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ABSTRACT

Canonical Correlation Analysis (CCA) is a classical tool in statisti-
cal analysis that measures the linear relationship between two or
several data sets. In [1] it was shown that CCA of M = 2 data
sets can be reformulated as a pair of coupled least squares (LS)
problems. Here, we generalize this idea to M > 2 data sets. First,
we present a batch algorithm to extract all the canonical vectors
through an iterative regression procedure, which at each iteration
uses as desired output the mean of the outputs obtained in the pre-
vious iteration. Furthermore, this alternative formulation of CCA
as M coupled regression problems allows us to derive in a straight-
forward manner a recursive least squares (RLS) algorithm for on-
line CCA. The proposed batch and on-line algorithms are applied to
blind equalization of single-input multiple-output (SIMO) channels.
Some simulation results show that the CCA-based algorithms out-
perform other techniques based on second-order statistics for this
particular application.

1. INTRODUCTION

Canonical Correlation Analysis (CCA) is a well-known technique
in multivariate statistical analysis, which has been widely used in
economics, meteorology, and in many modern information process-
ing fields, such as communication theory, statistical signal process-
ing, and Blind Source Separation (BSS). CCA was developed by H.
Hotelling [2] as a way of measuring the linear relationship between
two multidimensional sets of variables and was later extended to
several data sets [3]. Typically, CCA is formulated as a generalized
eigenvalue (GEV) problem; however, a direct application of eigen-
decomposition techniques is often unsuitable for high dimensional
data sets as well as for adaptive environments due to their high com-
putational cost.

Recently, several adaptive algorithms have been developed for
the case of M = 2 data sets [1,4,5]. In particular, in [1] an interpre-
tation of CCA as a pair of LS regression problems was exploited to
derive batch and on-line algorithms. Here we extend this approach
to M > 2 data sets. Specifically, we propose an alternative formula-
tion of the Maximum Variance (MAXVAR) generalization of CCA
of several data sets proposed in the classic work by Kettenring [3].
Similarly to the M = 2 case, this reformulation considers CCA as
a set of M coupled least squares problems and can be exploited to
derive in a straightforward manner batch and adaptive algorithms.

The proposed CCA algorithms turn out to be particularly suit-
able for blind equalization of single-input multiple-output (SIMO)
channels, which is a common problem encountered in communica-
tions, sonar and seismic signal processing. SIMO channels appear
either when the signal is oversampled at the receiver or from the
use of an array of antennas. It is well known that, if the input signal
is informative enough and the FIR channels are co-prime, second
order statistics (SOS) are sufficient for blind equalization. In this
paper we show that maximizing the correlation among the outputs
of the equalizers (i.e. CCA) is a reasonable equalization criterion,
which outperforms other well-known blind equalization techniques
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such as the Modified Second Order Statistic Algorithm (MSOSA)
described in [6].

2. OVERVIEW OF CCA OF M = 2 DATA SETS

Let X1 ∈ RN×m1 and X2 ∈ RN×m2 be two known full-rank data
matrices. Canonical Correlation Analysis (CCA) can be defined as
the problem of finding two canonical vectors: h1 of size m1×1 and
h2 of size m2 ×1, such that the canonical variates z1 = X1h1 and
z2 = X2h2 are maximally correlated, i.e.,

argmax
h1,h2

ρ =
zT

1 z2

‖z1‖‖z2‖
=

hT
1 R12h2√

hT
1 R11h1h

T
2 R22h2

, (1)

where Rkl = XT
k Xl is an estimate of the crosscorrelation matrix.

Problem (1) is equivalent to the following constrained optimization
problem

argmax
h1,h2

ρ = hT
1 R12h2

subject to hT
1 R11h1 = hT

2 R22h2 = 1. (2)

The solution of this problem is given by the eigenvector correspond-
ing to the largest eigenvalue of the following generalized eigenvalue
problem (GEV) [7][

0 R12
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]
h = ρ

[
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0 R22

]
h, (3)

where ρ is the canonical correlation and h = [hT
1 ,hT

2 ]T is the eigen-
vector. The remaining eigenvectors and eigenvalues of (3) are the
subsequent canonical vectors and correlations, respectively. The
corresponding canonical variates are maximally correlated and or-
thogonal for different pairs of canonical vectors.

