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A b s t r a c t .  We show how a special decomposition of general projection 
matrices, called canonic enables us to build geometric descriptions for 
a system of cameras which are invariant with respect to a given group 
of transformations. These representations are minimal and capture com- 
pletely the properties of each level of description considered: Euclidean 
(in the context of calibration, and in the context of structure from mo- 
tion, which we distinguish clearly), affine, and projective, that we also re- 
late to each other. In the last case, a new decomposition of the well-known 
fundamental matrix is obtained. Dependencies, which appear when three 
or more views are available, are studied in the context of the canonic de- 
composition, and new composition formulas are established, as well as 
the link between local (ie for pairs of views) representations and global 
(ie for a sequence of images) representations. 

1 Introduction and Background 

1.1 M o t i v a t i o n  

Three dimensional problems involving several views such as model-based recognition, 
stereovision or motion and structure from motion analysis have traditionally been stud- 
ied. under the assumption that the cameras are calibrated. The idea that several classical 
vision tasks could be performed without full calibration of the cameras, but only using 
some geometric information which can be obtained from mere point correspondences 
between uncalibrated images, has generated during the  last few years an active re- 
search area, whose framework has been projective geometry [10]. More recently, affine 
geometry has been found to provide an interesting framework borrowing some nice 
characteristics from both Euclidean geometry and projective geometry. 

However, one can remark that the representations adopted in the literature axe 
of very disparate nature, and that often they are not even minimal. The relationships 
between different levels of representation has not been investigated thoroughly. Another 
important point which has not yet received much attention is the problem of dealing 
with multiple viewpoints to build a coherent representation in the case of uncalibrated 
cameras. Thus a unified representation is needed, to account in a single framework 
for the different geometric levels of representation, in the case of two, three, or more 
views. The principal ahn of this paper is to describe such a framework, the canonic 
decomposition. The proofs and explicit formulas which could not be included because 
of lack of space can be found in [8]. In this section, some descriptions of the cameras 
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are presented. Section 2 gives the local canonic decomposition for two views. A global 
representation for the case of three and more views in Section 3. Section 4. discuss 
some relations between levels of representation. 

1 .2  T h e  P r o j e c t i v e  M o d e l  

We consider the pinhole model. The main property of this camera model is that  the 
relationship between the world coordinates and the pixel coordinates is linear projective. 
The consequence is tha t  the relationship between 2-D pixel coordinates 3-D and any 
world coordinates can be described by a 3 x 4 matrix P ,  called projection matrix, which 
maps points from 7 )3 to ~2: 

x2 = [p p] X2 
x3 

z3 p a'4 

(1) 

where the retinal projective coordinates z l ,  x2, xs are related to usual pixel coordinates 
by (u,v) = (x l /x3,x2/xs)  and the projective world coordinates X1, X2, X3, X4 are 
related to usual a2fine world coordinates by (X, Y, Z)  = (XI/X4, X2/X4, Xs/Xa). Note 
that  since we assume a pinhole model, there is an optical center at finite distance. I t  is 
easy to see that  it is uniquely defined if, and only if the 3 • 3 submatrix P is invertible, 
which is an assumption tha t  we will use all the way through the paper. This is in 
opposition with another class of simplified models ranging from orthographic, weak 
perspective, to the affine camera [10, 11]. 

The goal of this paper is to exploit equation (1) to its fullest extend by deriving 
algebraic consequences (with geometric interpretations) of this equation in the case 
where several viewpoints are available. The generality of the approach comes from the 
fact that  only projection matrices are manipulated in the paper, thus the results found 
do not depend on the different primitives one may be interested in, or the algorithms 
used for the estimation. 

