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For the general case of particle-pair correlation or particle-hole correlation, we define a canonical
coordinate system of TDHF symplectic manifold which may be suitable for the adiabatic description of
collective motion. Following the prescription of Baranger and Veneroni, we adopt a Slater determinantal
state generated by two-step unitary transformation. In this case, the canonicity condition plays an
important role.

§1. Introduction

A canonical form of full time-dependent Hartree-Fock (TDHF) method, where we
introduce a necessary and sufficient set of parameters to specify a time-dependent Slater
" determinantal state, easily leads us to a canonical formulation of TDHF method for a
classical description of large amplitude collective motion.” The choice of canonical
coordinate system (CCS) of collective submanifold is arbitrary, since the collective
submanifold and the collective motion on it are independent of it. In general, however,
the collective submanifold and the collective Hamiltonian are determined in an approxi-
mate form, by solving the equation of collective submanifold with certain conditions, such
as the RPA boundary cond1t10n In this sense, we must choose a proper CCS which is
suitable for the description of characteristic of collective motion to be treated.”

On the other hand, all of the basic equations and conditions can be formulated in
invariant forms under any canonical transformation of CCS of TDHF symplectic
manifold.” For the practical aim, however, its proper choice gives rise to a transparent
formulation of the basic equations of collective submanifold and its CCS.® In this sense,
we are not insensible in the choice of CCS of TDHF symplectic manifold.

In this paper, we introduce a new type of CCS of TDHF symplectic manifold, which
may prov1de a base suitable for the adiabatic description of collective motion. The basic
idea has been given in the previous paper with the use of SU (2)-product model, ¥ in which
the coordinates and momenta are specified with the prescription of Baranger and

Veneroni.® We extend this prescription to more general cases, for the aim of.

applying .adiabatic TDHF to. the description of realistic nuclear collective motion and
also of studying non-adiabatic effect in a systematic manner.
In §2, we give a Slater determinantal state generated by a two-step unitary transfor-

mation, following the prescription of Baranger and Veneroni. Section 3 is devoted to the

introduction of CCS of TDHF symplectic manifold with the aid of the canonicity condi-
tion. In §4, the classical image of every type of one-body operators is expressed with the
- aid of the CCS defined in §3. In the text, we treat only a case of general particle-pair
correlation for fixing the notations. In the Appendix, we give also the result for a case
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V 974 A. Kurivama and M. Yamamura

of general particle-hole correlation.

§2. Two-step transformation
In order to introduce a CCS of TDHF symplectic manifold, we start with the following
Slater determinantal state generated by a two-step unitary transformation:
lc>=W0>; ‘ (2:1)
Cd0>=0, ‘ (2-2)

where €. denotes an annihilation operator of fermion in the state @ which is specified a

set of quantum numbers (7, la, ja, Ma, 72). The unitary operator W is defined as
follows:

W=0U; : - (2:3)
U =expl-S}; S=3XEe" Cs* Tus— i CaCa), (2-4a)
UD'IGXD[%SD‘]; §:§(ga*gﬂ*ﬁaﬂ—ﬁ¢$gﬂga)- (2‘4b)
In the above, we have used the definition of quasi-particle operators
d?a*:Uaa*UY, a?a:UEaUT. . ) (2'5)
The explicit form of Eq. (2-5) can be given as
§*1 1A' B 5*] | |
~ |= : 4 2.6
5 H5r 2l (2-62)
Aas=[cosVI''I'las,  Bup=[I'(I''I')?sin/T T ]y . (2-6b)

The superscripts *, T and express respectively complex-conjugate, transposed and

hermite-conjugate matrix. We also use the following quasi-particle operators:

EP=WEr W', Gu=WEW', (2-7)
ie, |
HRFE A o
Aw=[cosyT'T* ]a}, Bar=[I(" D sing/ P e, (2-8b)
The parameters (I, Paf@). and (I, I'%) satisfy the antisymmetry relation :
rr=-r, Jfr=—p | (29

Following the prescription of Baranger and Veneroni, we further require the following
relation, i.e, time-reversal relation: : '

Tas=T%, Fa=—TIy. (@20

Then matrices A4, B, A and B satisfy the following relations:
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Canonical Coordinate System Suitable for Adiabatic Treatment 975

A'A+B'B=1, ATB=BA: A'=A, B'=—B,  (2-11a)

A'A+B'B=1, ATB=BA; A'=A, B™=-B. . (2-11b)
Bai= [B*]aﬂ, - A= [A*]aﬂ , (2' 123-)
= —[B*las, Aacs=[A"1us. (2-12b)

