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INTRODUCTION AND SUMMARY

The main purpose of this study is to investigate ways of extending
the theory of canonical correlation or canonical analysis to deal with
more than two sets of random variables.

The first chapter confains some new approaches to the classical con=-
cepts and theory for two nonsingular sets of variables. In addition, a
number of results which are required for the proper treatment of more
than two sets are also presented. The results in Section 1.5, on the
minimal conditions for canonical analysis, and Section 1.6, on principal
component models for pairs of canonical variables, are especially im-
portant in this connection.

The two set theory is further developed in the second chapter to
cover situations where one or both of the sets may be singular. It is
shown, in particular, that the analysis can be carried out without
eliminating the singularities. The key theorem is given in Section 2.3,
and three applications of it follow in the ensuing sectioms.

Five different techniques for the canonical analysis of several
sets of variables are considered in Chapters III and IV. Two of these
are due to Horst ([8]1, [9]1, and [10]), a third is due to Steel [21],

and the remaining two are new.

The numbers in square brackets refer to the bibliography.
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One important feature of these methods is that they all reduce to
the classical procedure when the number of sets is only two. A second
important common feature is that each method calls for the selection of
(canonical) variables, one from each set, according to a criteriomn of
optimizing some function of their correlation matrix.

It appears that the first attempt to extend the theory of canonical
analysis to three or more sets was made by Vinograde [23]. His method,
however, does not possess the above mentioned second feature and hence
does not fall within the framework of this study.

In Chapter III, models of the general principal component type,
extensions of those in Section 1.6, are constructed for each of the
five methods. The models are useful in that they help to clarify the
types of effects which the methods can detect.

The actual procedures for determining the canonical varigbles ac-
cording to the five techniques are developed in Chapter IV. Three of
the procedures turn out to be iterative in nature. A favorable property
of these procedures is that each must converge. Furthermore, if the
starting points are appropriately chosen, the derived variables will
necessarily be the desired canonical variables. (Suggestions for
starting points are made in Section 5.3.)

Horst's '"maximum correlation" metﬁod (see [8] or [10]) is one of
those which requires an iterative procedure. He, too, proposed an iter-
ative procedure for finding the canonical variables, but his differs
from the one recommended here (see Section 4.2). A strong drawback of

Horst's procedure is that its convergence properties are not known.



,,,,, U 7 T S

Steel [21], using compound matrices, developed a complicated sys-
tem of equations which one could solve, at least in theory, to obtain
the canonical variables for his method. The equations in fact are dif-
ficult to handle; and, consequently, a new approach has been evolved
(cf. Section 4.4). The resulting equations can be solved by an iterative
procedure which is quite like the one proposed for the maximum correla-
_ tion technique.
Three examples are given in the last chapter to illustrate the var-

jous methods. Some specific practical suggestions are also included.



CHAPTER I

RELATIONS BEIWEEN TWO NONSINGULAR SETS OF VARIABLES

1.1 Preliminary Remarks.

The classical problem of identifying and measuring relations between
two sets of variables was first tackled by Hotelling in a brief 1935
paper [11]. His definitive study of the problem appeared the next year
in [12] and still stands as a key reference in multivariate statistical
literature.

An example taken from [12] should help to pin down the problem
which is being considered. 1In this example, a set of mental test var-
iables are compared with a set of physicalAmeasurement variables. 'The
questions then arise of determining the number and nature of the inde-
pendent relations of mind and body ... and of extracting from the multi-
plicity of correlations in the system suitable characterizations of these
independent relations.”

Hotelling's method is based on an analysis of the covariance matrix
of the two sets of variates; and, consequently, the relations which can ™
be found using it are necessarily of a linear type.

This chapter contains a rather thorough investigation of his method
as it would be applied to an arbitrary positive definite covariance ma-
trix. The notation needed to proceed further is set down in the next

section. The focus in the third section shifts back to a description of



the analysis. The next three sections contain technical results asso-
ciated with Hotelling's technique. The last two sections include addi-
tional results which are relevant to some special types of relations be-
tween the sets. Much of this chapter has been motivated by and is di-

rected towards problems to be taken up in Chapters III and IV.

1.2 Notation.

Let the two sets of random variables be

L. [ - .
§1 (1Xl,lX2,...,lXP and .§2 (2Xl’2X2""’2Xp2) with Py < Py

)
1
Adjoining these together produces a (p x1) vector

1 = 1 ' : =
X' o= (X, X)) with p P, t Py
The covariance matrix of X, assumed positive definite throughout this
chapter, is .

211 12 | P1

2y oo | P2 13

P Py

The rank of 212 is designated by r.

It is often convenient to make "preliminary' nonsingular linear

transformations of the following type within each set:
Y, = T.°%, and Y, = T, X
where Tl and T2 are matrices such that

= ' = 1
le = TlTl- and 222 T2T2.



Let
X' = (X' ) _¥_é) H

then the transformations can be expressed more concisely as

« -}
¥ = DX
where
Tl 0
DT = .
0 T

(Tl and T2 may be taken to be lower triangular, a computationally ex-

pedient form, or symmetric, in which case it is convenient to write

%
Z;i for Ti'> The covariance matrix of Y is

I R12 N
R = = D7 "' .
R I T T
21
Much of what is to follow will concern
—1 * = =
—i BTy By &4 =1, 2,
where
( 3 ( At 3 ( . 3
i%1 Lk} 21
2 .b#! .b!
Z; = 1.2 s Bz = 1.2 , and Bi = 1.2 5
2 D! 5
1Py =Py =Py
\ J \ J \ J




with Bf an orthogonal matrix. Writing

E' = (Z.', Eé):
it follows that
Z o= od = DX
where
%
Bl 0 Bl 0
D = and D = .
B* B
%
0 B2 0] B2
The relation between DB* and DB is
Dpsw = DpPp

The covariance matrix of Z is

(1.2.1) )

= ' = 1
DB*RDB* DBZDB.

Relations between the two sets are most commonly studied through
the analysis of an appropriately selected Z. Special notation will not
be introduced to distinguish Z, or any of the quantities depending on
Z, when Z is the chosen one. Where a distinction is necessary, it

should be clear from the context.

Most attention will be given to the pairs of variables,
! = i =
Z{i) (lZi, 2Zi), i 1, 2, «ouy Pq-
The covariance matrix of Z(i) is

%y T le, 1"



Denote the ordered eigenvalues of Q(i) by

A, oA, =2,
i i

1 2

and the corresponding orthonormal eigenvectors by

and

124 251

When discuséing the variables .g(i), there are implicitly in the back-
ground some Z(l)’ 512), NN Z(i—l) such that the covariance structure
of the i pairs taken together is compatible with (1.2.1).

Use will also be made of variables

~ ~

(lzi’ Zzi)’ i = l’ 2’ MR pl

Z'.

=(1)
which are general unit variance linear compounds of 'Kl and .52
respectively.

Additional notation will be introduced as needed.

Some special symbols to be used throughout are listed below:

||A|| for the Euclidean norm of a rectangular matrix A;

IA] for the determinant of a square matrix Aj;

A for a generalized inverse of a rectangular matrix Aj;
tr(A) for the trace of a square matrix A;

cj(A) for the j-th largest eigenvalue of a matrix A with real

eigenvalues;

V() for the vector space generated by the columns of the matrix
A (i.e., the range space of A);

N(A) for the null space of the matrix Aj;

dim[V] for the dimension of the vector space V;

E(X) for the expectation of X;



var(X) for the covariance matrix of X;

corr(X, Y) for the correlation matrix of X and Y;
cov(X, Y) for the covariance matrix of X and Y;
1 for a vector of ones;

§ for the Kronecker delta.

ij

1.3 Introduction'Eg Canonical Analysis

The formal extraction procedure referred to in Section 1.1 will be
loosely called a "canonical analysis.'" It is convenient to describe the
procedure in a sequential fashion. At the first stage, one looks for a
pair (lzl’ 221) with the largest possible correlation. The derived

variables are known as canonical variables and together they constitute

the first pair of canonical varisbles. The associated correlation, de-

noted by Py is called the first canonical correlation. When one of
the initial sets consists of criterion variables and the other of pre-
dictor variables, then the canonical variate representing the criterion
set corresponds to Hotelling's most predictable criterion [113.

The analysis may be continued until Py pairs of canonical variates
and Py canonical correlations have been found. At the i-th stage

(i=2, 3, ve., pl), the i-th pair of canonical variates1 Z{i) is

chosen so that the corresponding i-th canonical correlation, designated

s is the maximum correlation obtainable which is consistent with

(1.3.1) corr(lzj, 1Zi) = 0, j=1, 2, «.., i-1;
(1.3.2) corr(ZZj, 2Zi) = 0, i =1, 2, «vo, i-1;
(1.3.3) corr(le, ZZi) = 0, j=1ly, 2, vo., i-1;

1 The frequently appearing statement that Z(j) is the i~th pair of ca-
nonical variates is an imprecise way of saying that Z(i) is a particular
one of the admissible i-th pairs of canonical variates.



(1.3.4) corr(lzi, 2Zj) = 0, j=1, 2, ..., i-1.

It is not necessary to impose all of these constraints in order to
arrive at the i-th pair of canonical variates. The derivations which
follow the sequential formation of canonical variates, as outlined above,
generally impose (1.3.1) and (1.3.2) in the process of determining the
higher order pairs (see, for example, Anderson [1] or Lancaster [15])
and then proceed to show that (1.3.3) and (1.3.4) are also satisfied.

In fact, even these two commonly used constraints ((1.3.1) and (1.3.2))
are more than is usually required. This point will be dealt with fur-
ther in Section 1.5.

If Py < Py 2 formal completion of the analysis may be accomplished
by finding an additional (p2 - pl) canonical variables sz, j= Py + 1,
Py + 2, ooy Pys associated with the second set? The only conditions
imposed on these variables are that they be uncorrelated with each of the
Zpl other canonical variables and among themselves. Although it is the
canonical pairs Z{i) which receive most of the attention, the other
(p2 - pl) canonical variables can also be enlightening. In particular,
the two sets (1Xl’ lX2, ey 1Xpl) and (2ZP1+1’ 2Zpl+2, ceny ZZPZ)
are alwaysvuncorrelated.

The results of Section 1.4 establish that

Py )

(1.3.5) I op = ||R12]|2.

i=1

The elements of R are all that can be explained by the canonical

12

analysis. (1.3.5) indicates in what sense the statement, ''the ensemble

of canonical variables accounts for all existing relations between the

two sets,"

2 Any Z containing the p; canonical pairs plus these (pp-p;) addi-
tional canonical variables is referred to as a canonical Z.

is wvalid.
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The number of non—-zero canonical correlations, which is the same as

r, the rank of I or indicates the number of dimensions

120 Ry2° 19

or factors common to both sets. The nature of these dimensions or fac-
torxs can be clarified in at least two ways. One approach is given by
Rao ([20], p.496): he shows that the minimum number of common factors
needed to explain gi and _52 separately (the same common factors
being used in both representations) by the usual factor analysis model
(see Rao ([20], p.498)) is just r. In Section 1.6, each canonical pair
Z(i) is expressed in terms of a one or two principal component factor
model. It is only the first r pairs which admit interesting represen-—
tations of this type. With respect to the single principal component

factor model, the number of non-trivial factors, i.e., the number of

Z with non-trivial representations in terms of one factor, is again

£(1)
r.
An important feature of a canonical analysis is that the end pro-
ducts, namely the canonical variates and correlations, are invariant
under nonsingular transformations of either set; this point was made by
Hotelling [12] and has been used advantageously by Horst ([8], [9], and
[10]), Steel [21], and others. It is, therefore, legitimate to make pre-
liminary transformations from -Kl and 'gz to Xi and XQ in order to
achieve orthonormal bases for the two sets of variables. In terms of
Y, the canonical analysis is exposed as nothing more than the selection

of orthogonal transformations (Bf and Bg) to new orthonormal bases,

Z

Zy which have a particularly simple correlational structure.

and Zys



1.4 The Basic Theorem of Canonical Analysis3

Theorem 1l.4.1. can be fairly described as the basic theorem of ca-
nonical analysis because, together with its corollary, it provides the
essential information for carrying out the canonical analysis calcu-
lations. The theorem establishes the existence of a transformation DB

or DB* which induces a unique ¢ matrix with the property that the

elements of ®12 are all zero except along its main diagonal where they
are non-negative, less than one, and in descending order of magnitude.

The underlying Z must be a canonical vector as is demonstrated in

Theorem 1.4.2.

THEOREM l.4.l. Suppose I is positive definite. Then there exists

a matrix
B1 0
(1.4.1) DB = 1o B
2
and a unique matrix
— 1
(1.4.2) ¢ = DBZDB
such that
I ®
(1.4.3) o=, |
21
with
—3 = '
(1.4.4) ®12 (D 9 ) Py @21
P PPy
and
3

The material in this section is included mainly for completeness.
The proof of Theorem l.4.2, however, has a new twist which is useful for
the considerations in Section 1.5.
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(1.4.5) D= diag(pl, pzs ceey ppl)’
with
1>p12py)2 e 2 o > 0.
1
2 2 2 , -1 -1
(pl, Pos =ses ppl must be the eigenvalues of 211212222221.) Also
Bl = Blel where Bf is any orthogonal matrix such that
2 -1 -1 -1
= * Tndt
(1.4.6) D BT, "L 0,58, T 'BE'
and B2 = BgT;l, where Bg is any orthogonal matrix satisfying
-1 -1
% = B !
(1.4.7) @1232 BlTl 212T2

(1.4.7) determines the first r zrows of Bg, r being the number of
non-zero eigenvalues p?; the remaining (p2 - r) rows are any ortho-

gonal completion of Bg.

R = D;lZD;l' = iZl flz where R,, = TzlzlzTgl' = Rj,-
Using Lemma AZ? there exist orthogonal matrices BT and B§ such that
Bleng' = @12 with ¢, as defined in (1.4.4) and (1.4.5). The p?,

according to Lemma A2, are the eigenvalues of R12R21. Moreover, BT

may be any orthogonal matrix such that

Note that the eigenvalues of R12R21 are the same as those of

-1, -1 _ -1
211212222221. Let DB = DB*DT

matrix of the type specified in (1.4.2) - (1.4.5), Suppose now that Dg

. This definition of DB yields a ¢

is any other matrix of the form given in (1.4.1) which yields a matrix 8

of the same type. Then

I
The "A" indicates that the lemma is in the appendix.
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s, = Bz8)
= (ﬁlTl)TzlzlzT;l'<ﬁsz)"
= Bim By
Therefore
p® = Bir, )R, B1",

where ﬁf (= ﬁlTl) is an orthogonal matrix. Hence the p? must be
. -1 -1 .

the eigenvalues of 211212222221 and there is one and only one ¢

matrix of the prescribed form. The properties of Bg follow from the

two equations

B*R == 0] B%

™2 1253
and
D2 0 Py
% %1 = v
B3Ry 1R12B3 o o|op,
Pp P2

The first corollary contains alternative expressions, in terms of

the original X variables, for parts of the previous theorem.

COROLLARY 1l.4.1.1. B. is any matrix such that

1

2 “ly B'  and B.I..B' = I.

(1.48) D™ = BiZ1oTy9%918] 171181

Alternatively, the rows of B are any complete set of eigenvectors of

-1 -1 . . . \
_11212222221 such that the i-th row, lhi’ of Bl is associated with

the i-th largest eigenvalue, pi, and BlzllB' = I. The first r rows

1
Z

of 32 are determined by the equation
' -1
(1.4.9) B1212222 = @12B2,
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and the remaining (p2 - r) rows are chosen so that

(1.4.10) Bz, B! = L.

Proof. Suppose (1.4.8) holds. Then

) 1. -1, -1, :
D (BTy) (T 720y 5 o9k oy Ty ) (ByTy)

BlTl is orthogonal and thus may be taken as Bf in the theorem. Sup-
pose now that
-1 -1 2

| R 1] | =
(1.4.11) 21121222222131 = BlD and BlzllBl I.

But (1.4.11) holds if and only if

-1 -1 -1, 1 = ' 2 '
T2 ,0,5801 T (BlTl) = (BlTl) D and (BlTl)(BlTl) =

|
[an
.

Again B is orthogonal and, because of (l.4.6), may be taken as Bf

151
in the theorem. The statement involving (1.4.9) and (1.4.10) is an im-

mediate consequence of the theorem.

THEOREM 1.4.2. Any Z with covariance matrix equal to the unique

® of Theorem l.4.1 is a vector of canonical variates.