1 .3  C a l i b r a t e d  a n d  U n c a l i b r a t e d  C a m e r a s  

The projection matrix can be decomposed uniquely in the following way: 

[00 [00 00] a,~ 7 1 0 0 0  
f '  = A~ ~ 1 0 (2) 

0 01 03T 
J 

�9 x go 

The 3 • 3 matr ix A,  whose five entries are called intrinsic parameters, describes the 
change of retinal coordinate system. A camera is calibrated when the matrix A is 
known, so that  one can use normalized coordinates which have an Euclidean meaning. 
The 4 • 4 matr ix Dw describes the change of world coordinate system (the pose of 
the camera) called extrinsic parameters. The 5 intrinsic parameters and the 6 pose 
parameters  together account for the 11 parameters of P ,  which is a 3 • 4 matrix defined 
up to a scale factor. Here is a one-to-one mapping between the two representations, 
considering physically realizable systems. 
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2 A Local Canonic Decomposition 

2.1  T h e  I d e a  o f  t h e  C a n o n i c  D e c o m p o s i t i o n  

If two projective views are considered, the most complete description is given through 
the two projection matrices P = [P, p] and P '  = [P' ,  p '] .  Since each matrix is defined 
up to a scale factor, this representation is not unique and the total  number of parame- 
ters is 22. However, a to ta l  determination of these matrices cannot be done except in the 
case where a calibration object and its associated coordinate system are known. This 
to ta l  determination is not necessary: for example, in the Euclidean case, the choice of 
a particular world coordinate system is arbitrary, which means that  the representation 
is defined up to a displacement. One is generally interested only in descriptions of the 
geometric relationship between the two images that  are invariant by some group ~ of 
transformation of the projective space ps ,  which will be referred to as descriptions of 
level ~ or g-invariant descriptions. The properties which can be recovered from these 
descriptions are those which are left invariant by the transformations of ~. 

The idea, simple and powerful, is to consider the action of the group G on pairs of 
projection matrices (P, P ' ) .  I t  defines the equivalence relation: 

In each orbit, we choose the simplest form for the first projection matrix: 

- for calibrated cameras, the normalized coordinate system:/7 = A P e  = [A, 0] 
- for uncalibrated cameras, the pixel coordinate system: I = P c  = [Is, 0]. 

Just  by taking into the structure of the elements of G, this yields a particular second 
projection matr ix I ~, which we have found to have a remarkable interpretat ion in terms 
of geometric quantities. Thus, the principle is: 

The matrices I ,  I ' ,  expressed as functions of a pair o] generic projection ma- 
trices P, P~, such that there is a unique decomposition, called canonic: 

= Z7- # '  = Z'7- (3) 

with 7- being an element of ~ , provide a complete description of the geometric 
properties of two projective views which are left invariant by the group of 
trans]ormation ~. 

Note tha t  here the invariant is a t tached to the set of camera, and not a set of 3D 
objects observed by the cameras. Let us list some consequences of this construction: 

- The sum of the number of parameters  in the representation I ,  I '  and in the generic 
transformation 7- has to be 22. 

- Every quantity which depends only on the projection matrices and is invariant 
with respect to g is also a function of I and E'. 

- The quantities which appear in matr ix  7- are not measurable from two views using 
the representation of level ~. But they may be expressed using representations of 
the previous level, instead. 

- The decomposition provides a tool for explicitly building a pair of projection ma- 
trices P ,  P '  from the invariants obtained with respect to ~, which captures all the 
properties of a pair of views up to a transformation of g. For example, given a 
particular fundamental  matr ix  F,  we can obtain a projective 3D reconstruction, 
like [l, 5]. 
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2.2  C l a s s i c a l  G r o u p s  

The most general group of transformations of p3 is the group of homographies ~F-4. 