For the two data sets case, it can be easily proved that constraint
(2) is equivalent to

hT
1 R11h1 +hT

2 R22h2

2
= 1.

This alternative constraint will be used in the next section to gener-
alize CCA to several complex data sets.

3. CCA OF M > 2 DATA SETS

Let Xk ∈ CN×mk for k = 1, . . . ,M be full-rank matrices. If we de-
note the canonical vectors and variables as hk and zk = Xkhk, re-
spectively; and the estimated crosscorrelation matrices as Rkl =
XH

k Xl , then, the generalization of the CCA problem to M > 2 data
sets can be formulated as
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1
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M
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1
M

M
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hH
k Rkkhk = 1, (4)



and solving by the method of Lagrange multipliers we obtain the
following GEV problem

1
M−1

(R−D)h = ρDh, (5)

where

R=

R11 · · · R1M
...

. . .
...

RM1 · · · RMM

 , D=

R11 · · · 0
...

. . .
...

0 · · · RMM

 , (6)

h = [hT
1 , . . . ,hT

M ]T , and ρ is the generalized canonical correlation.
Then, the main CCA solution is obtained as the eigenvector associ-
ated to the largest eigenvalue of (5), and the remaining eigenvectors
and eigenvalues are the subsequent solutions of the CCA problem.

Although formulated in a different way, in the appendix we
prove that problem (4) is equivalent to the Maximum Variance
(MAXVAR) generalization of CCA proposed by Kettenring in [3].

Many linear algebra techniques exist in the literature to solve
this GEV problem, however, besides their high computational cost,
they are not well suited for adaptive processing. In the following
we describe a LS framework which avoids the need of eigendecom-
position techniques.

4. CCA THROUGH ITERATIVE REGRESSION

4.1 Batch LS Algorithm

Let us start by defining β = 1+(M−1)ρ
M and rewriting (5) as

1
M

Rh = βDh. (7)

Now, denoting the pseudoinverse of Xk as X+
k = (XH

k Xk)−1XH
k ,

and taking into account that R−1
kk Rkl = X+

k Xl , the GEV problem
(7) can be viewed as M coupled LS regression problems

βhk = X+
k z, k = 1, . . . ,M,

where z = 1
M å M

k=1 Xkhk. The key idea of the batch algorithm is
to solve these regression problems iteratively: at each iteration t we
form M LS regression problems using as desired output

z(t) =
1
M

M

å
k=1

Xkhk(t−1),

and a new solution is thus found by solving

β (t)hk(t) = X+
k z(t) k = 1, . . . ,M.

Finally, β (t) and hk(t) can be obtained through a straightfor-
ward normalization step, which forces h(t) to satisfy either (4) or
‖h(t)‖ = 1. The subsequent CCA eigenvectors can be obtained by
means of a deflation technique [8], similarly to the technique used
in [1], which forces the orthogonality condition among the subse-
quent solutions z(i)(t), where (·)(i) denotes the i-th CCA solution.

It is easy to realize that this technique is equivalent to the well-
known power method to extract the main eigenvector and eigen-
value of (7). However, an advantage of this alternative formulation
is that it allows us to derive an adaptive CCA algorithm in a straight-
forward manner.

4.2 On-Line RLS Algorithm

To obtain an on-line algorithm, the LS regression problems are now
rewritten as the following cost functions

argmin
β (n),hk(n)

Jk(n) =
n

å
l=1

λ
n−l

∥∥∥z(l)−β (n)xH
k (l)hk(n)

∥∥∥2
,

Initialize Pk(0) = δ−1I, with δ � 1 for k = 1, . . . ,M.
Initialize h(i)(0), c(i)(0) = 0 and ρ(i)(0) = 0 for i = 1, . . . , p.
for n = 1,2, . . . do

Update kk(n) and Pk(n) with xk(n) for k = 1, . . . ,M.
for i = 1, . . . , p do

Obtain z(i)(n), z̃(i)(n) and e(i)(n).
Obtain β (i)(n)h(i)(n) with (8) and update c(i)(n).
Estimate β (i)(n) = ‖β (i)(n)h(i)(n)‖ and normalize h(i)(n).

end for
end for

Algorithm 1: Summary of the proposed adaptive CCA algorithm.

