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Patients with a serious mental illness often use cannabis at higher rates than the general

population and are also often diagnosed with cannabis use disorder. Clinical studies

reveal a strong association between the psychoactive effects of cannabis and the

symptoms of serious mental illnesses. Although some studies purport that cannabis

may treat mental illnesses, others have highlighted the negative consequences of use

for patients with a mental illness and for otherwise healthy users. As epidemiological

and clinical studies are unable to directly infer causality or examine neurobiology through

circuit manipulation, preclinical animal models remain a valuable resource for examining

the causal effects of cannabis. This is especially true considering the diversity of

constituents in the cannabis plant contributing to its effects. In this mini-review, we

provide an updated perspective on the preclinical evidence of shared neurobiological

mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious

mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents,

as well as rodent models of schizophrenia, depression, and bipolar disorder, and the

resulting impact on electrophysiological indices of neural circuit activity. We propose a

consolidated neural circuit-based understanding of the preclinical evidence to generate

new hypotheses and identify novel therapeutic targets.

Keywords: schizophrenia, major depressive disorder, bipolar disorder, cannabis use disorder, oscillations,

electrophysiology

INTRODUCTION

Cannabis is one of the most widely used psychoactive substances worldwide, and patients with
serious mental illnesses use cannabis at rates much greater than the general population (1, 2). The
lifetime cannabis-use rates for patients with schizophrenia, major depressive disorder, or bipolar
disorder are 80, 17, or 24%, respectively, while ∼40% of patients with schizophrenia and 20%
of patients with major depressive disorder or bipolar disorder are also diagnosed with cannabis
use disorder (3–6). A diagnosis of mental illness increases the risk for lifetime cannabis use,
while cannabis use, especially use of greater potency cannabis at an earlier age, increases the risk
for developing a mental illness (1, 7). Therefore, there is a need for mechanistic investigations
that can then be targeted toward developing novel treatment approaches (8, 9). To improve
our understanding of cannabis use and serious mental illness, we herein provide an update on
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the preclinical evidence (Table 1) in support of shared
neurobiological mechanisms fundamental to the effects of
cannabis and the symptoms of mental illness.

As described below, cannabinoids produce distinct changes
in neural circuit electrophysiological activity that are similar
to those observed in patients with serious mental illnesses, as
well as rodent models of these illnesses (43, 44). Neural circuit
oscillatory activity arises from the summed electrical activity
of networked neurons and is apparent in electrophysiological
recordings from human subjects as well as non-human research
animals, with various frequencies corresponding to certain
functions (45–49). These frequencies and their associated
functions are simplified as follows: delta oscillations (0.5–4Hz)
are associated with signal detection and decision making; theta
oscillations (4–7Hz) are associated with episodic memory and
memory retrieval; alpha oscillations (8–12Hz) are associated
with semantic memory and attention; beta oscillations (13–
29Hz) are associated with motor control as well as attention, and
sensory filtering; gamma oscillations (30–90Hz) are associated
with attention, sensation, perception, memory, and conscious
awareness (45–49). Aberrant oscillatory patterns thus correlate
with different brain states, including those resulting from
cannabinoid exposure or contributing to a serious mental illness-
related symptom; dysfunctional patterns often reflect deficits
in behavior and cognition. While we will ultimately identify
similarities between cannabinoid-induced oscillatory changes
and pathological changes associated with seriousmental illnesses,
cannabis exposure alone can produce phenotypes that overlap
with some psychopathology, making it important to disentangle
the effects of cannabis alone from its interactions with the
psychopathology-associated circuit dysfunctions.

MODELING CANNABIS USE AND SERIOUS
MENTAL ILLNESS

Cannabis Use
Cannabis users inhale smoke or vapor from crudely burning
cannabis flower or by vapourizing it at greater temperatures
(50). Researchers modeling cannabis use employ various
administration routes (i.e., injection, vaporization, oral ingestion,
or inhalation) of cannabis plant components and synthetic
cannabinoids, including cannabinoid-type 1 receptor (CB1R)
agonists such as CP-55940 and WIN55,212-2. CB1R antagonists
rimonabant and AM251 are also used to assess the involvement
of the endocannabinoid system (eCB) in drug effects and
psychopathology (51). Examining cannabinoids beyond their
action at CB1R sites, however, is imperative, as interactions also
occur via CB2R-dependent mechanisms (52–55), as well as non-
cannabinoid receptor mediated mechanisms (56–58). Moreover,
the use of CB1 receptor agonists to model the exposure to
cannabis-derived cannabinoids may also have limited utility due
to their limited pharmacological profile. Indeed, the effects of
cannabis arise from combined constituent activity (59), not the
action of a single ligand-receptor interaction, and thus future
preclinical studies, unless purely pharmacological, must examine
the combined effects. Also, since injections do not capture

human use patterns, a recent concerted effort to establish more
translationally-relevant delivery methods (e.g., vaping) for 19-
tetrahydrocannabinol (THC) and cannabidiol (CBD), as well as
the many other constituents in the cannabis plant, has begun (28,
38, 60).