The Affine Group Since the direction of a line 1 = [d, d4] r can be represented by 
its intersection with the plane at infinity Hr162 defined by X4 = 0, the conservation of 
parallelism by a transformation of pz  is equivalent to the fact that  it leaves the plane 
at infinity invariant. For any given plane H of p3, and any pair of cameras, there is a 
3 x 3 matrix Hzt such that images of points of the plane are related by the projective 
linear relation: m t = H a m .  This matrix is invertible in the general case, and has the 
expression [12]: 

H n  = A ' ( R  + d t n r ) A  -1 (4) 

where n is the normal vector of the plane and d the distance to the origin. The limit 
as d --+ oo for this expression is Hoo, the homography of the plane 1/o~, the infinity 
homography. The matrix Hoo is proportional to Q = A ' R A  -1, and hence depends 
only on the rotational component. The other component of the representation, the 
epipole e ~, depends only on the translational component, since it is proportional to 
s -- A ' T .  These two quantities together define the uncalibrated motion, called Qs- 
representation (associated to the affine unimodular group) in [13] which appears to be 
the simplest generalization of what is well known in the calibrated case, with identical 
laws of composition as will be seen in section 3. 

The Similarity Group A transformation of ~os leaves the absolute conic /2 o f / /o0  
(X~-bAf~ q-A'~ = 0) invariant if, and only if it is a similarity, which is a rigid displacement 
multiplied by a scale factor [4, 2]. The knowledge of the conic w, image of ~ by the 
camera, is equivalent to that  of the intrinsic parameters. This conic determines the 
angle between optical rays, which is coherent with the fact that  the similarities conserve 
angles. 

The Special Euclidean Group By contrast with the structure from motion paradigm 
where there is an ambiguity between the amount of displacement, represented by liT[I, 
and the depth of objects (only the direction of translation can be determined), in the 
calibration, or reconstruction paradigm, the scale factor is known, and the relevant 
group is the group of displacements (a rotation followed by a translation). 

2 .3  A N e w  R e p r e s e n t a t i o n  f o r  P r o j e c t i v e  S t r u c t u r e  

Factorizations of the Fundam(ntal Matrix It has been shown in [6] that  the matrix 
HB which relates the two images of a plane, is linked to the fundamental matrix by 
the following system of equations: 

-- H ~ F  + F T H ~  = 0 (5) 

which is equivalent to the condition ( compatibility of F and H): 

F = [e ']•  (6) 

The decomposition (6) is not unique, since H a  can defined by any plane of ps ,  and 
thus there remains three degrees of freedom. 
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The S-matrix Let us define a special matrix S compatible with F,  and which is only 
a function oS F: 

# # 
e , r  , [e ]x 

F = ~ e  Fq-[e  ]x ( - ~ F )  (7) 

0 S 

This relation shows that  S is determined by F (since e I is determined by F),  and 
that  F is determined by S and e I. An analogy can be noted with the decomposition 
of the essential matr ix  E = [T] •  as the product  of an antisymmetric matr ix and 
a rotation matr ix  R,  since the fundamental matr ix  is decomposed as the product  of 
an antisymmetric matrix and the singular special matr ix  S, which we call epipolar 
projection matrix.  

A Geometric Interpretation The matrix S is the correspondence defined by the plane 
//~, which contains the optical center of the second camera, and whose image in the 
second camera is the line (e ') .  We see that  this is consistent with definition (7). The 
matr ix F maps points to fines, the matr ix [eI] • either maps lines to points or points to 
lines, thus from (7) the matr ix  S maps points to points. More specifically, a point m 
is mapped to ra l  = e I • F ro ,  which is the intersection of the epipolar line of m with 
the line (el). We can note tha t  this point is always defined as soon as m 5~ e since the 
distinctive property of the line (e I) is that  it does not contain the point e I, as we always 
have e'Ye ' = Ile'II 2 ~ 0. The interpretation of (7) is tha t  the epipolar line 1',~ = F m  is 
defined by joining the epipole e I and the point rn~ = S m  (intersection of the epipolar 
line and the epipole), thus the transformation S and the epipole e I completely define 
the epipolar geometry. 