where z(n) = 1
M å M

k=1 xH
k (n)hk(n− 1) is the reference signal, and

0 < λ ≤ 1 is the forgetting factor. A direct application of the RLS
algorithm yields, for k = 1, . . . ,M

β (n)hk(n) = β (n−1)hk(n−1)+kk(n)ek(n),

where
ek(n) = z(n)−β (n−1)xH

k (n)hk(n−1),
is the a priori error for the kth data set, and the Kalman gain vector
kk(n) of the process xk is updated with the well-known equations

kk(n) =
Pk(n−1)xk(n)

λ +xH
k (n)Pk(n−1)xk(n)

,

Pk(n) = λ
−1

(
I−kk(n)xH

k (n)
)
Pk(n−1),

where Pk(n) = Φ−1
k (n) is the inverse of the autocorrelation matrix

Φk(n) = å n
l=1 λ n−lxk(l)xH

k (l). In this way, after each iteration we
can obtain the values of β (n) and hk(n) by considering that h(n) =
[hT

1 (n), . . . ,hT
M(n)]T is a unit-norm vector, i.e. β (n) = ‖β (n)h(n)‖.

To extract the subsequent CCA solutions we resort to a defla-
tion technique, which resembles the APEX algorithm [8] and ex-
tends to M > 2 data sets the algorithm presented in [1]. Specif-
ically, denoting the estimated i-th eigenvector of (7) as h(i)(n) =
[h(i)T

1 (n), . . . ,h(i)T
M (n)]T , the reference signal is obtained as

z̃(i)(n) = z(i)(n)−z(i)H(n)c(i)(n−1),

where z(i)(n) = [z(1)(n), . . . ,z(i−1)(n)]H is a vector containing the
extracted signals, z(i)(n) is given by

z(i)(n) =
1
M

M

å
k=1

xH
k (n)h(i)

k (n−1),

and c(i)(n−1), which imposes the orthogonality conditions among
the solutions z(i)(n), is updated through the RLS algorithm using
z(i)(n) as the objective signal, similarly to [1]. Finally, grouping the

a priori errors into the vector e(i)(n) = [e(i)
1 (n), . . . ,e(i)

M (n)]T , we
can write the overall algorithm (see Algorithm 1) in matrix form as

β
(i)(n)h(i)(n) = β

(i)(n−1)h(i)(n−1)+K(n)e(i)(n), (8)

where

K(n) =

k1(n) · · · 0
...

. . .
...

0 . . . kM(n)

 .

Unlike other recently proposed adaptive algorithms for GEV
problems [9], our method is a true RLS algorithm, which uses a
reference signal specifically constructed for CCA and derived from
the regression framework. This reference signal opens the possibil-
ity of new improvements of CCA algorithms: for instance, it can be
used to develop robust versions of the algorithm [1], or to construct
a soft decision signal useful in blind equalization problems [10].
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Figure 1: Convergence of the eigenvectors and eigenvalues for the
adaptive CCA-RLS algorithm. λ = 0.99.

5. APPLICATION OF CCA TO BLIND EQUALIZATION
OF SIMO CHANNELS

An interesting application of CCA is the blind equalization of
single-input multiple-output (SIMO) channels. Let us suppose a
system where an unknown source signal s[n] is sent through K dif-
ferent and unknown finite impulse response (FIR) channels, hk[n]
for k = 1, . . . ,K, with maximum length L. Denoting the obser-
vations as xr[n] = [x1[n], . . . ,xK [n]]T , where xk[n] = s[n] ∗ hk[n] is
the k-th received signal, the system equations can be written as
x[n] = Hs[n], where we have used the following definitions

h[n] = [h1[n], . . . ,hK [n]]T ,

H =

h[0] · · · h[L−1] · · · 0
...

. . .
. . .

. . .
...

0 · · · h[0] · · · h[L−1]

 ,

s[n] =
[
s[n], · · · ,s[n−Leq−L+2]

]T
,

x[n] =
[
xT

r [n], · · · ,xT
r [n−Leq +1]

]T
,

and where Leq is a parameter determining the dimensions of the
vectors and matrices. It has been proved in [6] that, under mild
assumptions, there exists a matrix W =

[
w1, · · · ,wLeq+L−1

]
, of di-

mensions KLeq× (Leq +L−1), such that

wH
k x[n+ k] = wH

l x[n+ l], k, l = 1, . . . ,Leq +L−1. (9)

In addition, Eq. (9) holds iff

s[n] = WHx[n].

