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A b s t r a c t  

Conditional equations have been studied for their use in the specification 
of abstract data types and as a computational paradigm that combines logic 
and function programming in a clean way. In this paper we examine different 
formulations of conditional equations as rewrite systems, compare their 
expressive power and give sufficient conditions for rewrite systems to have the 
"confluence" property. We then examine a restriction of these systems using 
a "decreasing" ordei~ng. With this restriction, most of the basic notions (like 
rewriting and computing normal forms) are decidable, the "critical pair" 
lemma holds, and some formulations preserve eanonicity. 

1. I n t r o d u c t i o n  

Conditional rewriting systems arise naturally in the algebraic specification of 
data  types and have been studied largely from this perspective [Remy-82, 
Kaplan-84,  Bergstra-Klop-82].  See also [Brand-Darrlnger-Joyner-78].  With  
differing restrictions on lef t -hand sides and conditions, useful results have been 
obtained about  the confluence of such systems. More recently, conditional rewrit- 
ing systems have been shown to provide a natural  computational  paradigm com- 
bining logic and functional programming [Dershowitz-Plaisted-85, Fribourg-85, 
Goguen-Meseguer-86].  A program is a set of conditional rules and a computation 
is the process of finding a substi tut ion that  makes two terms equal in the underly- 
ing equational theory. 
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pour la Formation de Chercheurs et l'Aide a la Recherche (Quebec) and the Natural Science and 
Engineering Research Council (Canada). 
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In this paper we study the theory of conditional rewrite systems. In Section 
2, we present various formulations of conditional equations as rewrite systems and 
compare their expressive power. We also examine the differing restrictions under 
which we can prove confluence of the various systems and the equivalence of these 
formulations to the underlying equational theory if they are canonical. In Section 
3, we identify a class of systems which are "decreasing". For these systems, the 
basic notions of rewriting are all decidable and the critical pair lemma holds as 
for unconditional systems. We show tha t  decreasing systems extend the classes of 
"simplifying" and "reductive" systems tha t  had been proposed earlier. 

2. Condi t ional  Equat ions  

A p o s i t i v e - c o n d i t i o n a l  equation is of the form 

s l=t l  A " " " A s n = t n :  s = t 

where n >  0 and the s i = t i are equations, containing universally quantified vari- 
ables. The " : "  may be thought  of as implication with s = t as the conclusion 
and t i = s i as the premises. In this paper, we consider only equa t iona l  conse- 
quences and proofs. Note that  equational logic lacks a "law of excluded middle".  
The relation between equational proofs and first-order ones is studied in 
[Dershowitz-Plaisted-87]. 

We define the one-step replacement relation ~ ~ and its reflexive-transitive 
closure ~ ~ as follows: If s l = t  1 A " " " A s n = t n  : s = t is a conditional equation, 
a is a substitution, u is a term, 7r is a position in u and t i a ~  ~ s i c  for 
i = 1, • • • ,n, then u[sa]r~--~ u [ ta ] r  where u [ s e ] r  denotes the term u with s e  as 
a subterm at position 7r and u [ t a ] r  is the term obtained by replacing s a  by ta .  , 
We write E J-- s = t if s ~ * t for a set E of positive-conditional equations. 

For example, using equations 

0 + y  = y 
x + v  = z :  s ( x ) + v  = 

we have s(O) + s(O),  , s(s(O)) since o + s(O). 

2.1. Condit ional  Rewrite  Systems 

Conditional rules are conditional equations with the equation in the conclu- 
sion oriented from left to right. A conditional rule is used to rewrite terms by 
replacing an instance of the lef t -hand side with the corresponding instance of the 
r ight -hand side (but not in the opposite direction) provided the conditions hold. 
A set of conditional rules is called a conditional rewrite system. Depending on 
what  criterion is used to check conditions different rewrite relations are obtained 
for any given system R (see below). Once a criterion is chosen, we can define the 
one-step rewrite relation --* and its reflexive-transitive closure --* as follows: 
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u [la]~ --~ u [ra]~ if  c : l --~ r is a rule, a is a subs t i tu t ion ,  u is a term,  ~r is a posi- 

t ion in u and  c a satisfies the  cr i ter ion.  

