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Abstract. It is shown that for a large class of interactions any canonical Gibbs
state satisfying a natural temperedness condition is a mixture of Gibbs states
with appropriate activities, and vice versa. Some general results on Gibbs
states and canonical Gibbs states are established. In particular, a differential
characterization of Gibbs states is given.

0. Introduction

A state of a many particle system is called a canonical or a (grand canonical)
Gibbs state if its conditional probabilities in bounded volumes are given by the
canonical or grand canonical Gibbs distributions, respectively. While the Gibbs
states are easier to deal with, the natural candidates for the invariant states under
the motion of interacting particles are the canonical Gibbs states. This intuition
has been confirmed not only for lattice systems (see [15] and the references in {6])
but also for continuum systems — the relation between canonical Gibbs states
and the so-called classical KMS condition recently established .by Aizenmann,
Goldstein, and Lebowitz? (private communication) is a result in this spirit.

The first question concerning canonical Gibbs states is whether they are
mixtures of Gibbs states. For lattice systems an affirmative answer has been
given by Thompson, Logan, Shiga, and the author (see [6, 7, 15] and the references
there), and for continuum systems of independent particles by Nguyen and Zessin
[11]. In this paper we do the same for continuum systems of interacting particles.
The essential ideas are those of {7], but the technical details are rather different.

Now we describe the main result for the special case of shift invariant interac-
tions.

(0.1) Theorem. Suppose that the interaction is given by a translationally invariant
[finite range potential of one of the following four types:
(PP) Positive pair potential.

1 Gibbs states are often called equilibrium states satisfying the DLR-equations.
2 Their interest in canonical Gibbs states for continuum systems stimulated the work presented here.
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(DP) Pair potential bounded from below and diverging at the origin faster than
|x| =%, where d is the dimension.

(CP) Hard core pair potential bounded from below.

{WR) The Widom-Rowlinson potential [16].

Suppose further that u is a canonical Gibbs state whose particle density is
almost surely finite or, in case (CP), strictly smaller than the density of the densiest
packing of the hard balls. Then u is a mixture of Gibbs states with respect to this
interaction and certain activities. The distribution of the activities is given by the
distribution under u of a certain function z(.) on the configuration space. Further-
more, under y the o-fields of the tail events and of the symmetric events almost
surely coincide.

The complete statement of the main theorem and related results are collected
in Section 5. The key result — the existence of the tail measurable activity indicating
function z(.) — is proved in Sections 6 and 7. Section 1 contains the set-up, nota-
tions, and a description of the interactions. In Sections 2 and 4 some fundamental
results on Gibbs states and canonical Gibbs states are established. In Section 3
we show that Gibbs states exhibit a characteristic behaviour if a particle is fixed
at a given site.

1. Preliminaries

1.1. The Particle Space. We denote by S the d-dimensional Euclidean space IR,
d>1, and by & the og-field of Borel sets in S. Furthermore, let ¥ be the set of all
bounded Ae.¥, and

P ={AMk):k=1,2,..}
where
Ak)={x=(x1, ..., x)eS: x| k(1 Li<d)}.

If A runs through a certain increasing cofinal subsequence of ., we write A 7S,
and if 4 runs through the sequence %, we write A1 8.

We fix a certain Radon measure ¢ on (S, &) being atomless in the sense that
a({x})=0 for all xeS. The usual choice is =4 where A denotes the Lebesgue
measure, at least in all cases where translation invariance is needed. Another
standard choice is ¢ =e?1, where the measurable function x— ¢(x) has the inter-
pretation of a chemical potential. If we choose 6(S\S;)=0 for some S,e.% then
the actual particle space is S, (for barometric problems, e.g., let S, be the upper
halfspace). Sometimes we shall need the following condition on ¢

(S)  lim a(A(k+1))/a(4(k) =1

which is trivially satisfied if 6= A. Finally, we denote by ., the set of all Ae.¥
with 6(A4)>0.

1.2. The Configuration Space. We are interested in configurations w of in-
distinguishable particles in S which are locally finite, i.e., in every Ae.% there are
only finitely many particles. Thus we consider the configuration space

Q={wCS:wA)<w forall AeZ}
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where
o(A)=N(A)(w)=card {xeA:xew} (AeY).

The latter expression defines a so-called counting measure, i.e., an integer-valued
Radon measure on (S, %), such that w({x})=<1 for all xeS. Conversely, any such
counting measure defines a unique we£2. Hence we can represent a configuration
o equivalently in both ways, and notations as xew or [w(dx)f(x) are both
meaningful.

For any A%, N =0, let

Q%= {weQ:m(S\A)=0}
and
Qv={weQ:w(A)=N}, Q4 y=Q,ynQ].

Clearly, Q9 is isomorphic to the set of all locally finite subsets of A, and Q is
isomorphic to Qf x QY ;. If we® then w,=wnAeQf denotes the restriction
of wto A. If {, weQ then {w={uweQ is their union. In particular, if {={x} we
write wx instead of w{x}. 0 denotes the empty configuration.

1.3. Events in Q. If Ae Y let &, be the o-field in Q generated by the cylindric
sets @y, , k=0, AD Ve, and F =F;. Clearly, # =F,® F;, 4. It is well-known
that there is a Polish topology on  such that & is the Borel field with respect
to this topology, see [10], e.g. An essential role plays the tail field

Fo=1) Fsia.

Ade¥

If Ae & the o-field 4, of A-symmetric events is the o-field generated by the events
QuvnA  (N20,4eFg ),
and the o-field of symmetric events is

Y= () 9%,.
Ae?P

14. States on Q. A probability measure u on (€, %) is called a state or a simple
point process. We.are concerned only with states being locally absolutely contin-
uous with respect to the Poisson point process n with intensity measure o. We
write u<v if u is absolutely continuous w.r. to v, and local absolute continuity
means that u<v on &, for all A€.%. The Poisson point process & with intensity
measure o is defined by

7|4 N:e"’(/‘)—l— oldxy)...oldxy) [] 14x)
' N! 1<iEN

where N 20 and Ae #. Note that the right hand side is carried by Q9 y since o is
atomless. An essential property of = is that if A% is the disjoint union of 4,
and A, then #|Qf =n|Q%, ®n|QY,, that is, #, and #, are independent under =.