Then, CCA can be applied to the M = Leq +L−1 data sets x[n+k]
to maximize the correlation among the outputs of the M equalizers
wk, and finally, the equalized output ŝ[n] will be obtained as the
mean of the M outputs. The advantages of CCA over other SOS
equalization techniques such as the Modified Second Order Statis-
tics (MSOSA) [6] can be explained from the fact that CCA provides
the best one-dimensional PCA representation of unit-norm canoni-
cal variates (see the appendix). This produces a better performance
for short data registers, a mitigation of the noise enhancement prob-
lem for ill-conditioned channels and a faster convergence in time-
varying environments.

6. SIMULATION RESULTS

Three examples are shown in this section to illustrate the perfor-
mance of the CCA algorithms. In all the simulations the results of
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Figure 2: Blind SIMO Equalization. Performance of the batch al-
gorithms with colored signals.

300 independent realizations are averaged. The parameters of the
algorithm are initialized as follows:

• Pk(0) = 105I, for k = 1, · · · ,M.

• h(i) is initialized with random values, for i = 1, . . . , p, where p
is the number of canonical vectors of interest.

• c(i) and ρ(i), for i = 1, . . . , p, are initialized to zero.
In the first example, four complex data sets of dimensions

m1 = 40, m2 = 30, m3 = 20 and m4 = 10 have been generated.
The first four generalized canonical correlations are ρ(1) = 0.9,
ρ(2) = 0.8, ρ(3) = 0.7 and ρ(4) = 0.6. Fig. 1 shows the results ob-
tained by the RLS-based algorithm with forgetting factor λ = 0.99.
We can see that both the estimated canonical vectors and the esti-
mated canonical correlations converge very fast to the theoretical
values.

The next two examples consider the blind SIMO equalization
problem: the first one illustrates the performance of the CCA and
MSOSA batch algorithms for colored source signals. Specifically,
we consider a SIMO system with 2 channels: h1 = [1,0.5,0.2] and
h2 = [1,−0.2,0.5] excited by a speech signal sampled at 7418Hz.
Fig. 2 shows that for low and moderate SNRs the batch CCA algo-
rithm clearly outperforms the MSOSA.

In the third example the performance of the adaptive algorithms
is analyzed. Now a SIMO system with three channels whose im-
pulse responses are shown in Table 1 and a 16-QAM source signal
have been considered. The signal to noise ratio is SNR=30dB and
the forgetting factor is λ = 0.95. The results of Fig. 3 compare
the convergence speed of the CCA-RLS algorithm and the MSOSA
with different step sizes (the value µ = 2 · 10−4 is the largest one
ensuring convergence for all the trials). The improvement in speed
over the MSOSA method is remarkable.

7. CONCLUSIONS

In this paper, the problem of CCA of multiple data sets has been
reformulated as a set of coupled LS regression problems. It has
been proved that the proposed formulation is, in fact, equivalent to
the CCA-MAXVAR problem described by Kettenring. However,
the LS regression point of view allows us to derive batch an on-
line (RLS-based) adaptive algorithms for CCA in a straightforward
manner. The performance of the algorithm has been demonstrated
through simulations in blind SIMO channel equalization problems,
where the proposed CCA algorithms outperform other blind equal-
ization techniques based on second-order statistics. Further inves-
tigation lines include the application of these ideas to blind equal-
ization of multiple-input multiple-output (MIMO) channels, and the
extension to nonlinear processing through kernel CCA (KCCA).



n h1[n] h2[n] h3[n]
0 1.786− j1.989 0.245+ j0.974 0.873− j1.234
1 −2.113+ j3.153 −2.223+ j1.595 −0.939+ j0.914
2 0.256+ j0.484 0.428− j0.485 0.302+ j0.090
3 2.230+ j0.109 3.061− j0.564 1.077− j1.980
4 −1.359− j1.326 −0.186+ j0.199 −1.155− j0.238
5 −0.665− j2.047 −1.089+ j0.419 0.592+ j0.908
6 1.198− j2.016 0.865+ j1.288 0.157− j0.497

Table 1: Impulse response of the SIMO channel used in the second
blind SIMO equalization example.

