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CANONICAL CORRESPONDENCE ANALYSIS: 

A NEW EIGENVECTOR TECHNIQUE FOR MULTIVARIATE 

DIRECT GRADIENT ANAL YSIS 1 

CAJO J. F. TER BRAAK 

TNO Institute of Applied Computer Science, P. 0. Box 100, 6700 AC Wageningen, 
The Netherlands, and Research Institute for Nature Management, Leersum, 

The Netherlands 

Abstract. A new multivariate analysis technique, developed to relate community composition to 
known variation in the environment, is described. The technique is an extension of correspondence 
analysis (reciprocal averaging), a popular ordination technique that extracts continuous axes of vari­
ation from species occurrence or abundance data. Such ordination axes are typically interpreted with 
the help of external knowledge and data on environmental variables; this two-step approach (ordination 
followed by environmental gradient identification) is termed indirect gradient analysis. In the new 
technique, called canonical correspondence analysis, ordination axes are chosen in the light of known 
environmental variables by imposing the extra restriction that the axes be linear combinations of 
environmental variables. In this way community variation can be directly related to environmental 
variation. The environmental variables may be quantitative or nominal. As many axes can be extracted 
as there are environmental variables. The method of detrending can be incorporated in the technique 
to remove arch effects. 

(Detrended) canonical correspondence analysis is an efficient ordination technique when species 
have bell-shaped response curves or surfaces with respect to environmental gradients, and is therefore 
more appropriate for analyzing data on community composition and environmental variables than 
canonical correlation analysis. The new technique leads to an ordination diagram in which points 
represent species and sites, and vectors represent environmental variables. Such a diagram shows the 
patterns of variation in community composition that can be explained best by the environmental 
variables and also visualizes approximately the "centers" of the species distributions along each of 
the environmental variables. Such diagrams effectively summarized relationships between community 
and environment for data sets on hunting spiders, dyke vegetation, and algae along a pollution gradient. 

Key words: biplot; canonical correlation analysis; canonical correspondence analysis; detrended 
correspondence analysis; Gaussian model; gradient analysis; ordination; reciprocal averaging; regres­
sion; species-environment relations; urifolding; weighted averaging. 

INTRODUCTION 

Problems in community ecology often require the 

inferring of species-environment relationships from 

community composition data and associated habitat 

measurements. Typical data for such problems consist 

of two sets: data on the occurrence or abundance of a 

number of species at a series of sites, and data on a 

number of environmental variables measured at the 

same sites. (A "site" is the basic sampling unit, sepa­

rated in space or time from other sites, e.g., a quadrat, 

a woodlot, a light trap, or a plankton sample.) When 

the data are collected over a sufficient habitat range for 

species to show nonlinear, nonmonotonic relationships 

with environmental variables, it is inappropriate to 

summarize these relationships by correlation coeffi­

cients or to analyze the data by techniques that are 

based on correlation coefficients, such as canonical cor­

relation analysis (Gauch and Wentworth 1976, Gittins 

1985). An alternative, two-step approach has become 

popular: (I) extract from the species data the dominant 

pattern of variation in community composition by an 

ordination technique, such as (detrended) correspon-

1 Manuscript received 18 March 1985; revised 12 Novem­
ber 1985; accepted 22 January 1986. 

dence analysis, and (2) attempt to relate this pattern 

(i.e., the first few ordination axes) to the environmental 

variables (Gauch 1982a). The particular merit of de­

trended correspondence analysis in this context is that 

it removes nonlinear dependencies between axes (Hill 

and Gauch 1980) and has been shown to be an efficient 

technique to extract one or more ordination axes ("gra­

dients") such that species show unimodal (bell-shaped) 

response curves or surfaces with respect to these axes 

(Ter Braak 1985b). The axes can be thought of ashy­

pothetical environmental gradients, which are subse­

quently interpreted in terms of measured environmen­

tal variables in the second step of the analysis. This 

two-step approach is essentially Whittaker's ( 1967) in­

direct gradient analysis. 

What can be inferred from indirect gradient analysis? 

If the measured environmental variables relate strong­

ly to the first few ordination axes, they can "account 

for" (i.e., they are sufficient to predict) the main part 

of the variation in the species composition. If the en­

vironmental variables do not relate strongly to the first 

few axes, they cannot account for the main part of the 

variation, but they may still account for some of the 

remaining variation-which can be substantial. Fur­

ther, it is nontrivial to detect by indirect gradient anal-
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ysis the effects on community composition of a subset 

of environmental variables in which one is particularly 

interested (Carleton 1984). These limitations can only 

be overcome by methods of direct gradient analysis, 

in which species occurrences are related directly to en­

vironmental variables (Gauch 1982a). Methods of di­

rect gradient analysis in current use consider essentially 

one species at a time. Simple methods involve plotting 

species abundance against a single environmental vari­

able, or isopleths in a space of two environmental vari­

ables (Whittaker 1967). More elaborate methods use 

(generalized linear) regression methods (Austin et a!. 

1984, Bartlein et a!. 1986) and are useful in studying 

simultaneously the effect of more than one environ­

mental variable. Regression methods allow fitted re­

sponse surfaces to assume a wide variety of shapes. 

However, when the number of species is large, separate 

regression analysis for each species may be impracticaL 

Moreover, separate analyses cannot be combined eas­

ily to get an overview of how community composition 

varies with the environment (in particular, when the 

number of environmental variables exceeds two or 

three), and a multivariate method (based on a common 

response model) is required. 

In this paper a multivariate direct gradient analysis 

technique is developed, whereby a set of species is 

related directly to a set of environmental variables. The 

new technique identifies an environmental basis for 

community ordination by detecting the patterns of 

variation in community composition that can be ex­

plained best by the environmental variables. In the 

resulting ordination diagram, species and sites are rep­

resented by points and environmental variables are 

represented by arrows. Such a diagram shows the main 

pattern of variation in community composition as ac­

counted for by the environmental variables, and also 

shows, in an approximate way, the distributions of the 

species along each environmental variable. The tech­

nique thus combines aspects of regular ordination with 

aspects of direct gradient analysis. The rationale of the 

technique is derived from a species packing model 

wherein species are assumed to have Gaussian (bell­

shaped) response surfaces with respect to compound 

environmental gradients. These gradients are assumed 

to be linear combinations of the environmental vari­

ables. The new technique is called canonical corre­

spondence analysis, because it is a correspondence 

analysis technique in which the axes are chosen in the 

light of the environmental variables. Examples dem­

onstrate that canonical correspondence analysis allows 

a quick appraisal of how community composition var­

ies with the environment. 

THEORY 

Data and model 

Suppose a survey of n sites lists the abundances or 

occurrences (presence scored as I, absence as 0) of m 

species and the values of q environmental variables 

(q < n). Let y,, be the abundance or presence/absence 

(1/0) of species k (y,, :::=: 0), and z,, the value of envi­

ronmental variable j at site i. 