The classical image of one-body operator can be given as its expéctation with respect
to |c>:

KclEtEs*— Eacilc>=2[A'B* ATA*+ B' A* B"B*]us (2-13a)
(clEa* e+ EaCacy=—20A" B*B'B* + B A* ATA* ), (2-13b)
(cléaEst EsEadc>=2lAB' ATB+B' A"BAls , (2-13¢)
{cléd*Ei— A*c*alc> 2[AB*BTA+B' A* A"Blas . (2-13d)

§3. Canonical coordinate system

Up to now, the independent variables are given by I and f‘a,e In this section, we
introduce a possible CCS. of TDHF symplectic manifold specified by the Slater deter-
minantal state (2-1).

3.1. Infinitesimal generator
For this aim, we first consider the following infinitesimal generator:

Ox=ioxW-W'. (3-1)-

After some calculations, we obtain the following explicit form of Ox:
Ox—z{—A°+Z‘.A hda dﬂ+”‘_2(Aaﬁ£la p*—A%gﬁcﬂ)}
+if LA+ Ana aﬂ+%azﬂ(,4§%aa* a5~ A%asa), (3-2)

where we have used the notations A°, A%y, A% and A% defined by

A°=21Tr[B'Ba—B}B], | (3-3a)
A};z%%[A,XAf‘AA,X+B,§B—B*B,X]ﬂa , (3-3b)

#={A"Bx— AxB+B"Ax—BiAlu, G
A%=51AxB~ ABX+BXAT—B' AR, (3-3d)

and A°, A%, A2 and A% defined in the same way as the above with the use of A and B
in place of A and B. The detail of the derivation is given in the Appendix. In the above
definition, we have also used the abbreviations such as .
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976 A. Kuriyama and M. Yamamura

[Axles=Ausx=0xAus , -
[B.xlas=Bas.x=0xBuas . | (3-4)
Such abbreviations as the above are frequently used in succeeding discussion.

3.2. Classical image of infinitesimal generator

Now we consider the classical image of the above infinitesimal generator, which is
given as the expectation with respect to |cD:

OX:<C'0X|C>. ‘ (3'5)

With the use of time-reversal relation (2- 12), we can rewrite RHS of Eq. (3+5) as follows:
Ox=-LTt[(ABS—AxB*+B' A%~ BLATBA)] (36)

With the use of the relation (2-11a) and the identity®

AT Ax+(A)xA=0, - (37
RHS of Eq. (3-6) can be rewritten as o
RHS=Tr[{B*(AT)'+ A'B*}x(ATBAA)]. (3-8)
Theﬁ, we obtain the expression of Ox |
Ox=—iTr[(A"'B")x(ATBAA)). , - (3+9)

At the end of this subsection, we list up the relations satisfied by matrices, such as
AT'B?, ' '

(1) - Anti-symmetry relafion: ‘
A"BAA=—(A"BAA)", BTAB'B=—(BAB'B)",
AT'B'=—(AT'B")", : - (3-10a)

(2) Time-reversal relation: - v |

[A"BAAles=—[(A"BAAY ), [BTAB'Blis=—[(B"AB'B)*).s, |
[A7B"]aa=[(A"'B")]as . | | (3-10b)
3.3. Canonicity condition

Now we are in a position to introduce the canonicity condition which selects a proper
CCS suitable for the adiabatic description of collective motion. First we define the
following infinitesimal generators:

Daa=i0s2, W-W',  Gia=—idp,W W', (3-11)
Following the previous discussion,? we adopt the following form of canonicity condition:

Lclbaled>=pam,  <(clalcy=0. - (3-12)

*) As long as the overlap <c|0> does not vanish, A and A are made to be positive definite.
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Canonical Coordinate System Suitable for Adiabatic Treatment 977

‘With the aid of Eq. (3-9), we can easily obtain the followmg solution satisfying the
canonicity condition (3-12):

05=[A"BNw, pau=21[ATBAALs, (3-13)
ie., _ »
g*=A"B', p=2A"BAA. (3-14) -
By the relations (3-10a) and (3-10b), ¢* ahd p also satisfy the relations
(@")V=—a*, b7=-b, (3-152)
quF=qas Dai="Das . (3-15b)

Further it is easily ascertained that the infinitesimal generators ¢* and » satisfy the
weak canonicity condition :