Schizophrenia
Schizophrenia is a complex neuropsychiatric illness characterized
by severe dysfunctions including delusions, hallucinations (and
other “positive” symptoms), social withdrawal (and other
“negative” symptoms), and deficits in memory and sensory
processing (and other “cognitive” symptoms) (61). Considering
the phenotypic complexity of schizophrenia, a rodent model
that singularly recapitulates the human condition does not
exist. Rather, various models (i.e., genetic, neurodevelopmental,
and pharmacological) produce dysfunctions that capture
some parts of the disease symptoms. These models usually
demonstrate positive-like (e.g., amphetamine-induced
hyperlocomotion, deficits in prepulse inhibition mediated
via enhanced dopamine signaling), negative-like (e.g., social
withdrawal), and cognitive-like behavioral dysfunctions
(e.g., deficits in attention and working memory) (62, 63).
As disrupted-in-schizophrenia 1 (DISC1) gene was one of
the first genes implicated in schizophrenia, many transgenic
models targeting this gene exist (64, 65). Similarly, knocking
out the NRG1 gene, which is implicated in schizophrenia, is
also used to study schizophrenia-like behaviors and circuit
dysfunctions (66). Neurodevelopmental models are created
by altering rodent neurodevelopment, by either administering
polyriboinosinicpolyribocytidilic acid (poly I:C) to pregnant
dam to produce maternal immune activation (23, 67), or
via bilateral lesioning of neonatal ventral hippocampi
(NVHL) using ibotenic acid (63, 68, 69). Pharmacological
models involve administering a compound to modify
neurotransmission; for example, phencyclidine (PCP) produces
psychotomimetic effects akin to the symptoms of schizophrenia
(42, 70).

Major Depressive Disorder
Individuals diagnosed with major depressive disorder present
with symptoms such as persistent negative affect, anhedonia, as
well as disturbed sleep and appetite (71). In rodents, depressive-
like symptoms are produced using genetic models or by stress
exposure through chronic mild/variable stress, social defeat
stress, or early life stress. Genetic models include the Flinders
Sensitive Line (FSL) and Wistar Kyoto rats, which exhibit
phenotypical similarities to major depressive disorder in humans
(72, 73). Wistar Kyoto rats are used specifically for modeling
treatment-resistant depression (74, 75). Chronic mild/variable
stress involves daily exposure to various stressors (e.g., tail
suspension, restraint, electrical shock) (20). Social defeat stress
involves repeatedly exposing a submissive rodent to a dominant
conspecific (76), while early life stress involves separating
neonates from dams or altering the rearing environments
(17, 77). These modifications produce depressive-like behaviors
in rodents, including reduced exploration, reduced sucrose
preference (reflecting an anhedonic state), and reduced escape
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TABLE 1 | Summary of cited studies including the rodent model used, cannabinoid and route administered, as well as the aims and outcomes of each study.

Study Modeled illness Animal model and strain Cannabinoids and dose Administration

route

Aims Outcomes

Abush and Akirav (10) Major depressive

disorder

Chronic restraint stress in

Sprague Dawley rats

WIN55-212,2, 1.2 mg/kg;

AM-251, 0.3 mg/kg

i.p. Examine limbic glucocorticoid

receptor and synaptic plasticity

changes after chronic stress

and/or cannabinoid exposure

Chronic cannabinoid exposure

prevented stress-induced

impairments in plasticity, and

was CB1R-dependent

Aguilar et al. (11) Schizophrenia Subchronic PCP-treated

Sprague Dawley rats

URB597 (FAAH inhibitor),

0.3 mg/kg

i.p. Examine whether increasing

anandamide (via URB597) will

reverse aberrant VTA DA

neuronal activity

PCP-treated rats exhibit

enhanced baseline VTA DA

neuronal population activity

compared to controls; URB597

administration reversed this

effect

Aguilar et al. (12) Schizophrenia Subchronic PCP-treated

Sprague Dawley rats

THC, 1 mg/kg; URB597,

0.3 mg/kg

i.p. Compare impact of THC and

URB597 on mPFC and vHIP

neuronal activity in PCP-treated

rats and saline-treated controls

Reduced baseline firing rates in

PCP-treated rats compared to

controls; THC reduced mPFC

alpha power in only controls,

enhanced mPFC and HIP delta

power in all rats, and enhanced

mPFC firing rates in PCP-treated

rats; For all rats, URB597

enhanced mPFC gamma power

and reduced HIP delta power

and mPFC-HIP delta coherence

Atallah and Scanziani (13) – Wistar rats – – Determine cellular mechanisms

involved in phase-shifts of HIP

oscillations

HIP (CA3) gamma amplitudes

predict the interval to next cycle;

synaptic inhibition is proportional

to synaptic excitation during

each cycle

Barz et al. (14) Schizophrenia NRG1 +/– KO mice – – Examine sensory-related spiking

and gamma oscillations in

somatosensory cortex of NRG1

mutant mice and WT controls

using whisker stimulation

Elevated baseline firing and

reduced gamma power in NRG1

mouse barrel cortex, compared

to controls

Dzirasa et al. (15) Bipolar disorder Clock-119 mice – – Record from NAc, PrlC, and VTA

in Clock119 mice and littermate

controls while they explore a

novel environment

Clock119 mice exhibit baseline

NAc low-gamma phase coupling

and neuronal entrainment

deficits; lithium partially

ameliorated deficits

Gazit et al. (16) Major depressive

disorder

Flinders Sensitive Line (FSL)

Sprague Dawley rats

– – Examine impact of DBS on VTA

coherence and depressive-like

behaviors

FSL rats exhibit reduced baseline

gamma coherence; DBS

restored coherence and rescued

behavioral deficits

Goodwill et al. (17) Major depressive

disorder

Early-life stress via limited

bedding stress in Long Evans

rats

– – Assess sex differences in

depressive-like behaviors

Females exhibited

depressive-like behaviors in

adulthood after early-life stress,

while males did not

(Continued)