The epipole e I depends on two independent parameters,  since it is defined only up 
to a scale factor. The transformation S is a linear projection of a projective plane (the 
first retina) on a projective line (el), thus it is defined by a 2 x 3 matrix defined up to 
a scale factor. Since the line (e I) is also defined by the same parameters  as the epipole, 
we see that  the knowledge of the linear projection (5 parameters)  and the epipole (2 
parameters) completely define the 3 • 3 matrices S and F,  which is consistent with the 
result that  the fundamental  matr ix  depends on 7 parameters  [3]. 

Planes Once the fundamental  matrix is known, any plane /7 can be characterized by 
the vector rB such that :  

H n  = S + e ' r ~  (8) 

In particular, we obtain, for the plane at infinity: 

H ~  = s + e'e'rH~/lie'll ~, (9) 

r~ 
We also see that  r n  ---- roo + ATnid, and thus we can interpret  the vector r n  as the 
projective characterization of the plane H.  An affine characterization would be the 
vector v = ATn/d, whereas a Euclidean characterization would be n/d. 

2 .4  T h e  C a n o n i c  D e c o m p o s i t i o n  f o r  T w o  V i e w s  

The canonic decomposition for two views is summarized in table 1, in which we men- 
tion: 
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- the characteristic properties and generic decomposition of a member of each of 
these group of transformations, 

- a canonic decomposition of the form (3) of two projection matrices. The quan- 
tities above the horizontal line are the elements of the invariant description, the 
quantities under tha t  line are non-measurable, 

- indication of links with the previous level, 
- the number of parameters,  whose sum is exactly 22. 

I t  should be noted tha t  the invariants e ' ,  Hoo, S are projective, thus defined only 
up to ~scale factor, as well as the matrices A and 7-/. I t  can be verified that  this reflects 
coherently the  fact tha t  the projection matrices P ,  P '  are also projective quantities. 

Using the projective epipole e '  as an invariant would have been perfectly adequate 
in this two-view analysis, because the norm of this quantity is not constrained in any 
way by two mere views. However, we will see in the next section that  i t  is constrained 
if three views are considered, and thus, in order to be coherent with the sequel, we 
have taken a scale-invariant representation for the epipole, the normalized epipole 
e~  = e/lle ' l l .  The vectors roo, s and the scalar v have to be scaled accordingly, 
resulting in the quantities: 

rooN = HTe~v L~ = p'Te~v vN = p'Te~; (I0) 

3 A Canonic Representation for Multiple Views 

Whereas the composition relations in the displacement-invariant case are straightfor- 
ward, in the similarity-invariant case [7] (resp. homography-invariant one [13]), i t  has 
been found tha t  11 (resp. 18) parameters  are needed to represent the relations between 
three cameras. This is more than 2 • 5 (resp. 2 x 7), but  less than 3 • 5 (resp. 3 • 7). 

Three projective views are now considered, and their most complete description is 
given through the three projection matrices P~ = [Pi,  pi], i = 1, 2, 3, which depend on 
the total  number of 33 independent parameters.  The canonic decomposition for three 
views is defined as the unique representation: 

f:h = I ~ T  ~2 = I ~ T  f:'3 = Z3:T (11) 

where 271 and272 have the same.form as in the canonic decomposition for two views (3). 
Of course, the form of 273 is expected to be in general different from the form of 272. 
Let us list the consequences of this construction: 

- The two-view canonic decomposition and its properties are extended. 
- There are two descriptions for the invariants of three views, one built upon the 

pair of descriptions 1-2, 1-3, the other upon the pair of descriptions 1-2, 2-3. They 
are more than the two descriptions for two views, including some additional pa- 
rameters, which cannot be determined from them. Rather, these parameters are 
functions of descriptions of the previous level. 

- The equivalence of the two forms of the alternative descriptions for three views gives 
the dependency of the composed description 1-3 (resp. 2-3) over the descriptions 
for 1-2 and 2-3 (resp. 1-3), and the additional parameters.  