Kcll@is, prolled=idasm,
<cll@ks, @alle>=<cl[Das, Drsllc>=0; (3-16)
Otas,r51=0ar0ss— G as0 5y . (3-17)

The geometry of the present TDHF symplectic manifold is spemﬁed by the Poisson
bracket

{F, Glasr=2as)(03,F * 0,y G— Op,pF * 042,G), , (3- 18)

where the summation runs over all independent pair states (aB). By properly ordering
the pair states, they are specified by single Greek letter ¢z. For instance, the Poisson
bracket is written as

{F, Glarn=2(0g,F - 0p,G— 35, [ 34, G). (3-19)

§ 4. Classical image in canonical form

Now we express the classical image of one-body operator of fermion system given by
Eq. (2-13), in terms of canonical variables ¢* and ».

4.1. Canomnical form of ome-body operator in classical image

First we express matrices 4, B, A and B in terms of g* and p. Using the definition
(3-14), we obtain

BA'=—gq. (4-1)

With the aid of Eq. (2-11a) and the positive-definite and hermite property of A, we obtain
the expressions of A and B':

A=(+q'Q)™, B'=—(+a"0)"q". (4-2)

Using these expressions, we can get those of A and B with the use of relatlons (2-11a) and
(2-11b):
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978 A. Kurivama and M. Yamamura
A=J5 1+ 1= (1+0"a)" (L+ag")p(1+q " g) e,

ﬁz_7i(1+qq')“217(1+q'q)”2/i‘1. | (4-3)

In the above derivation, we have used the positive-definite and hermite property of A and
also the boundary condition - _ :

A—>1. ' (4-4)

-0

Then we can easily obtain the expressions of classical image of one-body operator in
terms of ¢* and p:

{cl¢a*Cs*~CsCilcd>=—ilp"+q'pg"as, : (4-5a)
Kcléa*Ep*+ 555&|C>=[(1+61*4)_”2{1—(1+qfil)1’219’(1+q4*)1)(1+(1761)”2}”2-
><(1+tl'q\)_”261T
+q' (144" )" 1-(1+a¢")*p(1+q"q)p' (1+qq ' )2}
X(1+qq" ) "*]a, (4-5b) -
{clea*Cates*Ealcy=—ilp'qg—q" plas, | - (4-5¢)
{cléa*Es— Cs"Cale>=N+(1+q"'q) g {1—(1+qq" "2p(1+q"q)p" (1 +qq" )12}2
Xq(1+qtq) 2
—(1+¢"g) " {1-(1+q"g)"*p" (1 + g )p(1+ " q) 2}
X(1+q'q) " ]as . v (4-5d)
4.2 Poisson bracket for classical image of one-body .operator

We show that the quantal commutation relation among one-body operators can be
transcribed into the Poisson bracket among their classical images. For this aim, we
adopt the following abbreviations of notations:

{the set of one-body operators}={0.}, ' : .;(4-,6)
and their quantal commutation relations are written as
| [0:, 0:1=31Cisx 0, (4-7)
where Ci;x denotes the structure constant. Then their classical irﬁages can be givén, as
- 0:=0e>, (4-8)
<cllO, Oille>=31Cisa 0. o (449)

Now we show that Eq. (4-9) can be written as follows:

i{0;, Oi}(q*,ﬁ)zgcﬁkok- : (4-10)

In order to show the above relation, it is not necessary to derive the derivatives with
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Canonical Coordinate System Suitable for Adiabatic Treatment 979

respect to ¢* and p. We use only the facts that all O:’s are ome-body operators am‘l

(Gu*, Du) satisfy the weak canomicity condition (3-16). Considering that the O/'s are

one-body operators, we can express them in terms of §.* and . as follows:

éiv=§7(0‘( 29G4+ OF) ,4)+(C-number+terms of a*a@). (4-11)

| Then, we obtain the following expression for Eq. (4-9) using the weak canonicity condi-
“tion (3:16):

Zk!ijkOkZi;(O%*)O&‘,’) 0% 0%"). . (4-12)

On the other hand, the Poisson bracket, i.e., LHS of Eq. (4:10), can be written as follows:

i{0;, Oj}(q*,m:ig(aq;Oi'3p,‘0j—3pp0i'aq,*,0j)
=i2ClO;, 5n]|0><6|[(5j, a:*Nlc>—<cll0s, @ua*llcX<cllOs, pulle>)
=i3(0%" 0% — 0R0%")
“
-:gCijkOk- ) (4'13)

In this way, we can show that the quantal commutation relation among one-body opera-
tors can be transcribed into the Poisson bracket among their classical images.