F
ro
n
tie
rs

in
P
syc

h
ia
try

|
w
w
w
.fro

n
tie
rsin

.o
rg

3
F
e
b
ru
a
ry

2
0
2
1
|
V
o
lu
m
e
1
2
|A

rtic
le
5
9
7
7
2
5

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Je
n
kin

s
a
n
d
K
h
o
kh

a
r

C
irc

u
its,

C
a
n
n
a
b
is,

a
n
d
M
e
n
ta
lIlln

e
ss

TABLE 1 | Continued

Study Modeled illness Animal model and strain Cannabinoids and dose Administration

route

Aims Outcomes

Hajos et al. (18) – Sprague Dawley rats CP-55940, 0.1 mg/kg;

AM-251, 3 mg/kg

i.v. Measure cannabinoid-induced

disruptions in auditory sensory

gating and neurophysiological

correlates in the EC and HIP;

determine whether they are

CB1R-mediated

CP-55940 reduced EC theta

power, EC and HIP gamma

power, and EC and HIP theta

coherence; AM251 reversed EC

gamma power and EC, HIP theta

coherence deficits

Hudson et al. (19) – Sprague Dawley rats THC, 10 and 100 ng; CBD,

10 and 100 ng

infusion Investigate impact of THC and

CBD in vHIP on VTA neural circuit

activity and emotional memory

THC enhanced VTA delta, beta,

and gamma power, and reduced

VTA firing rates; CBD

ameliorated effects on VTA firing

rates and delta power

Iniguez et al. (20) Major depressive

disorder

Chronic social defeat stress in

c57BL/6 mice

– – Determine whether adolescent

CSDS produces a

depressive-like phenotype

Adolescent CSDS produces

depressive-like behaviors in

c57BL/6 mice

Iturra-Mena et al. (21) Major depressive

disorder

Chronic social defeat stress in

Sprague Dawley rats

– – Determine the impact of CSDS

on NAc oscillations during social

interactions

NAc gamma power was

enhanced in control rats, but not

CSDS rats, during social

interaction

Khalid et al. (22) Major depressive

disorder

Chronic restraint stress in

c57BL/6 mice

– – Investigate functional

connectivity in cortical regions

Increased cortical gamma

coherence after chronic stress

exposure, dissipated with

remission of depressive-like

behavior

Lecca et al. (23) Schizophrenia Maternal immune activation in

Sprague Dawley rats

THC, 2.5 mg/kg (PND

45–47); 5 mg/kg (PND

48–51); 10 mg/kg (PND

52–55)

i.p. Examine the impact of

adolescent cannabinoid

exposure on neurophysiological

deficits in adult rats

Reduced number of active VTA

DA neurons in poly I:C rats

compared to controls and

reduced mPFC serotonergic

burst activity in controls after

WIN-55,212-2

Lee et al. (24) Schizophrenia Neonatal ventral hippocampal

lesion in Long Evans rats

– – Measure dysfunctional neural

synchrony in NVHL rats and

restore deficits by normalizing

synchrony with ethosuximide

NVHL rats exhibit increased

amplitudes and spiking activity,

reduced theta and beta

coherence during place

avoidance behavior;

ethosuximide reduced spiking

activity and attenuated

coherence deficits

Linge et al. (25) – Olfactory bulbectomy in c57BL/6

mice

CBD, 50 mg/kg; AM251, 03

mg/kg

i.p. Examine acute and chronic

effects of CBD on depressive-like

behavior and PFC

serotonin/glutamate activity

Acute and chronic CBD reversed

behavioral hyperactivity and

increased PFC serotonin and

glutamate levels in model mice

(Continued)
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TABLE 1 | Continued

Study Modeled illness Animal model and strain Cannabinoids and dose Administration

route

Aims Outcomes

Moussa-Tooks et al. (26) Major depressive

disorder

Early-life stress via limited

bedding stress in Long Evans

rats

– – Demonstrate early-life stress

sex-dependently down-regulates

cerebellar endocannabinoids in

adulthood and impacts behavior

Early-life stress produced

sex-specific changes in

endocannabinoid expression and

impaired behavior on OR and

social recognition

Nelong et al. (27) – Sprague Dawley rats THC, 10 mg/kg Vapor Measure the acute effects of

THC vapor exposure on LFPs in

the dStr, OFC and PFC of rats

using a within subject design

THC vapor exposure suppressed

oscillatory power and coherence,

most notably in the gamma

band; this effect was detected

after the 7 day washout period

Nguyen et al. (28) – Sprague Dawley rats THC; 25, 50, 100, 200

mg/mL

Vapor Validate THC vapor

administration protocol in rats

using measures from the

cannabis tetrad

THC vapor exposure predictably

reduced body temperature,

locomotor activity, and

nociception in male and female

rats

Park et al. (29) Major depressive

disorder

Restraint plus tail shock (RTS) in

Sprague Dawley rats

WIN55,212-2, 1mM;

AM251, 5µM

Bath Detect and measure

stress-induced changes of LTD

in the LHb

Low- and moderate-frequency

stimulation induced LTD in the

LHb; acute stress exposure

prevented only

Low-frequency-induced LTD in

the LHb

Raver and Keller (30) - CD-1 mice THC, 5 mg/kg;

WIN55,212-2, 1 or 2 mg/kg;