1.5. The Particle Interaction. An interaction potential is a measurable function
U on Q,=u{Q5:4e £} such that U(0)=0 and
(Ul) Stability. There is a constant B=0 such that U(w)= — Bw(S) for all weQ,.
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(U2) Finiteness. There is a norm ||.]] on S such that {xeS:||x[| <1} is convex,
and a constant >0 such that U(w)< oo if and only if we®, where Q,=
{weQ:|x—y|=rif x,yvew and x=y}.

Clearly, Q,=Q. If >0 then U is called a hard core potential, and the particles
are imagined to have the shape of a r/2—{.|-ball

If r=0 then we shall need for our main result that U is of finite range. For the
sake of simplicity, we shall suppose this property throughout the paper, ie.,

(U3) Finite Range. There is a constant R >0 such that for all weQ and all Ae ¥
such that wg ,€9, U(w,)— Ulw,y4)=Ulwz)— Ulw,,) whenever ACAe .

Here A=4004, and é4 is the set of all xeS™\ A whose Euclidean distance

from A is not greater than R.

Mostly we are concerned with pair potentials. U is called a pair potential if
there is a measurable symmetric function @ on S x S such that for all weQ,

Uw)=7 2  Px,y).
X, YE@,XFy

@ is assumed to have the properties
(P1) &(,)= — C for some constant C=0.

(P2) Foralla>r,sup |  o(dx)®,(x,y)< o0
yeS |lx—yllza

where @, = max(®, 0). Our main result shall be proved for the following four

types of potentials.

(PP) Positive Pair Potentials. ® < o0, i.e., =0 in (U2), and C=0 in (P1), hence
B=0in (Ul).

(DP) Divergent Pair Potentials. < o0, i.e., ¥=0 in (U2), and there is a decreasing
function v on ]0, R] such that &(x, y)=w(]x —y)) for all x=y and p(r)ri— o
if r—03,

(CP) Hard Core Pair Potentials. r>0 in (U2), ie, &(x,y)=0c0 if and only if
[x—y|<r.

(WR) Widom-Rowlinson Type Potentials. There is a measure 7 on (S,.%) such
that 1 <cA for some ¢>0, and a set 0e Ke & such that

U(co)=7:(U (K+x)>— Y (K+x)=0
where K+ x={y+x:yeK}*.
It follows easily from (U3) that the potentials (PP), (CP), and (WR) are not
only stable but strongly stable in the sense that for all xeS and weQ,

Ux|w)= U(xa)(;}) - U(wa{x)) =z-B

for some constant B=0.

Sometimes we shall consider translationally invariant interactions. We shall
indicate this condition by writing (PP),, (DP),, (CP),, or (WR),, respectively.
Here 0 denotes the shift group (6,),.s acting on Q and defined by 6,.0={x+y:
yew}.

3 This together with (U 3) implies (U1), see 3.2.8 in [13].
4 U satisfies (U3) with R=diam K.
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2. Gibbs States

In this and the following section we let ¢=0 be an arbitrary atomless measure
on (S, %) and U be an interaction potential satisfying (U1), (U2), (U3).

For any z>0 and Ae.Z the Gibbs distribution in A with activity z and boundary
condition we® is the probability measure on (@, #,) defined by its Radon-
Nikodym density with respect to % ,:

—1,44) . .
PAY fi(c|w>={le(Z>tgrwizse exp[ —U(( 0,01 i w546,

where the grand canonical partition function

e"MZ \(z, 0) = e [ r(d{)z"? exp [~ U(L 404)]
© N
=Y 20 o(dx))...oldxy) exp[— U(x; ... xywp )] = e~ V@)
N=o N~
is finite due to (Ul). We include the case z=0 by setting
1 if {A)=0
0 -

Y A(C|w)—{0 otherwise .

The following consistency property is easily checked.

2 filllw) =f/z1(a€ACUS\A)jﬂ(d“)fj(“ACS\A‘w)
whenever ACAe L, ([, wefd.

If u is a measure on (@2, ), define the measure i on (Q x Q, F ® F) carried
by the diagonal by

MAXxB)=uAnB) (A, Be%F)
or, equivalently,
(2.3) ﬂ(C):u[weQ:(w, weC] (CeZ QF).

(2.4) Definition. A state u is called a Gibbs state for the interaction U and the
activity zz0 if u(Q,)=1 and for any Ac ¥,

dfi/d(n @ WIF 4 @ Fs\ 4(, )= fi({lw) for n@pu—aa(l o)

or, equivalently, for any Ae F#
2.5) plAFg = nd)fiC.)  p-as.
A

Of course, this definition of Gibbs states is nothing else than that by the so-
called DLR-equations.

We denote by ®(z) the convex set of all Gibbs states for z and U and by ex 6(z)
the set of all extremal points of G(z).

(2.6) Remark. ®(0)= {¢,} where ¢, is the unit mass on the empty configuration
0. If U is of the form (PP),, (DP),, (CP),, or (WR), then ®(z)+# for any z>0.

Proof. The first statement is trivial. For the existence in the cases (CP), and
(DP), see [3, 14, 12]. The cases (WR), and (PP), can be handled by the methods

in[12]. O
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(2.7) Theorem. If G(2)+0 then ex®(z)+0. uc®(z) is extremal in ®(2) if and
only if u(A)=0 or 1 for any Ae F . Any pe ®(z) has a unique representation

p= [ vP*dv)

ex®(z)
by a probability measure P* on ex ®(z).