The first step in indirect gradient analysis is to sum­

marize the main variation in the species data by or­

dination. The method of Gaussian ordination (Gauch 

eta!. 1974) does this by constructing an axis such that 

the species data optimally fit Gaussian response curves 

along this axis. Then the response model for the species 

is the bell-shaped function 

E(y,k) = ckexp[Ih(x, - uk)2/tk2], (1) 

where E(y,J denotes the expected (average) value of 

y,k at site i that has score x, on the ordination axis. The 

parameters for species k are Cc. the maximum of that 

species' response curve; Uc. the mode or optimum (i.e., 

the value of x for which the maximum is attained); 

and t" the tolerance, a measure of ecological ampli­

tude. Ter Braak (1985b) showed that correspondence 

analysis approximates the maximum likelihood solu­

tion of Gaussian ordination, if the sampling distribu­

tion of the species abundances is Poisson, and if: 

Cl) the species' tolerances are equal (t, = t, k = 1, 

... 'm), 

C2) the species' maxima are equal (ck = c, k = I, 

... 'm), 

C3) the species' optima { uk i are homogeneously dis­

tributed over an interval A that is large com­

pared tot, 

C4) the site scores {x,i are homogeneously distrib­

uted over a large interval B that is contained 

in A. 

(The wording "homogeneously distributed" is used to 

cover either of two cases, namely (I) that the scores 

are equispaced, with spacing small compared to t, or 

(2) that the scores are drawn randomly from a uniform 

distribution.) Conditions Cl-C3 imply a species pack­

ing model (Whittaker et a!. 1973) with respect to the 

ordination axis. The species scores resulting from a 

correspondence analysis actually estimate the optima 

of the species in this model. Ter Braak (1985b) pro­

vided a similar rationale for correspondence analysis 

of presence-absence data. Conditions C I and C2 are 

not likely to hold in most natural communities, but 

the usefulness of correspondence analysis in practice 

relies on its robustness against violations of these con­

ditions (Hill and Gauch 1980). 

The second step of indirect gradient analysis is to 

relate the ordination axis to the environmental vari­

ables, for example graphically, or by calculating cor­

relation coefficients, or by multiple regression (see 

Montgomery and Peck 1982) of the site scores on the 

environmental variables 

q 

x, = b0 + ~ b1z,,, 
j=l 

(2) 
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where b0 is the intercept and b1 is the regression coef­

ficient for environmental variable j. Note that the 

species optima u, and sites scores x, are estimated from 

the species data first; the regression coefficients b1 are 

estimated next, keeping x, (and uk) fixed. The species 

data are thus indirectly related to the environmental 

variables, via the ordination axis. 

The technique proposed in this paper simultaneously 

estimates the species optima, the regression coefficients 

and, hence, the site scores by using the model described 

by Eq. I, in conjunction with Eq. 2. Simultaneous es­

timation turns the technique into a direct gradient anal­

ysis method. In principle the method of maximum 

likelihood could be used to obtain the estimates. This 

analysis could be called Gaussian canonical ordination. 

It requires excessively heavy computation. The com­

putational task can, however, be alleviated consider­

ably if conditions C 1-C4 hold. The reasoning that led 

from Gaussian ordination to correspondence analysis, 

now leads to the transition formulae of canonical cor­

respondence analysis (see Appendix): 

AU, = ~ Y,kX/Y+k 
i=l 

x,* = ~ y,,ukly,. 
k=\ 

x = zb, 

(3) 

(4) 

(5) 

(6) 

where y +' and y,. are species and site totals, respec­

tively, R is a diagonal n x n matrix withy,+ as the (i, 

i)-th element; z = {z,1 i is ann x (q + 1) matrix con­

taining the environmental data and a column of ones; 

and b, x and x* are column-vectors: b = (b0 , bi, ... , 

b4)', x =(xi, ... , x")', and x* =(xi*, ... , Xn*)'. The 

transition formulae define an eigenvector problem (see 

Appendix) that is akin to the eigenvector problem posed 

by canonical correlation analysis, A in Eq. 3 being the 

eigenvalue. As in correspondence analysis, the equa­

tions have a trivial solution in which all site and spe­

cies scores are equal and A = 1; this trivial solution 

can either be disregarded or be excluded by requiring 

that the site scores are centered to zero mean, 

i.e., ~,y,+x, = 0. 

Algorithm: reciprocal averaging and regression 

The transition formulae can be solved by the follow­

ing iteration algorithm of reciprocal averaging and 

multiple regression. 

S1) Start with arbitrary, but unequal, initial site 

scores. 

S2) Calculate species scores by weighted averaging 

of the site scores (Eq. 3 with A= 1). 

S3) Calculate new site scores by weighted averaging 

of the species scores (Eq. 4). 

S4) Obtain regression coefficients by weighted mul-

tiple regression of the site scores on the envi­

ronmental variables (Eq. 5). The weights are the 

site totals (y<+ ). 

S5) Calculate new site scores by Eq. 6 or, equiva­

lently, Eq. 2. The new site scores are in fact the 

fitted values of the regression of the previous 

step. 

S6) Center and standardize the site scores such that 

~.Y,. x, = 0 and ~.Y,+ x,2 = 1. (7) 

S7) Stop on convergence, i.e., when the new site 

scores are sufficiently close to the site scores of 

the previous iteration; otherwise go to S2. 

This procedure is akin to the reciprocal averaging 

algorithm of correspondence analysis, but steps S4 and 

S5 are additional. The new technique is a correspon­

dence analysis technique with restrictions (S4 and S5) 

on the site scores (cf. DeLeeuw 1984). The final regres­

sion coefficients will be called canonical coefficients, 

and the multiple correlation coefficient of the final 

regression will be called the species-environment cor­

relation. The species-environment correlation is a 

measure of how well the extracted variation in com­

munity composition can be explained by the environ­

mental variables and is equal to the correlation be­

tween the site scores {x,*}, which are weighted mean 

species scores (calculated by Eq. 4), and the site scores 

{x,}, which are a linear combination of the environ­

mental variables (calculated by Eq. 2 or Eq. 6). This 

equality requires the assumption that sites are weighted 

proportional to y,_ , as in steps S4 and S6. and this 

weighting of sites is assumed in the calculation of means, 

variances, and correlations throughout the paper. 

The standardization of the site scores in S6 is con­

venient in the algorithm, but it has more meaning eco­

logically to rescale the solution according to Eq. A.8 

of the Appendix, as proposed by Hill ( 1979). Then, the 

tolerance of the fitted Gaussian response curves is (on 

average) about 1 unit, and a species' response curve 

can be expected to rise and decline over an interval of 

about 4 units. 

More than one dimension and detrending 

Second and additional axes can be extracted as in 

correspondence analysis by adding to the algorithm, 

after S5, a step that makes the trial site scores uncor­

related with the previous axes. The two-dimensional 

solution is intended to fit bivariate Gaussian response 

surfaces to the species data (Ter Braak 1985b) but often 

gives a bad fit because of the arch effect, an approxi­

mately quadratic dependence between the scores of the 

first two axes. This effect crops up whenever a short 

gradient is dominated by a long gradient (Gauch 1982a). 