AM251, 0.3, 0.5, 1, or 2

mg/kg

i.p. Assess the impact of adolescent

WIN55-212,2 and THC exposure

on cortical oscillations and

memory in adult rats

Chronic adolescent (but not

adult) WIN55-212,2 exposure

attenuates adult cortical

oscillations

Renard et al. (31) – Sprague Dawley rats CBD, 100 ng Infusion Assess antipsychotic-like actions

of CBD on

amphetamine-induced VTA DA

dysfunction

CBD attenuated the

amphetamine-induced increase

in VTA DA firing rates

Renard et al. (32) – Sprague Dawley rats

(adolescent)

THC, 2.5 mg/kg; Days 1–3;

5 mg/kg; Days 4–7; 10

mg/kg, Days 8–11

i.p. (twice daily) Examine the impact of

adolescent THC on PFC GABA

and VTA DA activity in adult rats

Adolescent THC attenuated PFC

GABA activity, increased

neuronal firing, disrupted gamma

oscillations, and increased VTA

DA activity

Sauer et al. (33) Major depressive

disorder

DISC1 mice – – Characterize PrlC network

dysfunction in DISC1 mice

DISC1 mice exhibit reduced PrlC

theta and low gamma power

Seewoo et al. (34) Major depressive

disorder

Chronic restraint stress in

Sprague Dawley rats

– – Assess functional connectivity

changes related to

depressive-like behaviors using

MRI

MRI showed hypoconnectivity in

salience and interoceptive

networks, and hyperconnectivity

between the cingulate cortex and

multiple corticolimbic regions

(Continued)
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TABLE 1 | Continued

Study Modeled illness Animal model and strain Cannabinoids and dose Administration

route

Aims Outcomes

Segev et al. (35) Major depressive

disorder

Chronic mild variable stress in

Sprague Dawley rats

WIN55,212-2, 0.5 mg/kg

(i.p.); 5 mg/side (infusion);

AM-251, 0.3 mg/kg

i.p., infusion Assess whether WIN55-212,2

ameliorates CMS-induced

changes in HIP-NAc LTP, and

whether this is CB1R-dependent

WIN55-212,2 treatment

prevented CMS-induced deficits

in HIP-NAc LTP, an effect lost

with AM251 administration

Seillier et al. (36) Schizophrenia Subchronic PCP-treated

Sprague Dawley rats

THC, 0.1, 0.3 or 1 mg/kg;

AM251, 1 mg/kg

i.p. Determine the effects of THC on

social withdrawal in PCP-treated

rats and neurophysiological

correlates

In controls, THC

dose-dependently produced

social interaction deficits and

aberrant VTA DA neuronal

activity; in PCP-treated rats, only

the lowest dose of THC reversed

PCP-induced deficits

Sigurdsson et al. (37) Schizophrenia Df(16) A+/– mice – – Examine functional connectivity

between the HIP and the PFC in

Df(16) A+/– mice during a

memory task

WT mice exhibit increased

HIP-PFC coherence during

working memory; Df(16) A+/–

mice exhibit reduced coherence

Taffe et al. (38) - Sprague Dawley rats; Wistar rats THC, 5, 10, 20 or 30 mg/kg i.p. Compare the effects of THC

vapor exposure between Wistar

and Sprague Dawley rats using

measures from the cannabis

tetrad

Hypothermia was more

pronounced in Sprague Dawley

rats compared to Wistar rats,

while antinociception did not

differ between strains

Tchenio et al. (39) Major depressive

disorder

Maternal separation in c57BL/6

mice

– – Determine whether restoring LHb

function ameliorates a

depressive-like phenotype

LHb neuronal hyperexcitability is

ameliorated by chemogenetic

modulation and DBS

Valvassori et al. (40) Bipolar disorder Wistar rats CBD, 15, 30 or 60 mg/kg i.p. investigate the effects of CBD on

an amphetamine-induced,

manic-like phenotype

CBD reversed

amphetamine-induced damage

in the HIP and enhanced BDNF

expression. CBD administered

before amphetamine prevented

damage

Voget et al. (41) Major depressive

disorder

Flinders Sensitive Line (FSL) rats – – Characterize neural circuit

activity changes in the PFC,

NAc, Cg, and STN in FSL rats

Compared to controls, FSL rats

exhibit reduced mPFC and NAc

alpha, beta, and gamma power,

reduced STN alpha and beta

power, and enhanced STN

gamma power

Young et al. (42) Schizophrenia Subchronic PCP-treated Wistar

rats

– – Assess changes in mPFC neural

circuit oscillations in PCP-treated

rats

PCP-treated rats exhibit reduced

PFC theta power and enhanced

PFC coherence
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attempts (reflecting amotivation or despair) (78). Interestingly,
CB1R-deficient mice are used tomodel major depressive disorder
(79–81). Social defeat stress inmice also reduces CB1R expression
in the basolateral amygdala, a brain region involved in the
pathophysiology of major depressive disorder, while knocking
down or knocking out CB1R expression in mice enhances stress
susceptibility (81, 82).

Bipolar Disorder
The symptoms of bipolar disorder are characterized by cyclic
changes in mood, motivation, and attention, ranging from
periods of manic to depressed symptoms (83). Although
producing a model comprising the complete range of
symptoms has proven difficult, rodent models of psychosis,
depression, and diurnal disruption are often used to model
aspects of bipolar disorder (84, 85). The Clock119 transgenic
mouse model shows promise as a heuristic model of bipolar
disorder, having both face (behavioral cycling, hyperactivity)
and predictive validity, as lithium administration decreases
bipolar-like behaviors in this model (85). The dopamine
transporter knock-down (DAT-KD) mouse is also used to model
mania-like behaviors (enhanced motivation, hyperactivity)
associated with human bipolar disorder (86–90). DAT knock-out
(DAT-KO) mice are also sometimes used, but present with
growth defects and hypoplasia. The DAT-KD mouse was
subsequently developed to avoid these undesirable attributes
(86, 91, 92).