Proof. Let ®'(z) be the set of all states u with property (2.5). Since €2 is a Polish
space and (2.5) defines a system of probability kernels 11, from (2, %5 ,) to
(Q, F,), Ac L, which is consistent according to (2.2), we can apply the Martin-
Dynkin boundary construction in [5] leading to the results stated in the theorem
with ®(z) replaced by &'(z). Thus it is enough to show that ex G(z)=ex ®'(z)" R
where R is the set of all states carried by €2,. But this is obvious. [

fVcdeZ let

2.8) fEallo) = [n(do) f3(Cvers o)

be the probability density with respect to z of the restriction to % of the Gibbs
distribution in 4 with boundary condition .

(2.9) Corollary. If pcex®(z) then for any sequence A1S in ¥, and any Ve ¥,
the following is true: For p—a.a.weQ the sequence fi,(|w) converges m—a.s.
and in LY(n)-norm to du/dn|Fy.

In other words: If A1S then for y—a.a.w the Gibbs distribution in 4 with
boundary condition w converges to u in the sense of the total variation norm on
any %, Ve .

Proof. Observe first that for any ue ®(z)

djd(rn @ W Fy ® F sy 4L, )= fr dllw)as.

Thus the martingale convergence theorem asserts that if 4 7S then f7 4(.|.) converges
a.s. and in L'-norm with respect to t®u to a function fy(|.) being measurable

with respect to #y, = (| Fy Q@ Fs\ 4
Ae ¥
Now let geex ®(z). Then

210) Fy ,=F,Q{Q, 0} n@u—as.

Indeed, trivially we have '>’. Conversely, if Ae#, , consider the cuts A,=
{weQ:({,w)eA}. By Fubini’s theorem, A,e#,, and the function {—u(4,) is
F,-measurable and takes only the values 0 or 1 according to (2.7). Thus again by
Fubini’s theorem it is seen that the set

B={({, w):(A)=1}e 7, ® {Q, B}

n® p-almost surely coincides with A.

Now we conclude from (2.10) that there is a Z,-measurable function f}(.)
such that f,(|w)= f,({) for n®@u—a.a.({, w), and for any Ae %, we have

| n@d) fQ)=lim | (x@u)dl, do) f7 4(l)= (A x Q)= u(A4)

A 4T85 AxQ

Hence fy, =du/dr|%,.
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Finally, it follows from Fubini’s theorem that for p —a.a. n[ f§ (lw)— fr1=1,
and, since all these functions of { are probability densities, the a.s. convergence
implies norm convergence, see the proof of Korollar 20.5 in [1], eg. [

Let us conclude this section with a remark concerning the shift invariant case.
Let =2 and U(w)=U(0,w) for all weQ and xeS. Then the densities f3(.|.) are
also shift invariant, and we can conclude from [5] that Theorem (2.7) remains
valid if ®(z2) is replaced by the set G4(z) of all translationally invariant Gibbs states
and & by the o-field of invariant sets. Thus the extreme points of B4(z) are
ergodic and limits of averaged Gibbs distributions in bounded volumes.

3. A Differential Characterization of Gibbs States

It is known that states for lattice systems are Gibbsian as soon as their one-point
conditional probabilities are given by the Gibbs distributions [2]. Here we prove
a similar result for continuum Gibbs states.

Let pt be a state. p is said to be a point process of first order if its intensity measure

oD)=[udw)w(D)  (DeF)

exists, i.e., g(Dy< o if De #. Suppose that p is of first order. Then the Campbell
measure U of u is the measure on (S x Q, ¥ ® %) defined by

te(Dx A)=[ p(dw)w(D) (De¥, AeF).
)

By desintegration of u. one obtains (see [8]) that for any xeS there is a prob-
ability measure y, on (2, #) such that

uoDx A= oldxjulA) (DS, A F)

i, has to be imagined as the conditional probability with respect to g under the
condition that the site x is occupied. The following properties hold (see [8]):

(3.1) Forany geL(uc)
Jducg=§ uldw)fo(dx)glx, w)=[o(dx) | pdw)g(x, ®) .
(32) Forg—aa.xe§, ulwe: xen]=1.
In particular, these facts hold for = and its intensity measure o.
3.3)Lemma. Let Ve, and g be F,-measurable such that N(d)geL'(n)
for any Ae &. Then for c —a.a. xeS
[ {do)g(w)=r(dw)g(wx).

Proof. This is a simple computation, see also [10]. O
For any xeS§ define the measure u? carried by {weQ:x ¢ w} via

B4 [uidw)g(o)= uldo)glo{x})

where ¢ is any bounded # -measurable function. From (3.3) it is seen that for
oc—aa. x we have n0=r. Since Gibbs states are conceived as locally modified
Poisson states, we can hope that Gibbs states can be identified by observing how
the measures u° differ from p. Let U and ¢ be as in the preceding section.
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(3.5) Theorem. Let u be a state of first order. Then uc ®(z) if and only if
(@) u(@)=1,
(b) 0 <o with density r(),
() <y for g—a.a. xeS8,
(d) For c®@u—a.a. (x,»)

ze ~U(x|w)__ 0 lf T(X)ZO

r)(dul /du)w) if r(x)>0.

Proof . “only if”. (a) holds by definition. For (b) observe that for any Ve %, p<n

on F, with density f# = | u(dw) f#(.|w). Thus we see from (3.1) that for all De %,
DcCV,

o(D)= | n(dw) fi)eAD) = lf) o(dx) fm(dw) [ ().