Proof. That may be taken as the first pair of canonical

(1215 22
variates follows from Lancaster [15] or Anderson ([1l], p.295). (Both

use an argument like the one used below for the other pairs.) Now for

~

i=2,3, ..., r in turn select (lzi’ ZZi) to maximize

Ei) subject to (1.3.1) where Z. =0a'Z

2 171 1’
8= gy s a0y ) el =D g2y = £,
B8' = (Bl, Bys eoes B ), and ||8]| = 1. In other words,
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o,B,0, i1s to be maximized subject to uj =0, j=1, 2, ..., i-1.

j=i J 3113

Arguing as in Anderson ([1], p.295), let (Yi, Yipps oo Y ) =

(uipi, Oy 1Pgqg? o0 % Prs 0, +.., 0). Using the Cauchy-Schwarz in-

aijp.| =]z vy.B.] s (= vj>2 ( B9*

i J jei 3 j=1i j=i

equality, I with equal-

J

[ e I ]

ity if and only if (Yi, Yig1® coco sz) o (Bi, Bi+l’ cees sz). Assum—

ing this equality condition, Bj =0, j=rtl, r+2, ..., Py Changing

the sign of all the o's, if necessary, one is left with

(1.4,12)
r Py Py
2 2 2 2 2 2
I o.B.p.=C I alp,=C{Z (p. - pi) a, + ai} for some C > 0 .
j=1 3373 j=1 39 j=1 3 i

If p, = Pigl = =0 = Py (and Pr 7 Prtl if k < Pl)’ then to maximize
(1.4.12) it is necessary that uj =0, j=%k+Ll, k+2, ..., Py and hence
B, =0, j=k+1, k+2, ..., . Clearly Bj =0, =1, 2, ..., 1i-1,

k|
in addition, so that (1.3.2) holds. Evidently

( N k k
Z = I a Z., r oo, =1,
171 j=i J 1 N j=i J
o k k 2
Z = I B, .Z,, I B, =1,
271 j=i J 2 J j=i J
(1.4.13) 3
O‘J = Bjs | ia i+la H k L)
and
corr(lzi, ZZi) = py-

Take a;, = Bi = 1 and note that conditions (1.3.1) (1.3.4) are satis-
fied so that -E(i) is the i-th pair of canonical variates. (A similar

proof holds starting from (1.3.2) instead of (1.3.1).) For r < Pys
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Zp ) is uncorrelated with ZQ which means that
1

the (rt+l)-=st canonical correlation is zero. In view of the structure of

(12410 12422 *000 1

%, this is enough for Z to be a canonical vector.

The composition of an arbitrary i-th pair of canonical variates,

i £ r, is spelled out in the corollary.

COROLLARY 1.4.2.1. Suppose Z{l)’ Z(Z)’ ceos g(i_l) are fixed

. , , i < r. * % L *
pairs of canonical variates for i r Suppose g(i), Z(i+1)’ s Z(k)

e irs of nonical riates with ., = 0, = ,.. =
are also pa of canon variat p1 pl+l pk and

Pr > Pl if k < Py Then any i-th pair of canonical variates must be

of the form
k
= b

. 7%,
%5 2(3)°

Z,.
=(1) i j

J

gﬁggg. The proof for i =2, 3, ..., r follows from (1.4.13). The

case i =1 can be handled by a similar argument.

1.5 Minimal Conditiomns for Canonical Analysis

This section contains results pertaining to the effects of restric-
tions (1.3.1) - (1.3.4) on the generation of higher order canonical var-

iates. The effects of two alternative constraints are also considered.

THEOREM 1.5.1. Let Z be the first (i-1)

Zayr @y o B

pairs of canonical variates with i < r+l. Then restrictions (1.3.1)

and (1.3.4) on the i-th pair of variates are equivalent, as are the

restrictions (1.3.2) and (1.3.3). Furthermore, for i < r, wvariables

121 and 221 having the maximum correlation, subject to only one of the



i5
constraints (1.3.1) - (1.3.4), must in fact satisfy all four and thus may

be identified as the i-th pair of canonical variates.

4

froof. Let Z andﬂ»éz contain the elements of» Z{l)’zfz)""*é(i—l)

. . ind = 1 o= 1 ] .
in their proper places. Form lzi -ﬁvél and 2Zi E_ZQ as in the

proof of Theorem 1.4.2. Requiring that lii satisfy (1.3.1) is equiv-

alent to having aj =0, =1, 2, ..., i-1. Requiring that 1Zi sat-

isfy (1.3.4) is equivalent to having ujpj =0, j=1, 2, «.., i-1

which is the same as uj =0, j=1, 2, ..., i-1 since i < r+l. This

demonstrates that (1.3.1) and (1l.3.4) are equivalent for i < r+l and a

similar argument proves the equivalence of (1.3.2) and (1.3.3), again for

i £ r+l. The proof of the second part of the theorem is contained in the

proof of Theorem 1.4.2.

One constraint of the type (1.3.1) - (1.3.4) will not suffice to
determine canonical variates in the case r < i < Py Suppose, as one

possibility, that lEir'and '221 have the maximum correlation subject

only to (1l.3.1). Then an admissible solution is (lEi’ ZEi) = (lzi’ 221)

where _Z, and are canonical variates. But this is clearly not

14 ZZl

the i-th canonical pair. Perhaps the most natural way of dealing with
this case is to impose the two constraints (1.3.1) and (1.3.2). One

then has the following well known result.

THEOREM 1.5.2. Let Z " be the first (i-1)

Zayr £y 0 E-

pairs of canonical variates with r < i < Py Then any g{i) may be

taken as the i-th pair of canonical variates (in other words, any -E(i)

subject to (1.3.1) and (1.3.2)).
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Proof. This follows from Theorems 1.4,1 ana 1.4.2 noting that there
exists a 2 with covariance matrix ¢ as in (1.4.2) - (1.4.53) and con-
taining  Z.,., 2,445 ""-z(i‘ in the proper locations.

Another type of constraint can be employed to generate

min(pl, r + 1) canonical pairs.

THEOREM 1.5.3. Suppose Z(l)’ Z{Z)’ cees g(i_l) are the first

~

(i-1) pairs of canonical variates. Then the variables 121 and 2Zi

with the maximum correlation subject to the constraint
(1.5.1) .;'corr(g(j),.z(i)ll =0, j=1,2, ..., i=1

must be the i-th canonical pair for i < min(pl, r+l1) (but need not be

in case r+ 1< i < pl).

_ggooff‘\%éart with lZi :'9{51 and . Zzi = ﬁﬂgz egactly as }n the proof

of Theorem 1.4.2.

1.5.2 1'corr(Z,.., Z = (a, + B8 +p.).

( ) =+ €O (_(J), _(i))_]_-_ (OLJ BJ)( p:l)

Thus (1.5.1) holds if and only if aj = - Bj, j=1, 2, ..., i-1. Then
L. i-1 Py

(1.5.3) corr(.Z2,, ,Z2,) =~ L a,p,t+ I o,B.p. .
174° 274 j=1 3] j=i 3313

If i <r+1, uj = Bj =0, j=1, 2, ..., i-1 for a maximum. Using
Theorems 1.5.1 and 1.5.2, it may now be inferred that -Z(i) must be the
i-th pair of camonical variates. If i > r + 1, then Pi1 = 0 and

the maximum value of (1.5.3), namely zero, may be obtained even with

o _q # 0. Consequently, -Z(i) need not be the i-th pair of canonical

variates in this case.
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A constraint similar to (1l.5.1) can be used with the same effect.

THEOREM 1.5.4. Theorem 1.5.3 remains correct if (1.5.1) is replaced

by

~ 1 . .
(1.5.4) (1, —1)corr(§(j), Z(i))(-l] = 0, i=11, 2, ..., i-1.

Proof. The proof is the same as that for Theorem 1.5.3 except that

(1.5.2) is replaced by

~ 1 - _
(l,r-l)corr(g(j), Z{i))[—l) = (aj + Bj)(l pj).

1.6. Principal Component Models for Pairs of Canonical Variates

The concepts of canonical analysis and principal component analysis
can be brought together in a way which gives new insight into the struc-
ture of the canonical variates. This approach is extremely useful in
developing and relating methods for the canonical analysis of several
sets of variables which is the subject of Chapter III.

The first theorem of this section and its corollary link the canon-

ical variates to the principal components of Y.

THEOREM 1.6.1. The eigenvalues of R are

1+ pj, j=1, 2, ..., Py
Cj(R) = 1, j= Pl+1s P1+2’ ceey p2
bobpiiegs 3= gt pyt2, weesp

It v., j=1,2, ..., p, are corresponding orthonormal eigenvectors,

then Vi ¥ps cees Voo

r Xp—r+l’ Xp-r+2’ ooy Xp must be of the form
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%
27°(,b%', b*"), i=1,2, ooy 1
v' = 1=3 2=j
-_J ';2/ 1 " .
2 “(- 11’-3"233’)’ j = p-rtl, p-r+2, ..., p ;
and Vo1 Yy v Xp—r can (but need not) be of the form
_;5 1 w! .
2 (113_?; s E’j ) jo=rtl, r+2, ..., Pl
X:'i = (9_" 21_)_?')s j = Pl+l, pl+29 tees P2

=%
2 2(— lh_g"a Z.Egc')’ J p2+l, p2+2’ eeey P

(The lh? and 22? are the rows of BT and Bg which define the ca-

i i = x = *
nonical variates Z, = ByY, and Z, BiY, )

Proof. Let V = (Ehf Voo eees yp) where the Xj are as defined above,

and let A = diag(Ll + D, I, I - D) where D is as in (l.4.5). Now

= = % x' = '
(1.6.1) RV VA < > BlR12B2 (D 0).

The second equation in (1.6.1) holds by virtue of (1.4.7) so that the
eigenvalues of R are as claimed, and the Xj form a complete set of
orthonormal eigenvectors. The proof that the first r of the Xj and
the last r of the ¥y must be of the prescribed form follows readily

from Corollary 1.4.2.1.

COROLLARY 1.6.1.1. The first r principal components of Y must

be of the form

~%
X&X = 22(12j+22j)’ j=l, 2, eeey L 3
and the last r principal components must be of the form

vy = 2_%

= (_le + zzj)’ j = p—rtl, p—r+2, ..., D .
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The corresponding variances are the respective cj(R). (The iZj are

canonical variates.)

Okamoto and Kanazawa [18] present a development of principal com-
ponent theory which is more general in scope than any previous approach.
Their main result is recorded in Lemma A3. It can be used to further
develop the work of Carroll [3]. Paraphrasing Carroll's central idea,
the sum of squared sample correlations between each of the lZl and
221 sample vectors, standardized to zero sample mean and unit sample
variance, and a third vector, at one's disposal, is a maximum with re-
spect to the third vector when this third vector is proportional to the
sum of the other two and overall when the sample vectors are canonical.
and

Suppose fixed sample vectors and an optimal third vec-

1“1 2%1
tor are used as the coordinates of three points in Euclidean space.
Then the line passing through the origin. and the third point is the first
principal component line (cf. Gower [7]) for the other two points (i.e.,
those corresponding to the sample vectors). A random variable develop-
ment of Carroll's work, in the context of principal components, is pos-
sible with the: aid:<of Lemma A3.

Suppose Z{l)’ 2(2), cees Z{i—l) are the first (i-1) pairs of ca-
nonical variates. Assume, for convenience, that E(E(i)) =0 and

corr(lzi, 2Zi) = ¢i 2.0. Consider as a representation of an arbitrary
Z(1)°

(1.6.2) "Z"(l) = LF __1 s

where gi is a non-null vector, Fi is a standardized (zero mean and

unit variance) random variable, and E. is an error vector. f& and F.
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are to be chosen to produce the best fitting model for g{i) according

to the following criterion:
(1.6.3) | minimize f(var(gi)) = g(el, 62),

where g is any strictly increasing function in el and 62, the

eigenvalues of the non-negative definite matrix in the argument of f.

Two possiblities for f are the trace and the Euclidean norm functions.
According to Lemma A3, optimal choices (for all f satisfying the

above condition) are

f %
% (L +9)/2Y" L 4f ¢, >0
L, = A% _e,
=i 171 14 o ¢ o
v l_i 1 q)i
(1.6.4) {and > : *
-%
2(1 + ¢, 1'z if . 0
F, = .\,° .e'Z (26 ¢1)} =2 7 by 2
i1 1BR() . g L
\ lE]_—(l) 1 ¢i = Yo
in which case
(1-605) g(el, 62) = g(l —q)i, O) = g(z)\i’ 0) = g(z - l)\i’ O) .

The admitting the best fit of (1.6.2) in the sense of (1.6.3)

Z,.
=(1)
must be the i-th pair of canonical variates since (1 - ¢i) is a min-

imum when ¢i is a maximum. This maximum is, of course, Py

Consider next a two factor model for g(i)

(1.6.6) L, .F, + L, _F, +E, ,
1 et

Zogy T 1k 1F T ob o

where lﬁi and Zgi are non-null vectors, 1¥; and oF; are stand-

ardized random variables, and E, is an error vector. Clearly the £'s
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and F's can be chosen so that £, = 0. This however is to be done in
a special way: first, pick lgi and F, to
(1.6.7) minimize f(var(g(i) - léi lFi)) = g(8), 62);
second, pick Zgi and ,F, to

= 174

(1.6.8) minimize f(varQé(i) - L, F, - Zgi 2Fi)) f g(el, 62).

In both instances, g 1is the function defined in (1.6.3).

Applying Lemma A3, the choices are

.
{@+6,)/2Y91, 1 if 4. >0
' % 1 i i
AT s T '
e if ¢;, =0
z @ -9y y/2¥5 (1, -1 if ¢, >0
ki = 08 T ;
if ¢, =0
(1.6.9) A 2
5, ) {2(1 + ¢; Y}, 1)2(1) if ¢, > 0
F A2 ez = .
11 171 1—i—(1) £ -0
18:2(1) ey =
2 .
; 5 _ {2(1 - ¢, )} A, —1)z(1) if ¢, > 0
271 2" 2=R(d) v -0
| Z—r—(l) it ¢, =

An external criterion is needed for the "optimal'" selection of
Z(i)' If £ 41is the trace function, g=1 - ¢i after the first fit
(1.6.7) and g = 0 after the second fit (1.6.8). Translated into
words, the first factor accounts for an amount lki =1+ ¢i of the var-
iability in. Z(i)’ and the second factor accounts for the remaining
amount Zki =1- ¢i. A sensible approach is to choose Z(i) to make
lAi large and 2Ai -small. This, after all, is the effect of model

(1.6.2) as can be seen from (1.6.5). It will prove beneficial for
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future work to state the external criterion in the following two equiv-

a:lent ways: choose E(i) to

. 2 2 _ 2
(1.6.10) maximize lki + ZAi = 2(1 + ¢i)
or
(1.6.11) minimize . A A = 1 - ¢2 .
171 274 i

Each leads to Z(i) being the i-th pair of canonical variates.

These results are summarized below.

THEOREM 1.6.2, Let Z be the first (i-1)

Ly 22y e B

pairs of canonical variates. (Assume E(g(i)) =0 and ¢, 2 0.) The

best fit of model (1.6.2), for arbitrary Z{i)’ as measured by (1.6.3),
is given by (1.6.4), and the Z(i) yielding the best fit is the i-th
canonical pair. The best fit of model (1.6.6), for arbitra?y _g(i), as
measured by (1.6.7) and (1.6.8), is given by (1.6.9). The g<i) admit-
ting the best fit using (1.6.10) or (l.6.11) is again the i-th canon-

ical pair.

COROLLARY 1.6.2.1. max A, = 1+ p. .
11 i
Z,.
=(1)
gln 231 = 1 - pi .
=(1)
COROLLARY 1.6.2.2. Let Z(i) replace ‘g(i) in model (1.6.2).

7 = 7 7 = Py > it
(Assume E(é(i)) 0 and corr(lZi, 2Zi) ¢i 2 0.) Requiring that the

best (cf. (1.6.3)) fitting factor Fi satisfy

corr(Fj, Fi) = 0, j=1,2, ..., i-1



23

is equivalent to requiring that <Z(i) satisfy (1.5.1) if Ei > 0. This

~

is also true for ¢i

0 4if (and only if) ey is chosen proportional

1
to 1.

Proof. corr(Fj, Fi) =0 <=> cov(lﬂg(j), lﬂz(i)) =0

< => lfcorr(g(j), Z(i))l'= 0, j=1, 2, «.., i=1., Note that

~

COROLLARY 1.6.2.3. Let Z ;) and Es’i be as in Corollary 1.6.2.2.

Requiring that the best (ecf. (1.6.3) fitting factor Fi be such that
corr(gj, Ei) =0, j=1, 2, ..., i-1

is equivalent to requiring that Z(i) satisfy (1.5.4) 1if Ei > 0. This

~

is also true for ¢i 0 if (and only if)

184 « 1 (which implies

2_3_::_ « (1, -1)).

Proof. corr(gj, E&) <=> cov((l, —1)§(j), (1, _l)z(i)) =0

<=> (1, "Deorr(Z,y, Z(i))(l, -1)'=0, j=1,2, ..., i-1. Note

1 o« - _ 'y . o
that Ei (1, -1)(1, 1)g(i) if and only if 184 1.
COROLLARY 1.6.2.4. Let Z(i) replace g(i) in model (1.6.6).

- = ~ ~ > I I
(Assume E(Z(i)> 0 and corr(lzi, 2Zi) = 0.) Requiring that the best
(cf. (1.6.7) and (1.6.8)) fitting factors lFi and 2Fi satisfy

corr(qu, vFi) =0, u=1,2; v=1,2; j=1, 2, «u., i-1

is equivalent to requiring that 42(1) satisfy

corr(Z(j), Z(i)) =0, j=1, 2, ..., i-1

(i.e., conditions (1l.3.1) - (1.3.4)). This is true for i = 2,3,...,pl.
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Proof.
15 = Ajg(j), i=1, 2, ..., i-1, and F,.| = Aié(i)

for some nonsingular Al, A2, ey Ai' Now
corr(AjE(j), Aié(i)) =0 <=> corr(z{j), Z(i)) =0,

§=1,2, couy i-13 1=2, 3, «ou, Py

1.7 Some Invariants under Transformations of One Set

The next theorem is the main force behind certain iterative pro-
cedures developed in Chapter IV, but it is also of interest here for the
further insight it gives into the relations between two sets of variates.
In essence, one set of variables is held fixed and attention is directed
to some special functions which are invariant under internal nonsingular
transformations of the other set.

Let the second set X, be fixed and consider the following func-

2
tions of gi:
( p2 ,
oLi = .Z {corr(lzi, ZXj)} s i= l, 2, ceey Pl ’
j=1
P2 )
B, = { T corr(4Z.,, X.)}7, 1 =1, 2, «c0s Pq»
(1.7.1) 1 * j=1 147 273 1
and
124
Y; = |var < ’ i=1, 2, ..., Py
=2
\
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The goal, for i =1, 2, ..., Py in turn, is to select different lZi
to (i) maximize o (ii) maximize Bi, and (iii) minimize Yy The
technique for doing this and the values attained are presented in Theorem

1.7.1. (Part (i) of this theorem was discussed by Fortier [6] and

earlier by Rao [19].)