From the above general discussion, the following facts become clear:
(1) The quantal algebra can be transcribed into-the corresponding classical algebra
specified by the Poisson bracket, only for those of one-body operators, within the TDHF
method.
(2) The correspondence between Eqs. (4-7) and (4-10) does not depend on the choice of
CCS of TDHF symplectic manifold.
(3) The quantization of the classical system obtained by full TDHF method can be
performed by requiring that, after the quantization, the classical algebra of one-body
operators, not of general operators, returns to the original quantal algebra. This proce-
dure is widely adopted by many authors in order to get the quantized TDHF representa-
tion, i.e., the boson representation.®”

§5. Conclusion

In this paper, we have introduced a canonical coordinate system of TDHF symplectic
manifold which may be suitable for the adiabatic treatment of collective motion. The
basic idea exists in the adoption of the Baranger-Veneroni type of Slater determinantal
state and the proper form of canonicity condition.

The resultant canonical form of one-body operators in their classical images is clearly
different from that obtained from the boson representation of the Holstein-Primakoff type.
But it is somewhat similar to that obtained by Nishiyama as the coherent state representa-
tion of the coset space of SU(2z)/U(n).® It is interesting to clarify the relation to these
representations and also to quantize the present classical image.
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Appendix A

—— Derivation of Explicit Form of Infinitesimal Generator

In this appendix, we give the derivation procedure of the explicit form of infinitesimal
generator

Ox:iaxW'W*. (Al'l)
F irst we recall that Eq.‘(Al-l) can be rewritten in the following form:
. Ox=idxU-U'+U-idx(U UU)(UOU)' " | (A1-2)
Considering the relation
U'OU =expl5 32 &5 P T Gota)], (A1-3)

we need to estimate explicitly only the first term on RHS of Eq. (A1-2). .
In order to estimate the first term, we use the formula

U'oxU =1 [ BU(~ B3 60" 05 Tupx—Tihn s ) U B), (A1-4)
where U(B) is defined by
U@B)=exa| 285]. (A1-5)

Using the transformation of fermion under the unitary transformation U given by
Eq. (2-6), Eq. (A1-4) can be written as follows:

U'oxU =5 A+ S Abo 8" Eot 5 T AB S 85"~ AR o), | (A1-6)
where A%, Y, A% and A% are given by the relations I
A= [[d 8 THAC- B YB(—8)—~ B(=8)' TA(-B)), (A7)
= [ 4 BIB(—B) TxA(~8)' ~ A(~B)TAB(—B) L, (A1-7b)
8= d BLAG-B)TxA(=8)+ B(~A)T4B(~ 8o, A
%= [ d BIAG-OTH A8V +B=8) TaB(—8) . (AL7d)

In the above equations, we have used the notations
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Canonical Coordz'nate‘System Suitable for Adiabatic Treatment 981

AB)=cosg/I''I"’, BR)=I(''I")y"sinB/T'T" . (A1-8)

Now we perform the integfation of RHS of Eq. (A1-7) with the aid of the method of

‘integration by parts.
A= ["d 8 Txlsin B/T7T -(I'' Y 'acos YT T
- —cos BT -Tir(r'r)ysin 8y 'r|
=@ B Txlsin B/TTT ("' I I (I cos B/T T e

—(cos BYTT -T')x'(I'' ")y 2sin B/T T |
=Tr[B'Bx—B4B] '

_ f0 "d 8 Trlcos YT T - (P(IT ) 2sin BY/T T )x

—(sin BYT T ("' Iy "2 ) 4T cos BYT T ]
=Tr[B'Bx—BLB]

—_/o‘ldBTr[sinBVF*F°(F'I")'”21—”P,XCOS/5’\/T"F
—cos Y I - I3y Yesin YT .

(A1-9)
Then
- A'=1Tr(B'B.—BiB]. (A1-10)
In the aboye derivation, we have used the relation |
B=r(I''I')*sin/T'T" =sin/ T «(I'T"")™"*I". - - (A1-11)

Asi= [ d Bleosg/ T T -[AT (I T sin /T T
—sin /T -(I'' 'Y ™I Tixcos 8YT T L
N =f01d Bl(cos BW-F*),xP(F*F)“’ZsinBW
| —(cos BT I ) (' ") sin B/T'T
—sin /T T+ (F*f)‘l’zf'(Fcos BYT'T )x

+sin YT - (') *(cos BYT T ) x]pa
=[BYB—B'Bx+AxA—AAx)s

— | d Bleos BYTT T4 (I ' Iy sin B/T'T
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982 A. Kuriyama and M. Yamamura

—sin B/T T -(I'' Y2 xcos AYT T lpe . (A1-12)
Then '
A;};%[B:YB—B*B,X+AKA—-AA,X]M . (A1-13)

In the above derivation, we have used the relation

rr ]"')”ZsmB\/ IMx=rirr’ F)‘”zsm,&/ r'+r(r(r'ry*sing/r'r)x.