The modifications of correspondence analysis that led 

to detrended correspondence analysis (Hill and Gauch 

1980) can also be incorporated in canonical corre­

spondence analysis; the rationale for detrending is the 

same. Detrending removes the arch effect and im-
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Pard lugu 

FALLEN TWIGS A 

WATER CONTENT 

COVER HERBS 

Arct peri 
A 

AlopfabrZ \ 

0 0 J ____ j __ 
BARE SAND 

FIG. I. The distribution of 12 species of hunting spiders caught in pitfall traps in a Dutch dune area. Canonical corre­
spondence analysis (CCA) ordination diagram with pitfall traps (0), hunting spiders(~). and environmental variables (arrows); 
first axis is horizontal, second axis vertical. Shown also are the projections of the spider points labelled Arct peri, Alop fabr, 
Alop acce, and Pard mont onto the trajectory of the arrow of bare sand; the order of the projection points indicates the 
approximate ranking of the centers of the distributions of these spiders along the variable "percentage bare sand," Arctosa 
perita being found in habitats with the highest percentages of bare sand. The spider species are: Alop acce = Alopecosa 
accentuata, Alop cune = Alopecosa cuneata, Alop fabr = Alopecosafabrilis, Arct lute= Arctosa lutetiana, Arct peri= Arctosa 
perita, Aulo albi = Aulonia albimana, Pard lugu = Pardosa lugubris, Pard mont = Pardosa monticola, Pard nigr = Pardosa 
nigriceps, Pard pull = Pardosa pullata, Troc terr = Trochosa terricola, Zora spin = Zora spinimana. The environmental 
variables are: Water Content = percentage of soil dry mass, Bare Sand = percentage cover of bare sand, Fallen Twigs = 
percentage cover of fallen leaves and twigs, Cover Moss = percentage cover of the moss layer, Cover Herbs = percentage 
cover of the herb layer, and Light Ref! = reflection of the soil surface with cloudless sky. 

proves the fit to the Gaussian model considerably in 

simulations where the true site and species scores are 

homogeneously distributed in a rectangle (the exten­

sion to two dimensions of conditions C3 and C4; Ter 

Braak 1985b). Detrending, however, also attempts to 

impose such a homogeneous distribution of scores on 

the data where none exists. The computer program 

CANOCO (Ter Braak l985a) will also perform de­

trended canonical correspondence analysis. For a com­

parison of the detrended analysis with the non-detrend­

ed analysis, see Tests on Real Data. 

Canonical coefficients and intraset correlations 

For interpreting the ordination axes one can use the 

canonical coefficients and the intraset correlations. The 

canonical coefficients define the ordination axes as linear 

combinations of the environmental variables through 

Eq. 2, and the intraset correlations are the correlation 

coefficients between the environmental variables and 

these ordination axes. (The term intraset is used here 

to distinguish these correlations from the interset cor­

relations between the environmental variables and the 

site scores {x,*} that are derived from the species data.) 

For the rest of the analysis it is assumed that the en­

vironmental variables have been standardized to zero 

mean and unit variance prior to the analysis. This stan-

dardization removes arbitrariness in the units of mea­

surement of the environmental variables and makes 

the canonical coefficients comparable to each other, 

but does not influence other aspects of the analysis. 

By looking at the signs and relative magnitudes of 

the intraset correlations and of the canonical coeffi­

cients so standardized, we may infer the relative im­

portance of each environmental variable for predicting 

the community composition. The canonical coeffi­

cients give the same information as the intraset cor­

relations in the special case that the environmental 

variables are mutually uncorrelated, but may provide 

rather different information when the environmental 

variables are correlated with each other, as they usually 

are in field data. Both a canonical coefficient and an 

intraset correlation coefficient relate to the rate of change 

in community composition per unit change in the cor­

responding environmental variable, but in the former 

case it is assumed that other environmental variables 

are being held constant, whereas in the latter case the 

other environmental variables are assumed to covary 

with that one environmental variable in the particular 

way they do in the data set. When the environmental 

variables are strongly correlated with each other-for 

example, simply because the number of environmental 

variables approaches the number of sites-the effects 
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of different environmental variables on community 

composition cannot be separated out and, consequent­

ly, the canonical coefficients are unstable. This is the 

multicollinearity problem, well known to occur in mul­

tiple regression analysis (see Montgomery and Peck 

1982). When this problem arises (the program CAN­

OCO [Ter Braak 1985a] provides statistics to help de­

tect it) one should abstain from attempts to interpret 

the canonical coefficients. Fortunately, the intraset cor­

relations do not suffer from this problem and can still 

be used for interpretation purposes. One can also re­

move environmental variables from the analysis, keep­

ing at least one variable per set of strongly correlated 

environmental variables; the eigenvalues and species­

environment correlations will usually decrease only 

slightly. If the eigenvalues and species-environment 

correlations drop considerably, one has removed too 

many (or the wrong) variables. 

In contrast to canonical correlation analysis, canon­

ical correspondence analysis is not hampered by mul­

ticollinearity in the species data; the number of species 

is therefore allowed to exceed the number of sites. 

Ordination diagram 

The solution of canonical correspondence analysis 

can be displayed in an ordination diagram with sites 

and species represented by points, and environmental 

variables represented by arrows (see Fig. I). The species 

and site points jointly represent the dominant patterns 

in community composition insofar as these can be ex­

plained by the environmental variables, and the species 

points and the arrows of the environmental variables 

jointly reflect the species' distributions along each of 

the environmental variables. For example, when an 

arrow refers to "water content," the diagram allows us 

to infer-by rules explained in the following para­

graphs-which species largely occur in the wettest sites, 

which in the driest sites, and which in sites with in­

termediate moisture values. We shall limit the discus­

sion to two-dimensional diagrams because these are 

the most convenient to visualize. The rules for con­

struction and interpretation of higher-dimensional or­

dination diagrams are the same. 

For the diagram to represent the approximate com­

munity composition at the sites, we must plot species 

scores and site scores that are weighted mean species 

scores, as in Hill's ( 1979) program DECO RAN A. Be­

cause each site point then lies at the centroid of the 

species points that occur at that site, one may infer 

from the diagram which species are likely to be present 

at a particular site. Also, insofar as canonical corre­

spondence analysis is a good approximation to the fit­

ting of Gaussian response surfaces, the species points 

are approximately the optima of these surfaces; hence 

the abundance or probability of occurrence of a species 

decreases with distance from its location in the dia­

gram. 

At which values of an environmental variable a 

species occurred in the data can conveniently be sum­

marized by the weighted average. The weighted av­

erage of a species distribution (k) with respect to an 

environmental variable U) is defined as the average of 

the values of that environmental variable at those sites 

at which that species occurs, the weighting of each site 

being proportional to species abundance, i.e., 

zk, = ~ y,k.:::,/y+k· (8) 
i= I 

The weighted average indicates the "center" of a species' 

distribution along an environmental variable (Ter Braak 

and Looman 1986), and differences in weighted av­

erages between species indicate differences in their dis­

tributions along that environmental variable. The or­

dination diagram of canonical correspondence analysis 

can be supplemented by arrows for the environmental 

variables to give a graphical summary of the weighted 

averages of all species with respect to all environmental 

variables. 