THEOREM 1.7.1. The optimal values for o Bi, and Y4 defined

in (1.7.1) are
-1 -1

(i) o, = Ci(211212D22221)’ i=1, 2, ..., Py 3
. -l %
PN — ] 2
(1) By = 1'D55%91813%190p0L
and
Bi=0’ i=2,3, "°’p1;
(iii) v, = |z,,](1 - ¢ (z'lz 21y ), i=1, 2, . P
i 22 i*711712722721°7° R I
where
% % %
D,, = diag(c _“ o *© o 5.
22 g py+l,py+l” Opi+2,p42, .en, pp’
These values are attained when the lgi defining the lZi are the
eigenvectors, subject to BlzllBi = I, corresponding to the i-th largest
. -1 -1 -1 =% -1 -1
eigenvalues of 211212D22221’ leZlZDZZl-l D22221, and 211212222221

respectively, For B

-1, %
By Z11%19000L

1> 0, the corresponding eigenvector is

Proof. Repeated use will be made of Lemma Al. The maximum value of oy

is

[ "l = _1 '_l
sup 123 292025851 12 ey (Z11295D55%99)
121
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-1 -1
and occurs when is a corresponding eigenvector of 211212D22221

Ihl

The maximum value of az is

' 1 _ —1 —l
sup 122 219029891 1Ry = €p(F13T19D50859)
122

2 %11 12y = 0

and occurs when 122 is a corresponding eigenvector satisfying

] . s ) I . .
lhl 211 1_2 = 0. Continuing in this way, the maximum value of apl is
Y -1, _ -1 -1
Sup 12p, F12P22%21 2%, T © 1(211212D22221)
L
le 1112y, T °

=1, 2, ..%, pl-l

and occurs when lhp is a corresponding eigenvector satisfying
1
! = i = -
lkj le lhpl 0, ] 1, 2, ..., Py 1. The results for the Bi and

\f follow in a similar manner. To obtain the lZi yielding the max-

imal Bi, one needs to consider the variation of

2 2
1bg E1pPprl 1'Dy5%, 4by -
And for the lZi giving the minimal Yy it is the variation of
1
1 lhl Z —1
12551 = 13551 4bi 215755801 1by
221 lbi 222 22 22 1 i 12 22721 1-i

which is of interest. Minimizing this last .expression is equivalent to
maximizing
-1

1
125 T19%p0%0 1B

and this may be carried out using Lemma Al.
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The minimal Y; are especially noteworthy because of their in-
timate relation to the canonical correlations. Moreover, the corre-
sponding 1Zi are canonical variables for the first set. Part (iii) of

the theorem is in essence an application of the Cauchy-Schwarz inequality.

1.8 Modified Pairs of Canonical Variates

The restrictions (1.3.1) - (1.3.4) are quite stringent in that they
leave the experimenter with little control over the extracted summary
variables which he must analyze. Typically, it is very difficult, if
not impossible, to attach meaning to the resulting higher order canonical
pairs (and sometimes to the first pair as well). Another awkward point
is that canonical variables derived from an estimated covariance matrix
will usually be correlated in the population, when not members of the
same pair, even though uncorrelated in the sample;

The purpose of this section is to consider ome particular way of
adding flexibility to the types of higher order summary variables at
one's disposal. The resulting "modified" canonical variates could be
used to supplement the first pair as the usual higher order pairs do.

The i-th pair of modified canonical variates consists of variables

lZi and 2Zi which

~

(1.8.1) maximize corr(lZi, 221)
subject to
i

(1.8.2) [corr(kzj,kii)l < 0,;,(20), k= 1,25 3= 1,2,...,1-1; 30
j=1

2 .15,
ji

5 . ; . . .
This constraint on the 6.y is given for convenience only and can be

easily removed. J
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The maximum correlation is the i-th modified canonical correlation,

designated Py

= %1 *!
THEOREM 1.8.1l. Suppose Zj, 2Zj) (lhj 31’ Zhj XQ),

G

j=1 2, ..., i, are the first i-pairs of canonical variates. Assume

~

the corresponding canonical correlations are distinct. Let (1Zj’ Zgj)’
j=1, 2, ..., 1, designate the modified pairs of canonical variates.
Then the i-th pair of modified canonical variates, constructed to max-

imize (1.8.1) subject to (1.8.2), may be defined as

7 = px! 7 = p#'
1% T Rf Xy end 57y = by T
where
N i o i
b¥= % 0,, .b*¥ and b* = ¢ 6, ,b¥
1= 4=1 ii 13 2—i 4=1 ji 2=

in which case the inequalities in (1.8.2) are all equalities and the cor-

responding i-th modified canonical correlation is

o i-1 9
Also, for h < i,
corr(th, 2Zi) = corr(lzi, 2Zh) = ehiph
h
corr(th, lZi) = corr(zzh, ZZi) = jil ejheji
~J ~ ~ ~ h
corr(lzh, 2Zi) = corr(lzi, 2Zh) = jil ejhejipj

All of this holds for i =2, 3, ..., Py
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Proof. 1If eji =0, =1, 2, ..., 1=1, the results follow from

Theorems l.4.1 and 1.4.2, In general,

~ P 1,
12F = ey gb¥, Ioay= 1
i= j=1
~ Py Py 2
zhi = I B, ZE*’ r B, =1
PR B RS
Icorr(lzj, lZi)] = J|a.| < eji’ i=1, 2, ., 1-1 3
[corr(zzj, 520 | |sJ] S0, =12, ey il
5,3 L
corr(l i* 9 i) = jil uijpj.

The o's and B's may be assumed non-negative without any loss. Con-

sider aj and Bj fixed for j 1, 2, ..., i-1 and define

e
©
-
[

1]

i, i+l, ..., Py
; 0, 3 =rp;+l, py¥2, «uey Dy

The argument proceeds along the lines of Anderson ([1l], p.295).
P: P P2 1%

1 2 % 2 Z
I a.B.p,= I B,y. = (2 B%)z( z y%)z with equality if and only
if (Yi, Yip1r ot ypz) o« (Bi5 Bi+l’ cees B 2). Thus, for a maximum,
B, =0, j +1, po+2 d 22 8 K 52 2 _x gl 2,2
.=V, =D s P s cecy P an Y. T Y. & a.p, =
3 1 1 2 jei 43 j=1 J j=1 33

P i-1 '
K{ Zl (pg - pz)u% + (1 - & ag)p?} for some K > 0. Maximizing over
j=1 9. 173 =1 3 1

the free a's yields o5 = 0, j=i+1, i+2, ..., Pqs

i-1
a, = (1 - I a

L
Y4, B, =0, j=i+l, i+2, ..., p,, and
i j=1 1
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i-1

2.\ % . , .
Bi = (1~ I B.)®. What remains is to maximize
j=1
i-1 i-1 9 %
= — 2.
£Co1s Bys ays Byy wnes 0 1 By p) = I aijpj -z o))
j=1 j=1
i-1 9.1
- 4 » Y - s _
(1 jzl Bj) p; in the region O < aj < eji, 0 < Bj < eji, h 1,2,..,i-1.
If Py = 0, it is easily seen that the maximum occurs when uj = Bj = eji,
i-1 9
j=1,2, «.., 1-1 so that f= % 6%7.p,. Hence suppose p, > 0.
j=1 Jir ] i
Since eji =0 implies aj = Bj = 0, it is only necessary to consider
eji > 0. For any such j,
i-1 %
1- 1 BJ?
.ﬁ_ -— ._._j_i__ < . < <
da ijj %5 i-1 5 Py» 0= %3 ) eji’ 0= BJ - 831
J 1- I af
j=1
and
i-1
%
1- £ a§ “
_a£= - —_j=_l._.. < < <
B, - %5 7 P -1 %1 Oy 0y 0S8y <y
J 1- 1 8°
j=1
Except for the solution aj = BJ = 0,
B. o
_.g£=0=> J > J
3aJ 1-1 i-1
% 1
1- 3837 |1- 1 2F
j=1’ j=1’

and
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B, o,
B = h| < h|
9B, i-1 ), i-1 )%
1 - 2 BS|* 1- I aof
=17 j=1"

Consequently, there is only one solution and the maximum f dis attained

when, for each j, either o, =0 or ©o,, or B, =0 or 6,,. But,
3 J1 J Jji

, _ f . _

if aj = (0, then BBj <0, 0« Bj < eji, if Bj 0, then

— <0, 0<aqa, < eji. This means there are four possibilities for each

(i) o«

1
@
L
o
A
w
(2N
A
@
-

(ii1) B, =19,., O <a, <96,, ,

(iv) o, =B, =0.

Not all j's can be associated with (iv) for then f is less than that

when all j's are associated with (i). Suppose j is classified with

~of _ _9f _ _ -
38, " T, 0= 0450515P40 5

(ii) and j' with (iii). Then

6 which is impossible. This means that either

2
B.a.yp, =B.o., > 0.,
%P1 T R% 7 51

(ii) or (iii) can be ruled out. Now, for a j connected with (ii),

ggf-> 054(py = 0;) > 0 which means that B, = 0,,. Similarly, if the

3'i

j were linked with (iii) instead of (ii), one would infer that
uj = eji' Thus the only remaining possibilities are (i) and (iv). Fi-
nally, (iv) is ruled out by noting that, for any j connected with it,

the corxresponding value of f must be less than the value when
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i-1
f=p, + %
i j=1

02,
ji

Evidently

(pj

- pi)'

o,
J

= Bj = eji, i=1, 2, ..., i-1,

The remainder of the theorem follows

32



CHAPTER II

CANONICAL ANALYSIS IN THE PRESENCE OF SINGULARITIES

2.1 Introduction

The theory of canonical analysis is extended in this chapter to
cover the situation where one or both of the sets may be singular. The
key matrix in the canonical analysis of two nonsingular sets was shown in
Theorem 1.4.1 to be 211212255221. Here, in the less restricted setting,
the key matrix turns out to be 211212252221 ("-" indicates a gen-
eralized inverse). The main result is recorded in Theorem 2.3.1.

Three applications of the theorem are developed. In Section 2.4,
the question of independence in a two way contingency table is considered
as one of independence of two singular sets of variables. In Section
2.5, a scoring system which yields the maximum or minimum F statistic
is constructed for qualitative responses in a one way analysis of var-
iance. The corresponding most significant contrast in the treatment
effects is obtained at the same time. In Section 2.6, a simple procedure
is outlined for the appropriate canonical analysis when linear restric-
tions have been imposed on the coefficient vectors which define the ca-

nonical variates. The analysis is arrived at by first translating the

problem into terms of two singular sets of variables.
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2.2 Singular Sets of Variates

In many applications of canonical analysis, one must be prepared to
handle singularities in one or both of the sets. From each singular set,
it is customary to derive two subsets by an appropriate nonsingular trans-
formation: one is nonsingular and the other is degenerate in that its
covariance matrix is null. The degenerate subset is then eliminated on
the grounds that it can contribute only a constant term to the canon-
ical variates. The problem is thus reduced to the familiar analysis of
two nonsingular sets of variates.

The theory presented in Section 2.3 demonstrates that the prelim-
inary transformation and reduction are in fact unnecessary. In some
situations, for example those of Sections 2.4, 2.5, and 2.6, consi&erable
saving may be realized by not making the reduction. More generally, the
theory yields a unified approach to the subject which covers the situa-
tion where both sets are nonsingular as a special case.

The  degenerate subset mentioned above is formed from a particular
basis of the null space of the covariance matrix of the singular set.

The null space, in some cases, may contain useful statistical insights
and thus be worthy of special attention. It is possible to obtain a
basis for the null space as a by-product of the calculation of the gen-
eralized inverse of the singular set covariance matrix.

This generalized inverse plays an integral role in the ensuing de-
velopment. A generalized inverse (g-inverse) of an arbitraryimatrix A
is any matrix A" such that AA A = A. This definition has been popu-
larized by Rao [20]; he has emphasized that it is often easier to com-
pute than other (more restrictive) generalized inverses and that it is

particularly relevant to statistical problems. For matrices with sim-—
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ple structures, like those in Sections 2.4, 2.5, and 2.6, one may be
able to determine a g-inverse by inspection or by trial and error.

McKeon [16] appears to have been the first to employ generalized
inverses in the context of canonical analysis. Confining attention to
square matrices, he defines a generalized inverse A+ of A as a matrix
satisfying (i) AA% = AfA = E and (ii) AE = EA = A for some idem~

. + , .
potent E. Such a matrix A exists whenever A is symmetric, but may

01

00)). With A = A', AATA = A so that

not otherwise (e.g., when A =[
A 1is a g-inverse,

The theory presented here may be taken as justification of McKeon's
development which he gives without proof. It is more general, however,
in that it allows omne to choose from the larger class of g-inverses where

particularly simple and natural matrices, inadmissible in McKeon's set-

ting, may be found.

2.3 The Extension Theorem

The ranks of le and 222 are denoted by 4 and dy- Because
ql < Py and qy < Py there are only (ql + q2) canonical variates to
be found instead of (pl + p2). Consequently, the dimensions of certain

quantities defined in Section 1.2 need to be adjusted to reflect the cor-

rect number of canonical variates:

and B! b )3

1 = (113_19 l]_:’_zs ceay lhql) 2 = (2213 2223 teoy 2_q2 H

N
i

1 .
2] = (29 1Zys ees 1qu) and 25 = ()21, ,Zos ey 2zqz),

—_ 1 .
®12 = 3121232’ a (ql x q2) matrix.
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THEOREM 2.3.1. Let dys 99s and r be the ranks of le, 222,

and 212 respectively. Let le and 222 be g-inverses of Ell and
222. Suppose dq < dp- The eigenvalues of 211212222221 are
p2, p2, ooy p2 s Oy +evy 0 where 1 > p2 2 pz Z .. 2 p2 are the

1> "2 4 1 2 q

ordered squared canonical correlations. Eigenvectors lhi associated

with pi may be chosen so that B.Z..B! = I and used to define canon-

1"1171
ical variates _gl = 3131 for the first set. Any matrix B2 satisfying
2.3. N LRt = tg? o - ] 1 =
(2.3.1) . 2p,2pyB] = By, o cand’ o ByL,oB) Lo
where
(2.3.2) @12,= (@ 0 ) qq and D = dlag(pl, Pos oo pq ),

may be used to define corresponding canonical variates ZQ = BZ§2

for the second set.

Proofi'1 Use will be made of the existence of matrices M12 and M21

such that 212 = M12222 and 221 = Mlell (cf. Lemma A4). lele is

idempotent since

(97990 (Byg299) = 239 Fqq809299) = Z99295

and N(lezll) = N(le) since .
238 = 0= ZyyPppu=0
and

This method of proof was suggested to me by Professor R. I. Jennrich.
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0 = 0.

0= Z0tppe=0=2;;u=20

2918118 =

Thus, by the matrix analogue of Lemma A5, the direct sum decomposition,

V(Ipl) 11211)’
V(Ipz) = N(Zzz) ® V(222222). Also note that dim[V(zllzll)] =q, and
dim[V(Z

can be made. Similarly,

1]

N(le) e V(Z

9289901 = dyp-

. PR . . - ]
exist vectors lhi and Zhj defining canonical variates 124 lhi-zl

= ] . . . =
and ,Z Zhj §2 with canonical correlation o4 corr(lzi, ZZi)’

From Theorems l.4.1 and 1.4.2, it follows that there

i=1, 2, ..., d;3 =1, 2, +.., dge The component of lgi in N(le)

adds only a constant to 1Zi so that without loss it may be assumed
and likewise that Zhj € U(ZZZZZZ).

that (b, € V(Z];%;)

0 = COV(lzi’ pj 1Zj - 2Zj)
= ' _ .
i oyTyy By = Ty gb)s 1712, sy
Therefore
O = b )

- 1
B1le(pj lhj M21 2—j
which implies that

YT
212ty 1Ry = Myy oRy)-

Arguing similarly on COV(ZZi’ pj 2Zj - le), one arrives at

iT11 1Ry = Ziz oy
j=l, 2, © 00y qlo
P3Z9n 224 o1 124

Now

L1211 1By =Ry and Zyokop obg = oby
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so that

°1 124 T P11 02y

_ and

Py 2Ry = Zaafyy 1Ry

Therefore
2 b =10.510.5. b f = 1. 9
P3 125 T P11t12%20%21 12g0 3 = 1 2 eees qpe
2

Every pj is an eigenvalue of le 12 22 1 and the rows of B1 form

a linearly independent set of eigenvectors with each lhj € V(le ll)

Since dim[N(Z b=20

1) =Py - qp and T ,30000 b = 50808 M, 8 b

for any b ¢ N(le), it follows that the remaining (pl - ql) eigen-

values are all zero. Now let Bl be any matrix such that Blle 1= I
_ 2 . ,
and le 12 22 21 l BlD with D as in (2.3.2). Then
' 2 . ,
l 12 22221Bl D°. Let the first r rows of B2 be defined by
T _ v : : 2= '
2222131 B2®12 with ®12 as in (2.3.2) so that D @12B2222B2®12.

Thus the matrix B2 may be completed so that 3222235 = I. Now

1 = | = \ =
BiZ1pBy = ByZyplynTynBy = 01,B,X 0BY = 01, Z, and Z,, therefore,

are vectors of canonical variates.

2.4 Canonical Analysis of a Two Way Contingency Table

The analysis of association in a two way contingency table is a
particular application of canonical analysis. This is well documented

(Fisher [5], Williams [24], Kendall and Stuart [14], and McKeon [16]).
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Let fij’ fi" and f-j be the probabilities of an observation falling

in the (i,j) cell, the i-th row, and the j-th column, respectively.