- The additional parameters  can be determined from the knowledge of the three de- 
scriptions 1-2, 2-3, and 1-3. I t  means tha t  knowing all the triples of descriptions for 
two views is equivalent to a description for three views. There are some subtleties 
with scale factors, discussed in [8]. From the count of parameters,  it  is seen tha t  
the triple of descriptions for two views is not a minimal representation. 
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We have summarized in table 2 the results specific to the canonic decomposition 
of a triple of projection matrices: 

- the nature of the two equivalent invariant descriptions, the quantities above the 
horizontal line being the elements of the invariant description for two views, the 
quantities under tha t  line being the additional parameters,  which are measurable 
from three views but  not  from two pairs of invariant description for two views, 

- the two alternative expressions for t)3, as a function of the description 1-2, 1-3, or 
of the descriptions 1-2, 2-3, 

- the definition of the additional elements, as a function of the description of previous 
level, 

- the number of parameters,  whose sum is exactly 33. 

One advantage of the previous formalism is that  the generalization of the canonic 
decomposition to the case of N views is straightforward. Thus the elements of the 
description are exactly the same than for three views, and can be summarized in the 
table bellow where it can be verified that  the total  number of parameters is l l N :  

E U C L I D E A N  displacement 6 
( c a l i b r a t i o n )  intrinsic parameters 5N 

rotations 3 (N-l)  
translations 3 (N-l)  

E U C L I D E A N  similarity 7 
( m o t i o n )  intrinsic parameters 5N 

rotations 3 (N-l )  
directions of translations 2 (N-l )  
ratio of translation norms N-2 

A F F I N E  affine transformation 12 
infinity homographies 8 (N-l)  
normalized epipoles 2 (N-l)  
ratios of epipole norms N-2 

P R O J E C T I V E  homography 15 
epipolar projections 5 (N-l )  
normalized epipoles 2 (N-l )  
differences of too vectors 3 (N-2) 
ratios of epipole norms N-2 

4 Relations between the  Levels of Representat ion 

From tables 1 and 2 we remark that  each invariant description of a given level is for- 
mulated in terms of descriptions of the previous level. In this section, we present some 
more relations which are not explicitly described by these tables. 

Projective Representation and Affine Representation Let us examine the case of 
three views. There are the following relations between fundamental  matrices and infin- 
ity homography matrices: 

Fa3 = H * 2 s F i 2  + F23Hoo12 = (det Hoo2s)(H~32F~2 + F~2Ho~2) 
T = (det Hoo23)(H~o32 ([e2a] • - [e23] x)Hoo12) (12) 
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I t  can be noted that  the system of equations obtained by writing (12) between the 
three images can not determine the infinity homography matrices from the knowledge 
of the three fundamental  matrices, because there are 21 parameters  in the affine rep- 
resentation, versus only 18 in the projective representation. The additional knowledge 
needed corresponds to one of the three vectors roo defined in (9), which identify the 
plane at infinity. However, if this quantity is identified locally between any two views 
of an image sequence, i t  can be propagated along the whole sequence, thanks to (12). 

Euclidean Representation and Affine Representation It is easy to see tha t  the re- 
lation: 

Hoo = A ' i t A  -x (13) 

together with the relation e ~ = A~t allows one to determine directly the motion param- 
eters, the rotation I t  and the direction of translation t from the affine representation, 
if the intrinsic parameters  are determined. 

We examine now the relation with the intrinsic parameters.  The  fact that  I t  is a 
rotat ion matr ix is equivalent to: 

I t I tT  = I3 (14) 

Substituting I t  = A ' -1Ho~A obtained from equation (13) into (14), 

g ' - -  Hoo KI- I~  (15) 

where the matrices K = A A  T and K ~ = A I A  ~T represent the dual of the image 
of the absolute conic w in each camera coordinate system. Each of these matrices is 
symmetric and defined only up to a scale factor, thus they depend on five independent 
parameters.  I t  can be seen that  relation (15) allows us to update camera calibration 
through a sequence of images where they do not remain constant , once the initial 
camera parameters are known. It  can also be used for self-calibration. 