RODENT MODELS OF SERIOUS MENTAL
ILLNESS EXHIBIT ABERRANT NEURAL
CIRCUIT ACTIVITY

Schizophrenia
Patients with schizophrenia exhibit reduced resting-state and
evoked theta and gamma power, as well as decreases in beta
and gamma coherence spanning various brain regions (93–
96). Similar alterations are also evident in preclinical models
(Figure 1). Single-unit and local field potential (LFP) recordings
from layers II/III and IV in the barrel cortex of anesthetized
NRG1 knock-out mice and wild-type (WT) controls showed that
NRG1 mice exhibit reduced gamma power. This reduction was
also associated with reduced gamma signal-to-noise ratio and
phase-locking (for all frequencies below 50Hz), underpinned
by enhanced firing rates, possibly demonstrating mechanistic
dysfunction that occurs in patients with schizophrenia (14). In
DISC1 mice, in vivo LFPs from the prelimbic cortex (PrlC)
and hippocampus (HIP) showed reduced theta power in the
HIP and PrlC and low gamma (30–50Hz) power only in the
PrlC (33) (Figure 1). PrlC-HIP coherence remained intact as
described previously (37). NVHL rats showed reduced theta
and beta coherence in the dorsal HIP (dHIP) while medial
prefrontal cortex (mPFC) coherence remained intact. Baseline
dysfunctions in inter-spike timing, wave duration, spike to
valley voltage, and wave energy were also apparent, again
possibly revealing causal mechanisms of oscillatory dysfunction
in human schizophrenia (24) (Figure 1). Notably, gamma power

suppression is consistently demonstrated across different models,
and in human subjects.

Major Depressive Disorder
Reductions in alpha, theta, and gamma oscillations appear in
patients with major depressive disorder, and in genetic and
stress-induced preclinical models (97, 98). In anesthetized FSL
rats, LFPs from the mPFC, nucleus accumbens (NAc) shell, and
the subthalamic nucleus (STN) all exhibited reduced alpha and
beta power compared to controls, while theta and high gamma
power remained intact; low gamma power in FSL rats differed by
region, with reduced power in the mPFC and NAc and enhanced
power in the STN (41) (Figure 2). Although alpha, theta, and
gamma suppression is apparent in patients with major depressive
disorder, preclinical models demonstrate that this suppression
is more varied and region-specific. Similarly, rats exposed to
chronic social defeat stress (CSDS) also exhibit aberrant gamma
activity. LFP recordings from the NAc of CSDS rats and
unstressed controls were acquired during social interaction or
free exploration. High gamma power was enhanced in controls
during social interaction, whereas CSDS rats did not exhibit
any change in gamma power during either activity (21). In
the chronic restraint stress (CRS) mouse model, LFPs from
the frontal, somatosensory, parietal, and visual cortices were
captured at 7 and 21 days post-stress exposure. At the 7 day
time-point, CRS mice exhibited only enhanced coherence across
all frequencies compared to baseline. At the 21 day time-
point, the enhanced delta and gamma coherence disappeared.
Thus, gamma was restored with remission of a depressive-like
phenotype (22), which indicates that aberrant gamma power
or coherence may be a viable biomarker for major depressive
disorder. As is the case with schizophrenia, dysfunctional gamma
is common across various rodent models and in patients with
major depressive disorder.

Bipolar Disorder
Patients with bipolar disorder exhibit various aberrations in
oscillatory activity, including enhanced or reduced alpha power,
enhanced beta power, enhanced alpha, beta, and gamma
coherence, and reduced evoked frequencies (30, 99–103). Rodent
models also exhibit altered oscillatory activity, although the
literature is sparse. LFPs from the NAc, the PrlC, and the
ventral tegmental area (VTA) in freely-exploring Clock119
mice and littermate controls demonstrated that Clock119 mice
exhibited reduced low gamma to delta phase-coupling, as well
as intact high gamma to delta phase-coupling, in the NAc.
Low and high gamma coupling also appeared to be reduced
in the PrlC and the VTA of Clock119 mice. Clock119 mice
also exhibited disrupted phase-locking of NAc neuron firing
to delta oscillations. Contradicting what is observed in the
clinical literature, a difference in power between Clock119 and
controls was not observed (Figure 3). In support of altered
oscillatory activity being relevant for human bipolar disorder is
preclinical evidence that lithium chlorate (600 mg/L of water)
administration, the primary prescribed treatment for patients
with bipolar disorder, increased low gamma phase-coupling and
ameliorated phase-locking deficits in the NAc of Clock119 mice

Frontiers in Psychiatry | www.frontiersin.org 7 February 2021 | Volume 12 | Article 597725

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Jenkins and Khokhar Circuits, Cannabis, and Mental Illness

FIGURE 1 | Rodent models of schizophrenia exhibit neural circuit disruptions and eCB modulation enhances this activity. Graphical summary of preclinical

investigations demonstrating neural circuit disruptions induced by cannabinoid exposure in rodents used to model schizophrenia. Rodents modeling schizophrenia

exhibit reduced baseline PFC neuronal firing rates, reduced baseline PFC, BC, and HIP spectral power, and enhanced baseline BC neuronal firing rates. THC exposure

increases neuronal firing rates in the VTA after infusion. URB597 exposure increases neuronal PFC and HIP firing rates and spectral power. BC, barrel cortex; DISC1,

DISC1 KO genetic mouse model of schizophrenia; HIP, hippocampus; NRG1, NRG1 knock-down genetic mouse model of schizophrenia; NVHL, NVHL rat model of

schizophrenia; PCP, Phencyclidine rat model of schizophrenia; PFC, prefrontal cortex/prelimbic cortex; VTA, ventral tegmental area. Green: Increase; Red: Decrease.