A t e r m  t is i r reduc ib le  (or in n o r m a l  fo rm)  if the re  is no t e r m  s such t h a t  
$ 

t ~ s.  W e  say t h a t  two t e rms  s and  t are j o i n a b l e ,  d e n o t e d  sJ, t ,  if s --~ v and 
$ 

t --~ v for  some t e r m  v. A rewri te  re la t ion  ~ is said to be n o e t h e r i a n  if the re  
is no infinite cha in  of  t e rms  t i , t 2 ,  • • • , tk ,  • • • such t h a t  t i ---* ti+ i for all i .  A 

rewri te  re la t ion  --* is said to  be c o n f l u e n t  i f  the  t e rms  u and v are jo inable  
$ $ 

wheneve r  t ---* u and  t ~ v. I t  is loca l ly  c o n f l u e n t  if the  t e rms  u and v are join-  
able wheneve r  t --* u and  t ~ v (in one step).  A rewri te  sys tem R is c a n o n i c a l  

if its rewri te  re la t ion  is bo th  noe the r i an  and confluent .  

T h e r e  are a fair  n u m b e r  of  different  ways  of  fo rmula t ing  condi t ional  equa- 

t ions as rewri te  rules: 

S e m i - E q u a t l o n a l  s y s t e m s  
Here  we fo rmu la t e  rules as s l = t  i A ' " " A s n = t n :  l ---* r ,  where  the condi- 

t ions are still expressed as equat ions.  T o  check if a condi t ion  holds we use 
* 

the  rules bidirect ional ly ,  as identi t ies,  and check if s i n  ~ ~ t i n .  

J o i n  systems 
Here  we express rules as s l ~ t  I A " " " A s n ~ t n :  l - +  r .  T h e  condit ions are 

now checked in the  rewri te  sys tem itself b y  checking if s i n  and t i n  are join-  

able. Note  the c i rcular i ty  in the  definit ion of --* . T h e  base case, of course, 
is when  uncondi t iona l  rules are  used or the  condi t ions uni fy  syntact ical ly .  
Th i s  defini t ion is the  one  mos t  of ten  used; see [Kaplan-84,  J o u a n n a u d -  
W a l d m a n n - 8 6 ,  D e r s h o w i t z - O k a d a - S i v a k u m a r - 8 7 ] .  

N o r m a l - J o l n  systems 
Here  rules are wr i t t en  s t  J, ! t i A • • " A sn~ "p tn: l --+ r.  This  is similar to jo in  

sys tems except  t ha t  s i n  and  t i n  are no t  on ly  joinable ,  b u t  also have a com- 

m o n  reduc t  t h a t  is i rreducible.  (A sufficient condi t ion for this is t h a t  the 
c o m m o n  reduc t  no t  con ta in  any  ins tance of  a l e f t - h a n d  side.) 

N o r m a l  systems 
A special f o rm  of  n o r m a l - j o i n  systems has all condi t ions  of  the  fo rm s i - ~  t i 

(meaning  t h a t  s i --~ t i and  t i is an i r reducible  ground te rm) .  

I n n e r - J o l n  s y s t e m s  
Here  rules are wr i t t en  s i ~  z t i A " " " A snJ, s t n :  I --+ r .  We  require t h a t  s in 

and  t in  are jo inable  by  i n n e r m o s t  r e w r i t i n g .  T h a t  is, in rewri t ing these 

te rms,  one applies a rule a t  some posi t ion only  if all p rope r  sub te rms  are 

a l r eady  in no rma l  form,  
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O u t e r - J o i n  s y s t e m s  
Here rules are writ ten slJ, ° t 1 A " " " A sn$ ° tn: I --* r. We require that  sin 

and t in  are joinable by outermost  rewriting. That  is, in rewriting these 
terms, one applies a rule at some position only if no rule can be used above 
(at a superterm). 

M e t a - C o n d i t i o n a l  sys tems  
Here we allow any (not necessarily recursively enumerable) predicate p in the 
conditions. For  example, we may  have conditions like s E S (for some term s 
and set S), x ~ x (x is already in normal form), or l > r (for some ordering 
>).  We write p : I --+r.  