The  five constraints (15) on the intrinsic parameters  are linear, whereas from the 
projective invariants, only two quadratic constraints were obtained [9, 3]. These last 
constraints are in fact implied by the former ones. 

5 C o n c l u s i o n  

This paper  lays the ground for further studies about problems involving 3D information, 
multiple viewpoints, and uncalibrated ~cameras. I t  confirms the interest of the affine 
representation, which turns out to yield simple and powerful descriptions. 

We have described the canonic decomposition, an idea to account in a single frame- 
work for the different geometric levels of representation, in the case of two views, three 
views, or more. The approach is very general, since i t  involves only reasoning about the 
projection matrices. We first presented new descriptions for the affine and projective 
geometries of two views, which are respectively the infinity homography matrix and 
the epipolar projection matrix, which have been described from both an algebraic and 
geometric viewpoint. Then, a coherent hierarchy of representations has been studied. 
In particular, we have exhibited minimal and complete representations for each level 
of description, and showed clearly which elements of representation change and which 
ones are conserved across two different levels. These representations axe description 
of the geometry of the cameras which are invariant with respect to a given group of 
transformations. The relationships which occur between the different levels of repre- 
sentation have been described. In the case of multiple views, new representations and 
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their associated composition formulas have been established. They allow to deal with 
the case of multiple viewpoints while working with uncalibrated cameras, by relating 
local and global descriptions. Some consequences of the representation have begun to 
be explored [13]: reconstructions from multiple views, theory and computational meth- 
ods to recover the invariant descriptions studied in this paper, from points and lines in 
uncalibrated images. 
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T a b l e  1. T h e  geomet r ies  of two views: canonic  r ep resen ta t ion  

E U C L I D E A N  
( c a l i b r a t i o n )  

Sgs 

invariant 
description 

canonic 
decomposition 

d i s p l a c e m e n t s  preserve ang le s ,  d i s t a n c e s  

I l V ( 1 ) l l  = I l i l l  

= 0 s T: t ranslat ion vector 

A , A  ~ : intrinsic parameters  of cameras 
t t  : rotat ion from camera 1 to camera  2 
T : t ranslat ion from camera  1 to camera  2 

I t  ~ T 
t t T f P = A[Is ,  0] :P T = Tw - I t ~ i t ~ T w  

[ ~'  =A'[It ,  T] V n = i t ~  
T =  T~ 

where 
P = A[it~, T~] 

~ l  l l l = A [ its , ,  T , . ]  

6 

5+5 
3 
3 

E U C L I D E A N  
( m o t i o n )  

AgEs 

invariant 
description 

canonic 
decomposition 

A F F I N E  

~A3 

invariant 
description 

canonic 
decomposition 

P R O J E C T I V E  

9s  

invariant 
description 

canonic 
decomposition 

s i m i l a r i t i e s  preserve ang l e s ,  r e l a t i v e  d i s t a n c e s  
S ( a )  = 

rotation matr , 
[~T :T: t ranslat ion vector 7 

8 ---- 0s A: non-null scalar 

A , A  t : intrinsic parameters  of cameras 5+5 
I t  : rotat ion from camera 1 to camera  2 3 
t : direction of t ranslat ion from camera  1 to camera  2 2 

t T t t  = It~Rxu 

{ P ---- A[I3, 0] $ t = T/IITII where 
t t T T~ = R ~  T = t ~  -- I t ~ i t ~ T ~  P '  = A ' [ i t ,  t] S 7" = T ~  

A = IITll 

a f f ine  t r a n s f o r m a t i o n s  preserve p a r a l l e l i s m ,  c e n t e r  o f  m a s s  
A(n=) = ~oo 

[ ~ ~ ]  M :  non-singular 3 x 3 ma t r ix  ) A defined up 
A W: 3D vector ? to a global 12 

08  #: non-null scalar J scMe factor 
Hoo : infinity homography from image 1 to image 2 8 
e~v: normalized epipole in image 2 2 