Write
|
£] 0= (£, £5,5 oens fpl,) ,
! 3
i (f.l, £, oens f.pz) R
Dl = dlag(fl., f2-’ cees fpl.) s
and
D2 = diag(f.l, f-2’ ooy f°p2)

To make the connection with canonical analysis, it is necessary to
define the vector variates X and X, They will be used as indicators:
of row and column membership: for an observation in the i-th row and
j-th column, ~§1 would have a one as the i-th element with zeros else-

where and -KZ would have a one as the j—th element with zeros else-

where. Then

™
|

ty _ L - !
= E@yXp - E@PEE)T =Dy - £ 5,

11
- ' _ v - _ '
Zyp = BEX)) - EYEE,)" =D, - £,59,
and
= 1y _ - _ 1
I1g = BQyXy) - BQRPE@)) " = F - £, .
It is easy to show that 43 = Pp - 1 and 4y = Py 1. Natural
X . - _ -1 - _ 1
choices for the g-inverses are ‘le = Dl and 222 D2 . (McKeon used
- -1 - -1 _ _ -1 '
24 = E;D;"E; and I,, = E,D,"E, where E; (I p;i1l ) and
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E2 = (I - p;¥l.l').) With qq < d there are qy (squared) canonical

correlations which may be obtained as the 9 largest eigenvalues of

T e E
211519899899 = D FD,7F! -~ 1 £,

One eigenvalue is always zero and 1 ¢ N(le) an associated eigenvector.

This reflects the known constraint _gil = 1. The sum of the eigenvalues

is
_ _ Pi P2 fi.
tr(2y2y5%99%) = 2 X g - L
i=1 j=1 "i+"j

12 0 if and only if -51 and §Q are

independent, as in the case of the multivariate normal distribution. It

Lt is easy to show that I

is for this reason that the canonical correlations are directly related
to independence statements or hypotheses.

The sample covariance matrix S, based on n observations, has the
same structure as L. One need only replace fij by nij/n, fi- by
ni./n, and f-j by n.j/n; 0, Do and n.j are the cell, row, and

1]

column totals, respectively. Then, partitioning S 1like X, it fol~-

lows that
2
P, P
1 P ni.
- - - — i3 .1 .2
tr(8,9855998,9) = X X T3 L=2X s

where x2 is the '"'square contingency" statistic for measuring association
, 2
in a two way table. A test based on ¥ is, therefore, a test based on

the sum of squared sample canonical correlations.
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2.5 Scoring Qualitative Responses in a One Way Analysis of Variance

A problem concerning qualitative responses in a one way analysis of
variance (ANOVA) is mathematically equivalent to the contingency table
analysis of Section 2.4.2 The ANOVA problem has been included to provide
one example from the multitude of rotational type problems which arise
frequently and, even though not reducible to the study of two sets of
random variables, can be translated into a form to which the usual ca-
nonical analysis techniques, or hybrids of them, are applicable. (Other
examples are discriminant analysis, as discussed by Bartlett [2] and
McKeon [16], and the problem of orthogonal rotation to congruence in
factor analysis. Some references to the latter are Wrigley and Neuhaus
[25], Horst [8], and Cliff [4].)

Imagine a one way ANOVA with n observations representing qual-
itative responses at any of Py possible levels on a total of Py
treatments. The object is to affix scores s' = (sl, Sos ees spl) to
the response levels such that the resulting F statistic is a maximum
(or a minimum). The corresponding most significant contrast c' =
(cl, Cos =oes cpl) is also to be determined. The sampling can be sum—
marized in n pairs of vectors which are realizations of indicator
variables (§l, §2) like those used in the previous section. The ob-
servation on 51 indicates the level of response while the '§2 value
indicates which treatment was used. One can formally calculate a sample

covariance matrix S using these n pairs as suggested at the end of

Section 2.4. Making the substitutions specified there, one arrives at

2 This connection became apparent during discussions with
Dr. Peter Nemenyi.
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- A )
sy =0 -5 8,
A _ [
s, =0, -2 8y,
and
A ]
s, =F -1 1}
where
-1
ﬁi - (nl" n20’ 4 npl.)’
-1
ﬁé =n (n'l’ n‘Z’ ooy n,p2)3
-1,,
ﬁl =n dlag(nl., Dy, ) pl.),
A - ’
D2 =n dlag(n.l, o5 s n.pz),
and
-1
ﬁ =n ((nij)) .

The F statistic, for fixed s, is a function of the most signif-

icant contrast; that is,

(2.5.1) F= sup

\

n-p, (s'Fa)?
= su
d

! -1 1 v_ — -14a, ?
£ra =0 (P27 @b,as' (B, - #6708

[ lse]

after making the substitution

(2.5.2) a="bte.
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The expression for F in terms of the usual sums of squares is

npy) &' (B8 £81)s

(2.5.3) F = — — .
Py 1 s'(ﬁ - #b 1@')3
Define
F* = sup _ F and F%* = dinf _ F .
8 € V(8138 8 € V(S1;81y)
F* dis a monotonic function of
- % -
(p,-1)F (py-L)F

= sup _ .
(n-pz) + (p,mL)F* s € V(SllSll) (n-p,) + (py-LF

Substituting (2.5.1) in the numerator and (2.5.3) in the denominator

leads to
 (p,mDEE (s'Fd)?
(2.5.4) = sup _ sup _ A
- _ ] T
(n PZ) + (p2 LF* s ¢ V(Sllsll)__g € V(SZZSZZ)(E Sllg)(g ng)
2
1]
=  sup sup e Slzg)
- - - (8's,.8)(d's, 4
se€ V(Sllsll)-ge V(522822) 11 22—

Thus the optimal s and d are consistent with the optimal lhl

and for the sample two way contingency analysis. Introducing

22y

32 for (2.5.4), i.e., the squared first sample canonical correlation
1

and solving for F* vyields

A2
TPyl Py

p2-1 1 82
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Having found an optimal s in accordance with Theorem 2.3.1 and assuming

A2
P1

proportional to

>0, it follows from (2.3.1) and (2.5.2) that the optimal ¢ is

(2.5.5) 821§ .

The foregoing argument can be repeated in substantially the same way

to find an s yielding F** and the corresponding most significant

c: one need only replace 'sup “ by " dinf " through-
sel/(5,.5, .7 sel/(5.,5,.)
out. Then 11711 11711
A2
n-p, ppl—l
Fh% = 1 5
Py~ 1 -9 _1
P1
A
where pﬁ -1 is the smallest of the squared sample canonical corre-
1

lations associated with S. If Sﬁ -1 > 0, the most significant con-
1

trast ¢ is proportional to (2.5.5).

2.6 Canonical Analysis with Linear Restrictions

A thorough study of the relations between two sets of variates may
include the systematic placement of linear restrictions on the coefficient
vectors which define the canonical variates. Such restrictions may be
used, for example to force particular coefficients to add to zero, be
equal, or occur in specified proportions; they may also assure that the
canonical variates are uncorrelated with some specified set of variables.

The restrictions are embedded in matrices M, and Mz; it is re-

1
1, 2, eooy qqs and

quired that Lhi € V(Ml), i

~

b, e VALY, 1=1,2, ..., d,.

~_ '
224 q = rank(MlleMl),



45

~

q, = rank(M2 29 2), and qq < q,. The effect of Ml and M2 is to

induce a new covariance matrix

] )
Mp2ggMy o MyRioMy
1 ]
MaZopty  MpEooMyy
which can be formally treated according to the theorem. The coefficient

vectors El and §2 (say) obtained in this way are related to the de-

sired Bl and B2 by

It may be most natural to formulate the restrictions in terms of

matrices Gl and G23 and then, as a second step, to define M1 and

M2 so that V(Ml) L V(Zll 1) and V(M ) L V(ZZZGZ). Thus let
= _l_ 1 l .
Ml = le G (Gl 11 l) G and M2 22 (G2 29 2) G assuming

now that I is positive definite. [Note: g-inverses of Ml and M2

are le and 222, respectively. ]

In compliance with the theorem, one then forms

M M,Z, M,Z

My (M) 24 MM (M2 o M) = MyMy Ty oMo T o)y

1712 2

For example, if the canonical variables for the first set are to be
uncorrelated with _X., and 2Xl’ then

1%1
1 1]

6 = ? ’ ii 12 :
| ")
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and works from there. The eigenvalues are the same as those of

MlZlZMZZZl' This latter matrix, when expanded, is
o 4 (G',.G.) G'2. .G (G'Z..G.) GIr
11712722721 1Y71711717 F1%1272%Y72722727 V2t21
e (G!2,.G,) G'Z.. - G, (G'Z,.G,) G!x 571y
1171272272272/ “2%21 1Y7°1711717 “F1712%22%21°

Taking the trace, one finds that the sum of squared canonical correlations
between the constrained variables (Mlgl, Mzgz) is equal to the sum for

\J \ . 1
(§1, XQ) plus the sum for (Glgl, ngz) minus the sum for (El, ngz)

. t
minus the sum for (Glgl,qu).



CHAPTER III

MODELS FOR THE CANONICAL ANALYSIS OF SEVERAL SETS OF VARIABLES

3.1 Introduction

Hotelling [12] recognized the need of extending his theory to deal
witﬁ more than two sets . of random variables. He did not solve this pro-
blem, however, and it has only been since 1950 that much attention has
been given to it.

In the canonical analysis of several sets of variables, one would
like, as for two sets, to identify '"canonical variates' which isolate
and summarize existing linear relations among the sets in a convenient
and insightful manner. One would at the same time like to measure the
intensity of the relationship through some sort of generalization of the
canonical correlation coefficient.

Five different techniques for the canonical analysis of several
sets will be presented here. They are

(i) the sum of correlations method (SUMCOR);

(ii) the maximum variance method (MAXVAR);

(iii) the sum of squared correlations method (SSQCOR);

(iv) the minimum variance method (MINVAR);

(v) the generalized variance method (GENVAR).

Of these, the SSQCOR and MINVAR procedures are new. Each is a general-
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ization of the two set analysis in that it reduces to Hotelling's clas-
sical method whenever the number of sets is only two. Each is designed
to detect a different form of linear relationshiﬁ among the sets. It is,
therefore, often advisable, especially in exploratory studies, to employ
more than- one and’perhaps all of these methods.

The notation relevant to the several set problem is contained in
Section 3.2. The criteria for picking first stage canonical variates
(analogous to the first pair of canonical variates for two sets) accord-
ing to the different methods are set down in Section 3.3. The main pur-—
pose of this chapter is to develop models of the general principal com-
ponent type, extensions of those in Section 1.6, for the various methods.
This is done in Sections 3.4 - 3.8 in terms of first stage canonical var-
iates. The models are important in that they reveal the types of effects
which the methods can unéover. They also help to motivate and to inter-
relate the methods. The question of how to construct higher order ca-

nonical variates is postponed to Section 3.9.

3.2 Notation

The main notation for the next three chapters is recorded here for
future reference. Essentially the notation is the logical extension of
that given in Section 1.2 for two sets so it will not be necessary to
explain the symbols in detail.

The number of sets is designated by m. Thus

§ﬁ(pj x1), =1, 2, ..., my, with Py S Py S .. S Py

and p = Py

i=1



49

‘ are the original variables. The other random variables of interest are
§'=(§"_}S_é’ .a.’}—(‘[;‘l)’
-1
- 1 ' ' : =
Y (Xys Xos oo Zm), with Zj Tj gj,
2' = (21, 2y «ooy Z' with Z, = B¥Y, = B.X,
= (___ 3 __2’ H _In) ] _J J_J J_J b
and
Z', = (,Z, Z,y ons Z, with .Z, = ,b%*'Y, = .b' X,.
=(3) (4 i’ 273 > m J)’ iy 1= =3 1i-3 -]

Although the elements of Z are still required to have unit variance,
they no longer need be uncorrelated within sets as in Chapter I.
- The corresponding covariance matrices are

..
i3’

el
I

(240

£
i

((Rij)) with Ry, = I,

e
]

(€20,

and

& .\
&)
Introducing block diagonal matrices

Dy = diag(Ty, Tp, --vy T,

o
Il

diag(B;, By, +--» B ),

D,, = diag(Bf, B%, ..., Bﬁ),

= d4 ' ' '
DB(j) dlag(lhj, zgj, cees mhj)’
and

= 1 %! ) %t
DB*(j) dlag(lbj , Zhj’ ceus mkf ),
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‘ it follows that
Dps = DpDrs
-1 -1
R = D, IDy
=D _,RD', = D_zD'

B* T B* BB

and

zD!

9 B(3)"

. D ARDY ..y =D, .
&) B*(3) T B*(3) B(3)
Additionally, let Xj be orthonormal eigenvectors of R corresponding

to the eigenvalues cj(R), and let jei be orthonormal eigenvectors

of Q(i) corresponding to the eigenvalues lAi 2 Zki Z i, 2 mxi > 0,
m
with z in = m. Lt is also convenient to define
j=1
. E(:'L) = N850 2840 e mgl)
and
! =
Ay = Ghee oM e o)

Finally, let ¢max be the largest canonical correlation obtainable

between any two of the m sets.

3.3 Criteria for the Selection of First Stage Canonical Variables

The methods of canonical analysis involve a number of stages. The
goal at the s-th stage is to find Z{s) which optimizes some criterion
function. All of the criteria considered here involve the optimization
of some function, £, of Q(s)' The chosen st are called s-th
stage canonical variates. The same criterion function is used at each

. stage although certain restrictions on the admissible Z_(S) are added
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as one progresses beyond the first stage. The nature of these restric-
tions and the number of possible stages are matters which will be dealt
with in Section 3.9. It will suffice here to consider the constructioh
of the optimal Z(l)'

The SUMCOR method was introduced by Horst in [8]. It is briefly
mentioned in [9] and again, more extensively, in [10] under the name of
the maximum correlation methodjszhe material in [10], however, is essen~
tially the same as in [8]. <

The SUMCOR critericid is to select Z{l) to

< m m
e . = = 1!
(3.3.1) maximize f(®(l)) ’E .E corr(iZl, jzl) 1 @(1}£ .
- i=1 j=1
An equiygfgat criterion is to
j::::;.. ' m m
zégﬂj.Z) minimize f(®(1)> = iil jil Var(izl - jzl)'

It is worth remarking that the f din (3.3.1) or (3.3.2) is sensitive to
sign changes in the jZ1 whereas the other four criteria to be con-
sidered are not.

Horst also originated the MAXVAR method (see [9] or [10]). His
motivation was to find a _§<1) such that the associated Q(l) gives the
best least squares or Euclidean norm approximation to a rank one matrix;
and, consequently, Horst refers to this in [10] as the "rank one approx-

imation method." He shows that the procedure1 is equivalent to picking

Zay *to

(3.3.3) N maximize f(¢(1)) = lAl .

1 See Corollary 1.6.2.1 which deals with the special case m = 2.
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For any Z(l)’ the corresponding lkl is the variance of the first

principal component, Thus the first stage canonical variates

121 21y
have the property that their first principal component has a variance at
least as large as that for any other choice of Z(l)'

McKeon [16] and Carroll [3] have arrived at this same procedure
using different approaches. Carroll's is particularly interesting. It
is the logical extension of his formulation for two sets which was de-
scribed in Section 1.6. Working in terms of a sample space, he finds
(sample) canonical variates and an auxiliary (sample) variate which are
most closely related in the sense that the sum of squared correlations
of the auxiliary with each of the canonical variates is a maximum. The
intimate connection between the auxiliary vector and the first principal
component line that was stated in Section 1.6 is also valid in this con-
text. More will be said about Carroll's work in Section 3.5.

The least informative Q(l) is the identity matrix in that there
is no correlation between any two of the jzl' It seems, therefore,
that a logical criterion for picking -5(1) would be to make ®(1) as
"distant" from the identity as possible. This idea can be expressed
mathematically in terms of the Euclidean norm: pick -5(1) to maximize

]|I - 9 Or, equivalently,

a1

m
(3.3.4) maximize f(0 z

i=1 3

1 og

2
{corr(.2,, .2.)}" =
i71 1 .
1 J i

w’ =
At first glance, (3.3.4) appears to be only a variation of (3.3.1), but
in effect it is a much different criterion. (3.3.4) is the SSQCOR cri-
terion for determining _g(l). It is the obvious generalization of

(1.6.10). Loosely speaking, (3.3.4) calls for maximizing the variance

of the jxl'
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The MINVAR criterion is, to some extent, the antithesis of the

MAXVAR criterion. The MINVAR Z has the property that the variance

(1)

of its m~th principal component is a minimum. In other words, Z<1) is

chosen to
(3.3.5) minimize f(é(l)) = mA1 .

That this criterion is a generalization of the two set procedure follows
from Corollary 1.6.2.1.
The GENVAR procedure was proposed by Steel [21] in 1951 and is the

oldest of the five methods. As its name suggests, the criterion is to

find Z(l) with the smallest possible generalized variance. That is,
one wants to

m
(3.3.6) minimize f(¢(1)) = |®(1)| = jzl jAl’

which is the natural generalization of (1l.6.11).

3.4 The Sum of Correlations Model

Further insight into the statistical nature of the SUMCOR criterion

can be obtained by comsidering the following model for _5(1)2:

(3.4.1) 5(1) = &1 Fo+E,
where &1 is a known non-null vector, Fl is a standardized random var-
iable, and §1 is a vector of error variables.