The arrows for the environmental variables must be 

added in the following way. The position of the head 

of the arrow for an environmental variable depends on 

the eigenvalues of the axes and the intraset correlations 

of that environmental variable with the axes (see Ap­

pendix). The coordinate of the head of the arrow on 

axis s must be [i\( 1 -.\)]';,times the intra set correlation 

of the environmental variable with axis s, where .\, is 

the eigenvalue of axis s and it is assumed that the 

species scores are standardized according to Appendix 

Eq. A.8, as before. By connecting the origin of the plot 

(the centroid ofthe site points) with each of the arrow­

heads, we obtain the arrows representing the variables 

(Fig. 1). How to construct such a diagram from a de­

trended canonical correspondence analysis is described 

in the Appendix. Only the directions and relative lengths 

convey information, so one can increase or reduce the 

lengths of all arrows to fit conveniently in the ordi­

nation diagram. 

The ordination diagram so constructed allows the 

following interpretation. Each arrow determines a di­

rection or axis in the diagram, obtained by extending 

the arrow in both directions (in your mind or on paper). 

From each species point we must drop a perpendicular 

to this axis. Fig. I shows an example. The arrow for 

water content has been extended (the axis happens to 

coincide with the arrow for bare sand) and perpendic­

ulars have been dropped to this axis from four species 

points. The endpoints indicate the relative positions 

of the centers of the species distributions along the 

water content axis or, more precisely, they indicate in 

an approximate way the relative value of the weighted 

average of each species with respect to water content. 

From Fig. I we thus infer that Arctosa perita has the 

lowest weighted average with respect to water content 

(i.e., it largely occurs at the driest sites), Alopecosafa­

brilis the second lowest value, and so on to Arctosa 

lutetiana, which is inferred to have the highest weight-
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TABLE I. Comparison of the results of ordinations by de­
trended correspondence analysis (DCA). canonical corre­
spondence analysis (CCA), and detrended canonical cor­
respondence analysis (DCCA) of hunting spider data (see 
Fig. 1): eigenvalues and species-environment correlation 
coefficients for the first three axes. 

Axis 

2 3 

Eigenvalues 

DCA 0.58 0.16 0.02 
CCA 0.53 0.21 0.06 
DCCA 0.53 0.13 0.02 

Correlation coefficients 

DCA 0.96 0.92 0.88 
CCA 0.96 0.93 0.64 
DCCA 0.97 0.94 0.90 

ed average (i.e., to occur largely at the wettest sites). 

In general, the approximate ranking of the weighted 

averages for a particular environmental variable can 

be seen easily from the order of the endpoints of the 

perpendiculars of the species along the axis for that 

variable. Further, the weighted averages are approxi­

mated in the diagram as deviations from the grand 

mean of each environmental variable, the grand mean 

being represented by the origin of the plot. A second 

useful rule for interpreting the diagram is therefore that 

the inferred weighted average is higher than average if 

the endpoint of a species lies on the same side of the 

origin as the head of an arrow does, and is lower than 

average if the origin lies between the endpoint and the 

head of the arrow. 

These rules for interpreting the joint plot of species 

points and environmental arrows are identical to the 

rules for interpreting a biplot (Gabriel 1971). Biplots 

have been used so far primarily in connection with 

principal components analysis (Ter Braak 1983), but 

a biplot is essentially just a joint plot of two kinds of 

entities that allows a particular kind of quantitative 

interpretation (Gabriel 198 l, Ter Braak 1983). The 

joint plot of species and environmental variables is, in 

fact, a biplot. This biplot provides a weighted least 

squares approximation of the weighted averages of the 

species with respect to the environmental variables (see 

Appendix). The measure of goodness offit, 100 x (/- 1 + 
,\c)/(sum of all eigenvalues), expresses the percentage 

variance of the weighted averages accounted for by the 

two-dimensional diagram. In interpreting percentages 

of variance accounted for, it must be kept in mind that 

the goal is not 100%, because part of the total variance 

is due to noise in the data (cf. Gauch 1982b). Even an 

ordination diagram that explains only a low percentage 

may be quite informative. 

Finally, the length of an arrow representing an en­

vironmental variable is equal to the rate of change in 

the weighted average as inferred from the biplot, and 

is therefore a measure of how much the species dis-

tributions differ along that environmental variable. Im­

portant environmental variables therefore tend to be 

represented by longer arrows than less important en­

vironmental variables. 

Relation of canonical correspondence analysis 

with weighted averaging ordination and 

discriminant analysis 

Canonical correspondence analysis generalizes two 

existing techniques for direct gradient analysis. When 

a single quantitative environmental variable is consid­

ered, it reduces to weighted averaging ordination (Gauch 

l982a), because x, in Eq. 1 is then simply the value of 

this variable at site i, and fitting this model simplifies 

under condition C4 to weighted averaging (cf. Ter Braak 

and Looman 1986). With two quantitative environ­

mental variables, the technique represents the same 

information in a two-dimensional diagram as weighted 

averaging ordination with respect to these variables, 

although the variables are not necessarily displayed as 

orthogonal directions in the ordination diagram. With 

a single nominal environmental variable, canonical 

correspondence analysis is a variant of discriminant 

analysis (canonical variate analysis) that is appropriate 

to a unimodal response model, and which can be ob­

tained more simply from a correspondence analysis of 

a two-way table of species by (classes of1 the nominal 

variable (Greenacre 1984: section 7 .1). The cells of the 

table must contain the total abundances of each of the 

species in each of the classes. In the resulting ordination 

diagram the classes are represented by points. This 

equivalence suggests that it can be more natural to 

represent nominal environmental variables by points 

instead of arrows. The point for a class of a nominal 

environmental variable must be located at the centroid 

(the weighted average) of the sites belonging to that 

class. Classes consisting of sites with high values for a 

species will then tend to lie close to that species' point. 

Gasse and Tekaia ( 1983) applied this technique toes­

tablish a transfer function for estimating paleo-envi­

ronmental conditions from diatom assemblages. 

TABLE 2. Hunting spider abundance data from Fig. I: ca­
nonical coefficients and the intraset correlations of envi­
ronmental variables with the first two axes of canonical 
correspondence analysis (CCA). The environmental vari­
ables were standardized to unit variance after log-transfor­
mation. For a description of variables, see Fig. I legend. 

Canonical Correlation 

Axis 
coefficients coefficients 

variable 2 I 2 

Water Content -0.51 -0.41 -0.93 -0.08 
Bare Sand 0.33 -0.10 0.73 0.06 
Fallen Twigs -0.14 0.37 -0.43 0.78 
Cover Moss 0.05 -0.27 0.69 -0.30 
Cover Herbs ·-0.28 -0.15 -0.32 -0.78 
Light Refl 0.27 -0.03 0.64 -0.59 
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TABLE 3. Hunting spider abundance data, with species (rows) and sites (columns) arranged in order of the scores for the 
first axis of canonical correspondence analysis (CCA). Site numbers correspond to those of Van der Aart and Smeenk­
Enserink (1975: Table 4). The species abundance data have been transformed by taking square roots; the integer part is 
shown, a blank denoting absence of the species and 9 denoting > 80 individuals captured. For this table, the range of each 
environmental variable was divided into 10 equal-sized classes (denoted by 0-9) after the data were transformed. Abbre­
viations and a description of the biological system are given in legend of Fig. I. 