(15). In DAT-KD mice, whole-cell patch clamp recordings of
dorsal striatum (dStr) glutamatergic neurons revealed shorter
half-amplitude durations and faster decay times (86). This may
be contributing to the altered phase coupling reported by Dzirasa
et al. (92) in DAT-KO mice. LFPs from the dHIP and the
mPFC of DAT-KO mice also demonstrated enhanced dHIP-
PFC gamma coherence compared to controls (92) (Figure 3).
Although the preclinical literature is sparse and does not
completely reflect what is observed in clinical studies of patients
with bipolar disorder, reduced oscillatory activity in the gamma
frequency range is again a shared feature across models and
human subjects.

CANNABINOID EXPOSURE IN RODENTS
ALTERS NEURAL CIRCUIT ACTIVITY

Cannabinoid-induced neural circuit dysfunctions in animal
studies and otherwise healthy humans are similar to those
in patients with a serious mental illness (18, 44, 104, 105).
THC exposure acutely suppresses gamma power and increases
cortical noise in otherwise healthy individuals; changes that are
associated with increased symptoms of psychosis (43, 106, 107).
Acute THC exposure also alters oscillatory activity in patients
with schizophrenia, with evidence showing it suppresses and
enhances resting-state theta and low gamma power, respectively
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FIGURE 2 | Rodent models of major depressive disorder exhibit region- and frequency-specific neural circuit disruptions. Graphical summary of preclinical

investigations demonstrating neural circuit disruptions induced by cannabinoid exposure in rodents used to model major depressive disorder. Rodents modeling major

depressive disorder exhibit reduced baseline PFC, NAc, and STN spectral power in the lower frequency bands and enhanced baseline STN and HIP spectral power in

the higher frequency bands. FSL, Flinders Sensitive Line rat model of major depressive disorder; HIP, hippocampus; NAc, nucleus accumbens; PFC, prefrontal

cortex/prelimbic cortex; STN, subthalamic nucleus. Green: Increase; Red: Decrease.

(108), while chronic use in patients suppresses amplitudes of
auditory evoked potentials (109, 110). Renard et al. (32) injected
adolescent, male Sprague Dawley rats with escalating doses
of THC (2.5–10 mg/kg, i.p.) and recorded glutamatergic and
dopaminergic (DA) neurons in the PFC and the VTA from
anesthetized adult rats. Compared to vehicle-treated controls,
THC increased PFC glutamatergic firing and burst rates, and high
gamma (61–80Hz) power during desynchronized states. It also
increased VTA DA firing frequencies and spontaneous bursting
(32) (Figure 4). In adult anesthetized rats, Skosnik et al. (44)
intravenously administered vehicle, CP-55940 (0.3 mg/kg), or
CP-55940 + AM251 (3 mg/kg), while LFP and auditory evoked
potentials (AEPs) were recorded from the HIP and entorhinal
cortex. CP-55940 reduced AEP theta and gamma power, which
was partially reversed by AM251 co-administration, suggesting
THC-induced changes are partly CB1Rmediated (44) (Figure 4).

We recently demonstrated that rats acutely exposed to THC
vapor have oscillatory changes lasting longer than 1 week in
the PFC, the orbitofrontal cortex (OFC), and the dStr after
either vehicle or THC vapor (10 mg/kg) administration. Reduced
gamma power was measured in all brain regions of THC-
treated rats, compared to controls. Reduced dStr-OFC and OFC-
PFC gamma coherence was also observed, and within-subject
comparisons of rats exposed to THC in week 1 and vehicle
in week 3 demonstrated persisting gamma suppression (27)
(Figure 4). Infusions of THC (100 ng/0.5 µL) and CBD (100
ng/0.5 µL), either alone or in combination, directly into the
vHIP of anesthetized male Sprague Dawley rats while recording
VTA DA and non-DA GABAergic neurons demonstrated that
THC enhanced VTA DA firing and bursting rates, compared
to controls (Figure 4). Both THC and CBD enhanced firing
frequencies of VTA non-DA neurons compared to controls,
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FIGURE 3 | Rodent models of bipolar disorder exhibit reduced baseline neural circuit spectral power and coherence. Graphical summary of preclinical investigations

demonstrating neural circuit disruptions induced by cannabinoid exposure in rodents used to model bipolar disorder. Rodents modeling bipolar disorder exhibit

reduced baseline PFC and HIP spectral power, and reduced baseline NAc coherence. CLOCK119, CLOCK119 genetic mouse model of bipolar disorder; DAT-KO,

DAT-KO genetic mouse model of bipolar disorder; HIP, hippocampus; NAc, nucleus accumbens; PFC, prefrontal cortex/prelimbic cortex. Green: Increase; Red:

Decrease.

while only THC administration enhanced beta, gamma, and
low delta power; THC also increased behavioral measures of
fear responsivity, morphine conditioned place preference, and
sucrose preference. CBD reversed all THC-induced changes
(except for sucrose preference, which it enhanced) when co-
administered (19), which supports evidence of CBD as a potential
antipsychotic, antidepressant and anxiolytic (25, 58, 111).