Suppose that Fl is chosen so as to minimize the sum of residual

variances, i.e.,

2 The jzl will be assumed to have zero means in Sections 3.4 - 3.8

for convenience.
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(3.4.2) minimize tr{var(gi)} .
Now
(3.4.3) tr{var(gl)} = tr{®(l) +-£f£i —_&lgi —‘glﬁi}

' _ '
mt Lidy - 2

where

9y = cov(g(l), Fl) .

The problem, therefore, is to choose Fl so as to maximize Klal

Adjusting the sign of F if necessary, to make ﬁigl non-negative,

l’
it follows that

0 < gigl = cov(L!Z F ) < L! )2

=1=(1)° =1 (l)£

by the Cauchy-Schwarz inequality. The second inequality becomes an
equality if and only if 'gig(l) and F, are linearly related (with
probability one). Since the jZl and F, are standardized, &iﬁl is

maximized when

(3.4.4) (Zl (1E l) % Zl (1)

and, for this choice of Fl’

trivar(E)} = m +_£i§ 2(£;0 (& l);

Choosing canonical variates to give the best fit to (3.4.1), as
measured by (3.4.2), is thus equivalent to finding jzl which maximize

éiQ(l)gl' If 'él « 1, then this is just the SUMCOR procedure. In other



55

words, Horst's method generates a Z(l) having the 'best" fitting com-

mon factor, assuming the factor contributes with the same potency to each

of the jZl .

3.5 The Maximum Variance Model

Carroll's development, mentioned in Section 3.3 and earlier in
Section 1.6, can be reformulated in terms of random variables and the
nature of the auxiliary variable revealed. A model for the MAXVAR pro-
cedure will be arrived at in the process. Returning to the model (3.4.1),
suppose that gl is also allowed to vary so that both ‘£1 and F, are
to be found according to the criterion (3.4.2).

Equation (3.4.3) can Be rewritten as

(3.5.1) tr{var(g)} = m+ &, - gﬂ)' € -9 -

1]
11

The second term on the right hand side is a positive definite quadratic
form in Q@l —_gl); consequently, the minimum of (3.5.1) with respect

to ~£l occurs when -ﬁl = 9. With this choice of ﬁl’

tr{var(g,)}

I
B
1
|2
Q

]
=]
i
o~ g

{corr(jzl, Fl)}2 .

The last sum corresponds to Carroll's criterion with Fl in the role of
the auxiliary variate.

The overall minimum of (3.5.1), for given Z(l)’ is obtained when

% -%

_ z '
(3.5.2) £ and Fl lkl lEl'Z(l)°

— 2
£ % 9M &
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Using (3.5.2),

(3.5.3) tr{var(gl)} = m - lklf

In the limiting case given by lxl = m, the fit is perfect, each element

%

of is +m °, and |corr(jZl, Fl)| =1 for j=1, 2, ..., m.

=1

The £l and F in (3.5.2) are, in fact, the optimal choices for

1
a general class of criterion functions, one of which is the trace func-
tion (3.4.2). This should be clear from the discussion, in Section 1.6,

of the work of Okamoto and Kanazawa [18] (see also Lemma A3). Thus

(3.4.2) can be replaced, in this section, by
(3.5.4) minimize f(var(@l)) = g(el, 62, cens em) .

where g is any strictly increasing function in each ej, the eigen~
values of the non-negative definite matrix in the argument of f.
The goodness of fit obtainable depends, of course, on the choice of

Z which admits the

=(1)° (1

best fit of (3.4.1) as measured by (3.5.4), with both -£1 and Fl at

The MAXVAR method is equivalent to finding Z

one's disposal. This follows from (3.3.3) and (3.5.3) or, more generally,

Lemma A3.

3.6 The Sum of Squared Correlations Model

The model appropriate for the sum of squared correlations method
requires m factors: for a given g(l),

m

r L, F. +E

(3.6.1) £ L)
jop LT A

2

where the j£1 are arbitrary non-null vectors, the jFl are standard-
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ized random variables, and §1 is a vector of error variables. (Of

course, with m factors, it is possible to choose the jél and jFl
such that E, = 0.)

The factors are determined so that lFl is the most important,

the second most important, and so on. More precisely, the £

2F1 =1

and .F are chosen to
j 1

J
(3.6.2) minimize f(var(g(l) - iil i£1 iFl)) = g(el, 62, e Gm),

j=1, 2, ..., m,

where g 1is the function in (3.5.4). The correct choice for lgl and

1Fl follows from (3.5.2). To obtain Zﬁl and 2F1, subtract Lél lFl

from both sides of (3.6.1). Then (3.5.2) may be used to determine the

optimal Zgl and 2Fl’ remembering that the largest eigenvalue of
_ [} . . . . -
(Q(l) 1M 181 lsl) is ,A; with associated eigenvector 9y Con

tinuing in this way through m steps, it is seen that

(3.6.3) j_@ = ,\7 .e and =1, 2, vou, m.

-, S
175N 2 717N 21 R
The factors are just the standardized principal components of _g(l) and
hence are uncorrelated. With f as the trace function in (3.6.2), the
minimum sum of residual variances with j factors is m - .§1-1A1 .
Thus, by adding on the j-th factor, a reduction of jA1 fr;; the min-
imum sum with (j-1) factors may be attained.
An external criterion is needed as a basis for choosing the optimal
Z(l)’ and (3.3.4) is the one which will be used here.
The maximum of the sum of squares of m numbers which add to m

A . 2 .
and lie in the range zero to one is m, and it occurs when one number

is m and the rest are zero. The minimum sum is m and results when
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each number is equal to one. This suggests that the MAXVAR and SSQCOR

's whenever most of the variability can

methods will yield similar .g(l)

be accounted for by a single factor. It further suggests that the effect

of the criterion (3.3.4) will be to produce a Z(l) such that its first
"few" factors account for most of the variability and the last "few"
very little of the variability. That is, the temndency should be to

spread out the jAl as much as possible. This is in contrast with each

factor being equally important (jkl =1, j=1, 2, ..., m) which is

the situation when and only when ®( is the identity matrix.

1)

3.7 The Minimum Variance Model

MINVAR canonical variates admit the best possible representation in
terms of (m-1) factors. To see in what sense this is true, consider an
(m-1) factor model,

m~1
Eo T LAt R

(3.7.1)

for an arbitrary -5(1)' The jél’ jFl’ and E, are as in (3.6.1).
If the jﬁl and jFl are chosen to satisfy (3.5.4), then the minimum

is reached when

% L
(3.7.2) jg_ = ,Ai e and =1, 2, ..., m-1.

= -2 ' .
521 17 % &1 2ay
This follows from Lemma A3. Alternatively the j£1 and jFl can be
picked sequentially using (3.6.2) for j =1, 2, ..., m-1l. The optimal
choices are, again, as recorded in (3.7.2). Operating with criterion

(3.5.4) has the advantage that orthogonal rotations on the factors

(and simultaneously on the jél) can be made without disturbing the
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measure of fit. These rotated factors, however, would not be expected to
possess the pleasing properties of those in (3.7.2).

If the jgl and jFl
(3.7.1), then (3.5.4) becomes

specified in (3.7.2) are substituted into

f(var{gl)) = g(mkl, 0, «.., 0) .

From this point, it is clear why MINVAR canonical variates can be inter-

preted as those which admit the best fit in terms of (m-1) factors.
Evidently the optimal (m-1) factors in (3.7.2) are such that the

single remaining (or m—th) factor needed to obtain a perfect fit in

(3.7.1) contributes the smallest possible amount to the residual var-

. . - _;2/ ' .
iances. The m~th factor is mFl = mAl o2l Z(l)’ the corresponding
%
vector of weights is £. = A% e., and the error vector is
ml mlml
By = okt ofr

3.8 The Generalized Variance Model

The GENVAR method can be motivated in terms of the m factor model
"in (3:6.1), using the criterion (3.6.2) aﬁd the results in (3.6.3).
Having done this for a fixed Z(l)’ it remains to define an effective
external criterion, in this case (3.3.6), for the optimal selection of
Zy-

The SSQCOR criterion places main emphasis on the first "few" fac-
tors or jAl and less on the last '"few." The GENVAR criterion has the
opposite emphasis: it is directed at diminishing the contribution of the
last "few" factors or.rj}\1 with less weight given to the effect of the

first "few."
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One might expect that the MINVAR and GENVAR methods would yield
similar -E(lfs whenever it is possible to account for most of the var-
iability (in some g(l)) with (m-1) factors. A note of caution should
be added, however, as the multiplicative type functién in (3.3.6) is
especially sensitive to the values of the '"smaller" jAl and, conse-
quently, it is difficult to predict exactly how it will behave.

3.9 Higher Stage Canonical Variables

The study of relations among the sets can be continued beyond the
first stage by considering higher stage or higher order canonical var-
iates g(z), 2(3), cee to supplement the optimal g(l). The same cri-
terion function is used at each stage, but restrictions are added to
assure that the canonical variables for a particular stage differ from
those for the previous stages. The restrictions are such that if the
number of sets were only two, the selected variates would be the
usual canonical pair as defined in Section 1.3.

It has already been demonstrated that there are a number of work-
able criterion functions for the several set situation which provide gen-
eralizations of the two set criterion, It is also true that for each
method there exist several different kinds of restrictions which can be
used in the construction of higher stage canonical variables, each lead-
ing to a different choice of variables and each being a generalization
of the restrictions used for two sets.

The models introduced in Sections 3.4 - 3.8 (or, in two instances

to be specified later, generalizations of them) can be adapted to a gen-
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eral s-th stage by expressing each in terms of an arbitrary member of the
class of admissible Z(S)%L One then seeks that Z(gy Which admits the
best fit according to the appropriate standard.

A simple but useful type of restriction on g(s) is

]

(3.9.1) corr(jZi, st) 0, i=1,2, ..y, 8-1; j=1, 2, «v., m.

(z i=1,2, ..., s-1, are, of course, the canonical variates for

=(@3)°
the preceding stages.) In other words, the canonical variates are re-
quired to be uncorrelated within sets. (3.9.1) has been used by Horst
([8], [9], and [10]) in connection with the SUMCOR and MAXVAR pro-
cedures. When m = 2, (3.9.1) is equivalent to (1.3.1) and (1.3.2).
A more flexible class of constraints is obtained by requiring the

canonical variables to be uncorrelated in some but not necessarily all

of the sets:
(3.9.2) corr(jZi, J,ZS) =0, i=1, 2, ..., 8-1; j ¢ Ik

where Ik is a non-empty subset of k of the first m integers,
specifically, il < i2 < ... < ik° When k =m, (3.9.2) is the same

as (3.9.1).

The most rigid restriction to be considered is

(3.9.3) corr(g(j), g(s)) =0, =1, 2, ..., s-1.

That is, the canonical variables at the s~th stage must be uncorrelated
with all the lower order canonical variables. When m = 2, (3.9.3) is
equivalent to (1.3.1) - (1.3.4). 1If st, j=1, 2, ..., m, are the

best fitting factors associated with the s~th stage fit of an m factor
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model like (3.6.1) using a criterion like (3.6.2), and if the admissible

Z, s are those for which
=(s)

(3.9.4) corr(iFj, kFS) =0, i=1, 2, vesymy j=1,2, ..., s=-1;

then (3.9.4) is equivalent to (3.9.3). This was proved in Corollary
1.6.2.4 for the case m = 2 and a similar proof applies here.

The final type of constraint to be considered is relevant to the
MAXVAR or MINVAR method. This constraint is important because it leads
to canonical variables which correspond to Carroll's higher stage var-
iables.

Extensions of the MAXVAR and MINVAR first stage models are required
in this connection. For the MAXVAR method, the model is

kg

(3.9.5) Z(s) = jil jgs jFS +E_, 1<k <m,

where the .£ and jFS are chosen sequentially in accordance with the

j—s
s-th stage equivalent of (3.6.2) for j =1, 2, ..., ks. The constraint

is in terms of the '"last" factors, namely,

(3.9.6) corr(k Fj’ K FS) =0, =1, 2, ..., s~1,
h| s

and the criterion is to

(3.9.7) maximize ksks

with respect to admissible ks and -Z(s)' It will be shown in Section

4.5 that- k., = 1 always and that the maximum of (3.9.7) is cs(R).

1



63

The revised model for the MINVAR method is
k -1
s

(3.9.8) 2z +E, 1<k <m,

(s) B L jﬁs st =s s
3=1
where the jés and jFS are selected in accordance with the s-th stage
equivalent of (3.5.4) as prescribed by Lemma A3. The constraint on the

higher stages is again (3.9.6) where Kk FS is now the next factor which
s

would be added if an additional term were allowed in (3.9.8). (This

new factor is just k Fs in (3.9.5).) The criterion is to

s

(3.9.9) minimize kSAs

with respect to admissible ks and Z(s)' It will be seen in Section
4.6 that kl = m of necessity and that the minimum in (3.9.9) is

cp—s+l(R)°
In either situation, it is easy to prove that (3.9.6) can be re-

written as

K 0, j=1,2, ..., s-1.

(3.9.10) jg& corr(Z(j),

Z(s)) k%6
S
(See Corollaries 1.6.2.2 and 1.6.2.3 for the special cases with m = 2.)

When restrictions (3.9.1) or (3.9.3) are used in place of (3.9.10)
with the criteria (3.9.7) and (3.9.9), kj = 1 at all stages of the
MAXVAR procedure and kj =m at all stages of the MINVAR procedure.
This, too, follows from Sections 4.5 and 4.6.

Nothing has been said so far about the number of stages that can be
usefully employed in conjunction with any one of the indicated restric-
tions. This number, s, 8ay, specifies how many non-redundant Z<S)!S
can be generated in a manner which is consistent with the procedure when

m= 2.
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Restrictions (3.9.1), (3.9.2), and (3.9.3) are applicable to any of
the five methods. For (3.9.1), 8, = Py» the number of variables in
the least numerous set. For (3.9.2) with k > 1, 8, =P, The case
k =1 is more complex. Simply stated s, is the greater of one and n,
where n is the number of stages for which there exist canonical var-
iables with ®(s) # I (cf. Section 1ﬁ5)' [It is easy to prove that =n
is the greatest s such that the value of (4.5.8) is greater than one --
if R=I, n=0.] As for (3.9.3), s, is the largest value of s for
which (3.9.3) can be satisfied. [In terms of the matrices jcg defined

1
imum s such that (pj—rank(jcg)) >0 for j =1, 2, ..., m.]

in (4.2.8), and interpreting jC* as the zero matrix, 8, is the max-

One can deduce from Theorem 1.6.1 and Corollary 1.6.2.2 (1.6.2.3)
that the number of stages for the MAXVAR (MINVAR) method using restric-
tion (3.9.6) when m = 2 is the number of eigenvalues of R greater
(less) than one. The situation for m > 2 is somewhat arbitrary. The
approach taken here is that the number of MAXVAR (MINVAR) stages should
be at least equal to the number of cj(R) greater (less) than one. The
ambiguity arises in connection with the unit eigenvalues of R. For each
cj(R) = 1, it is possible that the associated variables, Z(s) say,
have Q(s) = I in which case they should not be considered as a sepa-
rate stage for the same reasons as when m = 2. If Q(s) # 1, Z(S)
can reasonably be considered as part of either the MAXVAR or MINVAR
system.

Horst introduced a technique in [9], later labeled the "oblique
maximum variance method" in [10], which is mathematically equivalent to

p; stages of the MAXVAR procedure using restriction (3.9.6). His "rank



65

one approximation method" ([9] and [10]) is equivalent to pl stages of
the MAXVAR procedure using (3.9.1). From the present point of view, the
only difference between these two methods of Horst's is in.the type of
restriction used at the higher stages. However, it should be clear from
Theorem 1.6.1 that the first of these is not strictly within the
province of canonical analysis when m = 2, unless R12 is of full
rank = (r = p;).

Carroll used his technique to generate what amounts to p stages
of the MAXVAR (or MINVAR) method using (3.9.6). Thus his derived var-

iates are a mixture of MAXVAR and MINVAR canonical variates plus, pos-

sibly, some others corresponding to eigenvalues of R equal to one.



CHAPTER 1V

PROCEDURES FOR THE CANONICAL ANALYSIS OF SEVERAL SETS OF VARIABLES

4,1 Introduction

Procedures are developed in this chapter for finding the various
stages of canonical variates and the corresponding critérion values:

The SUMCOR, SSQCOR, and GENVAR problems, considered in Sectiomns
4.2 - 4.4, require iterative procedures for generating the optimal Z{s)'
Fortunately, each procedure is of the same basic type so that one gen-
eral computer program can be used for all of them. The procedures are

such that convergence is guaranteed; and, given that the starting points

are appropriately chosen, the end products will be coefficient vectors
which define the desired canonical variates.

Horst proposed a different type of iterative procedure for finding
SUMCOR first stage and higher order canonical variates in accordance with
restriction (3.9.1). The convergence properties of his procedure, how-
ever, are not known.

The MAXVAR and MINVAR procedures are presented in Sections 4.5 and
4.6. The associated canonical variates and criterion values are re-
lated to the eigenvectors and eigenvalues of certain known matrices and
hence are easy to determine. The MAXVAR procedure, using (3.9.1) as the

constraint on the higher stages, is due to Horst [9].
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4.2 The Sum of Correlations Procedure

The following special notation will be used:

£f =1'D

s = B*(S)RDIE*(S)-l- - -l—'q)(S)i’

(4.2.1) N = (Fyp gBgs vovs Bysg 5u1bgs Tigen g4 002 Pyn nls

% = * E3 *
(4.2.2) 4 (le 12Es oo Ry 512> Rysen j1REs ees Ry b

,h o= N 1
J—s J s~

H

and

h¥ = N¥1.
Js ] s-

The s-th stage of the SUMCOR method involves the maximization of
fS subject to certain restrictions on DB*(S)' For the first stage,

start from the Lagrangian equation

= f. . +1'(L -D

8y 1 B (1) PB#(1)’ 1

' — . .
where Ql (lel, 291, oees mel) is a vector of Lagrange multipliers.