15 19 20 16 I 7 18 

Species 

Arct lute 
Pard lugu 2 3 3 2 2 
Zora spin I I I 2 
Pard nigr I I 
Pard pull 
Aulo albi 
Troc terr 5 4 4 5 4 5 
Alop cune I I I I 
Pard mont 
Alop acce 
Alop fabr 
Arct peri 

Environmental variable 

Water Content 
Bare Sand 
Cover Moss 
Light Reft 
Fallen Twigs 
Cover Herbs 

9 7 8 8 9 8 
0 0 0 0 0 0 
I 3 I I I 0 
I 0 0 0 2 2 

9 9 9 9 9 9 

5 2 0 0 5 5 

TESTS ON REAL DATA 

Hunting spider data 

2 8 21 5 6 

I 2 

I 7 4 I 

3 I I 4 5 
3 I 9 5 
6 I 8 4 

5 2 3 2 

8 5 4 9 7 

I 3 I 4 2 
I I I I 3 

I 

8 6 7 8 9 

0 0 0 0 5 
2 2 I 0 5 
3 I 0 5 I 

3 9 9 0 7 

9 6 2 9 6 

The first data set, taken from Van der Aart and 

Smeenk-Enserink (1975), concerns the distributions of 

12 species of hunting spiders (Fig. I) in a Dutch dune 

area, in relation to environmental data. The species 

data are the numbers of individuals of each species 

caught in pitfall traps over a period of 60 wk. Twenty­

six environmental variables were measured at 28 of 

the pitfall traps. This number of variables is too large 

to sort out their independent effects on community 

composition. Eighteen variables were removed on a 

priori grounds, and two more variables were removed 

because they were strongly correlated with one of the 

remaining six variables (Fig. 1). The species data were 

transformed by taking square roots to down-weight 

high abundances; the environmental data were trans­

formed by taking logarithms, as in the original paper. 

The ordinations by detrended correspondence anal­

ysis (DCA), canonical correspondence analysis (CCA), 

and detrended canonical correspondence analysis 

(DCCA) are very similar for these data. The first ei­

genvalue of CCA is only slightly lower than the first 

eigenvalue of DCA, and the species-environment cor­

relations of the first three axes are all high (Table 1). 

Apparently the measured environmental variables are 

sufficient to explain the major variation among the 

spider catches. From Table 2 we infer that the first axis 

is a moisture gradient, on which the drier sites have a 

high percentage of bare sand or of moss. The corre­

lations of the second axis show a contrast between sites 

Site numbers 

14 4 7 13 3 9 12 25 II 10 28 23 22 27 24 26 

I l 3 I I 

I I I I I I 
5 5 4 4 I 2 2 
3 5 9 7 4 3 I 2 
8 9 9 8 6 6 2 I 
2 4 4 4 3 2 I I 

9 9 9 9 8 7 I 3 4 2 
I 2 2 6 4 3 I 3 I I 
3 2 5 4 5 7 5 9 3 9 4 2 2 I I I 

I I I 3 5 I 4 3 3 I 3 4 2 5 3 
I I 3 I I 3 3 4 3 4 2 

I 2 I 2 2 4 

8 6 8 9 6 5 5 5 3 4 4 0 0 I 0 2 0 

0 0 0 3 0 0 0 0 7 0 8 7 6 7 5 7 9 
4 5 I I 5 7 9 8 2 9 7 8 9 9 8 9 4 

2 6 5 7 8 8 7 8 5 8 8 8 9 8 8 9 9 

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 9 9 9 9 9 6 8 8 7 5 6 6 0 6 5 2 

with a high cover of leaves and twigs and sites with a 

well-developed herb and moss layer. 

From the species and site points in the CCA ordi­

nation diagram (Fig. I) we infer, for example, that 

Arctosa perita and Alopecosu fabri/is reached their 

maximum abundance in the six pitfall traps repre­

sented on the right-hand side of the diagram, that Par­

dosa monticola had maximum abundance in the pitfall 

traps shown in the middle, and that Pardosa /ugubris 

was most abundant in the cluster of pitfall traps rep­

resented in the top-left of the diagram. These inferences 

from the diagram largely agree with the data (cf. Table 

3). 

The arrows for environmental variables in Fig. I 

account, in conjunction with the species points, for 

87% of the variance in the weighted averages of the 12 

spiders with respect to the six environmental variables, 

the sum of all eigenvalues being 0.85. For example, 

projecting the spider points on the axis of percentage 

bare sand shows that Arctosa pcrita and Alopecosafa­

brilis were mainly found in habitats with the highest 

percentages of bare sand, Alopecosa accentuata and 

Pardosa monticola in habitats with intermediate bare 

sand percentages, and the species on the left-hand side 

of the diagram in habitats with the lowest percentages 

ofbare sand. For Ar. perita, Al.fabrilis, AI. accentuata, 

and P. monticola, the same ranking applies with respect 

to the cover of the moss layer. The ranking is more or 

less the reverse with respect to soil water content. Arc­

tosa lutetiana, Pardosa pull at a, Purdosa nigriceps, Au­

Ionia albimana, and Pardosa monticola occurred in 
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TABLE 4. Comparison of the results of ordinations by de­
trended correspondence analysis (DCA). canonical corre­
spondence analysis (CCA). and detrended canonical cor­
respondence analysis (DCCA) of dyke vegetation data (see 
Fig. 2): eigenvalues and species-environment correlation 
coefficients for the first four axes. 

Axis 

2 3 4 

Eigenvalues 

DCA 0.34 0.25 0.22 0.19 
CCA 0.20 0.13 0.12 0.07 
DCCA 0.20 0.12 0.09 0.05 

Correlation coefficients 

DCA 0.52 0.40 0.58 0.22 
CCA 0.82 0.81 0.80 0.77 
DCCA 0.83 0.81 0.76 0.66 

habitats with a well-developed herb layer. Pardosa lu­

gubris occupies an aberrant position in the diagram, 

being the single spider species that occurred mainly in 

habitats with a high cover of fallen leaves and twigs 

(i.e., in woods). Trochosa terricola, Zora spinimana, 

and Alopecosa cuneata occupy an intermediate posi­

tion between the woody and grassier sites. Vander Aart 

and Smeenk-Enserink (1975) gave a similar descrip­

tion, but the CCA ordination diagram tells the main 

story at a glance. The DCCA ordination diagram pro­

vided essentially the same information. The main 

structure in the data is also clear from Table 3, where 

species and sites are reordered according to their scores 

on the first CCA axis. The species data show a diagonal 

band; soil water content decreases along the first axis, 

whereas percentage bare sand, cover of moss, and light 

reflection increase along this axis. 