Most of the formulations above have been considered by  different authors 
with slight variations. For example, Bergstra and Klop in [Bergstra-Klop-86] res- 
trict their at tention to systems which are l e f t - l i n e a r  (no lef t -hand side has more 
than one occurrence of any variable) and non-overlapping (no lef t-hand side 
unifies with a renamed non-variable subterm of another lef t -hand side or with a 
renamed proper subterm of itself). With  these restrictions on lef t -hand sides, 
they refer to semi-equational systems as of Type I ,  join systems as of Type H 
and normal systems as of Type I I I  n. They also prove that,  with these restrictions 
on lef t -hand sides, Type I and Type I I I  n systems are confluent. Me ta -  
conditional systems with membership conditions were proposed in [Toyama-87]. 

2.2. Sufficient Condi t ions  for Conf luence  

An interesting question to address is what  are the criteria under which each 
formulation is confluent. For  syntactic criteria we have to consider overlaps 
between lef t -hand sides of rules called "critical pairs" defined below. 

Let R be a rewrite system with rules c: I --+ r and p :  g --+ d renamed to 
share no variables. 

Defini t ion 1. If g unifies with a non-variable subterm of l at position k 
via a subst i tut ion a, then the conditional equation (e A p)a:  ra-- la[da]x , 

is a critical pair  of the two rules. 

A system is non--overlapping (or unambiguous) if it has no critical pairs. A 
critical pair c:  s = t is feasible if there is a substi tution a for which ca  ~ true.  
A critical pair c : s = t is joinable if for all feasible substi tutions a, there exists a 
term v such that  s a  ---* v and t a  - ~  v. A critical pair is an overlay if the two 
lef t -hand sides unify at the root. 

The depth of a rewrite is the depth of recursive evaluations of conditions 
needed to determine that  the matching substi tut ion is feasible. We define it for- 
mally for join systems. 
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Definit ion 2. The depth of an unconditional rewrite is 0; the depth of a 
rewrite using a conditional rule u$v: I ---* r and substitution a is one 
more than the maximum of the depths of the two derivations used to 

# 
show ua~va. The depth of a n -s tep  derivation t -+  s is the maximum of 
the depths of each of the n steps. 

We write t --* s if t --~ s and the depth of the rewrite step is no more than 

k. Similarly t --~ s wilt mean that  the maximum depth in that  derivation is at 
k 

most k. 

A critical pair between rules c: l --* r and p:  g --* d is shallow-joinable if 
for each feasible substitution a, la --~ ra, la ~ lo[da] then there exists a term 

i'n n 

v, r a  --* v and la[da] --~ v. That  is, the critical pair is joinable with the 
n 

corresponding depths preserved. In particular, critical pairs between 

unconditional rules should be joinable unconditionally. 

For example, the rules f ( x )  -.~ gl(x) and h(x)~c: f ( x )  --~ g2(x) overlap to 
yield a critical pair h(x)~c : gl(x) -= g2(x) (which is an also an overlay). If we also 
had a rule h(0) --* c, then we would have a feasible instance of this critical pair 
for the substitution x ~-+ 0. This instance would be shallow joinable, if for some 
term t, gl(0) ~ t *~"- g2(0) since / (0)  ---* gl(0) and f (0) - 7  g2(0). 

1 

For unconditional systems, the Critical Pair  Lemma (see [Knuth-Bendix-70]) 
states that  a system is locally confluent iff all its critical pairs are joinable. For 
conditional systems this is t rue only for some of the formulations above; in gen- 
eral, stronger restrictions are needed. By Newman's Lemma, a noetherian system 
is confluent iff it is locally confluent. We list below some sufficient conditions for 
the confluence of the various formulations. 

Semi -E qua t lo na l  sys tems 
Noetherian and critical pairs are joinable [proof straightforward]. 

Join systems 
Decreasing (see next section for definition) and critical pairs are joinable 
[Section 3]. 

Join systems 
Noetherian and all critical pairs are overlays and joinable [Dershowitz- 
Okada-Sivakumar-87] .  

N o r m a l  sys tems  
Noetherian, left-linear and critical pairs are shallow-joinable [Dershowitz- 
Okada-Sivakumar-87].  

Inner sys tems  
Noetherian and critical pairs are joinable. 
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2.3. Strength of R e w r i t e  systems 

Let E be a set of conditional equations. By E t - - s  = t, we mean that  
s ~ ~ t is provable in E.  Similarly, if R is a rewrite system (in any of the for- 
mulations), we use R ~- s~t, to mean that  s and t are jolnable using the rules in 
R. 