. . . . ] .
Differentiating with respect to DB*(l}l gives

agl ) l 1
e 2RD!, .\1 - 2D%, . 6, .
aDB*(l}l B*(1) B%(1)—1
Equating the derivative to zero leads to
1 = '
(4.2.3) RDL, (1)L Diw(1yd1

or



(4.2.4) .h

J—i = (jel - l)jh#’ j=1, 2, ..., m.

Premultiply (4.2.3) by D or (4.2.4) by jgﬁ'; then

B*(1) 1
o t
&7 Pee)®Brt T )t
which means that
m
(4.2.5) jel = I corr(, Zl’ iZl), j=1, 2, ..., m
i=1

The relation between f1 and the Lagrange multipliers is

(4.2.6) £ 0= 1'g

1 1°

Suppose that the restrictions imposed at the s-th stage

(s > 1)

can be expressed in terms of matrices jcg in the following manner:

(4.2.7) b*' Cx = 0', j=1,2, ..., m.

Restrictions (3.9.1), (3.9.2), and (3.9.3), in particular, can be ex-

pressed in this form. For (3.9.2) (which includes (3.9.1))

b* ), del

S—i’ = 2’ R e -T N k

-0 . otherwise .

Alternatively, if the restrictions are like those in (3.9.3), then

b%®

* = % %* *
(4.2-8) J.CS (jhl’ jhz’ LA ] J__S 1’ J l’ J 2’ LU st_l).

The appropriate s—-th stage Lagrangian equation is

m

_ bx' ¥ - *!
(1 .b .b¥*) .6 2 b § s Jls’

(4.2.9) g =1 + 281 291% T 22

[ I =

i=1

68
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where the ,© and .y are Lagrange multipliers with
Js s

gé = (l s 265’ cees B ).

m s
Bgs
= * — - ® - %
ij* 2jh 2(j9S l)jb 2jCS jx .

Setting this equal to zero yields

(4.2.10) O = bk (48 - )bk - Ok oy .

Multiplying by jcg' and solving for jls’ one obtains the general

solution (cf. Rao [20], p.26)

L2, = ( C%x' (C#) (Cx' % + - Cx'  Cx) ®! %
(4:2.10) v = (OF' CHT (CH bk (T - (G 0D (' CHlu,

where u is arbitrary. Substituting (4.2.11) into (4.2.10) gives

(4:2.12) 0 = {I - ,C*(,C*' ,C*)  _.C*'} .h* - (.6 - 1) ,b¥* ,
— js'is js Jj s Jjs js Js

j=1, 2, ..., m.

It may be inferred from (4.2.12) that

r m

. = I corr(.Z , ,Z)

] s i=1 J s 1 s
(4.2.13) subject to

% - % X! %)~ %1

#SeVG f%%% j%) fs)
and
(4.2.14) f =1'e .

s = -s

If ij is defined to be the zero matrix, then the above results apply

for s =1 as well: (4.2.4), (4.2.5), and (4.2.6) are just special cases

of (4.2.12), (4.2.13), and (4.2.14).
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In terms of the original X variables, (4.2.12) becomes

-1 -1 -1 - -1
4,2.15 0=1{z,,-1,,.c(c'z,,.C 'z oh - (.6 - 1).b
( > 8 33 3i 3 S(J s 333 s) i7s 337 Is (j s )J—S’

j=1, 2, «e., m,

where

s Tij 17s
and (4.2.7) becomes

jp; jcS =0'y, j=1,2, ..., m

The form of (4.2.12) or (4.2.15) suggests the following iterative
procedure (described in terms of the Y variables) for generating the

optimal s—-th stage Z(s):

(i) specify initial variables jZéo) by wvectors jhg(O) which
satisfy (4.2.7);
(ii) for n =1, 2, ... and with jh:(n) fixed, solve

3

L) _ (.e(n) - 1) .b*(n)
i's s

= - *® %1 %)~ %1
(4.2.16) 0 = {I jCS(st jCS) st } Plisa

obtaining the maximum .G(n) and associated .b*(n) .
Js J—s
The vector .h*(n) is computed like _h* using
s J-s
(n) (n) (n-1) (n-1)
* * %* *
(4.2.17) lgs s sees j—lhs s j+lgs s esss _D
so that
(4.2.18) ( e(n) - 1) = j;lcorr( Z(n) Z(n)) + ? corr( Z(n) Z(n_l))
te 3 i7s ’i’s i"s ’i’s T

s i=1 i=4+1



This procedure, as will be shown, must converge monotonically in jfén),
. (n) (n) (n-1) (n-1)
the value of fS using lzs s oceos jZs , j+lZS s eonsy mZS s

to a solution of (4.2.12). The solution will be optimal if the initial

variables are appropriately chosen. A sufficient condition for the
v (0)
solution to be optimal is for z z corr(iZso
i=1l j=1
than for any non-optimal g(s) which comprises a solution of (4.2.12).

. jZ;O)) to be greater

Observe that for s = 1 the calculation which is needed at each
step of the iteration procedure is equivalent to the calculation of
Bl in Theorem 1.7.1 (ii). For s > 1, the calculation is of the same
type but with linear restrictions on the admissible coefficient vectors.

In either case, the calculation is quick and easy to execute.

The nature of the calculation is such that

(4.2.19) f(l) S ...S f(l) < f(z) < . .0 £ f(2> < e
1's ms 17s m's
Thus, since jfén) is bounded above by mz,
(4.2.20) nlimoo jfén) = %s (say), ij=1l, 2, «ooy m,
where Es is a positive finite number.
Define j@én) by the equation
(4.2.23;
i-1 o m e B
(,6;n) -1 = = corr(.Zén l), iZén>) + I corr(,Zén 1), iZin l)),
J i=1 J i=j+1 J b
and let
(4.2.22) g@ o -1

(o=} m s
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Note that
(4.2.23) 1< A o @
j’s j’s
and
, (n) _ (n) _ A(m) _ A(n) .
(4.2.24) sEg 1fe = 2040 ) d=12, e, m

The limit of the left hand side of (4.2.24) is zero as n > © by

virtue of (4.2.19) and (4.2.20) so that

(4.2.25) Lim (jeén) - jﬁé“)) = o.

(n) - hg(n_l)) can be made arbi-

This implies that each element of (jhg

trarily small in magnitude by taking n sufficiently large, provided

(n)

that jes > 0. (For jeén) =0, b*<n) is arbitrary.)

j—s

Suppose_,z(s) is a particular choice of s-th stage variables with

associated _E*’ 8 s .ﬁ*, and © such that
s’ j's’ Js (s)
N
fs 1%t
where f_ is the limiting value in (4.2.20). Then the b* and .8
s j—s js

comprise a solution of (4.2.12) since %s can not be increased by

~

i %*
changing any one of the jés .

In practice, where the criterion values connected with different

(n)

solutions of (4.2.12) will be distinct and where the jes will always

be positive, the situation is such that
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(4.2.26) olim, (jpg(“) - JE}S"(n Dy = o,
. (m) _
(4.2.27) nl;mm jég = jhs >
lim h*(n) = _h*
n"F e j—s s’
(4.2.28)
. o (R) P’
11m j s jes,

(4.2.20) holds, and the jE: and jES form a solution of (4.2.12).

4.3 The Sum of Squared Correlations Procedure

The SSQCOR procedure is developed in much the same way as the SUMCOR

procedure. Define

(4.3.1) ,p = N _N' and P = N®  Nw!
]l s Js Js J s isis

where st and jNg are as in (4.2.1) and (4.2.2). The criterion func-

tion at the s-th stage is
m

m
£ o= 3 (b%' b¥Z 4+ 3
s -

m
g (b*'" R, b*)
s =1 j—s _q 1i-s

1 j=1 ij j—s

i¥]

which is to be maximized subject to certain restrictions on DB*(s)'
The restrictions which are relevant to the higher stages of the

SSQCOR procedure are all of the form (4.2.7). If jC§ is again used

to represent the zero matrix, one need only consider the general

Lagrangian equation

m
= £ +231 (1~ ,b*" ,b* - 4T ,b¥' .C*
&g s j=1 ( J—s J—S)J s j=1 8 1S its

where the jes and jls are Lagrange multipliers as in (4.2.9).
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og
5 % b& - - % - *
ajhg 4jPS jbs A(jes l)jhs Ast jxs

which, equating to zero, gives

= * - - X - %
(4.3.2) 0 jBE bk - (8 - 1) b¥ - G Ly

. . %! . n
Multiplying by jCS and solving for jls yields

= *! % *®! X * - %1 %* *' *
(4.3.3) y = (JCE' jCk) .CF' PE bE o+ {1 - (CE' CH)T (;C5" 4C3)Ju,

where u is arbitrary. Substituting (4.3.3) into (4.3.2), one arrives

at

(4.3.4) 0

- % %! %y~ ! P% - - *
({1 JcS(JcS .cs) jcs } 3 p¥ ( O 1) I]jhs,

j=1, 2, «v., m,

which implies that

{subject to

% - Ck(.C®' C* %!
ngs e V(T jC?S(jcS jCS) jCS )

and
f 1'e .
s =-s
In terms of the original X variables, (4.3.4) becomes
-1 -1 -1 - -1
4.3.5) 0 = [{z,; - Z.0 .C_(.C! z., .C Clr,vr Po- (.6 - DIlD
( 9= Ty = Py 5% 4% 53 5% 5% ap? 5fe T (% T D gRe

ji=1, 2, ..., m.
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Equation (4.3.4) or (4.3.5) can be solved with the help of an iter-—
ative procedure like the one described in the last section. The prin-

cipal change is that _h:(n) is replaced by ng(n) b*(n) in (4.2.16).

] i=s
ng(n) is computed like ng in (4.3.1 using (4.2.17). 1In place of
(4.2.18), one has
j-1
(.eén) -1 = 3 {corr(JZén>, izs(n))}2
J i=l 3
m
+ 3 {corr(,zén), iZén 1))}2 .
i=j+1 J
Again, the procedure must converge monotonically in jfén) - i.e.,
(4.2.19) and (4.2.20) hold -- to a solution of the derivative equations,

(4.3.4) in this case. . Thus the solution is optimal provided the ini-
tial variables are appropriately chosen.

For s =1, each iteration involves a calculation like the one
used to find oy and lgi in Theorem 1.7.1 (i). For s > 1, the only
difference is that linear restrictions on the admissible coefficient
vectors are imposed. In both instances, the calculation involves the

determination of the largest eigenvalue and associated eigenvector of a

certain matrix.

Define .@(n) by the equation
j's
-1 _ m - -
(.8én) - 1) = = {corr(,Z(n D,.Z(n))}2 + X {corr(,Zén l),iZén 1))}2,
J i=1 18 te 1=3+1 J

analogous to (4.2.21), and let Ofén) be as in (4.2.22). It is ap-
parent that equations (4.2.23), (4.2.24), and (4.2.25) are valid here,

although their interpretation is somewhat different in this context.
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are, in the

The most general conclusion is that jgg(n"l) and b*(n)

js
limit as =n > =, in the same eigenspace -- the space corresponding to

o™ e pa(™)
is
Consider -Z(s)’ like in Section 4.2, as well as the associated

the largest eigenvalue

g*, ) E*, and @

. .9, But here
j=s’ js’ i's

(s)°

~ ~2
fS = tr{‘b(s)},

where %s is the limiting value in (4.2.20) for the SSQCOR iterative
procedure. As before, the jEé and jgs must form a solution of the
current derivative equations, namely (4.3.4).

In practice, the criterion values corresponding to different so-

lutions of (4.3.4) will be distinct, the jeé“) will be of multiplicity
one, and .b*(n_l) will equal .b*(n), apart from a possible scalar
J—s Js

factor of (-1), din the limit as n - ». With no loss in generality,

the jbgﬁv may be adjusted in sign so that

lim  px™ o Fx
n>® js js’?

equations (4.2.26), (4.2.27), and (4.2.28) hold for the SSQCOR procedure;

and the .E* and .5 form a solution of (4.3.4).
J—s J s

4.4 The Generalized Variance Procedure

Steel [21] developed a system of non-linear equations for finding
first stage GENVAR canonical variates. The crux of his argument is that,

for any orthogonal D_,, |©(l)l appears as a diagonal element of the

B

m~-th compound matrix of &. Fixing attention on this element, deriv-

ative equations are found which, along with orthogonality restrictions,
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are '21 pi in number with as many unknowns, the elements of B¥,
i=
B%, cees Bg. Although some solution to these equations will minimize
|®(l)|’ the equations appear difficult to solve except in special cases.
It is possible to obtain appropriate derivative equations without
recourse to compound matrices by making repeated use of a simple deter-
minantal expansion. These equations can be put in a form which is ame-
nable to solution. |

Let st be the matrix obtained from ®(s) by deleting the j-th

row and j-th column. Define

Q = N Mo and Q% =  N*% ML N
i's s is I's i's i’sis s

The criterion function at the s-th stage is

£ = |¢(S)[

%! - % % =
|jMS| jgg (1 jQs)jgs, =1, 2, «o., m.

The crucial point here is that M and ,Q* do not involve _b¥.
Js Js Js
Considering restrictions like (3.9.1), (3.9.2), and (3.9.3), which

can be phrased in the form of (4.2.7), one has the general s-th stage

Lagrangian equation

m m
g = f - % (L= _b*' b*¥)|.M|,6 +25 |.,M|Db* .Ck .y
] S j= J—s j—Ss" '] s'] s . ] s8'Js J s J8

1 j=1

where the .6 and .,y are Lagrange multipliers and ,C¥ is the zero
js - js j 1l

matrix as before.
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= - 2|,M |.,Q% .b* +
* =5
Sjb js'ivs j
and equating this to zero gives

(4.4.1) 0

* bk - - % -
st jEs (jes l)jhs

2|, M |(,6. - 1).,b* + 2|.M
Js Js J—=s J
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sljcg jls

%
jCS jxs .

j=1, 2, ..., m.

The general solution for jlé is
= ®! %) Q% b% - %! %)~ %! *
(4.4.2) Ly (;C&' ;08 @ jbE 4 (I (e§' e (e 568 Ju,
with u arbitrary. Inserting (4.4.2) into (4.4.1) results in
= - _CR(_C*' *)~ o' % - - *

(4.4.3) 0= [{I jcs(jcS jcS) 503 }st (jeS l)I]th,
It follows from (4.4.3) that

6 = 14 ,b*x'" Q% b*

ls I8 J's Js

\

and

£
s

{subject to

b* e V(I - ,c*(,Cc*' C%)~
s j’s'i’s js

leSI(Z- jeS)’ | 1,

!
1%

2,

cesy M,

In other words, (jes - 1) 1is the squared multiple correlation between

jZS and (lzs’ couy

s-12s j41%e> 00 nZed:

The companion expression

of (4.4.3), in terms of the original X wvariables, is
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(4.4.4) 0 = (x7r -7t e 2t ey e Tt

e ,C' ., . L1.Q - (.6 ~ 1I].b
33 jd 3s'is jiis” js 3iji JQS (J s ) ]J*S’

j=1, 2, ..., m.

Equation (4.4.3) or (4.4.4) can be solved using an iterative pro-

cedure which is basically the same as the ones suggested for (4.2.12)

(n)

and (4.3.4). One now requires qu which is computed like jQ§

using (4.2.17)., The quantity qu(n) jgg(n) is substituted in (4.2.16)

for .h*(n). In this case, (jeén) - 1) is the square of the first ca-

j—s
nonical correlation between [I - ,C*(.C*' ,C*) ,C*']Y. and
; Js]s J)S Js ]
(n (n) (n-1) (n-1 % (D)
(lZS I LN j+lZS s sees mZS ), and jhs is the

>vector which defines the corresponding first canonical variate for the
first of these sets (cf. Theorem 1.7.1 (iii)). For s > 1, this is an
example of a canonical analysis with linear restrictions (on the set of
variables Zj), as discussed in Section 2.5.

In contrast to (4.2.19), the iterative procedure is such that

(4.4.5) f(l) 2 ... 02 f(l) > f(z) 2 ... 02 f(2) 2 ...
1%s m's 17s m s
Furthermore,
n
(4.4.6) 0 < jfé ) e,
and (4.2.20) holds for the GENVAR sequence .fén)
Now let
A(n) - L' (@) L (n-1)
(jes L= jEs st jbs >
that is, the squared multiple correlation coefficient between jzin—l)
(n) (n) (n-1) (n-1)
and (lZS s cees j_lzs . j+lZS s enes mZS Y. Instead



80

of (4.2.23), one now has

(4.4.7) 1< 8 o g oy
j's j's

Consider the ratio

(4.4.8) J== S = —J8 l s
.f(n) l ,M(n) I (2 _ .e(n))
Jls Jj s j's

n)

where ofén) is defined as in (4.2.22) and jMé is computed like

.MS using (4.2.17). The limit of the left hand side as n + » is one

because of (4.4.5) and (4.2.20). This, together with (4.4.7), assures

A
By,
j’s
From this point, the development proceeds exactly like the last

that (4.2.25) remains correct for the GENVAR sequence (jeén) -

part of the previous section: one need only read qu(n) for .Pg(n)

and GENVAR for SSQCOR and redefine ES to be |$(S)|.

4.5 The Maximum Variance Procedure

The criterion function at the s—th stage of the MAXVAR procedure

is

[ 1 = '
B30 5 = i % Pax(e)™Be(e) k% T k% (o) k%

which is to be maximized with respect to choice of DB*(s) and
k , 1<k <m, subject to restrictions (3.9.10) or (4.2.7). Note that

S S

1 )
DB*(s) kégs is a length one vector.