DIFFERENTIAL EFFECTS OF
CANNABINOID EXPOSURE IN RODENT
MODELS OF SERIOUS MENTAL ILLNESS

Schizophrenia
Cannabinoid exposure differentially affects neural circuit activity
in rodent models of schizophrenia, in a dose- and region-
dependent manner, and when comparing model animals to

controls. Seillier et al. (36) examined whether THC exposure
dose-dependently alters baseline VTADA activity in PCP-treated
or control rats. In PCP-treated rats, a reduced number of active
VTA DA neurons at baseline was evident when compared to
controls [a result that contradicts existing evidence of augmented
DA population activity (11)]. The low dose (0.1 mg/kg, i.p.)
of THC enhanced VTA DA population activity in PCP-treated
rats, while the high dose (1 mg/kg, i.p.) of THC had no effect.
In control rats, the low dose of THC reduced the number of
active VTA DA neurons to baseline levels observed in PCP-
treated rats. Extending this result to examine the involvement
of the eCB in additional brain regions, Aguilar et al. (12) used
the subchronic PCP-treated rat model to examine changes in
neural circuit activity after exposure to THC (1 mg/kg, i.p.) or
URB597 (0.3 mg/kg, i.p.), a fatty-acid amide hydrolase inhibitor,
administered to awake, behaving rats. Single-unit and LFP
recordings from the PFC and vHIP were taken prior to injection
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FIGURE 4 | Cannabinoid exposure disrupts neural circuit activity differently depending on administration route and dose, as well as the chosen cannabinoid.

Graphical summary of preclinical investigations demonstrating neural circuit disruptions induced by cannabinoid exposure in healthy rodents. THC exposure increases

neuronal firing rates in the PFC, HIP and VTA after i.p. injection or infusion, enhances spectral power after i.p. injection and suppresses spectral power after i.v.

injection or vapor exposure, and suppresses PFC and HIP coherence after vapor exposure. WIN-55 exposure suppresses HIP and EC coherence after i.v. exposure.

Studies showing no effect of cannabinoid exposure were not included. CP-55, CP-55940; EC, entorhinal cortex; HIP, hippocampus; PFC, prefrontal cortex/prelimbic

cortex; VTA, ventral tegmental area. Green: Increase; Red: Decrease.

and at 30min intervals post-administration. THC reducedmPFC
firing rates in controls, without producing any effect in rats
treated with PCP. URB597 increased mPFC firing rates in rats
treated with PCP, compared to controls (Figure 4). THC also
did not produce any effect on firing rates in the vHIP. PFC
and vHIP baseline oscillatory activity was similar between PCP-
treated rats and controls. THC administration also did not alter
oscillatory activity in either group, which the authors attribute
to the low dose of THC used. URB597 administration increased
gamma power in the mPFC and decreased delta power in the
vHIP for both groups (Figure 4). THC and URB597 produced
opposing effects on mPFC-vHIP coherence, increasing, and
decreasing delta coherence, respectively, for both groups; thus,
also revealing that eCB modulation is differentially impacted by
various modulations (12). Cannabinoid-induced alterations to

neural activity may also be age-dependent; Lecca et al. (23) used
the poly I:C rat model to examine whether adolescent cannabis
exposure alters adult VTA DA neuron sensitivity. Adolescent
poly I:C rats and controls were administered either vehicle
or escalating doses of THC (2.5–10 mg/kg, i.p.) for 11 days.
Once in adulthood, recordings were captured from the VTA of
anesthetized rats. In Poly I:C rats, the number of spikes per burst
and the intra-burst frequency of VTA DA neurons were reduced,
compared to controls, which was ameliorated by adolescent
THC exposure. Taken together, THC exposure may enhance
DA population activity in rodent models of schizophrenia only
at higher doses and in particular brain regions, whereas THC
suppresses DA population activity in control animals. This
possibly reflects an underlying mechanism supporting data from
patients with schizophrenia that demonstrates THC acutely
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enhances oscillatory power in patients and suppresses power in
controls (43, 108).

Major Depressive Disorder
As was observed in the rodent models of schizophrenia
described above, cannabinoid exposure enhances neural circuit
activity in rodent models of major depressive disorder, and
this effect seems more pronounced compared to control
animals. Abush and Akirav (10) examined the longevity of
cannabinoid-induced neural changes in a rat model of major
depressive disorder. Male, Sprague-Dawley rats underwent daily
chronic restraint stress (CRS) and administration of vehicle
or WIN55,212-2 (1.2 mg/kg, i.p.).Thirty days after stress
exposure, LTP recordings were captured from the NAc shell of
anesthetized rats. Stress-exposed rats exhibited reduced LTP in
the NAc while stress-exposed rats administered WIN55,212-2
were like unstressed controls, suggesting WIN55,212-2 rescued
stress-induced LTP deficits. Within-subject comparisons of the
unstressed, WIN55,212-2-treated rats revealed that WIN55,212-
2 enhanced LTP compared to baseline. WIN55,212-2 + AM251
co-administration ameliorated WIN55,212-2 enhancements of
LTP (10). These results were also reproduced using the chronic
mild/variable stress model of major depressive disorder, as
WIN55,212-2 administration (0.5 mg/kg, i.p.) prevented stress-
induced reductions in LTP in the NAc and this was reduced
by AM251 (0.3 mg/kg, i.p.) co-administration (35). Unlike the
rodent models of schizophrenia mentioned above, WIN55,212-2
exposure produced a similar effect in control rats, albeit to a lesser
extent than CRS rats (10). Another study, using restraint and
tail-shock stress in Sprague Dawley rats to induce a depressive-
like phenotype, demonstrated using slice electrophysiology
that WIN55,212-2 (1µM bath) induces long-term depression
(LTD) in the lateral habenula of both stress-exposed rats and
controls, a brain region implicated in the pathogenesis of major
depressive disorder (29). Taken together, these results indicate
that WIN55,212-2 exposure alters LTP and LTD mechanisms in
both model and control rats.