For the proof of (c) and (d) choose some Ae.#, and A and B from a countable
generator of &, and Fy, 4, respectively, and let ADDe . Then

[ o Cp(ANB) = [ old) [ uldeo)Lsop(e\ (x})
= do) [ o(dx)1 (o (x})= | u(de) [n(d0) fi{lle) | L1\ fx))
u(dw) f o(dx) [ m(d0) f3(Cxl)14(0)

I m(d0)fi(lle)z | otdx) exp [~ UlxlCs51.4)]

Hdo)E 112§ o N F g, )

Il

I

;
e
)
}

o(dx) [ pdw)ze Ve

AnB
“if”. Fix some Ae ¥, and let g ,(0lw)=e"Du[Q, (|Fs\ 41(w). We show that

ga0lw)z*? exp[ — U(C 40500+ Ulw,y )] if Wg 4€€,
1 otherwise

gl lw)={

is a version of dji/d( n@,u)l/A®</*’S\A(C ). To this end it is enough to show by
induction on N that for any £ -measurable bounded function h carried by Q4 »
the equality

§ ndo)h(w) = | pldo)  n(d0)g ACl)h( 405, 4)

holds. For N =0 this is true by definition. If N >0 it suffices to consider functions
of the form h=1,1p where Be #;, , and

k
A= [ 2,

for some measurable partition A4;u...u4,=4 and integers N;=0 such that
Y N;=N.Say, N;>0. Let
j

k
A1=Q n -1 m Q4 n, -
j=2
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Then

1
] u(dw)lf1 wd)g allw)= | Hldo) - | o(dx) | m(d0)g s(llw)ze™ THawo

1 A4y Ay

1
= | oldx) N, ,J; l(de)l 4 (w)dus/dp(w)

= Af oldx) N% g pldo)l 4 (o \{x}h)= | uldo)l fw)o(4)/Ny=pAnB). O

If u is a shift invariant point process of first order then u =0 u, for g—a.a.
xe§, see [8], and p, is called the Palm measure of u. Furthermore, ¢ =cA for some
¢=0. Thus pe ®,z) if and only if either c=z=0 or ¢>0, u(Q)=1, ud <y, and

z _
dud/du="e V0D,

4. Canonical Gibbs States

The canonical Gibbs states are defined by a very similar procedure as the Gibbs
states, but now the grand canonical Gibbs distributions are replaced by the
canonical ones. Let ¢ and U be as in Section 2.

If Ae #, the canonical Gibbs distribution in A with boundary condition we§2
and particle number N =0 is the probability measure on (£, #,) whose Radon-
Nikodym density with respect to n|%, is

Zno)” Yexp[—U({4054)] if {A)=N and
nlaeQ, vy 05 4€2,]1>0
@1 [an(lo)={ /2@y if {M)=N and
nlaeQ, yia 05 ,€2,1=0
0 otherwise

where the canonical partition function is given by

e NZ  w)=e"P | n(dl)exp[— UL 40,4)]

Qa,n

=Ni a(dx,)...o(dxy) exp[ — Ulx;...xym;,)] .

The canonical Gibbs densities satisfy the following consistency properties.
(4.2) Remark. (a) Whenever ACd4e?, a(A)>0, we, and N=0 then for

n—a.a. e

fA,N(C|CU)=fA,z;(A)(C|CACUS\A) o f Tc(d(x)fA,N(o‘ACS\Alw) .
{b) For any Ae¥,, we, and z=0
fillo)=f 4 yalw) | 7ldo)filolo).

24,504
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Proof. (b) is easy. In order to prove (a) it suffices to consider the case {{4)=N.
IfnfoeQ, yo w5 4€2,]=0 then by Fubini’s theorem for 7 —a.a. {eQ, y we have
B4 1ay:Bals a5 4€2,1=0 so that the assertion reduces to

n(QA,C(A))f 17T(QA,g(A))/ﬂ:(QA,zv) = 773(941,1\0* L

Now let nlaeQ, y:oa w5 4€2,]>0 and fix some n=<N and COEQS\A!N_,,. If
n[feQy,:f 4L ws 4€2,1=0 then the integral on the right hand side vanishes,
and so does the left hand side for 7—a.a. { such that {,, ={° In the remaining
case all terms are defined by the potentials, and the consistency follows from
(U3). O

Note that for any A€.%#, the function
(& @)= f 4, 00a(Ele)

is measurable with respect to #,Q% .
(4.3) Definition. A state u on (£, %) is called a canonical Gibbs state for the
interaction U if u(€2,)=1 and for all Ae ¥,

dfi/d(n @ WIF 4 @G AL, 0)=f 4 0l as.

The convex set of all canonical Gibbs states with fixed interaction U is denoted
by €. Since %, is generated by the sets of the form Q, ynB where N=0 and
Be F, 4, a state u belongs to € if and only if u(Q,)=1 and for all 4e.#,, N=0,
BeFg 4 and AeF,

(44) i mdl) | pldw)f s Clo)=mANBNQ, y).

BrQRa,~
In particular, pu<n on &, with density
4.3)  fAQ=]mdo) f 4,0uflw) .

Since ®(0)= {¢,}, the following proposition yields as a by-product that €4,
moreover, that ex® 4.

(4.6) Proposition. For all z=0, ue®(z) if and only if ue® and for all Ac &,
Nz0,and p—a.a.w

(N+DulQ4 54 1 Fsiad@)= | uldlFs )| o(dx)ze” THtaven

Qa, N A

Proof. First, let ne ®(z) and A€ .Z,. Then for any Ae #,, Be F5, 4, and N=0
we obtain from (4.2) (b)

[nd)) | wdo)fsulle)

A BnQ4, N

= | n(dé)éfu(dw)fA,N(Clw) [ ndo) fi(ele)

AnRa, N Q24,N
=[((ANnQ, 1) x B)=(ANBNQ, 1) .

Hence pe@. The second property is trivial if z=0 and easily verified if z>0.
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Assume now that pe@ has the stated property. In order to show that ue ®(z)
it suffices to prove that if z>0 then for any Ae ¥, N=0, and 1@ pu—a.a. ({, w)e
2, wx 8

e Vs f({]oo) = f4(0])z e~ Viaoar
where
Sillw)=dijd(n @ | F 4, @ F s\ 4L, )
:/J[QA,g(A)|'975\A](w)fA,g(A)(Clw) .