The optimal criterion value and the corresponding canonical var-

iables at the first stage can be easily found with the aid of Lemma Al.
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Let v be an arbitrary unit length vector. Then

sup v'Rv = XiRyi = cl(R)
v
Suppose DB*(l) and k& are required to satisfy
1
t =
(4.5.2) DB*(l) k191 = ¥y -
. . 1
(4.5.2) implies that
(4.5.3) b¥ iﬂ———]—rjzl =1, 2
5. ¥ = , J=1,2, ...y m .
i1 jil

' = ' = .

Next observe that | & ®(1) kigl v Rv cl(R). There cannot exist
= ' = ? 1

an £, [[£]] =1, such that £ cI)(l)_f. f.DB*(l)RDB*(l)ﬁ

since cl(R) is the largest eigenvalue of R. This implies that

= Vv'Rv > ¢, (R),

sup f

= cl(R)
Zw)

1
and occurs when g(l) is defined by (4.5.3). It also implies that

cl(R) is the largest eigenvalue of Q(l) with corresponding eigen-

Igl. Thus kl =1,

Suppose that the restrictions imposed at the s-th stage are of the

e
vector k

type (4.2.7) with

: = di * 3 *
(4:5.4) ch dlag(lCS, ZC;, cees mCs)

Let v = It is desired to find v with the appropriate

1
DB*(s) kSEs'
properties which maximizes (4.5.1). Form the Lagrangian equation

1 If lljzill = 0, j—i is arbitrary. A similar comment applies to

the other expressions of this type found in this and the next section.
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—_ - 1 - 1
g £+ (1 X_v)es 2v'D

s cx Xg o

s
where es and Y, are Lagrange multipliers. The derivative with re-
spect to v is

Bgs

v = 2Rv - 2 GSX -2 ch X
which, when equated to zero, gives
(4.5.5) 0 = RW-6y-~- ch Y-
Multiplying (4.5.5) by v' results in

(4.5.6) £ = 8.

Solving for Y and substituting the general expression for it into

(4.5.5) leads to

(4.5.7) 0 [{1 DC*(DC*DC*) DC*} R es I] v,
s s s S
Thus
= _ ] - L]
(4.5.8) sup fS = cl({I DC*(DC*DC*) DC*}R)
Z s s s (]
=(s)
and DB*(s) and ksgs are such that
' =
(4.5.9) DB*(s) kégs Yoo
where

é{}
Vo

<2

<
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is a unit length eigenvector associated with the largest eigenvalue in

(4.5.7). (4.5.9) implies

v
(4.5.10) b¥ = + el 2 =1, 2, «ou, m
J [,v |
J-s

It remains to verify that k &5 is an eigenvector of the induced Q(s)'
To see this, first note that

\
} RDB*(S)' Now

= ! = - ' - !
®6) = Pox(s)®Prx(s) T Pre) T T PoxPealex) Pox
5 8 8 )
arguing as in the case s =1, it follows not only that x 25 is an

eigenvector but also that ks = 1 and lAs = sup fS » the value of
Z
—(s)

which is recorded in (4.5.8).
Restriction (3.9.10) is also easy to handle. At the second stage,

and using Lemma Al once more,

= ' = v =
;up £, Zsup v'Rv VRV, ¢, (R).
=(2) —(2)
' = 1 =
v Ry =0 viy=20
Suppose DB*(Z) and kiSZ are required to satisfy

1
Dpx(2) k=2 ¥

which implies that

.V
£ =t 2 y=1,2, ..., n
||jz2H

Then, if can be shown to be an eigenvector of the associated

e
k2 2

®(2), Z(z) must be the required wvector -0of canonical variables.
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(2) _ 7 - ' - '
Let R = (I Xlzl)R(I ‘zlzl) and form

2) 2, _

B*(2) °@
(2)

¢ = D R

_ 1t
B%(2) cl(R)D v.v.D . Now

B*(2)—1—-1"B*(2) k

lo

must be an eigenvector of ¢ because

(2) 5 (2)

27 k.89 = DgupyR

(0]
|

v, = DB*(Z)(CZ(RJXQ) = ¢,(R) kZEZ . But

(2

- ' = ;
cl(R)DB*(Z)zlz£22 ®(2) kZEZ which proves that

2 = %) k%2

k. &9 is an eigenvector of ¢(2) corresponding to the eigenvalue
2
cz(R). It is not true, however, that k2 must be equal to one in this

gsituation; that is, need not be the largest eigenvalue of ®(2).

A
k2 2
Examples are given in Sections 5.4 - 5.6 which demonstrate that, at

least for some s > 1, one can have ks > 1.

Continuing in this way, one has at the s-th stage

(4.5.11) 7SUP fS = cs(R),
=(s)
v'Rv = 0
Ly
i=1, 2, «.0,y s-1
with
?
DB*(s) ksgs s
and
Y
(4.5.12) PSRN —= 0 3=1,2, ..., m
1wl
One can easily show, as for s = 2, that k &5 is an eigenvector of
s
Q(S) corresponding to the eigenvalue cg(R).

As with the other procedures, one does not in practice need to make

the transformation from X to Y. The equation analogous to (4.5.10)
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which defines the s—-th stage canonical variate coefficient vectors with

respect to X is

_l ~
x,, AL
(4.5.13) b= % ———égfékj——— , i=1,2, .., m,
J ||Z.? W ||
33 s
where
I T o o
Yo T Qg gg v pifg)

is an eigenvector corresponding to the largest eigenvalue of the matrix

_ : 1 -, =1l,..~1
(4.5.14) {1 De (DC D; "D, ) D¢, D, }ZDZ
S s S S
with
D = D%D
c rck
S S

The largest eigenvalue of (4.5.14) is the maximum value of fs’ as
given in (4.5.8). The companion expression of (4.5.12), in terms of the

original variables, is

A
b =  —LLIE = 2, L., m
. -1 > s ’ s ’
I 25w ]
Jl J—s
where
| B, 1 |
(4.5.15) wo = (lﬂs’ PWos sees W )

is an eigenvector of ZDgl corresponding to the s—-th largest eigenvalue

of this matrix subject to the restriction

E&DngD;¥ES = 0, j=1, 2, +.., s-1,
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Note that cs(ZDgl) = cS(R), the maximum value of fS as recorded in

(4.5.11).

4.6 The Minimum Variance Procedure

The mathematical developments of the MAXVAR and MINVAR procedures
are so much alike that many of the details for the latter procedure can
be safely omitted. The s-th stage criterion function is the same as
(4.5.1). The object now is to minimize (4.5.1) with respect to choice

of D and kS, 1< ks < m, subject to restrictions (3.9.10) or

B*(s)
(4.2.7).

First of all, using (1f.2.1) of Rao [20], one has

inf v'Rv = v'Rv = ¢ (R) .
v P P p
Suppose DB*(l) and kigl are required to satisfy

1
Do (1) kT Y
It follows then that
+ 2
(4.6.1) jpb_f = ﬁ s J=1,2, ..., m
Y
Jp

Arguing in a manner similar to that in the previous section, one con-

cludes that

Zinf fl = cp(R)
(D

and occurs when Z{l) is defined by (4.6.1), cp(R) is the smallest

eigenvalue of the associated ¢(1), and ky = m.
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For restrictions of the type (4.2.7) on the higher stage canonical
variables, the key equation is again (4.5.7). The relationship between
the present es and fS is the same as in (4.5.6). The eigenvalues of
the 'adjusted' R matrix in (4.5.7) are the same as those of

{1 - DC*(D Dé*}zR because of the idempotency of the matrix in
s

. -
C*DC*)
8 s

braces. These in turn are the same as those of

(4.6.2) {1 - *(Dc* c*) D¢ }R{I - *(Dc* C*) Dé*}

If the rank of DC* is denoted by g, then q of the eigenvalues of
(4.6.2) are zero, znd associated eigenvectors are q independent col-
umns of DC*' Since the matrix in (4.6.2) is symmetric, the eigenvectors
associated :ith its non-zero eigenvalues must be orthogonal to the col-
umns of DC* -- i.e., each eigenvector is in V(I - (DC* C*) é*).
One can ianr from this fact that any eigenvector associated w1th a non-
zero eigenvalue of (4.6.2) is also an eigenvector corresponding to this
same eigenvalue for the 'adjusted' R matrix in (4.5.7). This, together
with (1£.2.3) of Rao [20], shows that the smallest admissible es is the

(p-q)-th largest eigenvalue of the 'adjusted' R matrix. [In either

the MAXVAR or MINVAR procedure, one can work with the symmetric matrix

(4.6.2) in place of {I - (DC* C*) D }R ]
If
~ ~ ™~ =
Ip-s+l (1 ¥p-st1> 2%p-st1® **** mip-stl)

is the eigenvector associated with the smallest non-zero eigenvalue, and

if DB*(s) and ksgs satisfy

~

1 =
DB*(s) ksss Tp-s+l *
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which implies that

~

: Y .
(4.6.3) b = fodpestl 0 521, 2, oL, m,
A

then it follows readily that (i) x & is an eigenvector of the asso-

ciated Q(s)’ (ii) kS = m, and

PP = . = _ 1 - 1
(iii) mks inf fs cp_q({I DC*(DC*DC*) DC*}R)'
Z(s) [ s s s

Turning to restriction (3.9.10), the main results are

inf f = (R)

s Cp—s+l

. . [] N . .
with the optimal DB*(s) and associated x &5 satisfying

s
Dis (s) k% T Tp-stl
which implies that
(4.6.4) b = t_feetl g1, .
RPN

x &5 is indeed the eigenvector of ¢(s) associated with the eigenvalue
s
cp—s+1(R)'

The counterpart of (4.6.3) in terms of the X wvariables is

b _ :;gj'jgp—s+l i = 1. 2
T T
s oW

jj Jp-stl

1+




89

where

~h = o = o
Fostl = (¥pgt1? Mp-stl’ 770 mlp-stl)

is an. eigenvector corresponding to the smallest non-zero eigenvalue of

the matrix in. (4.5.14) using the current DC . The counterpart of
s
(4.6.4) is
-1 ~
_or 4 ien) o
j*S = _% || [} = l’ 2’ soey My
Li W
1 33 Jp-stl
where
1 ] ? ]
To-s+l (1> Mp-gtl® **°° p-s+1)

is like W in (4.5.15) but subject to

- _l
' = .
W+l D 205 Hpgyy 500

1, 2, ..., s-1.



CHAPTER V

PRACTICAL CONSIDERATIONS AND EXAMPLES

5.1 Introduction

The final chapter is devoted to practical comsiderations and ex-
amples. Suggestions for the interpretation of the results of a canon-
ical amalysis are made in Section 5.2. The third section contains spe-
cific recommendations on starting points for the iterative procedures.
Selected calculations and comments for three examples are presented in
Sections 5.4 - 5.6,

The examples are based on data taken from Thurstone and Thurstone
[22]. They study in their monograph a number of different variables,
each of which measures one of seven 'primary abilities." Three variables
are associated with each ability. The seven abilities are: verbal
comprehension (V), word fluency (W), number (N), space (S), rote
memory (M), reasoning (R), and perception (P). The sample correlatioms,
based on 437 observations, are displayed in Table 5.4.1.

The SUMCOR, SSQCOR, and GENVAR iterative procedures were program-

med to terminate as soon as the condition

]jeén) - jeé“'l)l < 0.0001
1

N~y

N

holds. This condition has proved to be an effective test for convergence
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of the criterion values ,f;n) . (See Sections 4.2 - 4.4 for the
definitions of 0™ and £™ )
] s J s

5.2 Interpretation of the Results

The analysis should include more than an examination of the ca-
nonical variates and their correlations. Given the canonical vector

E(s)’ one should also study the basic ingredients of the associated

best fitting model.

Taking the MAXVAR 2Z as one example, attention should be di-

(1)
1Al’ 181> and Fl. Hopefully, some meaning can be attached

to the "common factor" F . The elements of e, together with 1M

rected to

are indicators of the potency of the factor in the different sets. For

the MINVAR Z,,,

are mkl’ 1 and mFl'

iables form a "nearly" singular set; that is, the elements of Z(l)' are

as a second example, the most important quantities

If cp(R) is near zero, the canonical var-

"nearly" linearly related. The relevant linear compound is, of course,

F which should be interpreted if possible. 1In the situation where

m 1°

only two elements of oS &re mon-zero (it will often happen that this

is approximately true), the interpretation is simplified in that mFl’

apart from a constant multiplier, is the difference between the first
pair of canonical variates for the sets corresponding to the non-zero

elements of and the accompanying first canonical correlation is

me1?

just (1 - CP(R)). Furthermore, this correlation must be ¢ , the

max

largest possible first canonical correlation, for otherwise cp(R)

would not be the minimum eigenvalue of R as claimed (cf. Theorem 1.6.1).
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Sometimes the correlation ¢max is of interest in itself. One
would like, especially when m is large, to obtain some information
about it without separately studying all (?) possible pairs of sets.
The off-diagonal element of any Q(l) matrix which is largest in mag-~
nitude provides a simple lower bound for ¢max' A non-trivial upper

bound can be found in terms of the extreme eigenvalues of R. It follows

from Theorem 1.6.1 that

1+ ¢max) < cl(R) and (1 - ¢max) =z cp(R).

Combining these inequalities, one has

(5.2.1) ¢max < min{cl(R) -1, 1- cp(R)}.

Since cl(R)‘Z 1 and O < cP(R) < 1, by virtue of R being a positive
definite correlation matrix, the right hand side of (5.2.1) is always
non-negative and less than one.

If the upper bound is small, that is, if cl(R) or cp(R) is
close to one, there would be little reason to further pursue the search
for relations between two (or more) of the sets. Otherwise, it is rea-
sonable to consider the sets corresponding to the dominant elements (as-
suming there are some) of the MAXVAR 1817 if (cl(R) - 1) < (1 - cp(R)),
or the MINVAR nS1° if (cl(R) -1 > (1 - cp(R)), as the ones most likely
to produce canonical variates with correlation equal to ¢max' The
heuristic justification for this notion, in the case where (cl(R) -1
is the minimum term in (5.2.1), is that lgiQ(l)lEl = c¢;(R) 1is large
(but less than two) by assumption which suggests that the off-diagonal

elements of ®( corresponding to the dominant elements of 18 are

1)

also large. A similar argument can be made when (cl(R) -1) > (1 - chﬁ%
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5.3 Starting Points for Iterative Procedures

Iterative procedures were proposed in the last chapter for deter-
mining the coefficient vectors which define the SUMCOR,'SSQCOR, and
GENVAR canonical variates. These procedures can be used not only at the
first stage but also at the higher stages,; so long as the associated
constraints have the effect of confining the coefficient vectors to some
specified vector space.

There are two primary objectives to consider in the selection of
starting points for the iterative procedures: first, limiting the num-
ber of iterations needed to achieve convergence and, second, assuring
that convergence is to an.optimal solution.

An "all purpose" starting point, which has been used successfully
with each of the procedures, begins with either b « 1 or

j-s
jhg «1l, j=1, 2, «.., m, depending on whether one is working with X
or Y. This equal weight starting point is most. appropriate when one
does not want to bother to make the calculations needed to determine a
more refined starting point. It can also be used to generate variables
to compare with those obtained using other starting points.

A better starting point for the first stage of the SUMCOR procedure
can usually be.obtained by selecting the MAXVAR;E(l) for the initial -
variables. Recall from Sections 3.4 and 3.5 that the MAXVAR and SUMCOR
Z(1)
1. Thus one would expect that the MAXVAR Z

vectors will be the same when the MAXVAR is proportional to

11
(1) will be a particularly
good starting point whenever the associated lsl is nearly proportional
to a unit vector. A similar type of starting point can be found for the

higher stages: choose that g(s) which results when the MAXVAR pro-
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cedure is applied subject to the constraint (4.2.7) but with

Zayr @) o Es-1)

Again, if 155 is nearly proportional to 1l, convergence should be

being the previously selected SUMCOR variables.

quick.

It was argued in Section 3.6 that the MAXVAR and SSQCOR procedures
tend to produce similar _E(l)'s whenever there exist first stage'var_
iables which can be well explained by a single factor. Accordingly, the

MAXVAR Z can often serve as a useful starting point for the SSQCOR

(1)

procedure. One can argue on similar grounds that a reasonable starting
point for the s-th stage of the SSQCOR procedure would be Z{s) con—
structed by the MAXVAR procedure subject to the constraint (4.2.7), in
which the SSQCOR_§(1>, Z(z), ceey Z{s-l) are utilized instead of the
usual MAXVAR canonical variables.

Finally, the MINVAR Z is often a satisfactory starting point

(1)

for the GENVAR first stage, especially when the number of sets is large.

(For a small number of sets, the MAXVAR Z seems frequently to be a

(1)
better choice.) And, at the higher stages, one can begin with Z(s)
constructed by the MINVAR procedure subject to (4.2.7), in which the
GENVARIZ(l),
MINVAR canonical variables.