Definition 3. R and E have the same logical strength if 
E F- s = t iff R ~- sJ, t. Similarly, two rewrite systems R and R I have 
the same logical strength i f R  F--s~t iff R I~ - s~ t .  We say that  R is 
stronger than R l if any two terms joinable using R I are joinable using R, 
but  not the converse. 

Figure 1 depicts the relative strength of the various formulations. In the 
figure, A --* B, means that  A is stronger than B in general. Tha t  is, if we take a 
system of type B and just change the connective in conditions to convert to a sys- 
tem of type A (for example, s ~i t to s ~t to covert an inner-join to a join sys- 
tem), then we have that  what is provable in B is also provable in A. In particu- 
lar, if B is canonical then so is A. The converse is, of course, not  true in general. 

We now state and prove some of the equivalences and relationships between 
the various systems. 

Proposi t ion 1: If a join system is noetherian, then it is equivalent to the 
corresponding normal-join system (obtained by changing conditions of the form 
s~t to  s~Tt). 

Equational system 

Semi--Equational system 

Join system 

system 

~ Normal system 
(equivalent if ~on-linear) 

O u t e r - J o l n  system 

Inne r - Jo in  system 

F i g u r e  1 
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Proposition 2: We can convert a join system R to an equivalent normal system 
R t by  a conservative extension (using new function symbols) provided that  we 
allow the normal system to be non-left- l inear (have repeated variables in left-- 
hand sides). 

Proposition ~: Let R (with conditions of the form s~t) be a canonical 
(confluent and noetherian) join system R l the corresponding semi-equational sys- 
tems (change conditions to s = t) and E the underlying equational system 
(change conditions to s = t  and l --~ r to 1 - r). The following are equivalent: 

(1) u = v is provable in E,  that  is, E [-- u = v 

(2) u and v have a common reduct in R , tha t  is, R I b- u~v 

(3) u and v have a common reduct in R I, that  is, R ~-- u~v 

Proof. Proposit ion 1 is easy to see, for the noetherian property implies that  
if two terms are joinable, then they have a common reduct that  is irreducible. 
The translation mechanism for Proposit ion 2 uses two new function symbols eq 
and true. We add a new rule eq(x,x) ---* true and change conditions to the form 
eq(s,t)~true. With this translation, it is easy to prove that  for any two terms s 
and t not having the new function symbols eq and true, we have 
R ~-- s~t iff R I ~-- s~t. The argument  for Proposit ion 3 is by induction on 
the depth of a proof. The interesting case is when u --- v is provable in E and we 
wish to show u~v in R.  By induction on the depth we first show that  the sub- 
proofs in E can be replaced by rewrite proofs and then using the confluence of R 
we can show that  u~v. [] 

Under the assumption of canonicity the various weaker formulations of join 
systems are also equivalent to the corresponding join system and, hence, to the 
underlying equational system. We prove this below for inner systems. 

T h e o r e m  1. Let R be a canonical inner-join (or outer-join, normal- 
join) system and R t the corresponding join system obtained by replacing 
conditions of the form s ~ t (s ~o t, s ~! t, respectively) by s~t. R is 
equivalent to R I. That is for any terms s and t, 
R ~ - s $ t  iff R ' ~ - s ~ t .  

It is easy to see that  if s and t have a common reduct in an inner-join sys- 
tem, then they have a common reduct in the join system (the same proof holds). 
To show the other direction we prove an even stronger version. 

L e m m a  1. For any terms s and t, if s ~t in the inner-join system R I 
then s ~i t in R.  That is, s and t are joinable by innermost rewriting in 
the inner join system. 

Proof. The proof of this lemma is carried out  by  induction on the depth of 
s~t in R I. If s joins t at depth 0 in R' ,  the same rewrite sequence is also valid in 
the inner-join system since we do not use any conditional rules. So, s~t in R too. 
Since R is canonical, this also means that  s ~i t in R.  Otherwise, if s and t are 
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joinable at depth n + l ,  every condition, say uJ, v, used for rewriting is provable in 
depth at most n in R ~. By the induction hypothesis, the corresponding conditions 
(u ~; v) are all provable in R. Therefore, the rewrite steps also apply in R, hence 
sJ, t in R. Again, since R is confluent and noetherian, s i t  in R implies s ~ t in 
R. E1 

We can sum up by saying that  if any formulation as a rewrite system is 
canonical, then it is equivalent to the corresponding equational system. 