This is done by induction on N. N =0 holds by definition. For the step N—>N +1
observe that a.s. on Q, ., x Q, the left hand side equals

Faniallo) s | mldoje™U@s fialw) | afdx)e™V0Taven
’ N+lg;, 4
=010z f 4 4 L) Z g 17+ 1(00)
_ X(O|(,U)ZN+ le~U(§Aw§A) .
The last equality holds as. since if wg, €@, then Z, . ,(w)=0 if and only if
Ul jw,)=o0forn—a.a. {eQ, vy, ifandonlyifn[{eQ, y,,:{ 05 4€Q,]=0. I
(4.7) Theorem. pecQ is extremal in € if and only if W(A)=0or 1 for any Ac¥ .

Any ue® has a unique representation

p= [ vP"dv)

ex®
by a probability measure P* on exC.

Proof. This statement fits into the setting of [5] just as Theorem (2.7). The
probability kernels P (w, A) from (2, % ) to (2, #) are defined by

P (0, AnB)=14(w) f ”(dC)fA,w(A)(wa) (AeF,, Be 973\/1)
4
and if ACAe &, o(A)>0, it is easy to deduce from (4.2) (a) the consistency property
P,P,=P, or, more explicitly,

Py, AnBAC)= | P(w, d)P ((, AnBNC)

whenever weQ, Ae#,, BeF, 4, CeFy 4 Thus (4.7) follows from [5] just as
27 O™
IfVcae¥, let

(4.8) fVA,w(A)(CICU) =j7f(do‘)fa,wm)(€v0‘sw|w)

be the probability density with respect to n|#, of the restriction to %, of the
canonical Gibbs distribution in A with boundary condition w and particle number
a(4).

(4.9) Corollary. If pcexQ then for any sequence A1S in £, and any Ve ¥,
the following statement holds: For n—a.a. o the sequence fy 4 ,4(l®) converges
to fE=du/dn|Fy n—a.s. and in L' (m)-norm.
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In other words: Any extremal canonical Gibbs state is the limit of canonical
Gibbs distributions in 4 with pure boundary condition w and particle number
w(A) in the sense of the total variation norm on any %, Ve.%. w can be chosen
from a set of measure one.

Proof. Obviously,

fVA,w(A)(C'w) =dji/d(r ® p|Fy, @ Y 4, )

so that the same arguments apply as in the proof of (2.9). [

In the shift invariant case one obtains from [5] that the extremal points of
the set €, of all shift invariant canonical Gibbs states are just the ergodic states
in €,, and these are limits of averaged canonical Gibbs distributions in bounded
volumes.

5. The Activity Indicating Function

Let ¢ be an atomless Radon measure on (S,.%) and U an interaction energy

satisfying the following condition.,

(A) o is infinite®, and one of the following assumptions holds.

(A1) Either U=0 or U is of type (WR). In the latter case, o <cA for some c>0.

(A2) U has the form (PP) or (DP), and ¢ has property (S) and satisfies the inequality
o =cl for some ¢ >0,

(A3) U is given by (CP), and there is a nice subset Sy of S (e.g., Sq=S or a half-
space) and constants ¢, ¢ >0 such that ¢ A<c<cA on Sy and o(S\Sy)=0°.

Furthermore, we introduce a certain temperedness condition for states’. Let

Hw)=lim supw(4)/a(A)
ats

be the (upper) particle density of w, t,=o00, and for »>0 t,=sup {t{w):weQ,,
o(SN\Sy)=0}. Define

T={we®, tlw)<t,}

where r is chosen according to property (U2). We call a state tempered and write
pueTif y(T)=1.

We are going to identify any ue €T as a mixture of Gibbs states. Obviously,
we have

(5.1) Remark. ex(€NT)=(exC)nZT.

If U=0 then €CZ, see [11]. For any {,weQ and Ve.¥ let

ZA\V,w(A)—g(V)— I(CV(US\V)

lim sup
A48 A\V,w(A)—{(V)(CVwS\V)

if (€€, and eventually wg, 4€€, w(4)>{(V) and the
denominator >0

(52) zp({lw)=

0 otherwise

See [7] for a discussion why this is necessary.
This implies condition (8S).

7 A similar condition has been used in [14].
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and

(5.3) z(w)=1ir21issupzl,(w\co)e[0, 0] .

Since U has finite range, the function z(.) is measurable with respect to the o-field
generated by &, and the set 2,. We shall see that for any tempered canonical
Gibbs state the activity distribution is given by the distribution of z(.). In view
of the Legendre relation between the canonical and the grand canonical pressure
the following remark illustrates why z(.) is a good candidate for the activity.

(5.4) Remark. Let =4 and U =0 or of type (DP), or (CP),. Then for any
we Twe have

0
—logz(w)= % g(tlw), U)

where g(g, U) is the specific Helmholtz free energy per volume. In particular,
z()|T is shift invariant.

Proof. A theorem by Dobrushin and Minlos [4] asserts that in the cases
(DP), and (CP), for any Ve &

Zov, 0 no) _)ﬁ
tog Zyy, o) -10) 0o 4. U)

whenever A runs through a subsequence of % such that w(4)/4(4)—¢. Actually,

they do not include a boundary condition, but to do so is no problem in the case

(CP),, and for the case (DP), cf. Lemma (6.6) below. If U =0, this result is an easy

computation. Now the remark follows from the concavity of the function g(,U). [
Sections 6 and 7 are devoted to the proof of the following key result.

(5.5) Proposition. Let ncex®@nI. Then there is an activity ze [0, cof such that
ulz()=z1=1 and peex®(z)nI.

Now the same argument as in [7] shows
(5.6) Theorem. exCnIT= (] exG(z)nT.

0£z=2w

If U=0 we can forget about the temperedness, and € is the set of all states
with the property that if you know that N particles are in some Ae.¥, then these
particles are independently distributed according to o(.|4). Furthermore, G(z)
then consists just of the Poisson point process with intensity measure zg. Thus
Theorem (5.6) yields a characterization of the mixed Poisson point processes for o
by the property defining €. This is a continuum analogue of de Finetti’s theorem.