APPENDIX

In this appendix we show that the proposed generalization of the
CCA problem to M > 2 data sets given by (4) (or equivalently by
(5)) is equivalent to the maximum variance (MAXVAR) generaliza-
tion proposed by Kettenring in [3]. The MAXVAR generalization
of CCA is formulated in [3] as the problem of finding a set of vec-
tors fk and the corresponding projections yk = Xkfk, which admit
the best possible one-dimensional PCA representation and subject
to the constraint ‖yk‖= 1; i.e. the cost function to be minimized is

JPCA(f) = min
z,a

1
M

M

å
k=1

‖z−akyk‖2 subject to ‖a‖2 = M, (10)

where a= [a1, . . . ,aM ]T is the PCA vector providing the weights for
the best combination of the outputs and f = [fT

1 , . . . , fT
M ]T . Notice

first that the canonical vectors defined in the paper are related to fk
through hk = akfk, whereas zk = akyk.

Taking the derivative of (10) with respect to z and equating to
zero we get

z =
1
M

Ya, (11)

where matrix Y has been defined as Y = [y1| · · · |yM ]. Now, sub-
stituting (11) into (10), the cost function becomes

JPCA(f) = 1− aHYHYa

M2 = 1−β ,

which is minimized when β is the largest eigenvalue of YHY/M
and a is its corresponding eigenvector scaled to satisfy ‖a‖2 = M.

Using the singular value decomposition (SVD) of Xk =
UkΣkV

H
k , we can write

yk = Xkfk = Ukgk,

where gk = ΣkV
H
k fk is a unit norm vector. Defining X =

[X1 · · ·XM ] and U = [U1 · · ·UM ], β can be rewritten as

β =
1

M2 bHUHUb,

where b = [bT
1 , . . . ,bT

M ]T , with bk = akgk, consequently the
squared norm of b is ‖b‖2 = M.

After the SVD, the solution b that maximizes β is the eigen-
vector of UHU/M associated to its largest eigenvalue. In order to
obtain the CCA solution directly from X = UΣVH we write

1
M

UHUb =
1
M

Σ−1VHXHXVΣ−1b = βb, (12)

where Σ and V are block-diagonal matrices with elements Σi and
Vi, respectively. Left-multiplying (12) by VΣ−1 we have

1
M

VΣ−2VHXHXVΣ−1b = βVΣ−1b.
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Figure 3: Blind SIMO Equalization. Performance of the adaptive
algorithms. λ = 0.95, SNR=30dB.

Finally, defining h = VΣ−1b and taking into account that R =
XHX and D = VΣ2VH are the matrices defined in (6), the GEV
problem (7) is obtained. Obviously, Eq. (7) has the same solutions
(eigenvectors) as the proposed generalized CCA problem in (5): this
concludes the proof. From this discussion we also find that the best
desired output for the proposed regression procedure is given by

z =
1
M

Ya =
1
M

Xh =
1
M

M

å
k=1

zk.

REFERENCES

[1] J. Vı́a, I. Santamarı́a and J. Pérez, “A robust RLS algorithm
for adaptive Canonical Correlation Analysis”. Proc. of 2005
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, Philadelphia, USA, March 2005.

[2] H. Hotelling, “Relations between two sets of variates,”
Biometrika, vol. 28, pp. 321-377, 1936.

[3] J. R. Kettenring, “Canonical analysis of several sets of vari-
ables,” Biometrika, vol. 58, pp. 433-451, 1971.

[4] A. Pezeshki, M. R. Azimi-Sadjadi and L. L. Scharf, “A net-
work for recursive extraction of canonical coordinates,” Neu-
ral Networks, vol.16, no. 5-6, pp. 801-808, June 2003.

[5] A. Pezeshki, L. L. Scharf, M. R. Azimi-Sadjadi, Y. Hua,
“Two-channel constrained least squares problems: solutions
using power methods and connections with canonical coordi-
nates,” IEEE Trans. Signal Processing, vol. 53, pp. 121-135,
Jan. 2005.

[6] Y. Li and K. J. R. Liu, “Blind adaptive spatial-temporal equal-
ization algorithms for wireless communications using antenna
arrays,” IEEE commun. lett., vol. 1, pp. 25-27, Jan. 1997.

[7] M. Borga, Learning Multidimensional Signal Processing, PhD
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