Dyke vegetation 

De Lange (1972) studied the occurrences of mac­

rophytes in dykes in the Netherlands in relation to 

electrical conductivity, phosphate and chloride con­

centration in the water, and soil type (clay, peaty soil, 

sand). A total of 125 fresh water dykes (conductivity 

< 126 mS/m) were selected, with in total 133 plant 

species. Conductivity data were transformed by taking 

logarithms, because of a skewed distribution, and chlo­

ride concentration was transformed to chloride ratio 

(the share of chloride ions in the electrical conductivity; 

G. Van Wirdum, personal communication). The nom­

inal variable "soil type" (with three classes) was dealt 

with, as in multiple regression (see Montgomery and 

Peck 1982: chapter 6), by defining two dummy envi­

ronmental variables "peat" and "sand." (The variable 

"peat" takes the value 1 when a dyke has soil type 

"peat" and the value 0 otherwise. The variable "sand" 

is defined analogously. A dyke in clay thus scores the 

value 0 on each of the two variables. The canonical 

coefficient of "peat" then measures the difference in 

expected site scores between peaty and clay soils. Other 

choices of dummy variables could have been used 

equivalently, e.g., "clay" and "sand.") 

Table 4 shows that the environmental variables are 

poorly related to the first four species axes of DCA. 

But by choosing the axes in the light of the environ­

mental variables, by applying CCA or DCCA, the 

species-environment correlations increase consider­

ably. The interpretation of the axes is unambiguous 

(Table 5): the first axis is defined by conductivity and 

phosphate, the second by the chloride ratio and soil 

type; the soil types further differentiate on the third 

and fourth axes. CCA and DCCA do not differ much 

for this data set. On the CCA ordination diagram (Fig. 

2) the dykes are not displayed because the diagram 

would have been too crowded; the undisplayed dykes 

all lie in the open center region of Fig. 2. Fig. 2 accounts 

for 56% of the variance and shows that the weighted 

averages of the species with respect to conductivity and 

phosphate result in similar rankings; this similarity 

cannot be explained by the correlation between these 

variables in the data set, because this correlation is 

only 0.44. In contrast, the ranking with respect to chlo­

ride ratio is different. The soil types are also represented 

by arrows (Fig. 2). Species whose distribution is the 

most restricted to peaty soils lie somewhat to the top­

left-hand corner of the diagram. Analogously, species 

with a distribution mainly on clay tend to lie somewhat 

to the bottom-right-hand corner of the diagram. 

The eigenvalues (Table 4) show that the extracted 

gradients are quite short (cf. Gauch and Stone 1979). 

The scores (optima) of most species therefore lie out­

side the center region where the sites lie, and the prob­

ability of occurrence of such species simply increases 

TABLE 5. Dyke vegetation data from Fig. 2: canonical coefficients and intraset correlations. as in Table 2. For a description 
of variables see Fig. 2 legend. 

Axis 
Canonical coefficients Correlation coefficients 

variable 2 3 4 I 2 3 4 

EC 0.27 0.03 -0.02 0.10 0.83 0.17 -0.25 0.20 
Phosphate 0.30 0.01 0.16 -0.15 0.86 -0.08 0.30 -0.21 
Chloride Ratio 0.01 0.30 -0.09 0.09 0.14 0.86 -0.30 0.29 
Clay 0 0 0 0 0.27 -0.21 -0.89 -0.31 
Peat* -0.09 0.44 0.78 -0.03 -0.38 0.49 0.72 -0.17 
Sand* 0.01 -0.30 0.58 0.99 0.13 -0.40 0.40 0.78 

*Not standardized to unit variance. 
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6 

6 
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6 
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FIG. 2. Dyke vegetation data: CCA ordination diagram with plant species (L.) and environmental variables (arrows); first 
axis is horizontal, second axis vertical. Species with positions near the center and some other species elsewhere are not shown 
because the diagram would have become too crowded. The plant species shown are: Acor cala =Acarus calamus, Alop geni = 
Alopecurus genicula/us, Azol fili = Azolla.filiculoides, Bide trip = Bidens tripartita, Call hamu = Callitriche hamulata, Call 
herm = Callitriche hermophroditica, Call obtu = Callitriche obtusangula, Cata aqua = Catabrosa aquatica, Cera subm = 
Ceratophyllum submersum, Cole -sp = Coleochaete sp., Lyco euro = Lycopus europaeus, Meny trif = Menyanthes trifoliata, 
Nuph lu;s = Nuphar lutea (submerged form), Nymp alba = Nymphaea alba, Pota acut = Potamogeton acut({olius, Pota cris = 
Potamogeton crispus, Pota *dec= Potamogeton decipiens, Pota perf= Potamogeton perfoliatus, Pote palu = Potentilla palustris, 
Ranu aqua = Ranunculus aquatilis s.l., Ranu flam = Ranunculus flam mula, Ranu ling = Ranunculus lingua, Ranu see! = 
Ranunculus sceleratus, Schi gela = Schizochlamys gelatinosa, Scir mari = Scirpus marilimus, Stra al;s = Stratiotes a/aides 
(submerged form), Trib bomb= Tribonema bombycinum, Vero anag = Veronica anagallis-aquatica, Vero cate = Veronica 
catena/a, Wolf arrh = Wolffia arrhiza, Zann palu = Zannichellia palustris. The environmental variables are: EC = electrical 
conductivity, Phosphate= orthophosphate concentration, Chloride ratio =share of chloride ions in the electrical conductivity, 
and Clay, Peat, Sand (=type of soil surrounding the dyke). 

or decreases monotonically along the gradients actually 

sampled, instead of being unimodal as required (see 

Theory). Condition C4 is clearly violated in this data 

set; nevertheless CCA worked well. 

Algae along a pollution gradient 

Fricke and Steubing ( 1984) sampled 25 sites in rivu­

lets near the Ederstausee (Western Germany), recorded 

the abundances of 34 algae on a scale from 0 to 5, and 

measured seven environmental variables (Fig. 3), six 

of which (all but 0 D) were transformed by taking log­

arithms in our analysis because of skewed distribu­

tions. The first axis of DCA and that of CCA nearly 

coincided (Table 6), being a clear pollution gradient: 

positive correlations with ammonium, phosphate, bi­

ological oxygen demand (BODS), and electrical con­

ductivity, and a negative correlation with oxygen (Ta­

ble 7). Although the ordination diagram of CCA (Fig. 

TABLE 6. Comparison of the results of ordinations by de­
trended correspondence analysis (DCA). canonical corre­
spondence analysis (CCA), and detrended canonical cor­
respondence analysis (DCCA) of data on algae along a 
pollution gradient: eigenvalues and species-environment 
correlation coefficients for the first three axes. 