3. Decreasing Systems 

By the reduction ordering >R of a rewrite system, we mean the irrefiexive- 
transitive closure ~ of the reduction relation. That  is, t 1 >R t2 if t 1 --A- t 2. 
The reduction ordering is monotonic.  That  is, if t >R s then u[t] >R u[s] for 
any context u[']. By the proper subterm ordering >s we mean the well-founded 
ordering u[t]>st  for any term t and non-empty  context u[']. In this section, we 
wilt use the join system formulation of conditional rules to illustrate definitions 
and results. 

De f in i t i on  4. A conditional rewrite system is decreasing if there exists a 
well-founded extension > of the proper subterm ordering such that  > 
contains ~R and la  > s i c  , • • " , t~a for each rule 
s1~tl A " • " A sa~t~: I --* r (n ~ O) and substitution a. 

Note that  the second condition restricts all variables in the condition to also 
appear on the lef t -hand side. In general, a decreasing ordering need not be 
monotonic. 

P r o p o s i t i o n  4: If a rewrite system is decreasing then it has the following pro- 
perties: 

(1) The system is terminating. 

(2) The basic notions are decidable. That  is, for any terms s, t 
i) one-step reduction ("does s --~ t?") 
ii) finite reduction ("does s ---* t?") 
iii) joinability ("does s $ t?") 
iv) normal form or reducibility ("is s irreducible?") 
are all decidable. 

Proof. That  the system is terminating is obvious from the well-foundedness 
of > .  The decidability of basic notions is proved by transfinite induction on > ,  
as follows. We first consider the following property: "Given a term t we can find 
the set of normal forms of t . "  If t has no instance of a lef t -hand side of any rule 
as a subterm then t is irreducible and it is its only normal form. Otherwise, let 
t = u [ l a ]  for some rule Ul~b 1 A ' ' '  A un~vn: l - -~r  By our two conditions on 
decreasingness we have tha t  t=u[la] > la  and la > uW, via. By induction, since 
t>u i ,  vi, we can compute the set of normal forms of ui, v{ for each i and check if 
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the rule applies. If it does then t ---* u [ra]. Similarly (using each matching rule) 
we can compute all the terms, say sl, . . . , sn, that  t rewrites to in one-step. By 
induction hypothesis one can enumerate the normal forms for each s i. Then the 
union of these is the set of normal forms for t.  

Other basic properties can be shown decidable likewise. [] 

The following are some sufficient conditions for decreasingness: 

S i m p l i f y i n g  s y s t e m s  [Kaplan-84, Kaplan-87] 
A conditional rewrite system R is simplifying if there exists a simplification 
ordering > (in the sense of [Dershowitz-82]) such that  la > ra, s la  " • • , t , a ,  
for each rule Sl~t 1 A " " " A sn~tn: l --* r (n ~ 0). 

R e d u e t i v e  s y s t e m s  [Jouannaud-Waldmann-86] 
A conditional rewrite system is reductive if there is a well-founded mono- 
tonic ordering :> such that ~ contains the reduction ordering ~>R and 
la  ~ Sla , • • • , tna for each rule slJfll A " " " A sn~tn: I "*  r (n ~ 0). 

Both simplifying systems and reductive systems are special cases of decreas- 
ing ones. To see this for simplifying systems, note that  simplification orderings 
contain the subterm ordering, by definition. For reductive systems, note that  no 
monotonic well-founded ordering can have s ~ t for a proper subterm s of t.  So 
we can extend the monotonic ordering with the subterm property and get a well-  
founded ordering as in [Jouannaud-Waldmann-86].  The following is an example 
of a system that  is decreasing but  neither simplifying nor general reductive: 

b ---* c 

f (b)  --. f (a)  
b ~,c : a -.* e 

This is not reductive because there is no monotonic extension of the reduction 
ordering (which has f ( b )  >R f ( a )  ) tha t  can have a > b. 

Decreasing systems also satisfy the critical pair lemma. 

T h e o r e m  2. For any decreasing system, if every critical pair is joinable, 
then the system is confluent, hence canonical. 