A convenient special formulation of Theorem (5.6) is given in

(5.7) Remark. If ®(z)nT = {v*} for all z=0 then any ue€~Z has a representa-
tion

p= f vPdz)

[0, 00]

where P* is the distribution of z(.) under pu.

As in [7] now one derives the following characterization of tempered Gibbs
states in the class of tempered canonical Gibbs states.
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(5.8) Theorem. For any z=0, ue ®z)nI if and only if ne@®@nI and pfz()=
z]=1.

Theorem (5.8) expresses in a certain sense the equivalence of ensembles.
This becomes more clear in part (a) of the following corollary concerning the
shift invariant case.

(5.9) Corollary.(a) In the situation of remark (5.4) the following statement holds

Jor any zz20:ue®(z)nT if and only if pue® and a%g(t(.), U)=—logz p—a.s.

(b) Whenever z()|T is shift invariant, in particular, if the statement of (5.4) is
valid, we have

exCnT= | exByz)nT.
0 w

=z

lin

Proof. (a) follows from (5.8) and (5.4) since gg— glo, U)> — o only if p <t,.

(b) follows from (5.8) because any peex@, is ergodic. [
It is an interesting consequence of Theorem (5.6) that tempered canonical
Gibbs states are Gibbs states in a certain sense.

(5.10) Proposition. A state ueT belongs to € if and only if for all Ac Z,
dfi/d(n @ W F 1 @ Fsy 4L, 0) =71 Clow) as.

Proof. Denote by D the convex set of all states u with this property. Then
DCC by the same argument as in the first part of the proof of (4.6). On the other
hand, it follows from (5.5) that exEnT CD, hence by (4.7) €ENTCD. [

As in [7] we now obtain

(5.11) Theorem. For any ucCn, 4 =%, u—a.s.

6. Some Estimates

In this section we prepare the proof of Proposition (5.5) by some estimates most
of which are modifications of results of Dobrushin and Minlos [4]*. We shall
assume throughout that condition (A) is satisfied.

We consider the non-normalized partition {unctions

(6.1) Qynw)=N! ea(A)ZA,N(w)
= jNo(dxl)...a(de) exp[ — U(x, ... xx0,4)]

where Ae ¥, ws 4€£,,and N =0.

8 QOur estimates here probably are not the best possible. An extension to a larger class of inter-
actions automatically extends the range of validity of Theorem (5.6).
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(6.2) Lemma. For all t<t, there is a constant K(t)>0 such that for any sequence
(Nhs 1 with the property hI,P_,SOEp N jo(A(k) £t, any sequence (wy),z, in Q,, all

Ve, and sufficiently large A,= A(k)\V
Qs 1000/ Qs v (0) Z K(t) o(4,) .

Proof. Just as in [4] we have only to show that if k is large, {e ngka, {oog 4, €€,
and {(S\S;)=0

(63) | oldx)expl — U(x|{cps,)] 2 K(D)o(4))

Ak

for some K(t)>0. In case (Al) this is trivial since then U(x].)<0.
Consider now the case (A3). Choose some § <t,—t. Write 4 instead of 4,1 S,
and let

A= {xed: |x—y||>r forall ye(}
and M=maxN(4)(Q,)— N,. Then there is some xeQ ,, <, such that
A(A(c»gﬂ(u {yed: lly—xtér}>.

XEQ

Hence, if A is large enough,
a(A(Q)/e(d)=cv,kMo(A) = c'v,kd=4D

where v,=A[yeS: |y|=r] and « is the minimal fraction of this volume within a
large cube containing the origin. Now choose a>r so small that (¢ 4 d)c(v,—v,) <D
and k so large that N,/o(4)<t-+3 and o((ANA([k— R])w V)< Do(4). Then the

set

AL)={xeA([k—RI\V: |x—yll=a forall yel}

satisfies the inequality
(6.4) o(4,()22Do(4).
Furthermore, we have due to (P2), (P1), and (U3)
J od)Uxosa ISy, | od)l®l, y)

4a(?) vel llx—yllza
SN K, Z0(4)(t+8) K,=Ea(4).
Thus we obtain from (6.4) and Cebyshev’s inequality
o[xed: Ux|{ws )< E/D]
2 0(4,(0)) — o [xe 4,0): Ux|{wg,4,) > E/D] = Do (4)

proving (6.3) with K(1)=D exp[— E/D].
In the case (A2) the same argument simplifies since we can choose D=1/4. []

(6.5) Corollary. For any we T and (e,

sup z,({|w)< oo .
Ve¥
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Proof. We can assume that (e Q, and w(S)> (V) for any Ve 2. Fix some V
and let N, =max(0, w(4(k))—{(V)—1) and w, = {wg 44 Then

lim sup N,/o(4(k))=t{w) <t,,
k— oo
and

=Hw)/K(t(w). O

(6.6) Lemma. If U is of type (DP) then for all weT and v>0 there are con-
stants D < co, 8 <0 such that for any cube A with A(A)=v, all |Z0, and sufficiently
large Ae &

j n(d{) fA,wm(Clw) ZDe o s

Nzl

Proof. Essentially this is Theorem 3 in [4]. We indicate some modifications
of the proof.