Axis 

2 3 

Eigenvalues 

DCA 0.70 0.17 0.09 
CCA 0.67 0.14 0.10 
DCCA 0.67 0.08 0.05 

Correlation coefficients 

DCA 0.97 0.50 0.67 
CCA 0.98 0.72 0.89 
DCCA 0.98 0.80 0.79 
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FIG. 3. Algae along a pollution gradient: CCA ordination diagram with algae (t::.), sites (0), and environmental variables 
(arrows); first axis is horizontal, second axis vertical. The algae are: Amph oval = Amphora ova/is, Audi viol = Audionella 
violacea, Batr moni = Batrachospermum moniliforme, Calo sili = Caloneis silicula, Clad frac = Cladophora fracta, Clad 
glom = Cladophora glomerata, Clos moni = Closterium moniliferum, Clos leib = Closterium leibneinii, Cyma sole = Cy­
matopleura solea, Cymb pros = Cymbella prostata, Diat hiem = Diatoma hiemale mesodon, Diat vulg = Diatoma vulgare, 
Frag capu = Fragilaria capucina, Frag vire = Fragilaria virescens, Gyro atte = Gyrosigma attenuatum, Hant am ph= Hantzschia 
amphioxis, Melo vari = Melosira varians, Meri eire = Meridian circulare, Micr quad = Microspora quadrata, Navi cryp = 
Navicula cryptocephala, Navi radi = Navicula radiosa, Nizs pale = Nizschia palea, Nitz sigm = Nitzschia sigmoidea, Osci 
limo= Oscillatoria limosa, Phor fove = Phormidiumfoveolarum, Phor inun = Phormidium inundatum, Pinn viri = Pinnularia 
viridis, Rhoi curv = Rhoicophenia curvata, Seen quad = Scenedesmus quadricauda, Stau ance = Stauroneis anceps, Stig tenu = 
Stigeoclonium tenue, Syne ulna = Synedra ulna, Ulot zona = Ulotrix zonata, Zoog rami = Zoogloea ramigera. The environ­
mental variables are: Oxygen = oxygen concentration, BOD5 = biological oxygen demand, Ammonium = ammonium 
concentration, Phosphate = orthophosphate concentration, Calcium = calcium concentration, •o = German standard measure 
for the total concentration of calcium and magnesium, and EC = electrical conductivity. 

3) explains most of the variance (73%), the diagram is 

unsatisfactory because of the arch effect (Gauch 1982a). 

The detrending in DCCA largely removes this effect 

(Fig. 4) and shows that the variation in species com­

position on the second axis is small (A2 = 0.08). This 

variation has surprisingly high correlation with the en­

vironmental variables (Table 6). The canonical coef­

ficients of the second axis (Table 8) suggest that this 

Audi viol.6. 

OXYGEN 

Micr quad A 

minor component of the variation is related to the ratio 

of ammonium to phosphate. 

In this example the interpretations of the CCA dia­

gram and the DCCA diagram (Figs. 3 and 4) are not 

very different, but in more complicated data sets the 

difference can be large. As in regular ordination, de­

trending is a method to prevent the second axis from 

being obscured by dependence on the first. 

Clos moni 

A ACvma sole 

A 
Clad frac 

Stig tenuA 

FIG. 4. Algae along a pollution gradient: DCCA ordination diagram. For an explanation of symbols see Fig. 3 legend. 



October 1986 CANONICAL CORRESPONDENCE ANALYSIS 1177 

TABLE 7. Data on algae along a pollution gradient, from Fig. 
3: canonical coefficients and intraset correlations, as in Ta­
ble 2. For a description of variables see Fig. 3 legend. 

Canonical Correlation 

Axis 
coefficients coefficients 

variable 2 2 

Oxygen -0.47 0.20 -0.81 -0.06 
BODS 0.06 -0.11 0.88 -0.08 
Ammonium 0.80 -0.07 0.94 0.09 
Phosphate -0.04 0.64 0.83 O.Sl 
Calcium -0.2S 0.28 -0.19 0.19 
OD -0.07 -0.10 -0.44 O.OS 
EC 0.28 -0.27 0.71 -0.09 

DISCUSSION 

Canonical correspondence analysis provides an in­

tegrated description of species-environment relation­

ships by assuming a response model that is common 

to all species, and the existence of a single set of un­

derlying environmental gradients to which all the species 

respond. The same strong assumption is implicit in all 

ordination techniques. Canonical correspondence 

analysis has the advantage over other techniques in 

that it focuses on the relations between species and 

measured environmental variables and so provides an 

automated interpretation of the ordination axes. 

Canonical correspondence analysis derives theoret­

ical strength from its relation to maximum likelihood 

Gaussian canonical ordination under conditions Cl­

C4 and furthermore seems extremely robust in practice 

when these assumptions do not hold. The vital as­

sumption is that the response surfaces of the species 

are unimodal, the Gaussian (bell-shaped) response 

model being the example for which the method's per­

formance is particularly good. For the simpler case 

where species-environment relationships are mono­

tone, the results can still be expected to be adequate 

in a qualitative sense (see Tests on Real Data: Dyke 

Vegetation). The method would not work if a large 

number of species were distributed in a more complex 

way, e.g., bimodally; the restriction to a unimodal model 

is necessary for practical solubility, but as Hill ( 1977) 

points out, a good choice of environmental variable 

should minimize the number of species with more 

complex distributions. Some care, however, is required 

with the interpretation of the ordination diagram when 

the additional assumptions (C l-C4) do not hold. Species 

in the center of the ordination diagram may then have 

their optima there, but may alternatively be unrelated 

to the axes. Which possibility is most likely can be 

decided upon by tabular rearrangement of the species 

data with respect to each axis, as is done in Table 3 

for the first axis. Further work still needs to be done 

on the statistical significance of eigenvalues, species­

environment correlations, and canonical coefficients. 

As in correspondence analysis, any kind of trans­

formation of the species abundance data may influence 

the results. When the abundance data have a very 

skewed distribution, it is recommended to transform 

them by taking square roots or logarithms. In this way 

we prevent a few high abundance values from unduly 

influencing the analysis. Because the compound en­

vironmental gradients constructed by canonical cor­

respondence analysis are required to be linear com­

binations of environmental variables, nonlinear 

transformation of environmental variables can also be 

considered if there is some reason to do so. Prior 

knowledge about the possible impact of the environ­

mental variables on community composition may sug­

gest particular nonlinear transformations and partic­

ular nonlinear combinations, i.e., environmental scalars 

in the sense of Loucks ( 1962) and Austin et a!. ( 1984 ). 

The use of environmental scalars can also circumvent 

the multicollinearity problem described in Theory: Ca­

nonical Coefficients. In contrast to the ordination tech­

niques in common use, canonical correspondence anal­

ysis allows one to incorporate existing knowledge about 

species-environment relationships into the analysis and 

thus potentially is a more powerful tool to advance this 

knowledge. 

Canonical correspondence analysis can be used fruit­

fully in combination with (detrended) correspondence 

analysis, as in the examples described. When the so­

lutions do not differ much, we infer that the measured 

environmental variables can account for the main vari­

ation in the species data. When the solutions do differ, 

we infer either that the environmental variables ac­

count for less conspicuous directions of variation in 

the species data (when the correlations between species 

and environment axes are high) or that they cannot 

account for any of the variation (when the correlations 

are small). These possibilities considerably extend the 

analytical power of ordination by allowing comparison 

of results from indirect and direct gradient analysis 

techniques that have a common theoretical basis. Di­

rect and indirect gradient analysis can also be com­

bined in a single analysis to answer such questions as 

"Does the known environmental variation account for 

all the community variation, or is there a substantial 

residual variation?" Suppose we believe two environ­

mental variables govern the species composition in a 

TABLE 8. Data on algae along a pollution gradient, from Fig. 
3: canonical coefficients and intraset correlations in DCCA. 
For a description of variables see Fig. 3 legend. 