_ (A1-14)

In the same way, we can easily derlve the explicit forms of A% and A%:
B=3lABx—ALB+BAx—BiAls, (A1-15)
A%=5lAsB ~ ABS+BYA™—B' A%, (A1-16)

Now we have derived the explicit form of Eq. (A1-6). Then the first term of Eq. (A1-2)
can be easily obtained as follows: '

xU-U'=U-U'oxU-U"
=%A°+§A;za: ity AB G 6~ A% E ). (A1-17)
The second term of Eq. (A1-6) can also be easily derived by noticing the relation
(A1-3) and the relation
Us(U'OU)-(U'UU ) U= W-(U*(?U)*aX(U*(}U)- w?. (A1-18)

We can derive its explicit form by simply replacmg A and B by A and Bin the derlvatlon
of the first term.

After all, we have the explicit form of (Al-1) as follows:

0x—z{—A°+2A N Ga ap+—2(Aapaa a,e A?s?zg,sga)}
| +i{7/i°+§A}swa*a,+%§ﬁ:(,4%,%5a*a,*—A%iﬁpaa)}, (A1-19)
where A°, A%, A2 and A% are given respectively by Eq. (A1-10), Eq. (A1-13),
Eq. (A1-15) and Eq. (A1-16) with the use of A and B in place of A and B, respectively.
- Appendix B
— Canonical Form for Particle-Hole Correlation ——

For the case of general particle-hole correlation, we can also introduce a similar CCS
of TDHF symplectic manifold to that discussed in the text for the case of general particle-
pair correlation. We give here only the result.

We denote the particle creation operator in the particle state A by &,* and the hole
creation operator in the state 7 by 5:*. Then the starting Slater determinantal state is
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Canonical Coordinate System Suitable for Adiabatic Treatment

given by
le>=Wlo;
| ailo>=540>=0.
The unitary operatbr W is defined aé follows:
w=UU ;

U =exp[S]; s=§(m* b*T—Thb:az),

U=explSh,  $=3& b Fu—T3b:d0),
where §ve have used the notations

Er=UarU', br=UbrU".

The parameters I and i satisfy the time-reversal relation '

o

. o
JRp— o — *
Fz'/\_ itl, Pi,l__ A .

983

(A2-1)

(A2-2a)
(A2:2b)

- (A2-2¢)

(A2-3)

(A2-47)

~ Then we obtain a possible canonical form of classical image of one-body operators:

Kclatbr—braide>=—ilp'+a*pa* ],
Kclar b+ brade>=[0+q*q¢™) ¢ 1 -1 +q"¢*)*p(1+q*qT)p"
X (1+q7g* 2P 21+ q q* )

(A2-5a)

+(1+g*q") " {1—-1+q*¢") 2 (A +4q"g*)p(1+g* g7 )}

X(1+q¢*q") ?¢* s,
(clataat+adailc>=—ilp'a"—q*plis, ,
(clataas—anarle>=[1+10+qg*¢" ) ?¢*(1—(1+4q7¢*)?p(1+¢*¢")p"

X (1+q7¢* "2} 2q" (14 q* ¢ 7)™
—(1+g*¢" )" {1—-(1+¢*q" ) p' (1+q"¢*)p(1+
X(1+g¢*q") s,
Kclb*b;+ b, bidc>=ila'p™—p*al:s,
clb*bi— bt bde>=[1+(1+q"q) g {1—(1+aq" ) "*p"(1+4"q) p*
X(1+qq")*}?q(1+¢'q) "

—(1+¢'q) ™ {1—Q+q'g)"2p*(1+gqt)pT(1+4"

X(1+QT?I)_1’2]if-
The matrices ¢* and p have only the following elements:
ati, Dia.

They satisfy the following time-reversal relation:

(A2-5b)
(A2-5¢)

q*q T )1/2}1/2
(A2-5d)
(A2-5¢)

q )1/2‘}112

(A2-5f)

(A2-6)
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*

qii=qa:, bri=phi.
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