Bipolar Disorder
Studies using validated models of bipolar disorder to examine
cannabinoid-induced functional changes in neural circuit
electrophysiological activity are very limited, so we have
included an alternate measure of neural circuit alteration
below. One study investigated the impact of CBD on mania-
like behavior and neurobiology using amphetamine-induced
hyperlocomotion in male Wistar Kyoto rats, to model mania
in bipolar disorder. Rats were treated with escalating doses
of CBD (15–60 mg/kg, i.p.) before, or after, exposure to D-
amphetamine (2 mg/kg) to produce an acute manic episode.
CBD did not affect amphetamine-induced hyperlocomotion
in this rat model, which contradicts existing literature and
may reflect innate differences in Wistar Kyoto rats (31). The
moderate dose of CBD (30 mg/kg) increased HIP BDNF
expression and rescued amphetamine-induced damage (possibly
due to its effects as an anti-oxidant) when given after
amphetamine exposure, whereas CBD pre-treatment had no
effect on BDNF expression in the HIP, showing a protective

effect of CBD on the biochemical changes associated with
this model of bipolar disorder, only when administered post-
treatment (40). This exemplifies how the effect of cannabinoid
exposure depends on the chosen administration protocol.
Moreover, given the involvement of BDNF signaling in
coordinating gamma activity (112), we expect that future studies
examining oscillatory activity in this rodent model of bipolar
disorder may reveal reductions in gamma activity induced by
cannabinoid exposure.

DISCUSSION

Understanding the pathophysiology of co-occurring cannabis
use and serious mental illnesses remains a challenge in
neuropsychiatry. Aberrant theta, alpha, beta, and gamma
oscillations are observed after cannabinoid exposure in humans
and in mental illness, while cannabinoid exposure differentially
impacts the symptoms of the afore-mentioned mental illnesses.
Similarly, preclinical models exhibit suppressed baseline neural
circuit oscillatory activity, while cannabinoid exposure produces
differential effects on electrophysiological neural circuit activity
in otherwise untreated animals and has mixed effects in
preclinical models on oscillatory activity, neuroplasticity, and
neuronal firing rates. That said, our mini-review (albeit not
exhaustive) shows that aberrant gamma activity is consistently
observed. Whether aberrant gamma is etiological or only a
consequence remains contested; however, the rescuing effect
of gamma modulation implies that it is involved in mediating
pathophysiological mechanisms (16, 113).

Gamma oscillations arise from competing excitatory and
inhibitory control, involving extensive coordination between
glutamatergic and GABAergic transmission, and the pathogenic
loss of inhibitory control via impaired interneurons may
contribute to aberrant gamma oscillations (13, 33, 114). Why
then, do we observe both enhancements and reductions in
gamma oscillatory power and coherence after cannabinoid
exposure? Gamma signal is involved in maintaining local and
global circuits, and a local disruption could lead to global
changes in distal brain areas (13). Also, eCB tone is critical for
coordinating neurodevelopment and early-life disruptions of the
eCB, like adolescent cannabinoid exposure (115, 116), can lead to
long-term baseline oscillatory changes implicated in the etiology
of mental illnesses (26).

Although the review focused on schizophrenia, major
depressive disorder, and bipolar disorder, it is important to
consider which other serious mental illnesses may involve,
or be precipitated or ameliorated by, cannabinoids and eCB
modulation. Patients with attention-deficit/hyperactivity
disorder, obsessive-compulsive disorder, anxiety-related
disorders, and post-traumatic stress disorder all report greater
rates of cannabis use and worsened outcomes (117, 118). Some
of these patients may also benefit from therapeutic targeting of
the eCB (119–123), highlighting the need for further research
into this area.

Future studies should focus on comparing the effects of
varying administration routes, toward a set of standardized
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methodologies used to examine cannabinoid exposure in models
of mental illness, as these studies often use different routes and
doses of cannabinoid administration which may contribute to
inter-study variability. The other cannabinoids in the cannabis
plant must also be investigated, as they demonstrate partial
agonist activity for both CB1R and CB2R, and produce signature
CB1R-dependent behavioral responses in mice tested using the
cannabis tetrad (59). Additionally, whole-brain examinations
must be completed to connect disparate observations of
regional differences in brain activity both before, and after,
acute and chronic cannabinoid exposure. Recent studies have
used preclinical magnetic resonance imaging to examine the
mechanisms underlying serious behavioral dysfunctions in some
models of mental illness (34). Furthermore, differences in

circuit activity may be related to different medications taken by
patients, or inherent differences in brain functional connectivity
and/or the measured state (124), which might make the reverse
translation of these findings to animal models difficult. Thus, a
holistic approach to studying and translating circuit dysfunctions

in animal models is imperative. Finally, although the therapeutic
relevance of disrupted oscillatory activity in cannabis use and
serious mental illnesses is contested, modulation of gamma
oscillations should be investigated to characterize the pathogenic
nature of aberrant gamma signal, and to hopefully reveal a
circuit-based mechanism that can be targeted for intervention
(16, 39, 125).
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