1. Let C be as in (P1) and H=C28*124R + 1)’ Determine some aec]0, 1[
such that 1/g is an integer and

Yr)r'=8HdY? if r<adV?.
Then if x, y belong to a cube of vertex length a,

®(x, y) =8 H/v

where v=a“ is the volume of the cube.
2. Divide S in cubic cells of vertex length a. We denote cells as well as their

center by y. Let I" be the set of cells in 4. If x=(x,,..., x,)eS let |x|= Joax, ;).
Define o
D(y,y)= inf &_(x,x).
xey,x’'ey

Then since ¢ has range R we have for any cell y

Y Dy, y)2" Mz —Hfv.
2

3. Choose Aerl. Then ly= sup w(y)2~ " "4 < co. Indeed, suppose that there
v
is a sequence y; such that [y,/Too and w(y,)2~ "= 1. Let k; be the smallest integer
2 (1+|p;l). Then
a(A(k)/o(A(k;)) = o(y)/(c HAk)) = % 2M1(2h) 4= 00

in contradiction to the assumption t(w)< co.
4. Fix some I=1, For any GCI let (G)= ) y, /(G)={neZ n(y)=12"-11}
and yeG

A(G,n)={LeQ] o {)=n() if yeGly<i2"™4 if y¢G}.
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Then the event {N(A)=I[} is the disjoint union of the events A(G,n), AcGCI,
ne A(G).
5. In order to estimate

©7) | mdD) famullw)

A(G.n)

we write for any (e yuy With {5 4= wg, 4

Ulpz Y UG+ ULae)+ Y ) em.y).

yeG yeG,y'cd

The last sum has the lower bound

——ZC(v

veG

This follows from 2. and 3. by similar estimates as in [4]. Combined with 1.
and Lemma (6.2) we then obtain by the arguments in [4] for (6.7) an upper bound
of the form

exp {—5 Y n(y)2J

veG

where §>0. This proves the Lemma via the same reasoning as in [4]. [
Now we show that extremal tempered canonical Gibbs states are of first
order. It is clear that extremality is necessary. As an example take the canonical

Gibbs state | m,v(dz) for the potential U=0 where v is a probability measure with
¢]

infinite expectation and 7, the Poisson state with intensity measure zo.

(6.8) Proposition. Any pcex@nT is of first order, ie., its intensity measure
o= [ wdw)a(4) (1e2)
is finite if Ac %.

Proof. The assertion is trivial in the case (A3). Consider now the cases (Al)
and (A2) (PP) in which the potential is strongly stable. Then for any Ae %, suf-
ficiently large Ae ¥, and we T we have with the abbreviation N =w(4)

f m(d{){(A) fA,w(A)(gl w)

—(e_“(A)/N!) j o(dx,)...o(dxy) Z A(x)fAN 1 Xylo)

AN =

z

=Qun@) 'N ANfﬂ o(dxy)...o(dxy - 1) exp[ — U(xy... Xy - 1054)]

- [ o(dx) exp[ — U(x|xy... Xy -1 0a4)]
A

<o(A)e’N Qan-1(@)/Q 4 nw)
< o(A) e K(t(w)) ! o(4)/o(4)
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the last inequality being a consequence of (6.2). In the case (A2) (DP) it follows from
(6.6) that

—- 812
e <.

M8

§ 2dDUA) f4 ol |)SD

=1

I

Now we see from (4.9) and Fatou’s lemma that for some we T
§ @)= § n(d){(4) lim 14 oaClo)
< limy inf | 7(d0) {(A) £ oiaClo) < 0. O

7. Investigation of Extremal Tempered Canonical Gibbs States

Suppose that condition (A) holds, and fix some peex€nIT. Consider its intensity
measure g on (S, &) which is a Radon measure due to (6.8). Furthermore, remind
that for any Ve %, u<n on %, with density (4.5). Then it is seen just as in (3.5)
that p<o. We denote the density which is the first correlation function of u
by r(.). In order to be complete and to simplify the reasoning below we show

(7.1) Proposition. Either 9=0 or p~0.
Proof. Suppose that o(S)>0. Then ljg WA, o)=plow: o(S)=1]=2a>0.

Choose 4, such that if 4D 4, then u(\Q, o)=a. Then in the case (A3) the tem-
peredness of u guarantees that there is some 6>0 and 4, > 4, such that u[N(4)/
o(A)Z(t,—9)(1 =) for all 4,CAeL]=1~aj2. Thus we can find arbitrarily
large Ae.# such that p(A,)=a/2 >0, where

Ay=(Q\Q4 )N {N()=(1 - 0) max N(AnS,) (2,)}e %, .
Now for any De &, DC A4 we have
UIND)>012 | wdw) | ndD) fywmlClo).

A {N(D)> 0)

But for sufficiently large A4 and we A, the w(A4) hard balls in A4 can move rather
freely, that is, if o(D)>0 at least one of them will be able to occupy D, i.e., the inner
integral on the right is positive. Since p(A4 ;) > 0 this proves that g(D) > 0. In the cases
(A1) and (A2) the integral on the right is trivially positive for all A24,. O

If p=0 then pu=¢,. Furthermore, z(.)=0 ¢, —a.s. Thus Proposition (5.5) is
true in this case. Hence we shall suppose now that p=ke,. Then 0<r(x)< oo
for c—a.a.xeS.

(7.2) Proposition. pulwef2:w(S)=w]=1.

Proof. Since {N(S)=o0}ec %, this event has measure 0 or 1. Assume that
U[N(S)< oo]=1. Then there is some integer N such that uf N(S)=N]=1 because
these events are symmetric, too. p=g, implies N=1. Fix some Ve.?,. Then
obviously u[N(V)>N]=0. Fix some w for which w(S)=N and lﬂrsl Jraoaf-l0)=

f# m—as. In particular, f,(0)= ldiirS)fVA,w(A)(O]a)). Thus for any 0<n<N and
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n—a.a. (efdy y_, we have
JHO) S = lim f4 nO10)/ fra, w(£10)

f G(dxl)'~-O.(dXN)e_U(xL..xN)

n! ~
= " lim ¥\
N1 s f o(dx,)...o(dx,)e Vx>
(a\n
n! . B o
= N1 inf V-V lim inf 0.1, x(0)/Q.s1yn(0)
CUS) =N —n,u(S)=n,acf, A4S

The infimum is positive, and according to (6.2) the liminf is infinite. Hence
£=0a.s. on {N(V)>0} for any ¥ and thereby u=¢,. [

In order to show that ue ®(z) for some z>0 we intend to apply Theorem (3.5).
Thus we have to identify the function z(.)e U™l/¥(x) as the Radon-Nikodym
derivative du®/du.

