungal species contained multiple mismatches and were deemed spurious.  We filtered 
the data to remove all non-fungal hits and regenerated the figures, reporting all 
fungal species detected with 10 reads or more.  This resulted in a higher number of 
species reported for some samples and fewer for others.  Figure 2 was revised and the 
figure legend expanded. 
  
5. This study revealed a surprisingly depauperate Cannabis foliar microbiome, compared to 
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a recent study of Genliseaspecies, using similar methods, that identified 92 genera of 
organisms (Cao et al. 2015). See Delmotte et al. (2009) for rich microbiomes in other plant 
species. Gzebenyuk (1984) isolated 79 species of fungi from hemp stems in Russia. 
Comment please. 
      Where are the bacteria? Much of the concern over microbiology and food safety focuses 
on human enteric pathogens (e.g., Escherichia coli, Salmonella spp.) and opportunistic 
bacteria (e.g., Pseudomonas aeruginosa, Berkholderia cepacia). Previous culture-based studies 
have isolated these organisms from Cannabis (e.g., Taylor et al. 1982, Ungerleider et al. 
1982). The only bacterium you identify (in Figure 2, erroneously identified as a yeast or 
mold) isPantoea agglomerans, formerly known as Enterobacter agglomerans, a gram-negative 
bacterium and an opportunistic human pathogen. 
 
Author response: This study focuses only on the fungal microbiome.  The studies cited 
are looking at field-grown samples. We revised the MG-RAST figures to include all 
fungal species detected down to a level of 10 reads.  This reveals a significantly larger 
number of species in two samples. Other species display only a handful of species. 
Medicinal Cannabis is often grown indoors in artificial media. The first paragraph of 
the discussion section was expanded and split into two paragraphs as follows: 
 
"This study demonstrates detection of numerous fungal species by molecular screening of 
ITS2 in several dispensary-derived Cannabis samples. These included the toxigenic 
Penicillium species: P. paxilli, P. citrinum, P. commune, P. chrysogenum, P. corylophilum, 
Aspergillus species: A. terreus, A. niger, A. flavus, A. versicolor and Eurotium repens. In addition, 
a pathogenic species Cryptococcus liquefaciens was detected. The fungal microbiomes of the 
different samples differed significantly in the number and diversity of species present.  Two 
samples contained a large diversity of species, similar to previous studies that used field-
grown samples and culture-based outgrowth methods2, 3, 11. Other samples contained only 
a few species at significant levels. This is perhaps not surprising given the prevalence of 
indoor culture methods using artificial growth media for medicinal Cannabis. However, we 
do not have any knowledge of the specific growth conditions that were used for the 
samples analyzed. 
Three different culture-based assays failed to detect all of the positive samples and one, 
BioLumix TM, detected only one out of 7 positive samples. A review of the literature 
suggests that Penicillium microbes can be cultured on CYA media, but some may require 
colder temperatures (21-24C) and 7 day growth times 40 . Of the Penicillium, only P. citrinum 
has been previously reported to culture with 3M Petri-Film 41 . It is possible the different 
water activity of the culture assay compared to the natural flower environment is 
contributing to the false negative test results." 
 
  
Minor critiques: 
1.     The detection and confirmation of Penicillium citrinum and Penicillium paxilli deserves 
mention in the abstract of the paper! An exhaustive review of the Cannabis literature 
(McPartland et al. 2000) found no references to these organisms. 
Here we describe the first next generation sequencing survey of the fungal communities 
found in dispensary based Cannabis flowers by ITS2 sequencing, and demonstrate the 
sensitive detection of several toxigenic Penicillium and Aspergillus species, including P. 
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citrinum and P. paxilli, that were not detected by one or more culture-based methods 
currently in use for safety testing. 
2.     Species names should never be capitalized. For example, P. Citrinum should read P. 
citrinum.   
fixed 
3.     The full name should be spelled out the first time it appears in the Methods section, 
Penicillium citrinum. 
fixed 
4.     The Methods section should explain that the PaxP gene comes from Penicillium paxilli.
 The Methods section should identify NEP as New England BioLabs. 
fixed 
5.     Recommend some future directions: a comparison of indoor crops and outdoor crops 
(outdoor crops may show a seasonal community succession), and survey the microbiome of 
police seizures from well-provenanced foreign sources, such as Mexico. 
Added to conclusion paragraph.  
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