Z{Z)’ ceny Z(s—l) are inserted in place of the usual

For all of the procedures requiring iterative techniques, it would
be advisable to try more than one starting point. Experience has shown
that convergence is usually obtained rapidly enough to permit this kind

of check without excessive expense.
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5.4 Example Number One

The first example is the one which Horst dealt with in [8], [9],
and [10]. In this example, m = 3,° P, = 3, Py = 3, Py =3, and p=9.
The first set.contains variables 5, 6, and 7 (cf. Table 5.4.1); the
second contains variables 12, 13, and 14; and the third contains var-
iables 19, 20, and 21. Horst made a preliminary transformation from
the originalfyariables with (sample) covariance matrix 21 (the sub-
script in&icates the example number) to new variables Y with (sample)
correlation matrix - Rl' The analysis given here starts from this latter

matrix as found in [8] or [9] and displayed below:

( 1.
1.000 0.000 0.000 0.636 0.126 0.059 0.626 0.195 0.059
1.000 0.000 -0.021 0.633 0.049 0.035 0.459 0.129

1.000 0.016 0.157 0.521 0.048 0.238 0.426

1.000 0.000 0.000 0.709 0.050 -0.002
R, = 1.000 0.000 0,039 0.532 0.190

1.000 0.067 0.258 0.299

1.000 0.000 0.000

1.000 0.000

1.000
J
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‘and

The SSQCOR calculations for R

(1)

(2)

?(3)

€H)

(2

(3)

A

A2

g

4

r

1.000

1.000

1.000

0.578
0.574
0.580

0.559
0.602
0.571

0.653
0.611
0.447

2.490

2.163

1.617

1

0.735
1.000

0.603
1.000

0.464
1.000

-0.533
0.804

~0.753
0.080
0.653

~-0.176
-0.451
0.875

0.267

0,498

0.861

0.504

‘using restriction (3.9.1) give

\

0.756
0,743 |,
1.000

0.635 |,
1.000

0.268

0.165 |,

1.000

-0.619
""0- 155 'y
0.770

-0.348
0.794 |,

-0.736
0.187

0.243 ),

0.338 ),

0.522 ).
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The GENVAR, MAXVAR, and SUMCOR results using restriction (3.9.1)
are virtually the same in each case as those for the SSQCOR procedure.
The SUMCOR»caléulationS'also have been carried out using restriction
(3.9.2), first with Tk = {1} and then again with Zk = {1, 2}. The

second and third stage correlation matrices in the first instance are

1.000 0.601 0.505
°2) = 1.000 0.638
1.000

and

- 1,000 0.315 0.153
1.000 0.526 |,
1.000

Y3 T

and in the second instance are

_ 1.000 0,603 0,505
1.000

and

1,000 0,465 0.269
) = 1.000 0.166 |.

(3)
1.000 J

'~ As one would expect, higher criterion values are attained as the
number of sets ﬁpon which the restrictions are imposed is reduced. The

results are summarized in Table 5.4.2.



99

TABLE 5.4.2

Values of the SUMCOR Criterion Function for Rl
Using Different Restrictions from the Class (3.9.2)

I: {1} {1, 2} {1, 2, 3}
Stage 2 6.489 6.487 6.484
Stage 3 4.988 4.800 4.794

The eigenvalues which are relevant to the MAXVAR/MINVAR procedures
using restriction (3.9.10) along with the values of ks are displayed

in Table 5.4.3.

TABLE 5.4.3

Values of cj(Rl) and Related MAXVAR/MENVAR Quantities

MAXVAR
7 k !
3o ®) 7 2
1 2,490 1 2.490 0.267 0.243
2.164 1 2.164 0,497 0.338
1.620 1 1.620 0.860 0.520
MINVAR
!
“10-3 2(10-9)
4 0.867 2 1.517 0.867 0.616
5 0.541 3 1.455 1.004 0.541
6 0.487 3 1.757 0.756 0.487
7 0.337 3 1.954 0.709 0.337
8 0.259 . 3 2.365 0.376 0.259
9 0.235 3 2.082 0.683 0.235
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There are evidently three MAXVAR and six MINVAR stages. Each

MAXVAR Z has associated with it a representation of the type (3.9.5)

—(s)
involving a single factor while each MINVAR_E(S), except Z{6)’ has

associated with it a representation of the type (3.9.8) using two fac-

tors.

The close resemblance of the MAXVAR )\ in Table 5.4.3 to those

~(1)
previously listed for the SSQCOR procedure suggests that the corre-

sponding Q(j) and E(j) will be virtually the same in both cases, as
they indeed turn out to be. (The same resemblance holds if (3.9.10) is
replaced by (3.9.1).)

The and E matrices for the first two MINVAR stages

&) (1)

(using restriction (3.9.10)) are as follows:

f
1.000 0.345 -0.736
® = . 1.000 -5, 517 5
(D
1.000
7( 1.000 -0.725 0.626
@(2) = 1.000 -0.695 .
1.000
\ J
\
0.591 -0.516 0.620
E(l) = 0.493 0.839 0.228 ,
-0.638 0.171 0.751
J
and
0.574 ~0.632 0.520
E = -0.593 0.118 0.797
(2)

0.565 0.766 0.307
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Taking the element 0.756 from the SSQCOR ¢ matrix and using

(1)
(5.2.1), one has

0.756 < ¢max £ 0.765 .

The dominant elements of the MINVAR vector are the first and the

331
third which suggests that the corresponding sets are.the ones which yield
¢max7 In fact, Py = 0.742 for the first and second sets, Py = 0,757
for the first and the third sets, and Py = 0.750 for the second and
third sets.

As a rough approximation, the canonical variates jZl’ jzz, and
jZB’ other than the MINVAR ones, are proportional to _lﬂzj,
2, -1, -l)§ﬁ, and (0, 1, '1)§ﬁ’ j=1, 2, 3. -E(l) is well ex-
plained by a single factor accounting for 83.0 per cent of its vari-
ability and contributing with equal weight to each of the jzl' . The
factor is approximately proportional to 1'X. For Z(Z)’ the first
factor accounts for 72.1 per cent and the second factor 16.6 per cent
of the variability. The second factor is present mainly in 122 and
322. Two factors account for 82.6 per cent of the variability in
§{3), about as much as one factor does for Z(l)'

Table 5.4.41 shows the first stage SSQCOR criterion values at var-

ious steps of the iteration procedure. The following starting vectors

5 (0

=1 » 3 =1, 2, 3, were used:

(1) ( 0.574 0.574 0.574);
(i1) ( 1.000 0.000 0.000);
(1ii) ( 0.000 0.000 1.000);

1 The figures in Table 5.4.4 are stibject to error in the sixth

decimal place.



prising in view of the MAXVAR 181

(iv)
)

(vi)

the SUMCOR b

2

the SUMCOR ,b%

i3

the MAXVAR ,b¥%.

21

under restriction (3.9.1);

under restriction (3.9.1);
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Starting point (vi) gave the quickest convergence which is not sur-

being nearly proportional to 1.

TABLE 5.4.4
Values of SSQCOR 3fin) on Rl Using Different Starting Points
Starting Points
n (1) (ii) (iii) Ev) v) (vi)
1 6.303480 5.799538 5.118418 5.046118 3.635250 6.329807
2  6.324824 6.051978 6.044878 5.047182 3.686164 6.329809
3 6.328192  6.209252 6.235992 5.049262  4.686334
4 6.329200 6.281344 6.293624 5.054866  6.182884
5 6.329578 6.311030 6.315908 5.069552 6.323596
6 6.329720 6.322640 6.324514 5.107198 6.329160
7 6.329778 6.327086 6.327802 5.197832  6.329620
8 6.329796 6.328780 6.329044 5.385994 6.329738
9 6.329804 6.329422 6.329522 5.677556  6.329786
10 6.329810 6.329666 6.329700 5.972386 6.329798
11  6.329810 6.329752 6.329770 6.167168 6.329802
12 6.329792 6.329792 6.263168 6.329808
13 6.329802 6.329804 6.303786 6.329810
14 6.329808 6.329808 6.319844
15 6.329808 6.329808 6.326020
16 6.329806 6.328374
17 6.329264
18 6.329602
19 6.329734
20 6.329780
21 6.329800
22 6.329808
23 6.329804
24

6.329806
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5.5 Example Number Two

22 is the correlation matrix of the twenty-one variables in Table
5.4.1. The first set consists of the first seven variables, the second
set consists of the middle seven variables, and the third set consists
of the last seven variables,

The main features of the data can be extracted by the MAXVAR and
MINVAR procedures. The eigenvalues of R2 are given in Table 5.5.1
along with the number of factors for the models (3.9.5) and (3.9.8)
using restriction (3.9.10).

The other key quantities for the first two MAXVAR stages are.

5
1.000 0.889 0.869
) = 1.000 0.871 |,

(1)
1.000

1.000 0.710 0.636
¢(2) = 1.000 0.689 |,
1.000

0.578 -0.449 -0.681
E(l) = 0.579 -0.362 0.730 |,
0.575 0.817 -0.050

0.575 -0.640 -0.510
E(2) = 0.589 -0.109 0.801L |,
0.568 0.760 -0.314

|
~

|
-A(l) = 2.753 0,136 0.111 ),

! =
Afgy = 2.357 0.366 0.277),
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lhi = ( 0.114 0.149 0.532 0.216 0.190 0.124 0.190 ),

Zhi = ( 0.208 0.031 0.538 0.179 0.097 0.184 0.224),

3Ei = ( 0.193 0,109 0.534 0.134 0.028 0.223 0.206 ),

igé = ( -0.284 0.034 0.618 0.135 =-0.759 -0.096 -0.166 ),

zgé = (-0.191 -0.149 0.605 0.041 -0.723 -0.291 0.014 ),
and .

3§é-= ( -0.162 0.035 0.530 0.205 =-0.819 =-0.291 ~0.051 ).

It appears that the best fitting factor for Z{l) is largely asso-

ciated with the verbal primary ability while the best fitting factor for

E{Z) is, for the most part, a weighted difference of verbal and spatial
abilities.
For the MINVAR first stage
1.000 -0.894 -0.022
¢(1) = 1.000 -0.073 |,
1.000
0.705 -0.081 0.704
E(l) = [ -0.708 -0.024 0.706 |,
0.040 0.996 0.074
L.
'A(l) ( 1.8%6 1.003 0.101 ),
lgi = ( -0.120 -0.188 -0.547 -0.219 -0.024 -0.137 -0.203),
Zgi = ( 0.140 0.018 0.607 0.171 -0.025 0.208 0.221),
and

( 0.074 0.553 -0.645 -0.084 -0.014 -0.358 0.820 ).
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TABLE 5.5.1
Values of cj(RZ) and cj(R3) Plus Related kj and k22—j

i cj(RZ) kj/k22—j cj(R3) kj/k22—j
1 | 2.752 1 4.406 1
2 2.357 1 2.650 1
3 2.148 1 2.107 1
4 1.808 1 1.815 1
5 | 1.606 1 1.519 2
6 1.482 1 1.321 2
7 | 1.356 1 0.892 4
0.961 3 0.840 5
- 0.888 2 0.742 4
10 | 0.838 3 0.645 5
11 | 0.800 3 0.625 5
12 0.666 3 0.573 5
13- 0.641 3 0.506 6
14 0.586 3 0.480 5
15 0.478 3 0.428 6
16 0.434 3 0.390 6
17 0.404 3 0.307 6
18 0.310 3 0.239 6
19 0.259 3 0.228 6
20 0.123 3 0.161 6
21 0.101 3 0.124 6

Using the MINVAR ¢(l) and (5.2.1), one obtains

(5.5.1)

The elements of

second sets.

321

0.894 < ¢max < 0.899 .

suggest that ¢max occurs between the first and
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Note the close resemblance between the MAXVAR lgl and 221 and

the corresponding MINVAR igl' (apart from a factor of (-1)) and 221.
Without separately analyzing the first and second sets, one can.surmise,

in light of (5.5.1) and the MINVAR ¢ that the MINVAR residual fac-

(n°

tor is, in essence, the difference between the first canonical

3y

variates for these sets,

5.6 Example Number Three

23 is the same matrix as 22,' but the breakdown of variables into

sets is different (and hence R, and R, are different). Now there are

2 3

six sets: the first, third, and fifth sets consist of the first four
variables in the three sets used in Example Two; the second, fourth, and
sixth sets consist of the last three variables from the sets in Example
Two.,

The eigenvalues of R, and the number of factors for models (3.9.5)

3
and (3.9.8), using restriction (3.9.10), may be found in-Table 5.5.1.

The detailed calculations are given only for the first stages of the

SSQCOR and GENVAR procedures. The SSQCOR results are given first:

1.000 0.598 0.822 0.662 0.791 0.591

| 1.000 0,619 0.730 0,590 0.739
1.000 0.677 0:823 0.628

(1) ' 1.000 0.636 0.712
1.000 0.592
1.000




and .

(1

Ay

|

- 0.415 -0.398

0.394 0.482
00425 -0a361
0.409 0.292

0.412 -0.421
0.393 0.465
4.406 0.683
0.322 0.229
0.463 0.024

0.449  0.133
0.239 0.369
0.498

0.254

0.181  0.520

The GENVAR results are

*1)

,

1.000 0.548
1.000

0.089
0.018
~0.068
0.749
-0.181
-0.628

0.284

0.562

0.592

0.608

0.686

0.651

0.578

0.858
0.573

1.000

-0.026
-0.781
0.025
0.396
-0.095

0.472

0.255

0.307

0.279

0.154

)s

)y

0.604
0.736
0.636
1.000

-0.715

-0.027
-0.008
0.171
0.671
-0.091

0.206

)s

)

)

0.814
0.565
0. 840
0.607
1.000

0.387
-0.033
-0.827
0.032
0.401
0.065

0.167

0.538
0.751
0.575
0.727
0.567
1.000

“

)s
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0.415
$0.392

g o | 0.427
(1 1 0.406

. 0.418
0.391
\

Mgy = C 4.317
1Bl = ( 0.149
P} = (0,298
bl = ( 0.293
B} = ( 0.364
;23 = ¢ 0.355

”and
L1 = ( 0.288

~0.423
0.460
-0.380
0.332
-0.378
0.461

0.842

0.166

-0.006

0.094

0.370

0.515

0.535

-0.020  0.064 -0.590
0.192 0.772 -0.008
-0.004 =-0.026 =-0.171
~0.821 =-0.197  0.099
0.164 =-0.009 0.775
0.512 =0.600 =0.110
0.271 0.248 0.186
0.706  0.299 ),
0.754 0,230 ),
0.708  0.207 ),
0.604 ),
0.581 ),
0.494 ).

The largest off-diagonal element of the MINVAR ¢(1)
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~0.545 |
0.034
0.802
~0.049
-0.235
~0.030

0.136 ),

matrix, in ab-

solute value, turns out to be 0.864 and appears in the first row and

third column. Thus, with the aid of (5.2.1), it follows that

0.864

<
q)max

The dominant elements of the MINVAR _e

6—1

0.876 .

are the first and the third

which suggests that it is the corresponding sets which achieve ¢ .

max
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The main difference between the two Q(l) matrices is that the off-
diagonal elements of the SSQCOR matrix which are less (greater) than
0.7 are greater (less) than the corresponding elements in the GENVAR
matrix. Looking at the two A{l) vectors, one sees that
lAl’ 3Al’ ékl? SAl’ and 6Al are less for the GENVAR procedure than
for the SSQCOR procedure while only le is greater. Passing from the

SSQCOR to the GENVAR it is apparent that the most important dif-

2
ferences are a uniform increase in the verbal comprehension and space
coefficients and a uniform decrease in the perception and reasoning coef-
ficients.

Focusing on the SSQCOR results, the first two factors account for
84.8 per cent of the variaﬁility in g(l). The elements of 181 indi-
cate that the first factor contributes with approximately the same-
weight to each jzl' The second factor, however, has positive weight
in the representation of 221, 4Zl, and 6Zl and negative weight‘in

the representation of,rlzl, 321, and 521. Each of the remaining four

factors appears to be common to at most three of.the jzl’
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APPENDIX

LEMMA Al. Let A and B be (p x p) matrices with A symmetric

and B positive definite. Let el z 0

of B—lA and _;1,,;2, .""EPA a corresponding set of eigenvectors such

2 Z .. 2 ep be the eigenvalues

that- f'Bf, = §,. (Kronecker delta). Then
=i =j ij

T
y'ay  EAf

sSup = T = A
Yy y'By  £Bf, 1
and
£ LAf
YA IRkl _
S..Iip X'Bl = £-1|<-+1B_f-k+l >\k+1, k = 1, 2, ce ey p"l.
£iBy =0

i=1,2,...,k

%

Proof. Let x = B°y and apply (1£.2.1) - (1£.2.3) of Rao [20].

LEMMA A2. Let M be a (p x q) matrix with p < q. Then there
exist orthogonal matrices I and A such that
™A' = (D 0)
where
D = diag(8y, 8y, «ees ep)
and ei, e%, cees e; are the eigenvalues of MM'.

Proof. See Hsu [13] or Vinograde [23].
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LEMMA A3. Let X be a (p x 1) random vector with E(X) =0
and var(X) = . Let M be any (p x q) matrix and Y any (q x 1)
random vector. Let f be any real-valued function defined on the set
of all non-negative definite matrices of order p which is identical to
some . function g(el, 62, ...,»ep) where 61, ez, cens ep are the
eigenvalues of the matrix in the argument of £ and 'g is strictly in-

creasing in each ej. Then
FE{E-MDE -MD']
is minimized with respect to M and Y when and only when
q t
M = I v.wv.X,
j=1 373
the Xj being orthonormal eigenvectors of I corresponding to the ej.

The minimum value of £ is

8(0y1s Ogppr wovr 050 O cnes 0).

Proof. See Okamoto and Kanazawa [18].

The next .lemma is based on an assertion by Rao ([20], p.44l).

LEMMA A4. Suppose
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is non-negative definite. Then there exist matrices M12 and M21

such that

Lig = Myplpy and 2y = Mpy,Iq,.

Proof. I,, = TiTé for some T, and Tj’ i=1,2; j=1,2.

ij
1 L = ' =
_V(T1T2) c V(Tl) V(TlTl). Therefore, 221 M21le for some M21.

Similarly, 212 = M12222.

2 _ T)

LEMMA A5, Let T : U= U ©be an idempotent (i.e., T
endomorphism of a vector space. Then U is the direct sum of the

kernel of T and the image of T.

Proof. See Mostow, Sampson, and Meyer. ([17], p.384).