Hoo = p l p - a  

e~v = e / l l e ' l l  
P = [13, 0] ,4 m = P 
~,' = [ H |  e~,] .a v = p 

= Ile'll 
h o m o g r a p h i e s  preserve c o l l i n e a r i t y ,  c r o s s - r a t i o  
7-t(~' 3) = 7 ,  ~ 

} = Y, s 3D vectors defined up to 15 
L:2v v2v vN: scalar a global scale factor 

S : epipolar projection from image 1 to image 2 5 
e~v: normalized epipole in image 2 2 

S = - [ e ~ ]  x2Hoo 
I 

eN = e/lle'll where { f '  = [13, o] 7-t m = P Hoo = p , p - 1  
P '  = IS,e'er] ~/ V = p e '  = p '  -- Hoop 

s = P ' T e ~  
VN = p/Te~v 

where 
Hoo ,-~ A ' R A  -1 

e '  = p '  -- Hoop ,~ A ' T  
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T a b l e  2 .  T h e  g e o m e t r i e s  o f  t h r e e  v i ews:  c a n o n i c  r e p r e s e n t a t i o n  

E U C L I D E A N  
( c a l i b r a t i o n )  

invariant 
descriptions 

canonic 
decomposition 

~ ,.r d i s p l a c e m e n t  

A~,A2,As intrinsic parameters 
R12, R~s [ R~, Rls  rotations 
TI~, T~s [ T ~ ,  T~s translations 

{ i h  = A~[h, 0 ] p  
~ = A2[ttl~, TI~]V 

_ A~[R~ , Tls]/~ 
Ps  - Az[R~sR~, R~sTI~ + T~s]Z~ 

6 

5+5+5 
3+3  
3+3 

E U C L I D E A N  
( m o t i o n )  

invariant 
descriptions 

canonic 
decomposition 

S E A,S~s s im i l a r i t y  7 

A1,A2,As intrinsic parameters 5+5+5 
R~2, R~s [ t{d~, R~s rotations 3+3 
tlz, t~s I tl~, tlz directions of translations 2+2 

a l  ~2 ratios of translation norms 1 

{ P1 = AI [I~, 0iS 

Ps  = As[R~sR12, R ~ t l ~  + a2t2s]S 

A F F I N E  

invariant 
descriptions 

canonic 
decomposition 

P R O J E C T I V E  

invariant 
descriptions 

canonic 
decomposition 

.4 E g.As aff ine t r a n s f o r m a t i o n  12 
H~12,H~2slH~12,Ho~1s infinity homographies 8+8 
e2v21,eN32 eN21 ,eNsl normalized epipoles 2+2 

_ 31 32 ratios of epipole norms 1 
P1 = [Is, 0]A 
Pz [H~12,e~21]A 131 = Ilezall/lle21H = ~l l lAzt ls l l / l lA2t~2l l  

[H=~3 , ~ e s ~ ] A  f12 = Iles211/lle2111 = o21lA~t2sll/llA2t~21[ 
Ps [H~23H~12,Hoo~seN2~ +#2em2]A 

7 /E  ~s h o m o g r a p h y  15 
812,823 S12,813 epipolar projections 5+5 

eN21,eNs2 eN21 ,eNd1 normalized epipoles 2+2 
qN1 qN~ differences of r~-vectors  3 
/~1 f12 ratios of epipole norms 1 

T _ 1 T P1 = [Is, 0]7-/ q m  = Hoo12e.~l ~Ho~lse~, 'sl  
1 T e P2 [$12,e/r qN2 = ~ - H ~ 3  lvs2 - 71H~21e~v12 

[Sis e r -- fll 31Nq~,'l,/~lesl~']~/ fll = lies1 [I/lies, II 
P3 [$2ss~2 + fl~e~32(q~2S12 + 71e/~az) , flz = 11e~21l/l[e21 l[ 

S~zeN~l + fl~e~sz (q~eNzl)]7~ with 71 = Ile~ II/lle~2 tl 