Proof. The proof is implicit in [Jouannaud-Waldmann-86] where they 
impose stronger conditions for their definition of a reductive system (as explained 
earlier) but  use essentially the same conditions that  we have for decreasingness in 
their proof. [] 

Were we to omit " the subterm proper ty"  in our definition of a decreasing 
ordering, then the critical pair lemma no longer holds. We illustrate this with the 
counter-example shown in Table 1. All critical pairs are joinable, yet  the term 
h ( f ( a ) )  has two normal forms d and k ( f (b ) ) .  Although we have 
h ( f ( a ) )  --* h ( f ( b ) )  and h(g(b))  ---* k(g(b))  ---* d, to determine if 
h ( f ( b ) )  --* h(g(b)) using the last rule we have to check the condition h( f (b ) )  ~ d 



547 

h(/(4) d 

c k( l (a) )  
c - - ~  d 

a --~ b 

k( , )  

h ( f ( a ) )  ~ e 

k(g(b)) d 

: / ( 4  --. g(x) 
T a b l e  1 

which leads to a cycle. Note that  if we converted this to a semi-equational system 
we would have that  h(f(b)) ,  ,*d and the last rule can be applied and the system 
is confluent. 

This example satisfies the conditions for decreasing systems except the sub- 
term property. The reduction ordering of the above rewrite system is embeddable 
into the well-founded ordering ~ (which, however, does not have the subterm 
property) of Takeuti 's  system O(2,1) of ordinal diagrams (one of the two major 
systems of proof theoretic ordinals). See [Okada-Takeuti-87] for definitions. 
Also, ~ satisfies the additional condition for decreasingness (each term in the 
condition- d and h( f ( z ) ) - i s  smaller than the lef t -hand side f ( x ) - - o f  that  rule). 
So it is clear that  well-foundedness alone is not  sufficient. For more details see 
[Okada-87, Dershowit z-Okada-88]. 

We saw in the previous section that,  while the confluence of a join system 
implies the confluence of the corresponding semi-equational system (without any 
other restriction), the converse is not  true in general. We now show that  if we 
restrict our attention to decreasing systems the converse does hold. That  is, 
under the assumption of decreasingness the two formulations, semi-equational 
systems and join systems make no difference with respect to confluence. 

T h e o r e m  3. If a decreasing semi-equational system (conditions of the 
form s ~- t) is confluent, then the corresponding join system (with condi- 
tions changed to s ~ t)  is also confluent. 

It is convenient to introduce the following notations. By a direct proof of 
s = t, we mean a rewrite proof of the form s ~ t. Tha t  is, s and t are joinable. 
By a completely direct proof of s = t, we mean a direct proof of s = t (i.e, of 
s ~ t) in which every subproof of the conditions (during application of conditional 
rules) is also direct. For instance, if a substitution instance of the form 
sla = tla A ' "  "A Sna--~ tna: la ~ ra of a conditional rule is used in the 
proof with subproofs of sicr= tia , then each of these subproofs is also direct. If 
for a given proof P of s = t there is a completely direct proof p t  (of s ~ t), then 
we say that  the proof P is completely normalizable. 



548 

L e m m a  2 (Complete Normalizability Lemma). For any confluent and de- 
creasing semi-equational system, every proof is completely normalizable. 

Proof. This is proved using transfinite induction on the well-founded 
decreasing ordering. It is easily seen that every proof in a decreasing system can 
be made direct if the system is confluent. By using the properties of decreasing- 
hess, we can show that every top-level subproof is smaller in the decreasing order- 
ing and, hence, can be made completely direct by the induction hypothesis. Then 
this lemma follows. [] 

Theorem 3 is a direct consequence of the Complete Normalizability Lemma. 
Thus, if a decreasing system is confluent in the semi-equational formulation, then 
it is confluent as a join system. 

4. C o n c l u s i o n  

We have studied different formulations of conditional rewrite rules and their 
expressive power and identified a class of decreasing systems for which most of 
the interesting notions of rewriting are decidable and which satisfy the critical 
pair lemma. Decreasing systems have weaker restrictions than the simplification 
systems or reductive systems studied previously. We have shown that straightfor- 
ward attempts at weakening these restriction further (by dropping the subterm 
property) do not work. For this class of systems we have also shown that two of 
the formulations as rewrite systems are equivalent with respect to confluence. 
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