Fix some Ae.¥,.z,(.].) is defined by (5.2).

(7.3) Lemma. Let Veb?(,, VoA
(a) For c®@mn@u-almost all (x, {,w)eAx QxR

JElx)=zp(llo)exp[ - Ux|{p)]  fHD).
{b) For @ u-almost all (x, w)e A x Q
THwxX)/ fH@)=zy(|w)e T

Proof. “(a)” Observe that due to (4.9), (6.5), and (7.2) the right-hand side for
all xeA and n®u-a.a. ({, w)eQ x T is the limit of

Z sy o -1 -1Er0sy) -
W, o(d) —L(V) SUZ e Ut f ()
Z 4w o -0 lr®s )

if {eQ, and vanishes otherwise. But if we T then for sufficiently large 4 the first
case in (4.1) occurs, and if ADV D A then there is no interaction between A and
A\V. Thus the expression above equals

v aollx]w)
for large 4 and x¢{ which happens for 7—a.a. {. But this expression converges
o®@n®@u-almost surely to the lefthand side of (a). Indeed, from (3.3) and Fubini’s
theorem we deduce

§ oldx)n@ul(C, @) fir s wiaXl0)— fH(EX)]

A

= /flff(dx) f wdw) nx[fVA,w(A)(' fw)— f¥]

= [ uldw) f n(d) Lz, ariion-rtf O LA =0(A).

“(b)” Since f<n@u on F,®%, by definition of canonical Gibbs states, we may
replace in (a) n®@u by [ But due to (2.3) this is nothing else than (b). Note that
fF>0 uy—as. O
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(7.4) Lemma. Let Ve #,, V> A.Then for 6—a.a. xe A < on %y with density
o =r(x) "' z({|w) exp[— U(x|{y)]
where we T'is a fixed configuration.

Proof. For all De &, DCV, and all 4 belonging to a countable generator of %,
we obtain from (3.1) and (3.3)

lf) a(dx)r(x) ui(A)= lf) o(dx) § pdO 1L\ {x})
= [ m(d)) IIJ {dx) LA\ S0 = g) a(dx) i md{) fi(Cx) .

Thus for ¢ —a.a. x we have ul<n on £, with density f%({x)/r(x). But (6.5) and
(7.3) (a) imply that f#((x)=0 for n—a.a. (e { f#=0}. This proves that u’ <y on %,
with density fH({x)/(fH(O)r(x)). Now apply again (7.3) (a) and the fact that
wh=1 1

The proof of Proposition (5.5) is completed by (3.5), (7.1), and

(7.5) Proposition. For 6 —a.a. xe 8, p° <u with density
dpz/dp=r(x)" "z 7
where the constant z>0 is determined by the property u[z(.)=z]=1.

Proof. We have to extend the local absolute continuity established in (7.4)
to a global one. A simple argument (see [9], Lemma 2.1) shows that a sufficient
condition is

: 4] Ii o_
11mVisSup du;/dulF, <o u;—as.
Thus we have to show that for any given A%, and ¢ —a.a.xeA
: 0 0
lml}issup fep <O uy—as.
Note that for c—a.a. xe A p2[{eQ:{xeQ,]=1 since
oAM= [ pdwyo(d)= | odx) | uid)1a,(Cx).
2 A

Thus for uf —a.a. { the factor exp[ — U(x|{)] is well-defined and finite and equals
exp[ — U(x|{y)] if VDA, Thus it follows from (6.5) that u°<u for c—a.a. xeS.

Now recall (7.4) and (7.3) (b) and use the martingale convergence theorem in
order to see that

—U(x|w)

(dug/du) (w)= ll}gls r(x) " zy(w|w)e
=1(x)" L z{w)e” VI

for p—a.a. we Q. But now (4.7)implies that z(.)=z p—a.s. for some z=0. But z=0
would imply that u=¢g,. [



Canonical Gibbs States 51

References

oW N =

~

9.
10.
11.

12.
13.
14.
15.

16.

. Bauer, H.: Wahrscheinlichkeitstheorie und Grundziige der MaBtheorie. Berlin: de Gruyter 1968
. Dobrushin,R.L.: Theory Probability Appl. 13, 197—224 (1968)

. Dobrushin,R.L.: Theor. math. Physics 4, 705—719 (1970)

. Dobrushin,R. L., Minlos,R. A.: Theory Probability Appl. 12, 535559 (1967)

. Follmer, H.: In: Seminaire de Probabilités IX, Lecture Notes in Mathematics 465, Berlin-Heidel-

berg-New York: Springer 1975

. Georgii,H.O.: Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 277—300 (1975)
. Georgii, H.O.: Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 331—341 (1976)

Krickeberg,K.: Fundamentos del analisis estadistico de procesos puntuales, Lecture Notes,
Santiago de Chile 1973

Liggett, Th.M.: Trans. Amer. Math. Soc. 179, 433—453 (1973)

Nguyen, X. X., Zessin, H.: Punktprozesse mit Wechselwirkung, Thesis, Bielefeld 1975

Nguyen, X.X., Zessin,H.: Martin-Dynkin boundary of mixed Poisson processes and phase
transition, preprint 1975

Preston,C.J.: Random fields, Lecture Notes, Oxford 1975

Ruelle, D.: Statistical Mechanics. New York-Amsterdam: Benjamin 1969

Ruelle, D.: Commun. math. Phys. 18, 127-—159 (1970)

Shiga, T.: Some problems related to Gibbs states, canonical Gibbs states and Markovian time
evolutions, preprint 1975

Widom, B., Rowlinson, J. S.: J. Chem. Phys. 52, 16701684 (1970)

Communicated by G. Gallavotti

Received December 13, 1975