Canonical Correlation 

Axis 
coefficients coefficients 

variable 2 2 

Oxygen -0.37 O.OS -0.81 0.04 
BODS 0.07 0.21 0.88 -0.40 
Ammonium 0.6S -0.60 0.9S -0.47 
Phosphate 0.10 O.SO 0.86 0.06 
Calcium -0.22 0.23 - 0.19 0.37 
OD -0.06 -0.07 -0.43 0.18 
EC 0.22 -0.17 0.70 --0.22 
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region. We may choose two ordination axes in the light 

of these variables, then extract further axes as in de­

trended correspondence analysis by reciprocal aver­

aging and detrending with respect to all previous axes. 

The lengths of the extra axes measure the residual vari­

ation. The program CANOCO (Ter Braak 1985a) has 

an option to do such combined analyses. The same 

option allows analysis of nested data (subplots within 

plots. e.g., yearly vegetation records from several per­

manent plots, or bird records from woodlots in several 

regions). The first axes can be chosen to represent vari­

ation between plots, so that the further axes represent 

variation between subplots. Swaine and Greig-Smith 

( 1980) used a variant of principal components analysis 

in this way to obtain an ordination of within-plot vege­

tation change in permanent plots; canonical corre­

spondence analysis could be used for the same purpose 

but is not hampered by the unwarranted assumption 

of a linear relationship between species abundance and 

environment. 
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APPENDIX 

Here canonical correspondence analysis is shown to be (I) 

an approximation to Gaussian canonical ordination, (2) an 
eigenvector technique akin to canonical correlation analysis, 
and (3) a method for weighted least squares approximation 

of weighted averages of species with respect to environmental 
variables. For an explanation of the notation, see Theory. 

The model of Gaussian canonical ordination is Eq. I in 
conjunction with Eq. 2 (see Theory). It is assumed that the 

species data are Poisson-distributed counts with E(y,,) = !l,, 
and that the species tolerances are all equal to I. Then the 

maximum likelihood equations for u, and b, are, after some 
rearrangement, respectively: 
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u, = ~ }';0/Y+k- [~(X,- uk)JL,kiY+k] 

~ Zu[~ Y,k(X; - Uk)] = ~ [~ (X; - Ud!L;k]z,1. 
I k I k 

(A. I) 

(A.2) 

Under conditions Cl-C4 and Eq. 7, we may use the approx­
imations 

(A.3) 

(A.4) 

because JL,, is symmetric about x, and about uk; the propor­
tionality constant X* comes in because the species' curves are 
the more truncated the more their optima lie towards or be­
yond the edge of the sampling interval (Ter Braak 1985b). 
The transition formulae Eqs. 3-6 now follow from Eqs. A. I 
and A.2 by using Approximations A.3 and A.4 and the equa­
tion X = I - X*. 

Starting from Eq. 5 we substitute for x* (Eq. 4), uk (Eq. 3), 
and finally x, (Eq. 6) and obtain 

(A.5) 

where S 21 = Z 1Y, s 12 = v'z, S 11 = diag (y+ b Y+ 2 , • .• , Y+m), S22 = 

z'Rz and v = {y,,}. Similarly, successive substitutions in Eq. 
3 lead to 

(A.6) 

where u = (u 1 ••••• u'")'. Apart from the particular definitions 
of the matrices in Eqs. A.5 and A.6, these equations are the 
eigenvector equations of canonical correlation analysis, and 
the eigenvalue X lies between 0 and I (Gittins 1985). The 
eigenvectors are all uncorrelated; using subscripts rand s for 
different axes we obtain that u,'s 11u, = 0, b,'s22b, = 0 and 
x,'Rx, = 0. Algorithms based on Eq. A.5 or Eq. A.6 will in 
general be more efficient than the algorithm developed in 
Theory. 

The first axis of canonical correspondence analysis does not 
maximize the species-environment correlation, i.e., the cor­
relation between x and x*. I have also developed an eigen­
vector technique that maximizes the species-environment 
correlation. This technique requires that the number of species 
is smaller than the number of sites. This requirement is often 
a nuisance in ecological research. As we have seen, the ratio­
nale for canonical correspondence analysis is different: it is, 
under conditions Cl-C4, almost a maximum likelihood tech­
nique. 

The weighted averages of the species with respect to the 
environmental variables in Eq. 8 are, in matrix notation, 
w = S11 - 1Y'z = s~~- 1 s 1 , where w = {zk)· We want a least 
squares approximation ofw in an ordination diagram. How­
ever, when a species total is low, the weighted average is 

imprecise (cf. Ter Braak and Looman 1986), so that it is not 
worthwhile to approximate that species' weighted averages 
very accurately in the diagram. This consideration suggests 
giving the species weights that are proportional to the species 
totals contained in S 11 • The result would still depend on the 
scale of measurement of the environmental variables. To make 
the method scale-invariant we use S22 - 1 as weights for the 
environmental variables. The desired weighted least squares 
approximation ofw follows now from the singular value de­
composition (see for example Greenacre 1984: Appendix A). 

(A.7) 

where P and Q are orthonormal m x q and q x q matrices 
(respectively) and A = diag (X 1, ••• , >--.). For convenience of 
notation it is assumed here that q ::s m. This singular value 
decomposition is just another way to solve Eqs. A.5 and A.6 
(see Mardia eta!. 1979: chapter I 0). With Hill's ( 1979) scaling 
of site and species scores, namely 

~ y,,(x,- u,)l = y.,, (A.8) 
i,k 

the coordinates of the species points are the first two columns 
of the matrix 

(A.9) 

and the coordinates of the points for the environmental vari­
ables are the first two columns of the matrix 

Be = y ++ -'~> s2/'Q(I - A)'l'A'~> = y ++-I z'Rx(I - A), (A.IO) 

where the second equality follows after some algebra, with x 
the matrix whose s•• column is x,. In this scaling u's 11 U = 

Y++(I- A)- 1 and x'Rx = y .. A(l- A)- 1 • It is easy to verify 
using Eqs. A.7, A.9, and A.IO that w = UB,-'. Therefore the 
points for species and environmental variables form a bi­
plot (Gabriel 1971) in the sense that inner products approx­
imate the elements of the matrix w, leading to a two-dimen­
sional approximation w,, say. A measure of goodness of fit 
is (X 1 + X,)/(sum of all eigenvalues), which is equal to 
trace (s 11 W 2S22 -I w2 ')/trace (S 11 w s22 -I w') and is, loosely speak­
ing, the percentage variance in the weighted averages ac­
counted for by the biplot. When the environmental variables 
are scaled to zero mean and unit variance (using y,+ as site 
weights), we obtain from Eq. A.IO that the coordinate ofthe 
point for environmental variable) on axis s must be [X_,(! -
X,)]'~> times the correlation coefficient of the environmental 
variable with the site scores x,. In detrended canonical cor­
respondence analysis the coordinates of the points for the 
environmental variables are obtained from a multivariate 
regression of w on the first two columns of u, u 2 say: 

B, = w'sllu,(u,'sllu,)- 1 = z'Rx(u,'sllu,)-- 1 , (A. II) 

which reduces to Eq. A.! 0 in canonical correspondence anal­
ysis. 


